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Abstract
The “noncommutative graphs” which arise in quantum error correction are a special
case of the quantum relations introduced in Weaver (Quantum relations. Mem Am
Math Soc 215(v–vi):81–140, 2012). We use this perspective to interpret the Knill–
Laflamme error-correction conditions (Knill and Laflamme in Theory of quantum
error-correcting codes. Phys Rev A 55:900-911, 1997) in terms of graph-theoretic
independence, to give intrinsic characterizations of Stahlke’s noncommutative graph
homomorphisms (Stahlke in Quantum zero-error source-channel coding and non-
commutative graph theory. IEEE Trans Inf Theory 62:554–577, 2016) and Duan,
Severini, and Winter’s noncommutative bipartite graphs (Duan et al., op. cit. in Zero-
error communication via quantum channels, noncommutative graphs, and a quantum
Lovász number. IEEE Trans Inf Theory 59:1164–1174, 2013), and to realize the non-
commutative confusability graph associated to a quantum channel (Duan et al., op.
cit. in Zero-error communication via quantum channels, noncommutative graphs, and
a quantum Lovász number. IEEE Trans Inf Theory 59:1164–1174, 2013) as the pull-
back of a diagonal relation. Our framework includes as special cases not only purely
classical and purely quantum information theory, but also the “mixed” setting which
arises in quantum systems obeying superselection rules. Thus we are able to define
noncommutative confusability graphs, give error correction conditions, and so on,
for such systems. This could have practical value, as superselection constraints on
information encoding can be physically realistic.
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Quantum Graphs as Quantum Relations 9091

1 QuantumGraphs and Quantum Relations

“Quantum” or “noncommutative” graphs appear in the setting of quantum error cor-
rection [3,10,11]. The usual construction starts with a quantum channel, which in the
Schrodinger picture is modelled by a completely positive trace preserving (CPTP)
map � : Mm → Mn . Here Mm is the set ofm×m complex matrices and a CPTP map
is concretely realized as a linear map of the form

� : ρ →
∑

i

KiρK
∗
i

where ρ ∈ Mm and the Kraus matrices Ki are a finite family of n × m matrices
satisfying

∑
K ∗
i Ki = Im (the m × m identity matrix).

Positivematriceswith unit trace representmixed states, and pure states appear as the
special case of matrices of the form |α〉〈α| for |α〉 a unit vector in Cm . Thus quantum
channels transform mixed states to mixed states, and in error correction problems one
is interested in determining which input states can be distinguished with certainty after
passing through the channel. The condition that the images of two pure states |α〉 and
|β〉 after transmission must be orthogonal can be expressed as

〈α|B|β〉 = 0 for all B ∈ V� = span{K ∗
i K j }

(see, e.g., [3]).
The space V� ⊆ Mm is an operator system—a linear subspace of Mm which is

stable under the adjoint operation and contains the identity matrix (since we have
assumed that

∑
K ∗
i Ki = Im). In the analogous classical setting one would be dealing

with a finite set of possible input states and one could create a graph by placing an
edge between any pair of input states which might, after transmission through a noisy
channel, be received as the same output state. This classical confusability graph is
relevant to classical zero-error communication in something like the way that the
operator system V� is relevant to zero-error communication in the quantum setting.
This led Duan, Severini, andWinter to term V� a noncommutative confusability graph
[3].

Going further, since any operator system can arise in the above manner from a
quantum channel, they suggested that operator systems generally could be considered
“noncommutative graphs”. This daring proposal was supported by the fact that they
were able to define a “quantumLovászϑ function” for any operator system, in analogy
to the classical Lovász ϑ function of a graph.

At around the same time, the notion of a “quantum relation” was introduced in [12].
This notion gives rise to natural definitions of such things as “quantum equivalence
relations” and “quantum partial orders”, and it is also the basis of the “quantum
metrics” and “quantumuniform structures”whichwere studied in [7], an earlier project
from which the notion of a quantum relation was extracted.
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9092 N. Weaver

The identification of operator systems as “quantum graphs” was also made in [12],
but not pursued further there.1 However, it is worth investigating this connection, as
under the quantum relations point of view basic aspects of the theory of zero-error
quantum communication become conceptually transparent.

The core idea is that an operator space—a linear subspace of Mm—can be thought
of as a quantum analog of a relation on a finite set. (In infinite dimensions, this becomes
a weak* closed operator space, but I will stick to the finite-dimensional setting in this
paper.) Classically, a relation on a set X is a subset R of X × X , and we write x Ry to
indicate that the pair (x, y) belongs to the relation. The relation R is said to be

• reflexive if x Rx , for all x ∈ X
• symmetric if x Ry implies yRx , for all x, y ∈ X
• antisymmetric if x Ry and yRx imply x = y, for all x, y ∈ X
• transitive if x Ry and yRz imply x Rz, for all x, y, z ∈ X .

This can be expressed more algebraically by letting � be the diagonal relation � =
{(x, x) : x ∈ X}, letting Rt be the transpose relation Rt = {(y, x) : (x, y) ∈ R}, and
letting RR′ be the product relation RR′ = {(x, z) : (x, y) ∈ R and (y, z) ∈ R′ for
some y ∈ X}. We can then say that R is

• reflexive if � ⊆ R
• symmetric if R = Rt

• antisymmetric if R ∩ Rt ⊆ �

• transitive if R2 ⊆ R.

The analogous definitions for an operator space V ⊆ Mm characterize V as

• reflexive if Im ∈ V
• symmetric if V = V∗
• antisymmetric if V ∩ V∗ ⊆ C · Im
• transitive if V2 ⊆ V .

We define C · Im to be the diagonal quantum relation on Mm , so that V is reflexive
if and only if C · Im ⊆ V , in closer analogy with the classical case. In the above,
V∗ = {A∗ : A ∈ V} is the set of Hermitian adjoints of matrices in V and V2 =
span{AB : A, B ∈ V} is a special case of the product of two operator spaces.

Graphs appear in this framework by regarding a classical graph as a set of vertices
equipped with a reflexive, symmetric relation. The elements of the relation represent
edges, and symmetry expresses the fact that edges are undirected. Reflexivity corre-
sponds to the convention that there is a loop at each vertex. This makes sense in the
error correction setting: if we place an edge between any two states which might be
confused, then it is natural to include an edge between any state and itself. (More
pointedly, it is unnatural, and creates unnecessary complication, not to do this.) Of
course, in other settings wemay not wish to impose this requirement, in which case we
could drop reflexivity and define a quantum graph to merely be a symmetric quantum
relation. This was the approach taken in [11]. For the sake of definiteness, I will use the

1 The expression “quantum graph” unhappily conflicts with an earlier, unrelated use of this term, and also
with the “noncommutative graph” terminology used in [3]. But in a setting that also includes quantum
relations, quantum metrics, and so on, it is still the simple and obvious choice.
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Quantum Graphs as Quantum Relations 9093

term quantum graph to mean a reflexive, symmetric quantum relation, i.e., an operator
system, as in [3] and [12]; however, the main results of this paper apply to quantum
relations generally, and hence also to noncommutative graphs in the broader sense of
[11].

The plan of the paper is as follows. We begin in the next section by defining
restrictions, pushforwards, and pullbacks in the pure quantum setting; this is done in
a simple, concrete fashion, but then in the following section we describe equivalent,
conceptually elegant formulations in terms of the notion of “connecting states”. These
two sections are still fairly introductory.

