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Abstract
Westudy upper bounds for the first non-zero eigenvalue of the Steklov problemdefined
on finite graphs with boundary. For finite graphs with boundary included in a Cayley
graph associated to a group of polynomial growth, we give an upper bound for the
first non-zero Steklov eigenvalue depending on the number of vertices of the graph
and of its boundary. As a corollary, if the graph with boundary also satisfies a discrete
isoperimetric inequality, we show that the first non-zero Steklov eigenvalue tends to
zero as the number of vertices of the graph tends to infinity. This extends recent results
of Han and Hua, who obtained a similar result in the case of Z

n . We obtain the result
using metric properties of Cayley graphs associated to groups of polynomial growth.

Keywords Steklov eigenvalue problem · Discrete Dirichlet-to-Neumann operator ·
Upper bound
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1 Introduction

Let M be a compact Riemannian manifold of dimension n ≥ 2 with boundary ∂M .
The Steklov problem on M is

{
�u = 0 in M,
∂u
∂n = σu on ∂M,
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where � is the Laplace–Beltrami operator and ∂u
∂n is the outward normal derivative

along the boundary ∂M . It is a well-known result that if the boundary is sufficiently
regular, the spectrum of the Steklov problem is discrete and its eigenvalues form a
sequence 0 = σ0 < σ1 ≤ σ2 ≤ · · · ↗ ∞.

An important question in studying the spectral geometry of the Steklov problem
is to maximize its eigenvalues under a constraint on the volume of the boundary or
on the volume of the manifold. For simply connected planar domains of prescribed
perimeter, it has been shown by R. Weinstock that the disk maximizes σ1 (see [16]).
For bounded Lipschitz domains of fixed volume in R

n , F. Brock proved that the ball
maximizes σ1 (see [2]). Several upper bounds have also been obtained for different
families of manifolds where the volume or the volume of the boundary is fixed. In
2017, a survey of the literature on this question has been given in [10]. More recently,
it was shown in [3] that a Weinstock-type inequality holds in R

n in the class of convex
sets, that is, that among all bounded convex sets in R

n with prescribed volume of the
boundary, the ball maximizes σ1.

In this article, we investigate isoperimetric upper bounds for σ1 of the Steklov
problem on graphs. The Steklov problem on graphs is a discrete analogue of the
Steklov problem and has recently received attention in the literature. In [13] and [14],
lower bounds for the first non-zero eigenvalue are given. A lower bound for higher
eigenvalues is given in [1]. For subgraphs of integer lattices, an upper bound has been
obtained byHua andHan [12]. In [5], a relation between the eigenvalues of the Steklov
problem on amanifold and the eigenvalues of a discrete problem is established. Hence,
results in the discrete and in the Riemannian settings are closely related and the study
of the discrete problem is a possible approach to understand the spectral geometry of
the Steklov problem.

Definition 1 A graph with boundary is a pair (Γ , B), where Γ = (V , E) is a simple,
that is without loops or multiple edges, connected graph and B ⊂ V is a subset of V
such that B �= ∅ and E(B, B) = ∅. We call B the boundary of the graph and Bc the
interior.

In this paper, we always consider graphs with boundary that are finite. The space
of all real functions defined on the vertices V , denoted by R

V , is the Euclidean space
of dimension |V |. Similarly, the space of real functions defined on the vertices of the
boundary, denoted R

B , is the Euclidean space of dimension |B|.
The Laplacian � of a function v ∈ R

V is defined by

(�v)(i) =
∑
j∼i

(v(i) − v( j)),

where i ∼ j signifies that {i, j} ∈ E .
A function v ∈ R

V is called harmonic if

(�v)(i) =
∑
j∼i

(v(i) − v( j)) = 0 ∀i /∈ B.
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8146 H. Perrin

The normal derivative operator ∂
∂n : R

V → R
B is defined by

(
∂v

∂n

)
(i) =

∑
j∈Bc, j∼i

(v(i) − v( j)) i ∈ B.

Definition 2 The Steklov problem on a finite graph with boundary (Γ , B) is the eigen-
value problem

{
(�v)(i) = 0 if i /∈ B,(

∂v
∂n

)
(i) = σv(i) if i ∈ B,

where v �≡ 0 and σ is a spectral parameter.

