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Abstract
We establish new local regularity results for the harmonic map and Yang–Mills heat
flows onRiemannianmanifolds of dimension greater than 2 and 4, respectively, obtain-
ing criteria for the smooth local extensibility of these flows. As a corollary, we obtain
new characterisations of singularity formation and use this to obtain a local estimate
on the Hausdorff measure of the singular sets of these flows at the first singular time.
Finally, we show that smooth blow-ups at rapidly forming singularities of these flows
are necessarily nontrivial and admit a positive lower bound on their heat ball energies.
These results crucially depend on some local monotonicity formulæ for these flows
recently established by Ecker (Calc Var Partial Differ Equ 23(1):67–81, 2005) and the
Afuni (Calc Var 555(1):1–14, 2016; Adv Calc Var 12(2):135–156, 2019).

Keywords Local regularity · Geometric heat flows · Harmonic map heat flow ·
Yang–Mills heat flow
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1 Introduction

Themain result of this paper is the following local regularity theorem for the harmonic
map and Yang–Mills heat flows on Riemannian manifolds (see Sect. 2 for the setup):

Theorem A Let (M, g) be a Riemannian manifold of dimension n > 2k, � � M,

cn,k = max{ 1√
4π

,

√
n−2k
2πe } and i0 ∈]0,min{inj�, π/

(
2
√

κ+∞
)
}[ fixed, κ∞ being an

upper boundon the sectional curvatures of (�, g). Then there exist geometric constants
ε,C > 0 such that if u : QR(X , T ) ⊂ �×]0, T [→ E ⊗ �k−1T ∗M is a harmonic
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9678 A. Afuni

map (k = 1) or Yang–Mills (k = 2) heat flow, then for any R ≤ i0, the implication

sup
(x,t)∈QR/2(X ,T )

Ik

(
u, g; x, t, R

2cn,k

)
< ε ⇒ R2k sup

QR/4(X ,T )

1

2
|ψ |2 ≤ C

holds, where ψ is the differential of u or the curvature two-form, respectively,
QR(X , T ) denotes the parabolic cylinder of radius R centred at (X , T ), and
Ik(u, g; x, t, R

2cn,k
) is the heat ball energy (3.1) associated with u over the heat ball

En−2k
R

2cn,k

(x, t).

The harmonic map heat flow was first introduced by Eells and Sampson [16] to
smoothly deform smoothmaps (Mn, g) → N ↪→ R

K betweenRiemannianmanifolds
M and N into harmonic ones. Key to their work was the fact that the target manifold N
had nonpositive sectional curvatures. Without this condition, the harmonic map heat
flow does not necessarily exist for all time, which was shown by Coron and Ghidaglia
[10] in the case where n ≥ 3 and Chang et al. [7] in the case where n = 2. Given
that singularities are inevitable, one might ask how big the set of singularities— i.e.
the singular set— is at the maximal time of a smooth harmonic map heat flow. This
question was first answered by Struwe [34] in the case of compact M of dimension
2 and arbitrary compact N , where the singular set was shown to consist of at most
finitely many points. It was later shown by Grayson and Hamilton [20] in the case of
compact M of dimension at least 3 and compact N (and implied by the work of Struwe
[35] for Euclidean M under suitable global restrictions on u) that the singular set is of
codimension at least 2; moreover, they established the existence and nontriviality of
smooth blow-ups of rapidly forming singularities. The crucial quantity in their analysis
was a weighted scale-invariant energy of the form

∫

M

1

2
|ψ |2(·, t) · 	k

(X ,T )(·, t), (1.1)

where 	k
(X ,T )(x, t) = (T − t)k · 	(X ,T ) for fixed (X , T ) ∈ M × R with 	(X ,T ) the

canonical backward heat kernel on M with singularity at (X , T ), ψ is the differential
of u and k = 1. In particular, they showed that if (1.1) is smaller than a geometric
constant ε > 0 close to the maximal time T for some fixed X , then a supremum bound
on the differential of u holds on a parabolic cylinder centred at (X , T ) (see Sect. 2
for the definition), which in turn implies that u may be smoothly extended up to the
maximal time T in a neighbourhood of X ; from this result, a characterisation of the
singular set of u at the maximal time is given in terms of a positive lower bound on
(1.1) close to T , which then leads to an estimate on the (n−2)-dimensional Hausdorff
measure of the singular set, as well as a strictly positive lower bound on the weighted
energy (1.1) of smooth blow-ups at rapidly forming singularities. Ultimately, all of
these results rely upon the scale invariance andmonotonicity properties of (1.1), which
were established by Struwe [35] and Hamilton [22].

The Yang–Mills heat flow of connections on a principal G-bundle over (Mn, g)
was introduced by Atiyah and Bott [4] to study the Morse theory of Yang–Mills

123



Local Regularity for the Harmonic Map... 9679

connections and later exploited byDonaldson [11] to establish an equivalence between
the stability of holomorphic vector bundles over Kähler manifolds and the existence
of a unique Hermitian–Einstein connection. It has been shown by Råde [31] that given
smooth initial data, this flow exists for all time and converges to a smooth Yang–Mills
connection for compact M of dimensions 2 and 3. In dimension 4, it has recently been
shown by Waldron that in stark contrast to the case of the harmonic map heat flow,
singularities cannot occur in finite time [39], though convergence might only occur
away from a singular set of finitely many points, as established by Struwe [36]. In
higher dimensions, it has been shown that the Yang–Mills heat flow tends to develop
singularities in finite time; this was done byNaito [25] in the case whereM is spherical
and Grotowski [21] in the case where M is Euclidean. It has likewise been shown that
the singular set is of codimension at least 4 in the case of compact M of dimension at
least 5 by Chen et al. [9]; moreover, an analysis of rapidly forming singularities was
carried out by Weinkove [41] in the higher-dimensional case. The key ingredient here
is also a weighted energy of the form (1.1) with ψ equal to the curvature two-form of
the flow of connections and k = 2, which again leads to an ε-regularity result as with
the harmonic map heat flow from which an estimate on the singular set at the maximal
time as well as a lower bound on the weighted energy of smooth blow-ups at rapidly
forming singularities readily follows. Again, these results rely upon scale invariance
and monotonicity properties of (1.1) established by Chen and Shen [8] and Hamilton
[22].

Theorem A is an analogue of both of these ε-regularity results; however, in contrast
to the quantity (1.1), ours, which is expressed as a supremum of a collection of so-
called heat ball energies, depends only on local data, as these heat balls completely
lie within a parabolic cylinder with proportional radius centred at the same point,
which allows us to state a criterion for the local extensibility of u up to the maximal
time T valid on Riemannian manifolds without imposing any additional conditions
on M or u. While it is possible to introduce a cut-off function in (1.1) to prove an
analogue of Theorem A for radii smaller than a constant depending on geometry and
the local energy of u as has been done in [23] for the Yang–Mills–Higgs flow, our
approach works out more cleanly and closely parallels the analogous regularity results
in the static case, which are stated in terms of suitable rescaled energies on balls (see
[32, Proposition 2.4] and [32, Theorem 3.1] for the case of harmonic maps as well
as [30, Theorem 1] and [26, Lemma 3.1] for the case of Yang–Mills connections).
Furthermore, our proof rests on a fairly simple blow-up argument as well as suitable
local monotonicity formulæ established by Ecker [14] for the harmonic map heat flow
on Euclidean domains and the author [1,3] more generally for both the harmonic map
and Yang–Mills heat flows on Riemannian manifolds. The blow-up argument we use
was employed by White [42] in establishing a similar local regularity result for the
mean curvature flow (see also [13, Chap. 5]), which ultimately motivated our approach
here.

Theorem A likewise gives rise to a characterisation of the singular set S of u
at the maximal time, as well as a local estimate on its Hausdorff measure under the
assumption of summability of |ψ |2 on�×[0, T [, which is the content of the following
theorem.

123



9680 A. Afuni

Theorem B Let ψ be as in Theorem A and suppose |ψ |2 ∈ L1(� × [0, T [). Then the
singular set S is closed and for any K � � and δ0 ∈]0, dist(K , ∂�)[, the estimate

H n−2k(S ∩ K ) ≤ ε1 lim sup
t↗T

∫

Bδ0 (S∩K )

1

2
|ψ |2(·, t)dvolg

holds, where ε1 > 0 is a geometric constant and H n−2k denotes the (n − 2k)-
dimensional Hausdorff measure on M.

As another corollary of Theorem A, we obtain the following nontriviality result
for smooth blow-ups at rapidly forming singularities in the form of a positive lower
bound on the heat ball energy of the blow-up.

Theorem C Let u and ψ be as in Theorem A and suppose u has a rapidly forming
singularity at (X , T ) in the sense that

sup
(x,t)∈QR0 (X ,T )

(T − t)k
1

2
|ψ |2(x, t) ≤ C0

holds for someC0 > 0 and R0 > 0. Then u admits a sequence of rescalings converging
locally uniformly in C∞ (modulo gauge) to a smooth self-similar harmonic map or
Yang–Mills heat flow u∞ on R

n×] − ∞, 0[ satisfying the estimate

Ik(u∞, gδ; 0, 0, R) ≥ ε

for all R > 0, where ε is as in TheoremA and gδ denotes the Euclidean metric onRn.