Next, in Sect. 4, we pass to the general mixed classical/quantum setting, modelled
by a unital ∗-subalgebra M of the m × m matrix algebra Mm . We define quantum
relations in this more general setting and show how they reduce to ordinary classical
relations in the pure classical setting whenM is the diagonal subalgebra of Mm . Then
in Sect. 5 we describe an equivalent abstract characterization of quantum relations
framed in terms of connecting states.

Equippedwith both concrete and abstract characterizations of quantum relations,we
then proceed in the following three sections to define and analyze notions of restriction,
pushforward, and pullback in this setting. It will be seen that these notions restrict to
those discussed in Sects. 2 and 3 in the pure quantum setting whenM = Mm , and to
the usual classical notions in the pure classical setting.

In an appendix I explain the significance of the mixed classical/quantum setting
modelled on a unital ∗-subalgebra of Mm in terms of superselection sectors. I also
make explicit how the preceding material explains how such things as quantum codes
and quantum confusability graphs should be defined in the mixed classical/quantum
setting.

2 Restrictions, Pushforwards, and Pullbacks

In the quantum relations setting there are natural notions of restriction, pushforward,
and pullback. Suppose we are given quantum relations on Mm and Mn , i.e., linear
subspaces V ⊆ Mm and W ⊆ Mn . If E is any projection in Mm , meaning that E =
E2 = E∗, and � : Mm → Mn is a CPTP map expressed as �(ρ) = ∑d

i=1 KiρK ∗
i ,

then we define

• the restriction of V to EMmE to be EVE = {E AE : A ∈ V}
• the pushforward of V along � to be

−→V =
∑

KiVK ∗
j

= span{Ki AK
∗
j : A ∈ V, 1 ≤ i, j ≤ d} ⊆ Mn

• the pullback ofW along � to be

←−W =
∑

K ∗
i WK j

= span{K ∗
i BK j : B ∈ W, 1 ≤ i, j ≤ d} ⊆ Mm .
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9094 N. Weaver

If rank(E) = r then EMmE can be identified with Mr , and EVE with a linear
subspace of Mr , so that the restriction of V can be regarded as a quantum relation on
a smaller space.

These definitions are simple and concrete. It is easy to check that if V and W are

quantum graphs (i.e., operator systems) then so are EVE ⊆ Mr ,
−→V ⊆ Mn , and←−W ⊆ Mm . However, the Kraus matrices Ki are not uniquely determined by the map

� and it is not immediately apparent that the definitions of
−→V and

←−W are independent
of this choice. The definitions are also rather unmotivated. For instance, when V is a
quantum graph its restriction is to be thought of as analogous to the induced subgraph
construction in classical graph theory.But an induced subgraph is obtained by choosing
a subset of the vertex set and throwing out all edges which extend out of this subset,
whereas our definition of restriction involves compressing everything in V to the range
of E . So the validity of the analogy is unclear.

These concerns will be addressed in the next section, when we discuss how the
quantum relations point of view leads to the definitions given above. But first, let us
explain how these operations relate to error correction.

Consider first the classical setting in which a channel is modelled by a probabilistic
transition from an initial set of states S to a final set of states T . That is, each initial
state has some (possibly zero) probability of going to each of the final states. Such a
transition is represented by a stochastic matrix. The confusability graph is specified
by placing an edge between two initial states if there exists a final state to which they
each have a nonzero probability of transitioning.

As I mentioned earlier, since each initial state can certainly end up at the same
state as itself, it is natural to include a loop at each vertex in this graph. A code in
this classical setting is then an independent subset of S, i.e., a set of vertices with the
property that the induced subgraph contains only loops, with no edges between distinct
vertices. In the terminology of Sect. 1, the induced subgraph is diagonal. The quantum
analog of this would be a projection E with the property that the induced quantum
subgraph EVE is diagonal, i.e., EVE = C · E . If V� is the quantum confusability
graph mentioned in Sect. 1, this statement exactly expresses the Knill–Laflamme error
correction conditions [6]. So

the statement that the range of E is a quantum code is equivalent to the statement
that E induces a diagonal quantum subgraph, just as in the classical case a code
is a subset of the confusability graph for which the induced subgraph is diagonal.

A more sophisticated way to specify the classical confusability graph for a proba-
bilistic transition from S to T is to say that it is the pullback of the diagonal relation on
T . Here we define the pullback to S of a graph on T by putting an edge between two
elements of S if they have a nonzero probability of mapping to adjacent elements of
T . The quantum analog of this construction would be the pullback along a CPTP map
� : Mm → Mn of the diagonal quantum relation on Mn . According to the definition
of quantum pullback given above, this would be

span{K ∗
i K j : 1 ≤ i, j ≤ d} ⊆ Mm,
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Quantum Graphs as Quantum Relations 9095

which is exactly the quantum confusability graph V�. That is,

the quantum confusability graph V� associated to a CPTP map � : Mm → Mn

is the pullback along � of the diagonal quantum relation on Mn, just as the
clasical confusability graph associated to a classical channel is the pullback of
the diagonal relation.

The passage of amessage through sequential channels provides a simple illustration
of the value of the pullback construction. Supposewe are given classical channels from
S to T and from T to U . Then their composition defines a channel from S to U , and
the confusability graph of this composition is the pullback to S of the confusability
graph for the T -to-U channel. In other words, it is the pullback of the pullback of the
diagonal relation on U . The same statement can be made in the quantum setting, as
one can see by a short computation.

A similar construction is the pushforward of the diagonal relation on S. This “dual”
confusability graph classically includes an edge between two states in T if they might
have originated in the same state of S. It might be used by the recipient of a signal
whichwas sent through a noisy channelwithout the aid of a code, as away to keep track
of possible ambiguity. (This could also be a model of a noisy measurement process
in which nature is the “sender”.) The quantum analog would simply be the quantum
pushforward of the diagonal quantum relation.

Pushforwards and pullbacks give rise to notions of “morphism”. Namely, we may

regard � as a morphism from V to W if
−→V ⊆ W , or, alternatively, if V ⊆ ←−W . These

two conditions are not equivalent, even in the classical case: the classical analog of
the first says that any possible targets of two adjacent vertices in S must be adjacent in
T , while the second says that any two adjacent vertices in S must have some possible
targets which are adjacent in T . The quantum version of the first, stronger, condition
is identical to Stahlke’s notion of “noncommutative graph homomorphism” described
in [11]:

a CPTP map � : Mm → Mn is a “noncommutative graph homomorphism”

[11] between operator systems V ⊆ Mm and W ⊆ Mn if
−→V ⊆ W .

3 Connecting States

Now let us see why the definitions of restrictions, pushforwards, and pullbacks given
above are natural. The idea is to think of elements of an operator space as “connecting”
states. We could say that two pure states |α〉, |β〉 ∈ C

m are connected by a quantum
relation V ⊆ Mm if 〈α|B|β〉 �= 0 for some B ∈ V . However, quantum relations are
not determined by this kind of information. For example, take V1 to be the set of

2 × 2 matrices of the form

[
a b
c a

]
with a, b, c ∈ C and take V2 to be the full 2 × 2

matrix algebra M2. These are both quantum graphs on M2, i.e., operator systems. It is
routine to check that |α〉, |β〉 ∈ C

2 are connected by V1 if and only if neither of them
is the zero vector if and only if they are connected by V2. Thus, V1 and V2 are distinct
quantum relations which connect the same pairs of states in C

2.
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9096 N. Weaver

We must instead consider states not in C
m but in C

m ⊗ C
k ∼= C

mk . That is, we
consider states of a composite system formed from the original system and some other
system. Then we can define |α〉, |β〉 ∈ C

mk to be connected by V if there exists B ∈ V
such that

〈α|(B ⊗ Ik)|β〉 �= 0.