As shown in [14], the solutions of this problem coincide with the eigenvalues of the
discrete Dirichlet-to-Neumann operator defined in [13]. They form a finite sequence
0 = σ0 ≤ σ1 ≤ · · · ≤ σb−1, where b = |B|.

We recall that we are interested in upper bounds for σ1. Therefore, we will always
assume that |B| > 1 because if not, σ1 is not defined. A first remark is that without any
additional geometric constraint on (Γ , B), σ1 may become unbounded. This occurs
in the following example.

Example 1 We consider the family of graphs with boundary {(Gn, B)}n∈N as shown
in Fig. 1, that is, two boundary vertices (the bigger vertices) are connected by n paths
of length 2. By computation, we obtain that σ1(Gn, B) = n and hence σ1 tends to
+∞ as n tends to +∞.

If we assume that the degree of the graph, d, is bounded, it is easy to obtain
that σ1 ≤ d. The goal of this paper is to show isoperimetric upper bounds for the
Steklov eigenvalues of graphs with boundary that are included in a Cayley graph with
polynomial growth (we recall the notions of geometric group theory that we use in
Sect. 2).

Definition 3 A graph with boundary (Γ ′ = (V ′, E ′), B) is included in a graph Γ =
(V , E) if V ′ ⊂ V and E ′ ⊂ E .

Remark 1 The Steklov problem is defined on finite graphs with boundary. In contrast,
the Cayley graphs with polynomial growth that we use as host graph are infinite.

The main result is the following.

Fig. 1 (G1, B), (G2, B), (G3, B), (G4, B) and (G5, B)
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Theorem 1 Let Γ = (V , E) be a Cayley graph with polynomial growth of order D.
There existsC(Γ ) > 0 such that for anyfinite graphwith boundary (Γ ′ = (V ′, E ′), B)

included in Γ and such that |B| > 1, we have

σ1(Γ
′, B) ≤

⎧⎨
⎩
C(Γ ) 1

|B| if D ≤ 2,

C(Γ )
|V ′| D−2

D

|B| if D ≥ 2.

This result can be pushed further for a particular class of graph with boundary
included in the Cayley graph Γ = (V , E), graphs with boundary induced by a subset
Ω ⊂ V .

Definition 4 Let Γ = (V , E) be a graph.

(1) The vertex boundary of a subset Ω ⊂ Γ is

δΩ := {i ∈ V \ Ω : ∃ j ∈ Ω, i ∼ j}

where i ∼ j signifies that {i, j} ∈ E .
(2) The set of edges between two subset Ω1,Ω2 ⊂ V is

E(Ω1,Ω2) := {{i, j} ∈ E : i ∈ Ω1, j ∈ Ω2}.

(3) Given Ω � V , consider the graph Γ ′ with vertex set Ω̄ := Ω ∪ δΩ and edge
set E(Ω, Ω̄). This defines a graph with boundary, with B = δΩ , which is called
graph with boundary induced by a subset Ω � V .

(4) Given a subset Ω � V , σ1(Ω) is the eigenvalue σ1 of the graph with boundary
induced by Ω (Fig. 2).

Because graphs with boundary induced by a finite subset Ω of the set of vertices
of a Cayley graph with polynomial growth satisfy a discrete isoperimetric inequality,
we can deduce the following two corollaries of Theorem 1 for this particular case.

Corollary 1 Let Γ = (V , E) be a Cayley graph with polynomial growth of order
D ≥ 2. There exists C(Γ ) > 0 such that for any finite connected subset Ω of the set

Fig. 2 Two graphs with boundary included in Z
2, but only the first one is induced by a subset of vertices

of Z
2 (the bigger vertices are boundary vertices)
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8148 H. Perrin

of vertices V we have

σ1(Ω) ≤ C(Γ )
1

|δΩ| 1
D−1

.