We note that an analogue of Theorem A has been established for the Ricci flow by Ni
[27], though in that case its application to the study of singularities is far more subtle
and has only been carried out in the case of rapidly forming singularities (see [17]).

The structure of this paper is as follows. In Sect. 2 we describe the underlying
geometric setup and introduce the harmonic map and Yang–Mills heat flows, as well
as some of their important properties, stating well-known facts in the context of our
considerations, as well as the local monotonicity formulæ of these flows on heat balls
which shall subsequently play an important rôle. In Sect. 3, we prove Theorem A and
show how the ε-regularity condition yields a necessary and sufficient condition for the
local smooth extensibility of these flows up to the maximal time; in the process, we
obtain an alternative local regularity theorem based around parabolic cylinders rather
than heat balls. In Sect. 4 the singular set at the maximal times of these flows is defined
and more explicitly described in terms of the results of Sect. 3, which then leads to
a proof of Theorem B. Finally, in Sect. 5, we turn our attention to rapidly forming
singularities of these flows and show that they admit smooth, nontrivial blow-ups,
culminating in a proof of Theorem C. Throughout this paper, we have attempted to
treat both the Yang–Mills and harmonic map heat flows simultaneously, abstracting
away their common properties. The possibility of this approach suggests that there
might be a more general principle at play.
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Local Regularity for the Harmonic Map... 9681

2 Setup

2.1 Geometry

Throughout this paper we will be dealing with a Riemannian manifold (Mn, g) of
dimension n > 2k > 0 with k to be fixed shortly according to the heat flow under con-
sideration. We shall adopt the notation of [40] and [28] for all Riemannian geometric
quantities, operators and spaces. We shall write 〈·, ·〉 and | · | for the inner product
and norm associated with g respectively and shall append the metric as a subscript
when ambiguity must be avoided. Furthermore, when considering tensor products
(and exterior products) of bundles constructed from the tangent bundle T M (or the
cotangent bundle T ∗M) and Riemannian vector bundles, we shall simply write 〈·, ·〉
and | · | for the naturally induced inner product and norm, and given (families of)
connections ∇ on these bundles, we shall again write ∇ for the induced connections
on these constructed bundles. We shall write (·, ·) for the canonical fibrewise bilinear
pairings of elements of E ⊗⊗

T ∗M with
⊗

T M as well as E ⊗�T ∗M with �T M ,
where E is any vector bundle, and the fibrewise interior product of a vector field X
with a section α of E ⊗ �T ∗M shall be denoted by X�α. The Euclidean metric on
R
n and its subsets shall be denoted by gδ .
In all of our considerations, � will denote a fixed, relatively compact subset of M .

Thus, we may find constants i0 > 0 and κ−∞, κ∞ > 0 such that inj� > i0 and the
sectional curvature bounds

−κ−∞ ≤ sec ≤ κ∞ (2.1)

hold on �. For simplicity, we will assume that i0 < π
2
√

κ∞ if κ∞ > 0. Note that for
fixed x ∈ �, we obtain the estimate

�−∞
(
1

2
r(·, t)2

)
gr(·, x) ≤ g − ∇2

(
1

2
r(·, x)2

)
≤ �∞

(
1

2
r(·, x)2

)
gr(·, x)

(2.2)

in � ∩ Bi0(x), where r(·, x) denotes the distance function measured from x ,

gr = g − dr(·, x) ⊗ dr(·, x)

and �±∞ are constants which may be determined explicitly in terms of κ± by means
of a Hessian comparison theorem (cf. [28, Theorem 27, p.175]).

For x ∈ M and r > 0, we denote the geodesic ball of radius r centred at x by
Br (x) := {r(·, x) < r} and for t ∈]0, T ], we introduce the parabolic cylinder of
radius r centred at (x, t) as

Qr (x, t) := Br (x)×]t − r2, t[.
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9682 A. Afuni

For later purposes, we introduce for each λ > 0 and X ∈ M the (crudely) rescaled
metric gXλ : BinjX /λ(0) ⊂ R

n → T ∗
R
n ⊗ T ∗

R
n defined by

gXλ (y) =
n∑

i, j=1

gi j (λy) dyi ⊗ dy j ,

where {gi j } are the components of g in geodesic normal coördinates about X and {yi }
denote Euclidean coördinates.

We shall write
√
g for the volume density associated with g and some fixed coördi-

nate systemwhich shall be understood from context. Moreover, the associated volume
measure on (M, g) shall be written dvolg . Integrals over space-time regions shall be
written in double integral notation and, when there is no possibility of confusion, we
shall not append a measure to the integrand.

2.2 Flows

We shall now proceed to describe the flows we are interested in. In both cases, we
have a Riemannian vector bundle V → E → M with fibrewise inner product 〈·, ·〉,
a one-parameter family of connections ∇, and a one-parameter family of E-valued
(k − 1)-forms

{u(·, t) : M → E ⊗ �k−1T ∗M}t∈[0,T [

with a distinguished fundamental k-form {ψ(·, t) : M → E ⊗ �kT ∗M}t∈[0,T [ satis-
fying an equation of the form

∂tψ − �ψ = B, (2.3)

where � denotes the connection Laplacian associated with the family of connections
on E and theLevi–Cività connection on T M , and B is a suitable polynomial expression
in ψ and ∇ψ .

2.2.1 Harmonic Map Heat Flow

The harmonic map heat flow is given by a one-parameter family of smooth maps
{u(·, t) : M → N ⊂ R

K }t∈[0,T [ with N a compact Riemannian submanifold of RK

such that the equation

(∂t − �g)u = −
∑
i, j

gi j (b ◦ u, ∂i u ⊗ ∂ j u) (2.4)

holds, where b denotes the second fundamental form of N extended to an (RK )∗ ⊗
(RK )∗-valued mapping by setting it equal to zero when paired with vectors normal
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to N . For this flow, k = 1, ψ = du, V = R
K , E = R

K , the trivial vector bundle
with standard fibre RK , and ∇ is the canonical trivial connection on E . Moreover, by
differentiating (2.4) and carefully interchangingderivatives (or equivalently employing
aWeizenböck-type argument [29, Theorem 4.22]), we see that du satisfies an equation
of the form (2.3) with

B = −
n∑

i, j=1

gi j (∇b ◦ u, ∂i u ⊗ ∂ j u ⊗ ∂ku) ⊗ dxk

−
n∑

i, j=1

2(b ◦ u, (∇ du, ∂k ⊗ ∂i ) ⊗ ∂ j u) ⊗ dxk

−
n∑

i, j,k=1

Ri j g
ik∂ku ⊗ dx j ,

(2.5)

where ∇b is the covariant differential of the second fundamental form of N extended
as above to an

⊗3
i=1(R

K )∗-valuedmapping, its last slot corresponding to the direction
of covariant differentiation, and {Ri j } are the components of the Ricci curvature tensor
of g.

Given a harmonicmap heat flow u, wemay rescale it as follows: Letϑx : Binjx (0) ⊂
R
n → Binjx (x) ⊂ M denote a geodesic normal parametrisation centred at x ∈ M

(fixed once and for all). Defining

u(x,t)
λ (y, s) := (ϑ∗

x u)(λy, t + λ2s) = u(ϑx (λy), t + λ2s),

we obtain a one-parameter family of maps

{u(x,t)
λ (·, s) : Binjx/λ(0) → N }s∈]− t

λ2
, T−t

λ2
[

solving the equation (2.4) with respect to the metric gxλ . In the case where (M, g) is

Euclidean space, we say that u is self-similar about (x, t) if u(y, s) = u(x,t)
λ (y, s) for

all λ > 0 and (y, s) ∈ R
n × R for which both sides are defined.

2.2.2 Yang–Mills Heat Flow

Let G → P → M be a principal bundle with compact semi-simple Lie group G as its
structure group, and write Eg for the vector bundle associated with P and the adjoint
representation of G on its Lie algebra g. The (negative) Killing form on g endows
Eg with the structure of a Riemannian vector bundle; moreover, any connection ω

on P induces a unique covariant derivative operator ∇ on Eg compatible with this
Riemannian structure. The Yang–Mills heat flow is given by a one-parameter family
of connections {ω(·, t) : P → g ⊗ T ∗P}t∈[0,T [ such that the equation

∂tω = div �ω (2.6)
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9684 A. Afuni

holds, where ∂tω(·, t) is the unique section of Eg ⊗ T ∗M having ∂tω : P×]0, T [→
g⊗T ∗P as its horizontal lift, �ω : M ×[0, T [→ Eg ⊗�2T ∗M is the curvature two-
form of ω, and the divergence operator div is induced by the Levi–Cività connection
on T M and ω(·, t). For background material on this setup in accordance with our
viewpoint, we refer the reader to [6, IV.2].