It is not hard to show that V is indeed determined by which pairs of states it connects
in Cmk for arbitrary k; indeed, k = m suffices. See Lemma 5.2 below.

It is convenient to also consider mixed states. First of all, observe that

|α〉〈α|(B ⊗ Ik)|β〉〈β|

is nonzero if and only if the scalar factor 〈α|(B ⊗ Ik)|β〉 is nonzero. So we can also
say that V connects |α〉 and |β〉 if and only if the preceding expresion is nonzero for
some B ∈ V . More generally, say that V connects positive matrices A,C ∈ Mmk ∼=
Mm ⊗ Mk with unit trace if

A(B ⊗ Ik)C �= 0

for some B ∈ V .
SinceV is already determined by the pairs of (composite) pure states that it connects,

it is certainly determined by the pairs of mixed states that it connects. Any positive
matrix can be expressed as a sum of positive, orthogonal rank one matrices, so there
is little difference between the two characterizations.

This point of viewmakes the constructions described in the last section transparent.
Let k be a natural number, letV ⊆ Mm andW ⊆ Mn be quantum relations, let E ∈ Mm

be a rank r projection, and let � : Mm → Mn be a CPTP map. Then

• EVE connects mixed states A,C ∈ EMmE ⊗ Mk ∼= Mr ⊗ Mk if and only if V
connects them

• −→V connects mixed states A,C ∈ Mn ⊗ Mk if and only if V connects �∗(A) and
�∗(C)

• ←−W connects mixed states A,C ∈ Mm ⊗ Mk if and only ifW connects �(A) and
�(C).

See Proposition 6.2, Theorem 7.4, and Theorem 8.2 below.
Informally, the mixed states that EVE connects are just the mixed states that live

on E and are connected by V . This jibes better with the “induced subgraph” intuition:
in order to restrict V to E , look at the pairs of states that are connected by V , and throw
out any of them which do not lie under E .

Pushforward and pullback are also easily understood in terms of connection. The

states connected by
−→V are just the states whose images under �∗ are connected by V ,

and the states connected by
←−W are just the states whose images under� are connected

by W . This characterization shows that the definitions of pushforward and pullback
only depend on the map �, not the choice of Kraus matrices.
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Quantum Graphs as Quantum Relations 9097

The whole point of the noncommutative confusability graph is that it connects
mixed states A and C if and only if �(A)�(C) �= 0, i.e., their image states could
be confused. That is the same as saying that their image states are connected by the
diagonal quantum relation.

We can also use the idea of connecting mixed states to give an intrinsic charac-
terization of the “noncommutative (directed) bipartite graphs” of Duan, Severini, and
Winter [3]. Given a CPTP map � : Mm → Mn with Kraus matrices Ki , they defined
this to be the span of the matrices Ki . This span is no longer an operator system in
general, but it is still an operator space and hence still counts, in our terminology, as
a quantum relation. Its intrinsic characterization is simple: if V = span{Ki } ⊆ Mn,m ,
then for any mixed states A ∈ Mm ⊗Mk andC ∈ Mn ⊗Mk , we haveC(B⊗ Ik)A �= 0
for some B ∈ V if and only if �(A)C �= 0 (letting � act entrywise on matrices in
Mm ⊗ Mk ∼= Mk(Mm)). That is,

the noncommutative bipartite graph associated to a CPTP map � : Mm → Mn

connects mixed states A ∈ Mm ⊗Mk and C ∈ Mn ⊗Mk if and only if�(A)C �=
0, i.e., there is a possibility of confusing the image of A with C .

One direction is trivial: if C(B ⊗ Ik)A = 0 for all B ∈ V , then in particular C(Ki ⊗
Ik)A = 0 for all i ; multiplying on the right by (K ∗

i ⊗ Ik) and summing over i then
yields C�(A) = 0. This is equivalent to �(A)C = 0 since �(A) and C are positive.
The reverse direction follows from Lemma 7.3 (cf. the proof of Theorem 7.4).

4 General Quantum Relations

The definition of “quantum relations” given in [12] was more general than the one
described above and actually encompasses both the classical and quantum cases. By
placing the notions of channel, confusability graph, code, etc., in this context we
obtain a common generalization in which the classical and quantum cases are not
merely analogous, but literally special cases of a single theory. This material will be
presented more formally, with proofs of most results.

Let M be a unital ∗-subalgebra of Mm . (In [12] it could be an arbitrary von Neu-
mann algebra in infinite dimensions.) The two most important cases to keep in mind
are M = Mm , the full matrix algebra, and M = Dm , the subalgebra of diagonal
matrices. However, other cases could arise in the presence of superselection rules; see
the appendix.

Let

M′ = {B ∈ Mm : AB = BA for all A ∈ M}

be the commutant of M. The commutant of Mm is the scalar algebra C · Im , and the
commutant of Dm is itself. Von Neumann’s double commutant theorem states that
M′′ = M always holds.

Definition 4.1 ([12],Definition 2.1)Aquantum relation onM is anM′-M′ bimodule,
i.e., a linear subspace V ⊆ Mm satisfyingM′VM′ ⊆ V .
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9098 N. Weaver

Here we use the operator space product VW = span{AB : A ∈ V, B ∈ W}.
Definition 4.2 ([12], Definition 2.4) M′ is the diagonal quantum relation on M. A
quantum relation V is

• reflexive ifM′ ⊆ V
• symmetric if V∗ = V
• antisymmetric if V ∩ V∗ ⊆ M′
• transitive if V2 ⊆ V .
If M = Mm then M′ is just the set of scalar matrices, M′ = C · Im , and so any

linear subspace of Mm counts as a quantum relation on Mm according to Definition
4.1. At the other extreme, it is not hard to check that quantum relations on Dm have
a very transparent form. Let Ei j be the m × m matrix with a 1 in the (i, j) entry and
0’s elsewhere.

Proposition 4.3 ([12], Proposition 2.2) If R is any subset of {(i, j) : 1 ≤ i, j ≤ m}
then

VR = span{Ei j : (i, j) ∈ R} ⊆ Mm

is a quantum relation on Dm, i.e., a Dm-Dm bimodule, and every quantum relation
on Dm equals VR for some R. This establishes a 1-1 correspondence between the
classical relations on the set {1, . . . ,m} and the quantum relations on Dm.

This simple result explains the justification for the term “quantum relation” and
also shows the value of letting M be any unital ∗-subalgebra of Mm , not just Mm

itself. By taking this step we produce a common generalization of both the classical
(M = Dm) and elementary quantum (M = Mm) cases. The following result shows
that the terminology of Definition 4.2 legitimately generalizes the classical case.

Proposition 4.4 ([12], Proposition 2.5) In the notation of Proposition 4.3, the diagonal
quantum relation on Dm is V� where � = {(i, i) : 1 ≤ i ≤ m}. A classical relation
R on {1, . . . ,m} is reflexive, symmetric, antisymmetric, or transitive in the ordinary
sense if and only if the quantum relation VR has the same property in the sense of
Definition 4.2.

The proof is easy.
Earlier we interpreted classical graphs as sets equipped with reflexive, symmet-

ric relations, and defined quantum graphs to be operator systems. Both notions are
subsumed in the following definition.

Definition 4.5 ([12], Definition 2.6 (d)) A quantum graph on M is a reflexive, sym-
metric quantum relation on M.

In the caseM = Mm , this would just mean an operator system in Mm ; in the case
M = Dm , by Propositions 4.3 and 4.4 it effectively becomes a classical reflexive,
symmetric relation on a set.
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5 Intrinsic Characterization

The definition of a quantum relation on a unital ∗-subalgebra M ⊆ Mm given in
Definition 4.1 appears to depend on the representation of M, i.e., on the value of m
and perhaps also on the wayM, regarded as an abstract algebraic structure, is situated
in Mm . However, this definition is in fact effectively representation-independent, in
the following sense. Say that ∗-algebrasM andN are ∗-isomorphic if there is a linear
bijection between them that is compatible with the product and adjoint operations.

Proposition 5.1 ([12], Theorem 2.7) Let M ⊆ Mm and N ⊆ Mn be unital
∗-subalgebras and suppose they are ∗-isomorphic. Then there is a natural 1-1 cor-
respondence between the quantum relations on M and the quantum relations on
N . This correspondence takes the diagonal quantum relation on M to the diagonal
quantum relation onN and is compatible with the operator space product and adjoint
operations on quantum relations.

To see how the correspondence works, consider the case where n = mk and N =
M⊗ Ik ⊆ Mm⊗Mk ∼= Mn . ThenN ′ = M′⊗Mk and, identifyingMn withMm⊗Mk ,
the bimodules overN ′ inMn are precisely the sets of the formV⊗Mk forV a bimodule
overM′ in Mm . The full result of Proposition 5.1 is not much harder than this special
case because arbitrary ∗-isomorphisms between von Neumann algebras are not much
more general than this.

Thus, the notion of a quantum relation on M is effectively independent of the
representation of M. We therefore expect that there should be an “intrinsic” charac-
terization of them which does not reference the ambient matrix algebra. This can be
achieved using the idea of connecting states introduced in Sect. 3.

At that point it was convenient to consider mixed states, since we wanted to push
forward and pull back along a CPTP map, which can convert pure states to mixed
states. For the purpose of abstract characterization, it is better to generalize pure
states, which can be identified with rank one projections, to projections of arbitrary
rank. A direct connection between the two approaches can be made by observing that
for any positive matrices A,C ∈ Mm ⊗ Mk , we have A(B ⊗ Ik)C �= 0 if and only if
[A](B⊗ Ik)[C] �= 0, where [A] denotes the range projection of A, i.e., the orthogonal
projection onto the range of A.

Proposition 5.2 ([12], Lemma 2.8) Let V be a proper subspace of Mm and let B ∈
Mm \ V .
(a) There exists a natural number k and vectors |α〉, |β〉 ∈ C

m ⊗ C
k such that

〈α|(A ⊗ Ik)|β〉 = 0 for all A ∈ V

but

〈α|(B ⊗ Ik)|β〉 �= 0.
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9100 N. Weaver

(b) If M is a unital ∗-subalgebra of Mm and V is a quantum relation on M, then
there exist k ∈ N and projections P, Q ∈ Mk(M) such that

P(A ⊗ Ik)Q = 0 for all A ∈ V

but

P(B ⊗ Ik)Q �= 0.

Proof (a) We prove the result with k = m. First, observe that Mm becomes an inner
product space when equipped with the Hilbert-Schmidt inner product

〈A1, A2〉 = Tr(A∗
1A2).

So by elementary facts about inner product spaces, since V is a subspace and B /∈ V ,
there must exist C ∈ Mm satisfying

Tr(AC) = 0 for all A ∈ V

but

Tr(BC) �= 0.

Let |c1〉, . . . , |cm〉 ∈ C
m be the columns of C , let |e1〉, . . . , |em〉 be the standard basis

vectors in Cm , and let |α〉, |β〉 ∈ C
m ⊗ C

m ∼= C
m ⊕ · · · ⊕ C

m be the vectors

|α〉 = |e1〉 ⊕ · · · ⊕ |em〉 |β〉 = |c1〉 ⊕ · · · ⊕ |cm〉.

Then

〈α|(A ⊗ Im)|β〉 =
∑

i

〈ei |A|ci 〉 = Tr(AC) = 0

for all A ∈ V , and similarly 〈α|(B ⊗ Im)|β〉 = Tr(BC) �= 0.
(b) Find |α〉, |β〉 ∈ C

m ⊗ C
m as in part (a) and let P, Q ∈ Mm ⊗ Mm be the

orthogonal projections onto (M′ ⊗ Im)|α〉 = {(A ⊗ Im)|α〉 : A ∈ M′} and (M′ ⊗
Im)|β〉 = {(A ⊗ Im)|β〉 : A ∈ M′}, respectively. Since these spaces are invariant for
the ∗-algebraM′ ⊗ Im , P and Q belong to its commutant (M′ ⊗ Im)′ = M⊗ Mm ∼=
Mm(M).

Now Q|β〉 = |β〉, so the range of (B ⊗ Im)Q contains the vector (B ⊗ Im)|β〉,
which is not orthogonal to |α〉. Since |α〉 belongs to the range of P , it follows that
P(B ⊗ Im)Q �= 0. However, if A ∈ V and A1, A2 ∈ M′ then A∗

1AA2 ∈ V , so that

〈(A1 ⊗ Im)α|(A ⊗ Im)|(A2 ⊗ Im)β〉 = 〈α|(A∗
1AA2 ⊗ Im)|β〉 = 0.

Since this is true for any A1, A2 ∈ M′, it follows that 〈α′|(A ⊗ Im)|β ′〉 = 0 for all
|α′〉 and |β ′〉 in the ranges of P and Q, respectively. Thus P(A ⊗ Im)Q = 0. ��
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Say that V connects projections P, Q ∈ Mk(M) if there exists A ∈ V such that
P(A ⊗ Ik)Q �= 0. The preceding result shows that V is determined by the pairs of
projections it connects in this manner: we can tell whether a given B ∈ Mm belongs
to V by testing whether it connects any pair of projections that is not connected by V .
Since this is a crucial point, let us emphasize it: if M is a unital ∗-subalgebra of Mm

then anM′-M′ bimodule is determined by the pairs of projections in Mm(M) that it
connects.

In fact, quantum relations can be characterized abstractly in these terms. We give
the relevant definition first, and then state the equivalence with Definition 4.1 as a
theorem. To avoid confusion, we will now refer to quantum relations in the sense of
Definition 4.1 as concrete quantum relations.

Let P(Mk(M)) denote the set of projections in Mk(M), given the topology it
inherits from Mk(M).

Definition 5.3 ([12], Definition 2.24) LetM be a unital ∗-subalgebra of Mm , and for
each k ∈ N letRk be an open subset ofP(Mk(M))×P(Mk(M)). Then the sequence
(Rk) is an intrinsic quantum relation if

(i) (0, 0) /∈ Rk

(ii) (
∨

Pi ,
∨

Q j ) ∈ Rk if and only if (Pi0 , Q j0) ∈ Rk for some i0, j0
(iii) (P, [BQ]) ∈ Rk if and only if ([B∗P], Q) ∈ Rl

for all k, l ∈ N, all projections P, Pi , Q j ∈ Mk(M) and Q ∈ Ml(M), and all scalar
matrices B ∈ Im ⊗ Mk,l .

In condition (ii) the join
∨

Pi of a finite family of projections (Pi ) is defined to be
the orthogonal projection onto the span of their ranges. In (iii), recall that the notation
[B] indicates the range projection of B.