In order to study {ω(·, t)}onM , fix a connectionω0 on P . Thedifferenceω(·, t)−ω0
is then a horizontal G-equivariant g-valued one-form on P and therefore corresponds
to a Eg-valued one-form u(·, t) : M → Eg ⊗ T ∗M for each t which satisfies the
equation ∂t u = ∂tω. Note that the choice of ω0 is not canonical. Thus, for this flow,
k = 2, V = g, E = Eg, u is as above, ψ = �ω and ∇ is the one-parameter family of
connections on Eg induced by ω. Analogously to the case of the harmonic map heat
flow, using the fact that

∂t�
ω = d∇∂tω,

d∇ denoting the exterior covariant derivative associated with the connection on Eg

arising from ω and the Levi–Cività connection on T M (cf. [29, 2.75]), differentiating
(2.6) and employing a Weitzenböck-type argument, we deduce that �ω satisfies an
equation of the form (2.3) with

B = −
n∑

i, j,k,p=1

g jk[(�ω, ∂k ∧ ∂i ), (�
ω, ∂ j ∧ ∂p)] ⊗ dxi ∧ dx p

−
n∑

i, j,k,l=1

gil Rl j (�
ω, ∂i ∧ ∂k) ⊗ dx j ∧ dxk

+
n∑

i, j,k,l,m=1

g jk Rm
· lik(�

ω, ∂m ∧ ∂ j ) ⊗ dxi ∧ dxl ,

(2.7)

where [·, ·] is the fibrewise Lie bracket on Eg naturally induced by that of g and {Rm
· lik}

are the components of the Riemann curvature tensor of g, where the sign convention
is that of [37].

We now more explicitly describe ω(·, t) locally. To this end, we fix a local section
σ : U → P and let�σ : U ×g → Eg be the local bundle parametrisation induced by
σ . Then u(x, t) = ∑n

i=1 �σ (x, Ai (x, t)− (A0)i (x, t))⊗ dxi for (x, t) ∈ U ×[0, T [,
where

A(·, t) :=
n∑

i=1

Ai (·, t) ⊗ dxi := σ ∗ω(·, t)

is the local connection form and

A0 :=
n∑

i=1

(A0)i (x) ⊗ dxi := σ ∗ω0.
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Local Regularity for the Harmonic Map... 9685

The curvature two-form is then locally given as

F(·, t) =
∑
i< j

Fi j (·, t) ⊗ dxi ∧ dx j : U → g ⊗ �2T ∗M

with Fi j = ∂i A j − ∂ j Ai +[Ai , A j ]. We may therefore locally describe a Yang–Mills
heat flow by means of a smooth one-parameter family of local g-valued one-forms
{A(·, t)}t∈[0,T [ solving the system of equations

∂t Ai =
n∑

p,q=1

gpq

(
∂pFqi + [Ap, Fqi ] −

n∑
r=1

(
�r
pq Fri + �r

pi Fqr
))

(2.8)

on U×]0, T [ for each i ∈ {1, . . . , n}.
Similarly to the harmonic map heat flow, we may rescale a Yang–Mills heat flow

as follows: Fix (x, t) ∈ M×]0, T ] and a local section σ : Binjx (x) → P . As before,
we let ϑx : Binjx (0) → Binjx (x) denote a geodesic normal coördinate parametrisation.
Defining

A(x,t)
λ (y, s) := (ϑ∗

x A)(λy, t + λ2s) =
n∑

i=1

λAi (ϑx (λy), t + λ2s) ⊗ dyi ,

we obtain a smooth one-parameter family

{A(x,t)
λ (·, s) : Binjx/λ(0) → g ⊗ T ∗

R
n}s∈]− t

λ2
, T−t

λ2
[

solving the system of equations (2.8)with respect to the metric gxλ . This then gives rise

to a family of connections {u(x,t)
λ (·, s)}s∈]− t

λ2
, T−t

λ2
[ on the trivial bundle Binjx/λ(0)×G

evolving by the Yang–Mills heat flow, where the metric tensor on the base manifold
is given by gxλ . As with the harmonic map heat flow, if (M, g) is Euclidean, we call

u self-similar about (x, t) if Ai (y, s) ≡
(
A(x,t)

λ

)
i
(y, s) for all λ > 0, i ∈ {1, . . . , n}

and (y, s) ∈ R
n × R for which both sides are defined.

In contrast to the case of the harmonic map heat flow (with isometrically embedded
targetmanifold), there is no preferred representation of a connectionω as an Eg-valued
one-form; indeed, from a differential geometric point of view, connections are usually
considered equivalent if they are related by the action of the gauge group: Given a con-
nection ω on P with local one-forms {Aσ = ∑n

i=1 A
σ
i ⊗ dxi : σ a local section of P}

and a section g : U → EG of the bundle G → EG → M associated with P and the
action of G on itself by conjugation, which we may locally write as

g(x) = 	σ (x, gσ (x))
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9686 A. Afuni

with σ a local section of P and 	σ the local bundle parametrisation of EG associated
with σ , the collection of local one-forms

{ Ãσ =
n∑

i=1

Ãσ
i ⊗ dxi }

with Ãσ
i := Adgσ (Aσ

i ) − ∂i gσ · (gσ )−1 gives rise to a connection g · ω on P , where
Ad denotes the adjoint representation of G on g and · the natural right action of G
on TG. The connection corresponding to g · ω satisfies �g·ω = Adg�ω, where Ad
is the natural adjoint action of the gauge group on Eg. A computation readily shows
that if ω is a Yang–Mills heat flow, then so is g · ω, albeit on a smaller subset of M if
U �= M , and the norm of the curvature form �ω (as well as its covariant derivatives)
is invariant under the action of the gauge group.

When speaking of the convergence of a sequence {ωi } of connections (with corre-
sponding Eg-valued one-forms {ui }), we shall say that {ui } (or {ωi }) converges locally
uniformly on U ⊂ M modulo gauge if there exists a sequence {gi : U → EG} of
elements of the gauge group for which the Eg-valued one-form {̃ui } corresponding
to {gi · ωi } (and some fixed connection ω0) converges locally uniformly on U ⊂ M .
Likewise, by convergence locally uniformly in C∞ we shall mean that {̃ui } converges
locally uniformly in C∞ on coördinate patches. For our purposes, working with the
trivial connection with respect to some local section will be sufficient.

When working locally, the action of the gauge group is essentially equivalent to
choosing a different representative local one-form of the connection; indeed, if σ :
U → P and σ ′ : U ′ → P are two local sections of P , then there exists a smooth
mapping g : U ∩ U ′ → G such that σ ′ · g = σ , · being the right action of G on P ,
and the associated local connection forms Aσ and Aσ ′

are related by

Aσ ′
i = Adg(A

σ
i ) − ∂i g · g−1.

We shall take this view point for the sake of concreteness.

2.2.3 Common Properties

We recall some well-known facts common to the Yang–Mills and harmonic map heat
flows; these results are essentially contained in [20] for the harmonic map heat flow
and [41] for the Yang–Mills heat flow, albeit in a slightly different form. For the
convenience of the reader, we sketch their proofs.

In both cases, local control on the fundamental form ψ ensures local control on the
derivatives of ψ of all orders in the following sense:

Lemma 2.1 (Higher regularity) If the estimate r2k sup
Qr (X ,T )

1
2 |ψ |2 ≤ c0 holds for some

c0 > 0, 0 < r < injX and X ∈ M, then for each i ∈ N there exists a constant ci > 0
depending only on c0, bounds on the covariant derivatives of the Riemann curvature
tensor in Br (X) up to order i and the geometry of the target of the underlying flow
such that
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Local Regularity for the Harmonic Map... 9687

r2(k+i) sup
Qr/2(X ,T )

1

2
|∇ iψ |2 ≤ ci . (2.9)

A variant of this lemma was established in [20, Theorem 2.2] for the case of the
harmonic map heat flow and [41, Theorem 2.2] for the case of the Yang–Mills heat
flow. In the former case, the {ci } depends on bounds on the sectional curvature of N
and in the latter the structure constants of g. For completeness’ sake, the proof of this
version shall now be sketched.

We first recall the following localised weak maximum principle due to Ecker and
Huisken [15]; its proof may be found in [13, Prop. 3.17] under the assumption that
M evolves by mean curvature flow, though the proof carries over mutatis mutandis to
our setting.