Rk is to be thought of as the pairs of projections in Mk(M) which are connected
by some concrete quantum relation V ⊆ Mm . To say that each Rk is open is to
say that if two projections are connected then so are any two projections sufficiently
close to them. Condition (i) is trivial, condition (ii) is the basic axiom characterizing
connection, and condition (iii) is a statement about scalar compatibility that is typical
of what one sees when working at matrix levels. The point is that if B is a scalar matrix
then

P(A ⊗ Ik)[BQ] = 0 ⇔ P(A ⊗ Ik)BQ = 0

⇔ PB(A ⊗ Il)Q = 0

⇔ [B∗P](A ⊗ Il)Q = 0,

since (A ⊗ Ik)B = B(A ⊗ Il).
Proposition 5.2 (b) shows us how to go from concrete quantum relations, as charac-

terized by Definition 4.1, to intrinsic quantum relations, axiomatized as in Definition
5.3. Namely, given V , for each k ∈ N letRk be the set of pairs (P, Q) of projections
in Mk(M) such that P(A⊗ Ik)Q �= 0 for some A ∈ V . Conversely, given an intrinsic
quantum relation (Rk) one recovers the concrete quantum relation that corresponds
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to it as the set of A ∈ Mm satisfying

P(A ⊗ Ik)Q = 0

for all k ∈ N and all (P, Q) /∈ Rk , i.e., the set of matrices which do not connect any
pair of projections they are not supposed to connect.

Theorem 5.4 ([12], Theorem 2.32) For any unital ∗-subalgebra M of Mm, the two
constructions just described establish a 1-1 correspondence between the concrete and
intrinsic quantum relations on M.

The proof of Theorem 5.4 is somewhat complicated.
Observe that the characterization of quantum relations provided by Definition 5.3 is

“intrinsic” toM in the sense that it makes no reference to the ambient matrix algebra
in which M is located. It is manifestly compatible with ∗-isomorphisms.

6 Restrictions

Theorem 5.4 allows us to pass back and forth between concrete and intrinsic quantum
relations, and we will do this repeatedly in the sequel.

An M′-M′ bimodule is a straightforward object, especially when M = Mm and
M′ = C · Im . The value in having a more complicated intrinsic characterization in
terms of connecting projections is that some constructions are more naturally under-
stood in these terms. For instance, the natural notion of “subobject” is the following.

Definition 6.1 LetM be a unital ∗-subalgebra ofMm , let (Rk) be an intrinsic quantum
relation on M, and let E ∈ M be a projection of rank r . The restriction of (Rk) to
EME ⊆ EMmE ∼= Mr is the intrinsic quantum relation (R̃k) on EME defined by
setting

R̃k = {(P, Q) ∈ Rk : P, Q ≤ E ⊗ Ik}

for all k ∈ N.

It is straightforward to verify that (R̃k) as defined above has the properties of an
intrinsic quantum relation described in Definition 5.3. So according to Theorem 5.4,
if (Rk) is associated to the concrete quantum relation V ⊆ Mm , its restriction (R̃k)

must be associated to a concrete quantum relation Ṽ ⊆ Mr on EME . This concrete
restriction has a simple direct characterization:

Proposition 6.2 Let V be a concrete quantum relation on M ⊆ Mm and let E ∈ M
be a projection. Then the restriction Ṽ ofV to EME is concretely given as Ṽ = EVE.

Proof First observe that the commutant of EME in EMmE ∼= Mr is EM′E . For the
sake of completeness, the standard proof goes as follows. The containment EM′E ⊆
(EME)′ is clear because

(EBE)(E AE) = EBAE = E ABE = (E AE)(EBE)
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for all A ∈ M and B ∈ M′, showing that everything in EM′E commutes with
everything in EME . For the reverse containment, by the double commutant theorem
it suffices to show that (EM′E)′ ⊆ EME . So let A ∈ Mr ∼= EMmE belong to
the commutant of EM′E . Regarding A as an element of Mm satisfying A = E AE ,
this means that (EBE)A = A(EBE) for all B ∈ M′. But BE = EB and AE =
E A = A, so it follows that BA = AB for all B ∈ M′, i.e., by the double commutant
theorem, A ∈ M. Thus A ∈ EME , as desired.

The computations

(E AE)(EBE) = E ABE and (EBE)(E AE) = EBAE

for A ∈ V and B ∈ M′ now show that EVE is a bimodule over (EME)′ = EM′E ,
i.e., it is a quantum relation on EME .

Now let (Rk) be the intrinsic quantum relation onM corresponding to V , (R̃k) the
restriction of (Rk) to EME according to Definition 6.1, and R̃′

k the intrinsic quantum
relation on EME corresponding to EVE . We must show that (R̃k) = (R̃′

k).
Fix k ∈ N. In one direction, if (P, Q) ∈ R̃′

k then there exists E AE ∈ EVE such
that

P(E AE ⊗ Ik)Q �= 0.

But since P, Q ≤ E ⊗ Ik and

E AE ⊗ Ik = (E ⊗ Ik)(A ⊗ Ik)(E ⊗ Ik),

this implies that P(A⊗ Ik)Q �= 0, so that (P, Q) belongs toRk and therefore to R̃k .
Conversely, if (P, Q) ∈ R̃k then (P, Q) ∈ Rk and so P(A ⊗ Ik)Q �= 0 for some
A ∈ V . But since P, Q ≤ E ⊗ Ik , this implies that P(E AE ⊗ Ik)Q �= 0, and we
therefore have (P, Q) ∈ R̃′

k . This completes the proof of the desired equality. ��
Although this concrete description of the restriction of V to EME is very simple,

it is the intrinsic formulation given in Definition 6.1 which brings out its role as a
“restriction”.

The following definition now becomes natural.

Definition 6.3 Let V be a quantum graph (a reflexive, symmetric quantum relation)
onM ⊆ Mm and let E ∈ M be a projection. Then E is independent if the restriction
of V to EME is the diagonal quantum relation on EME .

In the caseM = Dm , the projection E corresponds to a subset of {1, . . . ,m}, and
E is independent in the above sense if and only if the classical graph corresponding to
V has no nontrivial edges in this subset. That is, Definition 6.3 generalizes the classical
notion of an independent subset of a graph. In the case M = Mm , the independence
condition simply states that

EVE = C · E,
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which, as we noted earlier, expresses the Knill–Laflamme error correction conditions.
So the notion of independence yields a common generalization of classical and quan-
tum codes.

7 Pushforwards

Classically, if f : X → Y is a function between sets then we can push any relation R
on X forward to a relation onY , namely, the relation {( f (x), f (y)) : (x, y) ∈ R}. Sim-
ilarly, any relationR′ on Y can be pulled back to the relation {(x, y) : ( f (x), f (y)) ∈
R′} on X . We now seek quantum versions of these constructions.

The first point to make is that the classical analog of a quantum channel is not an
actual function between sets, but a classical channel which maps points in the domain
to probability distributions in the range (representing the likelihood of the given input
state being received as various output states). In this context the pushforward of a
relation R on X would consist of the pairs (x ′, y′) ∈ Y 2 such that there exists a pair
(x, y) ∈ R for which the transition probabilities x → x ′ and y → y′ are both nonzero.
The pullback of a relation S on Y would consist of the pairs (x, y) ∈ X2 such that there
exists a pair (x ′, y′) ∈ S for which the transition probabilities x → x ′ and y → y′ are
both nonzero.

Since we are working with unital ∗-algebras, it is natural to adopt the Heisenberg
picture in which algebras of observables transform. Mathematically, this means that
instead of the CPTP map � : ρ �→ ∑

KiρK ∗
i from Mm to Mn mentioned in Sect. 1,

which acts on states, we consider the adjoint map � : A �→ ∑
K ∗
i AKi from Mn

to Mm , which acts on observables. The adjoint of a CPTP map is a unital CP (uni-
tal completely positive) map. Taking adjoints reverses arrows, so that pushforwards
become pullbacks and vice versa; consequently, to maintain consistency with Sect. 2
we will continue to take the CPTP map � : M → N as primary, even though at
this point it becomes less natural. The map � really should be understood as a map
from the predual of M to the predual of N whose adjoint unital CP map � = �∗
takes the ∗-algebra N to the ∗-algebra M, but any finite-dimensional ∗-algebra can
be identified with its predual via the pairing (A, B) �→ Tr(AB), so we need not make
this distinction.

The unital CPmapswhich correspond to actual functions between sets are the unital
∗-homomorphisms, linear maps� : N → Mwhich preserve the identity and respect
the product and adjoint operations. If � = �∗ is a ∗-homomorphism and (Rk) is an
intrinsic quantum relation onM, there is an obvious way to push forward a quantum
relation (Rk) on M along � to a quantum relation (R̃k) on N . Namely, for each
k ∈ N let R̃k consist of those pairs of projections P, Q ∈ Mk(N ) with the property
that (�(P),�(Q)) ∈ Rk . (Here we abuse notation and also denote by � the map
from Mk(N ) to Mk(M) which applies � entrywise.) This definition makes sense
because the ∗-homomorphism property ensures that �(P) and �(Q) are projections.
It is easy to check that the preceding construction does yield an intrinsic quantum
relation on N ([12], Proposition 2.25 (b)).

But we are interested in general CPTP maps, not just those whose adjoint maps
are ∗-homomorphisms. The construction just described no longer works because the
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image of a projection under such a map need not be a projection. However, there is a
simple solution to this difficulty. Let us consider two positivematrices A, B ∈ Mn to be
equivalent if [A] = [B]. Since the range of a Hermitianmatrix is the orthocomplement
of its kernel, this condition could also be stated as ker(A) = ker(B). This notion of
equivalence is suitable here because whether positive matrices are connected by a
quantum relation depends only on their range projections.

Lemma 7.1 Let M and N be unital ∗-subalgebras of Mm and Mn, respectively, let
A, B ∈ N be positive, and let � : N → M be a CP map. Then [A] = [B] implies
[�(A)] = [�(B)].
Proof Recall that the join P∨Q of twoprojections P andQ is the orthogonal projection
onto the span of their ranges. We first claim that [A + B] = [A] ∨ [B]. (We are not
yet assuming [A] = [B], only that A and B are both positive.) That is, we claim that
ran(A + B) = ran(A) + ran(B). The containment ⊆ is clear. Conversely, suppose
|α〉 ⊥ ran(A + B), i.e., |α〉 ∈ ker(A + B). Then

0 = 〈α|(A + B)|α〉 = 〈α|A|α〉 + 〈α|B|α〉.

Since A and B are positive, this implies that 〈α|A|α〉 = 〈α|B|α〉 = 0 and therefore
that A|α〉 = B|α〉 = 0. So |α〉 ⊥ ran(A) and |α〉 ⊥ ran(B), and therefore |α〉 ⊥
ran(A) + ran(B). This shows that ran(A) + ran(B) ⊆ ran(A + B), and so the first
claim is proven.

Now assume [A] = [B]. We next claim that [K ∗AK ] = [K ∗BK ] for any n ×
m matrix K . To see this, let |α〉 ∈ ker(K ∗AK ). Then 〈α|K ∗AK |α〉 = 0, that is,
〈A1/2Kα|A1/2Kα〉 = 0, and this implies that K |α〉 ∈ ker(A1/2) = ker(A). Since
[A] = [B], we get K |α〉 ∈ ker(B), and therefore |α〉 ∈ ker(K ∗BK ). So we have
shown that ker(K ∗AK ) ⊆ ker(K ∗BK ). By symmetry the reverse containment also
holds, so we conclude that the two kernels are equal, i.e., [K ∗AK ] = [K ∗BK ].

We can now prove the lemma. We have �(C) = ∑
K ∗
i CKi for some finite family

of n × m matrices Ki . So, using the two claims, we have

[�(A)] =
[∑

K ∗
i AKi

]
=

∨
[K ∗

i AKi ] =
∨

[K ∗
i BKi ] =

[∑
K ∗
i BKi

]
= [�(B)],

as desired. ��
We note that a version of Lemma 7.1 for normal CP maps between von Neumann

algebras can be proven using the normal Stinespring theorem ([2], Theorem III.2.2.4).
We can now describe the appropriate version of the pushforward construction for

CP maps. Here we return to the “connecting mixed states” point of view; note that if
A,C ∈ M ⊗ Mk are positive then since � is completely positive, �(A) and �(C)

will also be positive. Lemma 7.1 shows that CP maps preserve the relevant notion of
equivalence between positive matrices.

Definition 7.2 Let M ⊆ Mm and N ⊆ Mn be unital ∗-subalgebras and let � :
M → N be a CP map. Suppose (Rk) is an intrinsic quantum relation on M. Then
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its pushforward along � is the intrinsic quantum relation (
−→R k) on N defined by, for

each k ∈ N, letting (P, Q) belong to
−→R k if ([�∗(P)], [�∗(Q)]) belongs toRk .

In order to justify this definition, we must check that (
−→R k) satisfies the axioms

given in Definition 5.3. This can be done directly using Lemma 7.1, but according to
Theorem 5.4, it can also be done by finding a concrete quantum relationW onN with

the property that (P, Q) ∈ ←−R k if and only if P(A ⊗ Ik)Q �= 0 for some A ∈ W .
This will be achieved in Theorem 7.4 below. Thus, that theorem will simultaneously
establish that the pushforward construction is well-defined and identify its concrete
formulation.

We require two simple facts about positive matrices.

Lemma 7.3 (a) Let A,C ∈ Mm be positive, let B ∈ Mn, and let K1, K2 ∈ Mm,n.
Then K ∗

1 AK1BK ∗
2CK2 = 0 if and only if AK1BK ∗

2C = 0.
(b) Let A, Xi ,Y j ∈ Mm and suppose the Xi andY j are positive. Then (

∑
Xi )A(

∑
Y j ) =

0 if and only if Xi AY j = 0 for all i and j .

Proof (a) The reverse implication is trivial. For the forward implication let D =
BK ∗

2CK2 and suppose K ∗
1 AK1D = 0. Then

0 = D∗K ∗
1 AK1D = (A1/2K1D)∗(A1/2K1D),

so A1/2K1D = 0 and therefore AK1D = 0, i.e., AK1BK ∗
2CK2 = 0. Applying

the same argument to the adjoint of the expression AK1BK ∗
2CK2 then yields the

conclusion AK1BK ∗
2C = 0.

(b) Again, the reverse implication is trivial. For the forward implication, we claim that
if (X1 + X2)B = 0 with X1, X2 ≥ 0 then X1B = X2B = 0. This inductively
implies the same statement with any finite number of Xi ’s. Taking B = A(

∑
Y j )

in the statement of the lemma then yields Xi A(
∑

Y j ) = 0 for all i , and applying
the same argument to the adjoint of each of these expressions produces the desired
conclusion.
To verify the claim, suppose (X1 + X2)B = 0. Then

0 = B∗(X1 + X2)B = B∗X1B + B∗X2B,

and since both B∗X1B and B∗X2B are positive, this implies that both are zero. It
follows that X1B = X2B = 0, as claimed. ��
Theorem 7.4 Let M ⊆ Mm and N ⊆ Mn be unital ∗-subalgebras and let � :
M → N be a CP map given by � : B �→ ∑d

i=1 Ki BK ∗
i . Suppose V ⊆ Mm is

a concrete quantum relation on M. Then its pushforward is concretely given as the
N ′-N ′ bimodule generated by

{Ki AK
∗
j : A ∈ V, 1 ≤ i, j ≤ d}.