Theorem 2.2 (Localised maximum principle) Fix t1, t2 > 0 and let φ : M ×[t1, t2[→
[0,∞[ be a C2 function such that φ(·, t) ∈ C2

0 (M) for all t ∈ [t1, t2[ and

φ + |∇φ| + |∂tφ| + |∇2φ| + |∇φ|2
φ

≤ cφ (2.10)

for some constant cφ > 0. Furthermore suppose that f : M × [t1, t2[→ [0,∞[ is a
C2 function such that

(∂t − �) f ≤ −a0 f
2 − a1 · f + 〈X ,∇ f 〉 + a2 (2.11)

on U := {(x, t) : φ(x, t) > 0} with a0 > 0, a2 ∈ R, a1 : U → [0,∞[ and
X : U → T M a time-dependent vector field such that a3 := supU

|X |√
1+a1

< ∞. Then

for all t ∈ [t1, t2[, we have that

max
M

( f · φ)(·, t) ≤ max
M

( f · φ)(·, t1) + δ1,

where

δ1 =
√√√√4

3

(
(4 + n + 1

4a
2
3)

2

a20
+ a2c2φ

a0

)
. (2.12)

Proof of Lemma 2.1 By rescaling the flow and crudely rescaling the metric, we may
without loss of generality suppose that r = 1 and (x, t) = (0, 0) ∈ R

n , since the
scaling behaviour of g, ψ , the Riemann curvature tensor and its covariant deriva-
tives would then establish the desired estimate. Set fk = 1

2 |∇kψ |2. By successively
differentiating (2.3) in both cases, we see that whenever

sup
Q

fi ≤ ci (2.13)
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9688 A. Afuni

for i ∈ {0, . . . , k − 1}, {ci }k−1
i=0 ⊂ R and Q ⊂ Q1(0, 0) open, then

(∂t − �) fk ≤ −2 fk+1 + Ck(1 + fk) (2.14)

with Ck depending (polynomially) on {ci }k−1
i=0 and bounds on the covariant derivatives

of the Riemann curvature tensor up to order k, as well as the structure constants of g in
the case of the Yang–Mills heat flow, and bounds on the second fundamental form of
N up to order k + 1 in the case of the harmonic map heat flow (cf. [20, Theorem 2.2]
and [41, Theorem 2.2]). We shall employ a variant of the Shi trick (cf. [33, Lemma
4.2]) in order to apply Theorem 2.2. To this end, assuming the bounds (2.13), set
gk = fk · (αk + fk−1), with αk > 0 to be determined. We compute, writing L for the
heat operator ∂t − �, that

Lgk = L fk · (αk + fk−1) + fk · L fk−1 − 2 〈∇ fk,∇ fk−1〉
≤ (4ε − 2) fk+1(αk + fk−1) + Ck(αk + fk−1) + Ckgk

+ Ck−1 fk(1 + fk−1) +
(

−2 + 2

ε
· fk−1

αk + fk−1

)
f 2k ,

for every ε > 0, where we have used the evolution inequality (2.14) as well as the
inequality

| 〈∇ fk,∇ fk−1〉 | ≤ |∇kψ |2 · |∇k+1ψ | · |∇k−1ψ |
≤ 2ε(αk + fk−1) fk+1 + 2

ε(αk + fk−1)
f 2k fk−1,

where the former inequality follows from Kato’s inequality and the latter Young’s
inequality. Setting ε = 1

2 eliminates the first term, and since x �→ x
αk+x is monotone

increasing, (2.13) together with another application of Young’s inequality in the form

Ck−1 fk(1 + fk−1) ≤ C2
k−1

2
(1 + ck−1)

2 + 1

2
f 2k

yields the inequality

Lgk ≤
(

−3

2
+ 4

ck−1

αk + ck−1

)
f 2k + Ckgk + c̃k

with c̃k = Ck(αk + ck−1) + C2
k−1
2 (1 + ck−1)

2. Choosing αk = 13
3 ck−1 which then

implies that gk ≤ 16
3 ck−1 fk , we arrive at the evolution inequality

Lgk ≤ − 27

1024c2k−1

g2k + Ckgk + c̃k

≤ − 27

2048c2k−1

g2k +
(
c̃k + 512c2k−1C

2
k

27

)
,

(2.15)
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which is of the form (2.11), where in the last line we applied Young’s inequality. Now,

for each k ∈ N ∪ {0}, set rk = 1
2 + ( 1

4

)k
and define ϕk : Rn × [−r2k−1, 0[→ [0,∞[

such that

ϕk(x, t) = (t + r2k−1) · max{0, (r2k−1 − |x |2)3}.

Then ϕk(·,−r2k−1) ≡ 0, for each t ∈]−r2k−1, 0[, supp ϕk(·, t) = Brk−1(0), ϕk satisfies
the inequality (2.10) with cϕk depending on k as well as the constants �±∞ arising in
the geometry bounds (2.2), and we have the inequality

ϕk |Qrk (0,0) ≥ (r2k−1 − r2k )4 =: γk (2.16)

Now, suppose that supQ1(0,0) f0 ≤ c0. Applying Theorem 2.2 to f = g1 and
φ = ϕ1, we immediately obtain a bound β1 > 0 depending on n and the coëfficients
appearing on the right-hand side of (2.15), viz. c0, C0 and C1, the latter of which
depend appropriately on the underlying geometry, such that

sup
B1(0)

(g1 · ϕ1)(·, t) ≤ β1

for each t ∈ [−1, 0[. Using (2.16), we obtain that supQr1 (0,0) g1 ≤ β1
γ1
. Proceeding by

induction, we see that

sup
Qrk (0,0)

gk ≤ βk

γk

for each k ∈ N with βk > 0 depending only on n, c0 and the underlying geometry.
Since gk ≥ αk fk , we may proceed again by induction to obtain estimates

sup
Qrk (0,0)

fk ≤ ck

for each k ∈ N, where ck depends on n, c0 and the underlying geometry as before.
Since 1

2 < rk ≤ 1 for all k, this establishes the claim.

Remark 2.3 By carefully inspecting the expression (2.12), it may be readily checked
in the process of the inductive argument that the {ci }∞i=1 in (2.9) may be bounded from
above by an expression depending polynomially on c0 and the underlying geometric
bounds.

Since we are restricting our attention to the harmonic map heat flow with compact
target manifold, we automatically have boundedness of u and, by Lemma 2.1, once
we have a bound on du in a parabolic cylinder, we obtain local bounds on ∇l du for
all l ∈ N in a slightly smaller parabolic cylinder. The situation is more complicated in
the case of the Yang–Mills heat flow, where a bound on the curvature two-form does
not equate to a bound on the differential of u owing to gauge invariance. However,
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9690 A. Afuni

given a bound on the curvature two-form in a parabolic cylinder, we may by suitably
choosing a local section (or equivalently by acting an element of the gauge group)
deduce the boundedness of the local connection form and all of its derivatives in a
slightly smaller parabolic cylinder, the key ingredient being Uhlenbeck’s Coulomb
gauge theorem [38].

Lemma 2.4 (Nice gauge lemma) If r4 sup
Qr (X ,T )

1
2 |�ω|2 ≤ c0 for some 0 < r < i0 and

c0 > 0, then there exist constants θ ∈]0, 1
4 ] and {αi }∞i=0 ⊂]0,∞[ depending only on

c0, n, i0, bounds on the covariant derivatives of the Riemann curvature tensor and
the structure constants of g, and a local section σ : B2θr (X) → P such that for all
i ∈ N ∪ {0},

r2(1+i) sup
Qθr (X ,T )

1

2
|∇ iσ ∗ω|2 ≤ αi . (2.17)

Proof Let t0 = T − ( r
2

)2 and write gδ for the Euclidean metric on Br (X) defined in
geodesic normal coördinates at X . Note that we have a bound of the form

|g − gδ|gδ (ϑX (x)) ≤ α(n) · sup
Bi0 (X)

|R|gδ · |x |2 ≤ β|x |2,

where ϑX : BinjX (0) ⊂ R
n → BinjX (X) ⊂ M is the associated geodesic normal

parametrisation of BinjX (X), α(n) is a constant depending only on n, R is the Riemann
curvature tensor of g and β is any upper bound for the coëfficient of |x |2 in the middle

expression of this inequality. Since
∫
Bλr (X)

1
2 |�ω| n2 (·, t0) λ↘0−−→ 0, it follows from

Uhlenbeck’s Coulomb gauge theorem that there exists a θ ∈]0, 1
4 ] depending only

on c0, n, β and the structure constants of g, and a local section σ : B2θr (X) → P
such that the Coulomb gauge condition

∑n
i=1 ∂i (σ

∗ω(·, t0), ∂i ) = 0 holds as well as
a scale-invariant bound on the W 1,p norm of σ ∗ω(·, t0) on B2θr (X) in terms of the
L p norm of �ω for all p ≥ n

2 . Choosing θ smaller depending on β and n if necessary,
the Coulomb gauge condition together with (2.8) implies that σ ∗ω(·, t0) solves an
elliptic system so that by standard techniques (cf. [24, Sect. 3.5] and [12, Sect. 4]),
scale-invariant estimates

r2(1+i) sup
Bθr (X)

1

2
|∇ iσ ∗ω(·, t0)|2 ≤ βi (2.18)

follow, where the {βi }∞i=0 depend only on c0, bounds on the covariant derivatives of
R in Bi0(X) and the structure constants of g. Now, it follows from the bound on �ω

and Lemma 2.1 that on Q r
2
(X , T ),

∂t
1

2
|σ ∗ω|2 ≤ 2n

√
c1

r3
·
√
1

2
|σ ∗ω|2.
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An integration and application of (2.18) then yield the inequality

r2 sup
Bθr (X)

1

2
|σ ∗ω(·, t)|2 ≤ α0 := (β0 + n

√
c1)

2

for all t ∈ [t0, T [, which implies (2.17) in the case i = 0. The remaining estimates
follow similarly by induction. ��
Remark 2.5 Wemay leverage Lemma 2.4 to obtain bounds on the covariant derivatives
of the section u associated with the Yang–Mills heat flow as follows: Let ϕ : M →
[0,∞[ be any smooth function such that ϕ|Bθr (X) ≡ 1 and supp ϕ � B2θr (0). Setting
ω0 = ϕ ◦ π · ωσ + (1 − ϕ ◦ π)ω1, where π : P → M is the projection map of the
principal bundle, ωσ is the trivial connection associated with the local section σ and
ω1 is any other smooth connection on P , we have the equality

u(x, t) = �σ (x, σ ∗ω(x, t))

for (x, t) ∈ Qθr (X , T ), where�σ : B2θr (X)×g → Eg is the local bundle parametri-
sation of Eg associatedwith σ acting on the former part of the tensor product g⊗T ∗

x M .
This immediately implies that

r2(1+i) sup
Qθr (X ,T )

1

2
|∇ i u|2 ≤ αi

under the hypotheses of the lemma. Moreover, in the light of these bounds, we obtain
similar estimates with the trivial connection with respect to σ in place of ∇.