Proof LetW be theN ′-N ′ bimodule generated by thematrices Ki AK ∗
j for A ∈ V and

1 ≤ i, j ≤ d. We must show that for any k ∈ N and any projections P, Q ∈ Mk(N ),
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wehave P(B⊗Ik)Q �= 0 for some B ∈ W if and only if [�∗(P)](A⊗Ik)[�∗(Q)] �= 0
for some A ∈ V .

Since P and Q commute with anything in N ′ × Ik , the condition

P(B ⊗ Ik)Q �= 0 for some B ∈ W

obtains if and only if

P(Ki AK
∗
j ⊗ Ik)Q �= 0 for some A ∈ V and some i, j .

Equivalently,

P(Ki ⊗ Ik)(A ⊗ Ik)(K
∗
j ⊗ Ik)Q �= 0

for some A ∈ V and some i, j , which by Lemma 7.3 (a) is equivalent to

(K ∗
i ⊗ Ik)P(Ki ⊗ Ik)(A ⊗ Ik)(K

∗
j ⊗ Ik)Q(K ∗

j ⊗ Ik) �= 0

for some A ∈ V and some i, j . Then since �∗(P) = ∑
(K ∗

i ⊗ Ik)P(Ki ⊗ Ik) and
�∗(Q) = ∑

(K ∗
j ⊗ Ik)Q(K j ⊗ Ik), by Lemma 7.3 (b) the last statement is equivalent

to

�∗(P)(A ⊗ Ik)�
∗(Q) �= 0 for some A ∈ V,

which is trivially equivalent to

[�∗(P)](A ⊗ Ik)[�∗(Q)] �= 0 for some A ∈ V,

as desired. ��
IfN = Mn then its commutant is the set of scalar matrices, so that the pushforward

described in Theorem 7.4 is just the linear span of the matrices Ki AK ∗
j .

Once we know how to push forward quantum relations, it is easy to say what the
appropriate notion of “morphism” should be: if M and N are both equipped with
quantum relations V andW , then a CPTP map fromM toN should be considered a

morphism if the pushforward
−→V of V is contained inW . The classical version (which

is recovered as the case where M = Dm and N = Dn) would be a classical channel
from a set S of sizem to a set T of size n for which the pushforward of a given relation
on S is contained in a given relation on T .

Various definitions of quantum graph homomorphisms were proposed in [8,9,11].
Here the term “homomorphism” conflicts somewhat with classical usage, where a
homomorphism between graphs is usually taken to be an actual function between
the vertex sets, not a channel which could map vertices to probability distributions.
An actual map between classical sets generalizes in the quantum setting to a ∗-
homomorphism from N to M. In the more general setting of CP maps we prefer
the term “CP morphism”:
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Definition 7.5 Let M ⊆ Mm and N ⊆ Mn be unital ∗-subalgebras equipped with
intrinsic quantum relations (Rk) and (Sk), respectively. A CP morphism from M to

N is then a CP map � : M → N with the property that
−→R k ⊆ Sk for all k.

In terms of concrete quantum relations V and W on M and N , respectively, the

condition would be that
−→V ⊆ W , where

−→V is the pushforward of V . In particular,
if M and N are matrix algebras and V and W are quantum graphs (i.e., operator
systems), the concrete formulation given in Theorem 7.4 states that the condition for
� to be a CP morphism is KiVK ∗

j ⊆ W for all i and j , which is Stahlke’s condition

[11]. However, the
−→R k ⊆ Sk forulation is manifestly intrinsic.

8 Pullbacks

There is also a way to pull quantum relations back via a CP map. Since we already
know how to push quantum relations forward, one obvious solution is just to push
forward using the adjoint map. This makes perfect sense in the finite-dimensional
setting, but it fails in infinite dimensions when von Neumann algebras can no longer
be identified with their preduals. However, there is an alternative approach which does
straightforwardly generalize to infinite dimensions (with addition of the appropriate
topological conditions, which are vacuous in finite dimensions). We describe this
construction now.

The key question is how to use a CP map � = �∗ : N → M to turn a projection
inM into a projection inN . We can do this using hereditary cones. A hereditary cone
inM is a nonempty set C of positive matrices in M with the properties

(i) if A ∈ C then aA ∈ C for all a ≥ 0
(ii) if A, B ∈ C then A + B ∈ C
(iii) if A ∈ C and 0 ≤ B ≤ A then B ∈ C.
If P is a projection in M then CP = {A ∈ M : A ≥ 0 and PA = 0} is a hereditary
cone, and it is not hard to check that every hereditary cone in M has this form. As it
is easy to see that the inverse image under any CP map � : N → M of a hereditary
cone inM is a hereditary cone inN , this shows us how to use � to turn a projection
P ∈ M into a projection

←−
� (P) in N : take

←−
� (P) to satisfy C←−

� (P)
= �−1(CP ).

We can now define the pullback of a quantum relation via a CPmap.We continue to
abuse notation by letting

←−
� also denote the matrix level map which takes projections

in Mk(M) to projections in Mk(N ).

Definition 8.1 LetM ⊆ Mm andN ⊆ Mn be unital ∗-subalgebras and let � : M →
N be a CPmap. Suppose (Sk) is an intrinsic quantum relation onN . Then its pullback

is the intrinsic quantum relation (
←−S k) onM defined by, for each k ∈ N, letting (P, Q)

belong to
←−S k if (

←−
� (P),

←−
� (Q)) belongs to Sk , where � = �∗.

Aswith pushforwards,wemust justify this definition by showing that (
←−S k) satisfies

the axioms for an intrinsic quantum relation, and as in that case we will accomplish

this by identifying the concrete quantum relation that corresponds to (
←−S k).
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Theorem 8.2 LetM ⊆ Mm andN ⊆ Mn be unital ∗-subalgebras and let � : M →
N be a CP map given by � : B �→ ∑d

i=1 Ki BK ∗
i . Suppose W ⊆ Mn is a concrete

quantum relation onN . Then its pullback is concretely given as theM′-M′ bimodule
generated by

{K ∗
i BK j : B ∈ W, 1 ≤ i, j ≤ d}.

Proof Fix k ∈ N and P, Q ∈ Mk(M). Let � = �∗. We first claim that
←−
� (P) =∨[(Ki ⊗ Ik)P]. To see this, recall that a positive matrix A ∈ Mk(N ) belongs to C←−

� (P)

if and only if �(A)P = 0. But �(A) = ∑
(K ∗

i ⊗ Ik)A(Ki ⊗ Ik), so by Lemma 7.3
we have �(A)P = 0 if and only if A(Ki ⊗ Ik)P = 0 for all i . The claim now follows
from the definition of C←−

� (P)
.