2.3 Heat Balls and Local Monotonicity

We now turn our attention to the monotonicity properties of the harmonic map and
Yang–Mills heat flows.

For fixed (x, t) ∈ �×]0, T ], r > 0 and k < n
2 , the generalised Euclidean (n−2k)-

heat ball of radius r centred at (x, t) is defined by

En−2k
r (x, t) =

{
(y, s) ∈ �×]0, T ] : 1

(4π(t − s))
n−2k
2

exp

(
r(y, x)2

4(s − t)

)
>

1

rn−2k

}

=
⋃

s∈]t− r2
4π ,t[∩]0,T ]

(
BRn−2k

r (s−t)(x) ∩ �
)

× {s},

where Rn−2k
r (σ ) =

√
2(n − 2k)σ log

(
− 4πσ

r2

)
for σ ∈]− r2

4π , 0[. It may be seen from

the definition of En−2k
r (x, t) that it is relatively compact in M × [0, T ]. Moreover, we

have the inequality Rn−2k
r (σ ) ≤

√
n−2k
2πe r so that setting cn,k := max{ 1√

4π
,

√
n−2k
2πe },
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9692 A. Afuni

we have the inclusion

En−2k
r (x, t) ⊂ Qcn,kr (x, t).

For technical reasons, we shall restrict our attention to small r so that En−2k
r (x, t) ⊂

�×]0, T [.
We now state the local monotonicity principle for these flows. For simplicity, we

introduce the shorthand notation

ek[u, g](x,t) = 1

2
|ψ |2 ·

(
∂tφ(x,t) + |∇φ(x,t)|2

)
− 〈∇φ(x,t)�ψ, ∂t u + ∇φ(x,t)�ψ

〉
,

where φ(x,t)(y, s) = r(x,y)2

4(s−t) − n−2k
2 log (4π(t − s)). Note that the right-hand side

implicitly depends on the choice of metric g. The following was established by Ecker
[14] in the case of the harmonic map heat flow with M Euclidean and more generally
for the Yang–Mills and harmonic map heat flows on Riemannian manifolds by the
author [1,3].

Theorem 2.6 (Local monotonicity) Fix x ∈ � and suppose u is a harmonic map or
Yang–Mills heat flow on QR(x, t) ⊂ � × R for R ≤ i0. Then there exist r0 > 0 and
ξk ∈ C∞(]0,∞[) with lim

s↘0
ξk(s) = 0 depending on the geometry of � such that the

heat ball energy

r �→ 1

rn−2k

∫∫

En−2k
r (x,t)

eξk (t−s)ek[u, g](x,t)(y, s) dvolg(y)ds (2.19)

ismonotone nondecreasing for r < r0 whenever the integrand is definedand summable
over En−2k

r0 (x, t). If (M, g) = (Rn, gδ), then ξk ≡ 0 and (2.19) is constant iff u is
self-similar about (x, t) in En−2k

r0 (x, t) (modulo gauge).

Remark 2.7 The geometric quantities r0 and ξk are explicitly given by the following
expressions:

r0 = R

2cn,k
;

ξk(σ ) = σ

[
((n − 1)�+∞ − 2k�−−∞) log

( e

4πσ

) n−2k
2
]

,

where �± arise from the geometry bounds (2.2).

Remark 2.8 (Scale invariance) We may more explicitly write ek[u, g](x,t)(y, s) in
geodesic normal coördinates about (x, t) as

1

2
|ψ |2(y, s) · n − 2k

2(t − s)
−
〈

y

2(s − t)
�ψ(y, s), ∂t u + y

2(s − t)
�ψ(y, s)

〉
.
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In particular, using this local expression, we have that

1

rn−2k

∫∫

En−2k
r (x,t)

eξk (t−s)ek[u, g](x,t)(y, s) dvolg(y)ds

= 1

(r/λ)n−2k

∫∫

En−2k
r/λ (0,0)

eξk (−λ2s)ek[u(x,t)
λ , gxλ](0,0)(y, s) ·

√
gxλ(y) dyds

for any λ > 0.We shall use this (approximate) scale invariance property in the sequel.

Remark 2.9 (Nonnegativity) By monotonicity and scale invariance, if u is smooth on
QR(x, t), then for all r < r0,

1

rn−2k

∫∫

En−2k
r (x,t)

eξk (t−s)ek[u, g](x,t)(y, s) dvolg(y)ds

≥ lim
λ↘0

1

λn−2k

∫∫

En−2k
λ (x,t)

eξk (t−s)ek[u, g](x,t)(y, s) dvolg(y)ds

= lim
λ↘0

∫∫

En−2k
1 (0,0)

eξk (−λ2s)ek[u(x,t)
λ , gxλ](0,0)(y, s) ·

√
gxλ(y) dyds = 0,

where the last equality follows from the dominated convergence theorem. Therefore,
the quantity (2.19) is nonnegative in the case where u is smooth in a neighbourhood
of x up to and including time t . In the special case where (M, g) = (Rn, gδ) and u is
self-similar about (x, t), the heat ball integrand takes the form

ek[u, gδ](x,t)(y, s) = 1

2
|ψ |2(y, s) · n − 2k

2(t − s)
,

which is nonnegative on En−2k
r (x, t) regardless of whether u is smooth up to and

including time t .

It was shown in [3] that the quantity (2.19) is finite for r ≤ r0 whenever 1
2 |ψ |2 is

summable over a suitable parabolic cylinder containing En−2k
r0 (x, t). In fact, we have

the following estimate.

Lemma 2.10 (L2 estimate) Suppose u is a harmonic map or Yang–Mills heat flow on
� × [0, T [. Then the estimate

1

rn−2k

∫∫

En−2k
r (x,t)

|ek[u, g](x,t)|(y, s)eξk (t−s)dvolg(y)ds ≤ γn,k

rn−2k+2

∫∫

Q4cn,k r (x,t)

1

2
|ψ |2

(2.20)

holds whenever Q4cn,kr (x, t) ⊂ �×]0, T [ and r ≤ r0
2 , where γn,k depends on n, k

and the geometry of �.
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9694 A. Afuni

Proof In [3, Remark 5.8], it was shown that

1

rn−2k

∫∫

En−2k
r (x,t)

|ek[u, g](x,t)|(y, s)dvolg(y)ds

≤ c1

(
1

rn−2k+2

∫∫

Q2cn,kr (x,t)

1

2
|ψ |2 + 1

rn−2k

∫

B2cn,kr0 (x)

1

2
|ψ |2(·, t − r2

4π
)

)
,

(2.21)

where c1 depends on n, k and the geometry of �. Now, it may be shown using the
methods of [2] that

d

dt

∫

M

1

2
|ψ |2ϕ(·, t)

= −
∫

M
|∂t u|2ϕ +

∫

M

1

2
|ψ |2(∂t − �)ϕ +

〈
∇2ϕ,

∑
i, j

〈
∂i�ψ, ∂ j�ψ

〉
dxi ⊗ dx j

〉

(2.22)

for a smooth functionϕ : M×[0, T [→ [0,∞[ such thatϕ(·, t) is compactly supported
in M for each t . We fix a smooth function χ : R → [0, 1] such that χ(t) = 1 for

t < 1
2 and χ(t) = 0 for t > 1. Setting ϕ(y, s) = χ

((
r(y,x)
4cn,kr

)2 + t−s
(4cn,kr)2

)
, it follows

that supp ϕ(·, s) ⊂ B4cn,kr (x), ϕ(·, s) = 0 for s ≤ t − (4cn,kr)2, and ϕ ≡ 1 on
Q2cn,kr (x, t). Moreover, by the Hessian estimate (2.2), (2.22) implies that

d

dt

∫

M

1

2
|ψ |2ϕ(·, t) ≤ c2

r2

∫

B4cn,kr (x)

1

2
|ψ |2(·, t),

where c2 depends on n, k and the geometry of �. Integrating from t − (4cn,kr)2 to

t − r2
4π , we obtain

∫

B2cn,kr (x)

1

2
|ψ |2(·, t − r2

4π
) ≤

∫

M

1

2
|ψ |2ϕ(·, t − r2

4π
) ≤ c2

r2

∫∫

Q4cn,kr (x,t)

1

2
|ψ |2,

where we have used the fact that t − r2
4π > t − (2cn,kr)2. Substituting this into (2.21)

and using the boundedness of ξk on bounded subsets of ]0,∞[ then yields (2.20). ��

Remark 2.11 (Local energy estimate) Using (2.22) with

ϕ(y, s) = χ

((
r(y, x)

2r

)2

+ t − s

(2r)2

)
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and x ∈ �, we may similarly establish the local energy bound

∫

Br (x)

1

2
|ψ |2(·, s) ≤ c

r2

∫

Q2r (x,t)

1

2
|ψ |2

for r ≤ i0
2 withψ arising fromaharmonicmaporYang–Mills heat flowon Q2r (x, t) ⊂

�×]0, T [, s ∈]t −r2, t[ and c > 0 depending only on the geometry of�, which leads
to the bound

∫

K

1

2
|ψ |2(·, t) ≤ c̃ ·

∫∫

�×]0,T [
1

2
|ψ |2

for t ∈]T −min{ i204 , 1
2dist(K , ∂�)}2, T [ and K � �, where c̃ depends on dist(K , ∂�)

and the geometry of �.

3 The Local Regularity Theorem

We now turn our attention to the promised local regularity theorem. Let

Ik(u, g; x, t, r) := 1

rn−2k

∫∫

En−2k
r (x,t)

eξk (t−s)ek[u, g](x,t)(y, s) dvolg(y)ds (3.1)

be the heat ball energy of Theorem 2.6.

Theorem 3.1 (Local regularity) There exist geometric constants ε,C > 0 such that
for any R ≤ i0 and Yang–Mills or harmonic map heat flow u on QR(X , T ) ⊂ �×R,
the implication

sup
(x,t)∈QR/2(X ,T )

Ik(u, g; x, t, R

2cn,k
) < ε ⇒ R2k sup

QR/4(X ,T )

1

2
|ψ |2 ≤ C

holds.

We first establish the following lemma whose proof relies on a blow-up argument akin
to that of [42] and [13, Theorem 5.6].

Lemma 3.2 There exist geometric constants ε,C ′ > 0 such that for any R ≤ i0 and
Yang–Mills or harmonic map heat flow u on QR(X , T ) ⊂ � × R, the implication

sup
(x,t)∈QR/2(X ,T )

Ik(u, g; x, t, R

2cn,k
) < ε ⇒ sup

α∈]0,1[

(
αR

2

)2k

sup
Q(1−α)R/2(X ,T )

1

2
|ψ |2 ≤ C ′

holds.

Proof We proceed by contradiction. Suppose that this result is false. Then there exist a
sequence {R j } j∈N ⊂]0, i0] and a sequence of Yang–Mills or harmonic map heat flows
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9696 A. Afuni

{u j } j∈N with associated fundamental forms {ψ j } j∈N, each defined on QRj (X j , Tj ) ⊂
� × R for each j ∈ N, such that the ε-regularity condition, i.e. the antecedent of the
implication in the theorem, holds with ε = 1

j , R = R j , u = u j and ψ = ψ j , but

(β j )
2k := sup

α∈]0,1[

(
αR j

2

)2k

sup
Q

(1−α)
R j
2

(X ,T )

1

2
|ψ j |2 j→∞−−−→ ∞.

By smoothness, there exist α j ∈]0, 1] and (x j , t j ) ∈ Q
(1−α j )

R j
2

(X j , Tj ) such that

(β j )
2k =

(
α j R j

2

)2k

· 1
2
|ψ j |2(x j , t j ). (3.2)

By passing to a subsequence if necessary, we may assume that {x j } j∈N ⊂ � is a
convergent sequence. Now, note that:

(1) There holds

sup
Q

(1− α j
2 )

R j
2

(X ,T )

1

2
|ψ j |2 =

(
4

α j R j

)2k

·
⎛
⎜⎝
(

α j R j

4

)2k

sup
Q

(1− α j
2 )

R j
2

(X ,T )

1

2
|ψ j |2

⎞
⎟⎠

≤
(

4β j

α j R j

)2k

.

(2) We have the inclusion Q α j
2 · R j

2

(x j , t j ) ⊂ Q(
1− α j

2

) R j
2

(X , T ) .

Altogether, we have

sup
Q α j R j

4

(x j ,t j )

1

2
|ψ j |2 ≤

(
4β j

α j R j

)2k

=: λ−2k
j . (3.3)

We now rescale u j appropriately about (x j , t j ). For each j ∈ N, set

u′
j (x, t) = (u j )

(x j ,t j )
λ j

.

This defines a smooth harmonic map (resp. Yang–Mills) heat flow

u′
j : Qβ j (0, 0) → V ⊗ �k−1T ∗

R
n

with respect to the metric g
x j
λ j
. Moreover, writing ψ ′

j for the fundamental form asso-

ciated with u′
j , (3.2) implies that

1

2
|ψ ′

j |2(0, 0) = λ2kj · 1
2
|ψ ′

j |2(x j , t j ) =
(
1

2

)2k

(3.4)
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and, in the light of (3.3), we have supQβ j (0,0)
1
2 |ψ ′

j |2 ≤ 1. Since β j ≥ 1 for sufficiently

large j , we also have that supQ1(0,0)
1
2 |ψ ′

j |2 ≤ 1 for sufficiently large j and therefore,
by Lemma 2.1, we have that

sup
Q 1

2
(0,0)

1

2
|∇mψ ′

j |2 ≤ cm

for all m ∈ N, where cm depends only on n, bounds on the covariant derivatives of
the Riemann curvature tensor of g up to order m in �, the structure constants of g in
the case of the Yang–Mills heat flow and bounds on the covariant derivatives of the
second fundamental form of the target manifold up to order m + 1 in the case of the
harmonic map heat flow. Using Lemma 2.4 in the case of the Yang–Mills heat flow
and the compactness of the target manifold in the case of the harmonic map heat flow,
we furthermore obtain bounds of the form

sup
Qθ (0,0)

1

2
|∇mu′

j |2 ≤ c̃m

for all m ∈ N ∪ {0}, where c̃m likewise depends on the geometry of � and either the
structure constants of g or the second fundamental form of N . Thus, by the Arzelà-
Ascoli theorem, there exists a subsequence of {u′

j }, whichwe again denote by {u′
j }, and

a smooth Yang–Mills or harmonic map heat flow u∞ : Qθ (0, 0) → V ⊗ �k−1T ∗
R
n

with respect to the Euclidean metric gδ such that u′
j

j→∞−−−→ u∞ uniformly in C∞.
From (3.4), we see that we must also have

1

2
|ψ∞|2(0, 0) =

(
1

2

)2k

. (3.5)

Now, for (x, t) = (x j , t j ), the ε-regularity condition reads

1(
R j

2cn,k

)n−2k

∫∫

En−2k
R j

2cn,k

(x j ,t j )
ek[u j , g](x j ,t j )(x, t) · eξ(t−t j )dvolg(x)dt <

1

j
.

For fixed R > 0 and sufficiently large j , we have that
Rα j cn,k
2β j

< 1 ⇔ λ j R <
R j

2cn,k
so

that by monotonicity (Theorem 2.6), we also have

1

(λ j R)n−2k

∫∫

En−2k
λ j R

(x j ,t j )
ek[u j , g](x j ,t j )(x, t) · eξ(t−t j )dvolg(x)dt <

1

j
.

Using scale invariance and nonnegativity (Remarks 2.8 and 2.9), we therefore have

0 ≤ 1

R
n−2k

∫∫

En−2k
R

(0,0)
ek[u′

j , g
x j
λ j

](0,0)(x, t) · eξ(−λ2j t)
√
g
x j
λ j

(x)dx dt <
1

j
(3.6)

123
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in geodesic normal coördinates about x j . Choosing R so that En−2k
R

(0, 0) ⊂ Qθ (0, 0)
and taking the limit j → ∞ in (3.6), we obtain that

1

R
n−2k

∫∫

En−2k
R

(0,0)
ek[u∞, gδ](0,0) ≡ 0,

i.e. u∞ is a smooth self-similar flow on En−2k
R

(0, 0) by Theorem 2.6, but then self-
similarity implies that

1

2
|ψ∞|2(x, t) = r2k · 1

2
|ψ∞|2(r x, r2t)

for all (x, t) ∈ En−2k
R

(0, 0) and r ∈]0, 1[. Since u∞ is smooth on En−2k
R

(0, 0) ⊂
Qθ (0, 0), taking the limit r ↘ 0 yields 1

2 |ψ∞|2(x, t) = 0 for (x, t) ∈ En−2k
R

(0, 0).

Taking the limit (x, t) → (0, 0) then yields the equality 1
2 |ψ∞|2(0, 0) = 0, which

contradicts (3.5). ��
Proof of Theorem 3.1 Let ε and C ′ be as in Lemma 3.2 and suppose u : QR(X , T ) →
E ⊗�k−1T ∗M is a harmonic map or Yang–Mills heat flow satisfying the ε-regularity
condition

sup
(x,t)∈QR/2(X ,T )

Ik(u, g; x, t, R

2cn,k
) < ε.