Now the condition for (P, Q) to belong to the pullback of the intrinsic quantum
relation associated toW is that

←−
� (P)(B ⊗ Ik)

←−
� (Q) �= 0

for some B ∈ W . By the claim and Lemma 7.3 (b), this happens if and only if

[(Ki ⊗ Ik)P](B ⊗ Ik)[(K j ⊗ Ik)Q] �= 0

for some B ∈ W and some i, j . This equivalent to saying that

P(K ∗
i ⊗ Ik)(B ⊗ Ik)(K j ⊗ Ik)Q �= 0,

i.e.,

P(K ∗
i BK j ⊗ Ik)Q �= 0,

for some B ∈ W . Since P and Q commute with A ⊗ Ik for every A ∈ M′, this last
condition is equivalent to the statement that (P, Q) belongs to the intrinsic quantum
relation associated to the M′-M′-bimodule generated by the matrices K ∗

i BK j . We
conclude that the latter bimodule is the concrete form of the pullback ofW . ��

Again, in the case whereM = Mm , this pullback would simply be the linear span
of the matrices K ∗

i BK j .
The pullback construction gives rise to an alternative version ofCPmorphismwhich

is weaker than the one proposed in Definition 7.5. Namely, instead of requiring
−→R k ⊆

Sk for all k we could requireRk ⊆ ←−S k for all k. In concrete terms, the condition that
KiVK ∗

j ⊆ W for all i and j is replaced by the condition that V ⊆ ∑
i, j K

∗
i WK j . The

second condition is implied by the first (multiply the first condition on the left by K ∗
i

and on the right by K j , then sum over i and j and invoke the identity
∑

K ∗
i Ki = Im).

Classically, the first version demands that if the point x is related to the point y then
x ′ must be related to y′ for any x ′ and y′ such that the transition probabilities x → x ′
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and y → y′ are both nonzero, while the second version asks only that there be at least
one such pair (x ′, y′).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

9 Appendix: Superselection Rules

A central feature of quantum mechanics is the possibility of forming superpositions
of states, famously illustrated by the parable of Schrodinger’s cat. However, not all
superpositions are physically allowed. For instance, in elementary quantummechanics
one cannot prepare an isolated system in a superposition of two states inwhich different
numbers of particles are present, or whose total charges are different. Such restrictions
are known as “superselection rules”. In their presence the Hilbert space of the system
will decompose into an orthogonal sum of “superselection sectors”, subspaces within
which all pairs of states can be superposed.

In particular, one cannot perform ameasurement on an isolated systemwhich could
result in the system being in a forbidden superposition. This means that all physical
observables are restricted to have a block diagonal form such that the orthogonal
projection onto any eigenspace commutes with the orthogonal projections onto the
blocks. Thus, the physical observables should typically be modelled not by arbitrary
self-adjoint matrices in Mm , but rather by self-adjoint matrices belonging to a fixed
unital ∗-subalgebra of Mm . The significance of superselection rules in quantum infor-
mation theory has been studied in [1,4,5].

A qualification is in order here. When one is encoding information in a quantum
mechanical system, superselection rules are only absolute if the system is isolated.
Thus, in principle, one could achieve a “forbidden” superposition by first coupling
the system of interest to an external system, then preparing the composite system in
the desired superposition, then discarding the external system without measuring it.
That is, if there is a rule forbidding superposition of the states |α〉 and |α′〉 in the first
system when it is isolated, one finds states |β〉 and |β ′〉 of the second system such
that superposition of |α〉|β〉 and |α′〉|β ′〉 is not forbidden. However, even if possible in
principle, this strategy may not be feasible in practice. Indeed, the whole reason why
ordinary communication is classical is exactly because one is practically unable to
create quantum superpositions of macroscopic objects. Thus, operative superselection
rules may arise not from fundamental physics but from limitations of the experimental
apparatus.

For example, suppose that a sender populates a potential well with n hydrogen
atoms and transmits the system to a recipient, with the transmitted information being
simply the value of n. If the system is isolated then states with different values of n
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definitely cannot be superposed, but even if this restriction is relaxed the sender might
not have the ability to create such superpositions. If so, this information is classical.

Tomake this examplemore interesting, suppose the sender has the ability to prepare
the atoms in desired spin states and wants to encode information in this way. States
of the system with different values of n still cannot be superposed, but states with the
same value of n can be. In this case the relevant ∗-algebra M is a direct sum

⊕
M2n

because there are 2n possible basic spin states in a system with n atoms.
Another way thatM could be neither Mm nor Dm is if the transmitted information

comes in two parts, a classical part and a quantum part. In that case we would have
M = Mm ⊗ Dk where m is the number of degrees of freedom of the quantum part of
the message and k is the number of degrees of freedom of the classical part. A situation
of this type could arise if, say, information is encoded in an array of heavy atoms using
both their spin states and their centers of mass. (The i th atom might be placed at one
of two locations (i, 1) or (i, 2) in a k × 2 grid, for example.) Models in which the
spin of an atom is treated quantum mechanically while its center of mass is treated
classically are familiar from standard analyses of the Stern-Gerlach experiment.

How would basic notions from quantum error correction generalize to the mixed
setting? Given the abstract formulations presented earlier, this question is easy to
answer. The situation would be that we have unital ∗-algebrasM ⊆ Mm andN ⊆ Mn

and a CPTP map � : M → N . The quantum confusability graph would then be the
pullback along � of the diagonal quantum relation onN , i.e., its commutantN ′. If �

has the form � : B �→ ∑d
i=1 Ki BK ∗

i , then according to Theorem 8.2 this pullback
would be the M′ − M′ bimodule generated by {K ∗

i BK j : B ∈ N ′}.
As a simple special case, supposeM = Mm ⊗Dm′ ⊆ Mmm′ andN = Mn⊗Dn′ ⊆

Mnn′ . Then M′ = Im ⊗ Dm′ and N ′ = In ⊗ Dn′ , and the quantum confusability
graph is the M′ − M′ bimodule generated by {K ∗

i (In ⊗ B)K j : B ∈ Dn′ }. This
expression can be made more explicit if the Kraus matrices are chosen in a natural
way. Namely, for each 1 ≤ a ≤ m and 1 ≤ b ≤ n the map � induces a CP map from
Mm ∼= Mm ⊗ Eaa ⊆ Mmm′ to Mn ∼= Mn ⊗ Ebb ⊆ Mnn′ , where Eaa is the m′ × m′
matrix with a 1 in the (a, a) entry and 0’s elsewhere and Ebb is the n′ ×n′ matrix with
a 1 in the (b, b) entry and 0’s elsewhere. Thus, for each a and b we can find a family of
n×mKrausmatrices Kab

i such that�(B) = ∑
a,b,i (K

ab
i ⊗Eaa)B(Kab

i ⊗Eaa)
∗⊗Ebb,

and the condition that � be trace preserving is
∑

a,b,i (K
ab
i )∗Kab

i ⊗ Eaa = Imm′ , or
equivalently,

∑
b,i (K

ab
i )∗Kab

i = Im for each a (a version of stochasticity). With these
Kraus matrices, the quantum confusability graph is the operator system V spanned
by the matrices (Kab

i )∗Ka′b
j ⊗ Eaa′ ∈ Mmm′ for arbitrary a, a′, b, i , and j , which is

automatically anM′ − M′ bimodule.
In this setting a quantumcodewould be a projection E ∈ M such that EVE = Im⊗

Dm′ , where V is the quantum confusability graph just described. Concretely, we can
write E = ∑

Pa ⊗ Eaa where each Pa is a projection in Mm , and the error correction
conditions would state that (1) for each a, b, i , and j the matrix Pa(Kab

i )∗Kab
j Pa is a

scalar multiple of Pa , and (2) for each a �= a′, b, i , and j the matrix Pa(Kab
i )∗Ka′b

j Pa′
is zero.
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