Consider uδ : Q 15
16 R

(X , T ) → E ⊗ �k−1T ∗M defined by uδ(y, s) = u(y, s − δ) for

δ ∈]0, (1− ( 1516 )
2) R

2

4 [. uδ again defines a harmonic map or Yang–Mills heat flow, and
using Remark 2.8 as well as Theorem 2.6, we see that

sup
(x,t)∈Q

( 1516 R)/2
(X ,T )

Ik(uδ, g; x, t, 15R/16

2cn,k
)

= sup
(x,t)∈Q

( 1516 R)/2
(X ,T−δ)

Ik(u, g; x, t, 15R/16

2cn,k
)

≤ sup
(x,t)∈QR/2(X ,T )

Ik(u, g; x, t, R

2cn,k
) < ε.

so that Lemma3.2 applies to uδ , i.e. for allα ∈]0, 1[ and (x, t) ∈ Q
(1−α)( 1516 R)/2(X , T ),

we have that

(
15

32
αR

)2k

· 1
2
|ψ |2(x, t − δ) ≤ C ′.

Choosing α = 7
15 and taking the limit δ ↘ 0 then yields the desired estimate with

C = ( 32
7

)2k
C ′. ��
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Remark 3.3 (Extensibility up to t = T ) The significance of the ε-regularity condition

sup
(x,t)∈QR/2(X ,T )

Ik(u, g; x, t, R

2cn,k
) < ε (3.7)

is the following: If (3.7) holds for a harmonic map or Yang–Mills heat flow u on
� × [0, T [ for some R > 0, then Theorem 3.1 implies a scale-invariant bound on
|ψ |2 in Q R

4
(X , T ) so that after applying Lemma 2.1 and appealing to (2.4) and (2.8),

we conclude that limt↗T u(·, t) exists uniformly in C∞ on B R
8
(X), i.e. u|Q R

8
(X ,T ) is

smoothly extensible to all of Q R
8 (X ,T )

. Conversely, if u is a smooth harmonic map or

Yang–Mills heat flow on QR(X , T ) for some R ∈]0, i0[, then by Lemma 2.10 and
Remark 2.9, we have for all λ ≤ 1

5 R that

0 ≤ sup
(x,t)∈Qλ/2(X ,T )

Ik(u, g; x, t, λ

2cn,k
)

≤ γn,k · (2cn,k)
n−2k+2

λn−2k+2

∫∫

Q 5λ
2

(X ,T )

1

2
|ψ |2

= γn,k · (2cn,k)
n−2k+2

∫∫

Q 5
2
(0,0)

1

2
|ψ(X ,T )

λ |2 ·
√
gXλ

λ↘0−−→ 0,

where in the second line we used the fact that Q2λ(x, t) ⊂ Q 5λ
2
(X , T ) for all (x, t) ∈

Qλ/2(X , T ) and in the last line we used the fact that

|ψ(X ,T )
λ |2(y, s) = λ2k |ψ |2(ϑX (λy), T + λ2s)

λ↘0−−→ 0,

ϑX being a geodesic normal parametrisation of BinjX (X), as well as the dominated
convergence theorem. Therefore, there exists a λ0 ≤ i0 for which the ε-regularity
condition

sup
(x,t)∈Qλ0/2(X ,T )

Ik(u, g; x, t, λ0

2cn,k
) < ε

holds. Theorem 3.1 therefore gives us a necessary and sufficient condition for the local
extensibility of {u(·, t)} up to time t = T .

A cursory inspection of the preceding remark shows that we may in fact extract a
local regularity theorem based around parabolic cylinders rather than heat balls from
Theorem 3.1. This is the content of the following corollary.

Corollary 3.4 There exist geometric constants ε0,C0 > 0 such that for any R ≤ i0
and Yang–Mills or harmonic map heat flow u on QR(X , T ) ⊂ �×R, the implication
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1

Rn−2k+2

∫∫

QR(X ,T )

1

2
|ψ |2 < ε0 ⇒ R2k sup

QR/10(X ,T )

1

2
|ψ |2 ≤ C0

holds.

Proof Let ε0 = ε
γn,k ·(5cn,k )

n−2k+2 , where ε is as in Theorem 3.1 and γn,k as in Lemma

2.10. We compute as in Remark 3.3 that

sup
(x,t)∈Q 2R/5

2
(X ,T )

Ik(u, g; x, t, 2R/5

2cn,k
)

≤ γn,k · (5cn,k)
n−2k+2 · 1

Rn−2k+2

∫∫

QR(X ,T )

1

2
|ψ |2 < ε

so that we may apply Theorem 3.1 to obtain the desired estimate with C0 = C . ��

Remark 3.5 Arguing exactly as in Remark 3.3, we deduce a second criterion for local
extensibility of a harmonic map or Yang–Mills heat from Corollary 3.4, this time
in terms of parabolic cylinders: If u is a harmonic map or Yang–Mills heat flow on
� × [0, T [ and X ∈ �, then there exists an R > 0 with QR(X , T ) ⊂ � × [0, T [
such that u|QR(X ,T ) may be smoothly extended to all of QR(X , T ) if and only if there
exists an R0 ∈]0, i0[ such that

1

Rn−2k+2
0

∫∫

QR0 (X ,T )

1

2
|ψ |2 < ε0

with ε0 as in Corollary 3.4.

4 The Singular Set

We shall now make use of the local regularity theorem to characterise the singular set
at the maximal time of a smooth Yang–Mills or harmonic map heat flow and draw
conclusions on its measure-theoretic size.

For (X , T ) ∈ � × R, set

R0(X , T ) = min{i0, dist(X , ∂�),

√
T

2
}

and let u be a harmonic map or Yang–Mills heat flow on � × [0, T [. We shall call
(X , T ) ∈ � × R a regular point if there exists an R > 0 such that QR(X , T ) ⊂
�×[0, T ] and u|QR(X ,T ) may be smoothly extended to all of QR(X , T ). The singular
set of u at time T is then defined to be

S = �\{X ∈ � : (X , T ) is a regular point}.
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Now, it follows from Remarks 3.3 and 3.5 that regular points are characterised by
either of the ε-regularity conditions of Theorem 3.1 and Corollary 3.4. Therefore, we
may write S variously as

S =
{
X ∈ � : ∀R < R0(X , T ) ∃(x, t) ∈ Q R

2
(X , T ) s.t. Ik(u, g; x, t, R

2cn,k
) ≥ ε

}

=
{
X ∈ � : ∀R < R0(X , T )

1

Rn−2k+2

∫∫

QR(X ,T )

1

2
|ψ |2 ≥ ε0

}
,

(4.1)

where ε and ε0 are as in Theorem 3.1 and Corollary 3.4, respectively. The following
lemma tells us that we can actually measure S.
Lemma 4.1 S is closed in �.

Proof If X ∈ �\S, then we may smoothly extend u|QR(X ,T ) to all of QR(X , T ) ⊂
� × [0, T ] for some R > 0, but this implies that u|QR/2(X̃ ,T ) may be extended to all

of QR/2(X̃ , T ) ⊂ � × [0, T ] for all X̃ ∈ BR/2(X), i.e. BR/2(X) ⊂ �\S so that S is
closed. ��
Knowing that S is measurable, we shall now estimate its (n − 2k)-dimensional Haus-
dorff measure (denoted by H n−2k) under the assumption of summability of |ψ |2.
Corollary 4.2 (Singular set estimate) Suppose |ψ |2 ∈ L1(� × [0, T [). Then for any
K � � and δ0 ∈]0, dist(K , ∂�)[, the estimate

H n−2k(S ∩ K ) ≤ 5n−2k

ε0
lim sup
t↗T

∫

Bδ0 (S∩K )

1

2
|ψ |2(·, t)dvolg (4.2)

holds, where ε0 is as in Corollary 3.4.

Proof Fix δ1 > 0 and 0 < δ � min{δ1, δ0}, and cover S ∩ K with the family of
balls {Bδ(x)}x∈S∩K . By compactness and the Vitali covering lemma, we may pass to
a finite pairwise disjoint subfamily {Bδ(xi )}i∈I0 such that S ∩ K ⊂ ⋃

i∈I0 B5δ(xi ) so
that the latter equality of (4.1) implies that

∑
i∈I0

(5δ)n−2k ≤ 5n−2k

ε0

∑
i∈I0

δ−2
∫ T

T−δ2

∫

Bδ(xi )

1

2
|ψ |2

≤ 5n−2k

ε0
sup

t∈]T−δ21 ,T [

∫

Bδ0 (S∩K )

1

2
|ψ |2(·, t).

Passing to the limit δ ↘ 0 then δ1 ↘ 0 yields the desired estimate. ��
Remark 4.3 Note that the right-hand side of (4.2) is finite by virtue of Remark 2.11.
Moreover, in contrast to the case of the corresponding statement in the static case on
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the singular set of stationary harmonic and energy-minimisingmaps (cf. [32, Corollary
2.7] and [5, Sect. VII]), it is not possible in general to take a further limit δ0 ↘ 0 in
(4.2). However, if we assume that ψ satisfies the energy continuity hypothesis

lim
t↗T

∫

M

1

2
|ψ |2(·, t) · ϕ =

∫

M
f · ϕ

for some f ∈ L1
loc(M, [0,∞[) and all ϕ ∈ C∞

0 (M), then we may choose for each
small δ0 > 0 a test function ϕ : M → [0, 1] with supp ϕ ⊂ B2δ0(S ∩ K ) and
ϕ|Bδ0 (S∩K ) ≡ 1 so that

0 ≤ lim sup
t↗T

∫

Bδ0 (S∩K )

1

2
|ψ |2(·, t) ≤ lim

t↗T

∫

M

1

2
|ψ |2(·, t) · ϕ ≤

∫

B2δ0 (S∩K )

f ,

which then implies after taking the limit δ0 ↘ 0, by virtue of the fact that S ∩ K is
of Lebesgue measure zero, that H n−2k(S ∩ K ) = 0 for any K � �. This should
be compared with the case of the mean curvature flow, where a similar continuity
hypothesis is necessary to deduce a measure-zero singular set (see [13, Chap. 5]).

Remark 4.4 The definition we have given of the singular set S applies just as well
if u is defined on all of M × [0, T [, i.e. we say that (X , T ) ∈ M × R is a regular
point if there exists an R > 0 such that u|QR(X ,T ) may be smoothly extended to
all of QR(X , T ) and let S = M\{X ∈ M : (X , T ) is a regular point}. In this case,
equalities (4.1) hold provided S is replaced with S ∩ �, and S may be shown to be
closed just as in Lemma 4.1. Moreover, Corollary 4.2 continues to hold. For both of
the corresponding statements, it should be borne in mind that the geometric constants
ε and ε0 depend on the geometry of �.

5 Rapidly Forming Singularities

We now turn our attention to rapidly forming (or type-I) singularities of the harmonic
map and Yang–Mills heat flows. Analogues of the results of this section have been
established in the case of a compact base manifold M by Grayson and Hamilton [20]
for the harmonic map heat flow and Weinkove [41] for the Yang–Mills heat flow, and
examples of heat flows admitting such singularities may be found in [18], [19] and
[41].

A Yang–Mills or harmonic map heat flow u on � × [0, T [ is said to have a rapidly
forming singularity at (X , T ) if its fundamental form ψ satisfies the scale-invariant
estimate

sup
(x,t)∈QR(X ,T )

(T − t)k
1

2
|ψ |2(x, t) ≤ C0 (5.1)

for some C0 > 0 and R > 0 with QR(X , T ) ⊂ �×]0, T [. We first show that rapidly
forming singularities admit smooth blow-ups.
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Lemma 5.1 (Existence of blow-ups) Suppose u is a Yang–Mills or harmonic map heat
flow defined on � × [0, T [ and has a rapidly forming singularity at (X , T ) ∈ � ×R.
Then there exists a Yang–Mills (resp. harmonic map) heat flow u∞ on Rn×] − ∞, 0[
such that u(X ,T )

r
r↘0−−→ u∞ subsequentially and locally uniformly in C∞ on R

n×] −
∞, 0[ (modulo gauge).

Proof We shall assume without loss of generality that R < i0. Fix (x0, t0) ∈
Q R

2
(X , T ). We have that QR̃(x0, t0) ⊂ QR(X , T ) with R̃ := √

T − t0. Moreover,
the estimate (5.1) implies that

sup
QR̃(x0,t0)

1

2
|ψ |2 ≤ C0

R̃2k
.

Lemma 2.1 then implies that for each i ∈ N,

sup
Q R̃

2
(x0,t0)

1

2
|∇ iψ |2 ≤ Ci

R̃2(k+i)
,

where Ci depends on C0 and the geometries of � and the target manifold of the
respective flow (as in Lemma 2.1). Therefore, we have the estimate

sup
(x,t)∈Q R

2
(X ,T )

(T − t)k+i 1

2
|∇ iψ |2(x, t) ≤ Ci .

Using the compactness of the target manifold of the harmonic map heat flow and
arguing as in Lemma 2.4 for the Yang–Mills heat flow, choosing a suitable fixed
connection as in Remark 2.5, we obtain bounds

sup
QθR(X ,T )

(T − t)k+i−1 1

2
|∇ i u|2 ≤ Ci−1

for i ∈ N ∪ {0}, {Ci }∞i=−1 depending on the {Ci }∞i=0, and θ ∈]0, 1
4 ]. After rescaling,

these estimates imply that for any r > 0,

sup
(x,t)∈Q θR

r
(0,0)

(−t)k+i−1 1

2
|∇ i u(X ,T )

r |2(x, t) ≤ C̃i−1 (5.2)

for constants {C̃i }∞i=−1 depending on {Ci }∞i=−1. Thus, considering a sequence {ui =
u(X ,T )
ri }i∈N of rescalings of u with ri ↘ 0 and using (5.2) for each compact subset of

R
n×] − ∞, 0[, we obtain, for large enough i , bounds on ui and all of its derivatives.

Therefore, by the Arzelà-Ascoli theorem, we may pass to a subsequence converging
locally uniformly in C∞ to a smooth solution u∞ : Rn×]−∞, 0[→ V ⊗�k−1T ∗

R
n

to the corresponding flow equation on (Rn, gδ). ��
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9704 A. Afuni

The following corollary establishes that smooth blow-ups of rapidly forming singu-
larities are in fact self-similar and gives us a strictly positive lower bound on their heat
ball energies; the latter guarantees that such blow-ups are nontrivial.

Corollary 5.2 (Self-similarity and nontriviality of blow-ups) Let {u(X ,T )
ri }i∈N be a

sequence of rescalings (ri ↘ 0) of a Yang–Mills or harmonic map heat flow with

rapidly forming singularity at (X , T ) ∈ � ×R. Moreover, suppose u(X ,T )
ri

i→∞−−−→ u∞
locally uniformly in C∞ on R

n×] − ∞, 0[. Then u∞ is self-similar. Moreover, u∞
satisfies the estimate

Ik(u∞, gδ; 0, 0, R) = 1

Rn−2k

∫∫

En−2k
R (0,0)

1

2
|ψ∞|2(x, t) ·

(
n − 2k

−2t

)
dx dt ≥ ε

(5.3)

for all R > 0, where ψ∞ is the fundamental form corresponding to u∞ and ε is as in
Theorem 3.1.

Proof We first establish self-similarity. By virtue of the higher-order estimates derived
in Lemma 5.1, the monotone quantity (2.19) is finite on u for sufficiently small R.
Therefore, we may take its limit as R ↘ 0 and freely apply scale invariance (Remark
2.8) so that for any r > 0,

lim
R↘0

Ik(u, g; X , T , R) = lim
i→∞ Ik(u, g; X , T , ri r)

= lim
i→∞

1

rn−2k

∫∫

En−2k
r (0,0)

eξk (−λ2i s)ek[u(X ,T )
ri , gXri ](0,0)(y, s)

√
gXri (y, s)dyds

= 1

rn−2k

∫∫

En−2k
r (0,0)

ek[u∞, gδ](0,0)(y, s)dyds = Ik(u∞, gδ; 0, 0, r).

Thus, this last quantity is independent of r and so, by Theorem 2.6, u∞ must be
self-similar.

We now turn our attention to the estimate (5.3). We first fix a sequence λi ↘ 0.
Since X ∈ S, the first equality of (4.1) implies that there exists a sequence (xi , ti ) ∈
Qcn,kλi r (X , T ) such that for sufficiently large i and small fixed r > 0, we have

Ik(u, g; xi , ti , λi r) ≥ ε.

Using monotonicity and translation-invariance (Theorem 2.6 and Remark 2.8), we
arrive at the inequality

1

rn−2k

∫∫

En−2k
r (0,0)

ek[u(xi ,ti )
1 , gxi1 ](0,0)(y, s)eξk (−s)

√
gxi1 (y)dyds ≥ ε.

Taking the limit i → ∞, noting that (xi , ti )
i→∞−−−→ (X , T ) and using the higher-order

estimates of Lemma 5.1, we obtain the inequality

Ik(u, g; X , T , r) ≥ ε.
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We now let r = λi , use scale invariance and pass to the limit i → ∞ to obtain (5.3)
with R = 1, but the self-similarity of u∞ implies that (5.3) holds for all R > 0. ��
Remark 5.3 Since the blow-up u∞ in Corollary 5.2 is self-similar, it follows from
[14, Proposition 1.5] for the harmonic map heat flow and [1, Proposition 2.2] for the
Yang–Mills heat flow that

∫

Rn

1

2
|ψ∞|2 · 	k

(0,0)(x, t)dx = Ik(u∞, gδ; 0, 0, R) ≥ ε

for all R > 0 and t < 0, where 	k
(0,0)(x, t) = 1

(−4π t)
n−2k
2

exp
( |x |2

4t

)
and ε > 0 is

as in Theorem 3.1. Moreover, we may use (5.1) to establish the existence of a ρ > 0
depending only on n, k, C0 and ε such that

∫

Rn\Bρ
√−t (0)

1

2
|ψ∞|2 · 	k

(0,0)(x, t)dx ≤ C0 · (4π)
2k−n
2

∫

Rn\Bρ(0)
exp

(
−1

4
|z|2

)
dz <

ε

2

so that in fact, for this ρ > 0, we have the estimate

∫

Bρ
√−t (0)

1

2
|ψ∞|2 · 	k

(0,0)(x, t)dx ≥ ε

2

for all t < 0. We have thus recovered the results of [20, Sect. 5] and [41, Sect. 3]
established in the case of blow-ups at rapidly forming singularities on compact M .
We note that the constant ε > 0 employed there additionally depends on the initial
energy of the flow.
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