Corollary 2 Let Γ = (V , E) be a Cayley graph with polynomial growth of order
D ≥ 2. There exists C(Γ ) > 0 such that for any finite connected subset Ω of the set
of vertices V we have

σ1(Ω) ≤ C(Γ )
1

|Ω̄| 1
D

,

where Ω̄ = δΩ ∪ Ω .

A direct consequence is that for a sequence of graphs with boundary induced by
subsets in a Cayley graph with polynomial growth such that the number of vertices
tends to infinity, σ1 tends to zero. It is easy to find examples (see, e.g., [14, Example
1]) showing that this is not true if we do not assume that the graphs with boundary are
induced by subsets of the Cayley graph.

In Z
n , with n ≥ 2, Corollary 2 corresponds to a recent result of Han and Hua

(see Corollary 1.4 in [12]). They show it using a very interesting method to reduce to
the case of domains in R

n , which also allows them to give explicit constants. In the
contrast to the proof of the result of Han and Hua, the proof of our main result is direct
because it does not use known results for domains in Euclidean space. It essentially
uses the control of the growth function of the Cayley graph. The method was inspired
by the methods used in [4]. A straightforward example of a Cayley graph of a group
of polynomial growth that is different from Z

n is a Cayley graph associated to the
discrete Heisenberg group of dimension 3, which has polynomial growth of order 4.
Many other examples exist (see Example 4) where the result holds.

2 Groups with Polynomial Growth and Cayley Graphs

In this article, we work in the setting of Cayley graphs of groups with polynomial
growth. We recall here the definitions and the geometric group theory notions that we
will use. For further details on this topic, one can see, e.g., [7].

LetG be a finitely generated infinite discrete group and S={g1, . . . , gk} a generating
set of G. For n ∈ N

∗, we denote the ball of radius n B(n) := {x ∈ G : x =
gε1
i1

, . . . , gεn
in

, i1, . . . , in ∈ {1, . . . , k}, ε j = ±1}. The growth function ofG is V (n) :=
|B(n)|. If there exist D ∈ N

∗ and C > 0 such that

C−1nD ≤ V (n) ≤ CnD,

we say that the growth rate is polynomial of order D. Since the growth rate does not
depend on the choice of generating set, we can speak of the growth type of a group.
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LetG be a group and S a generating set that does not contain the identity element of
the group and is symmetric, that is, satisfies S = S−1. The Cayley graphΓ = Γ (G, S)

associated to (G, S) is the graph with vertices V = G and edges E = {{x, y} : x, y ∈
V and ∃s ∈ S such that y = xs}. Since S is symmetric and does not contain the
identity element, the graph is simple, and since S is a generating set of G, the graph
is connected. We say that a Cayley graph has polynomial growth of order D if it is
associated to a group with polynomial growth of order D.

We now give two properties of Cayley graphs with polynomial growth that we will
need to prove our results.

Lemma 1 Let Γ = (V , E) be a Cayley graph with polynomial growth of order D.
Let a, b ∈ R

∗+ and B(x, aR) be a ball in Γ of radius aR. Then ∃N ∈ N
∗ such that

B(x, aR) is the union of N balls of radius bR and this number does not depend on

R. More precisely, we can take N = �C2
( 2a+b

b

)D� where C is a constant satisfying
C−1nD ≤ V (n) ≤ CnD.

Proof Let {yi }mi=1 be a maximal subset of vertices in B(x, aR) such that d(yi , y j ) ≥
bR for i �= j . Then ∪n

i=1B(yi , bR) ⊃ B(x, aR) and, by the triangle inequality,
B

(
yi ,

bR
2

) ∩ B
(
y j ,

bR
2

) = ∅. This implies

m∑
i=1

∣∣∣∣B
(
yi ,

bR

2

)∣∣∣∣ ≤
∣∣∣∣B

(
x,

(
a + b

2

)
R

)∣∣∣∣ . (1)

Since the graph has polynomial growth of order D, we know that there exists C such
that C−1nD ≤ |B(z, n)| ≤ CnD ∀z ∈ V . We approximate the volume of the balls in

Eq. (1) using the latter inequality and we obtain that m ≤ C2
( 2a+b

b

)D
. ��

The second property is a discrete isoperimetric inequality.

Proposition 1 Let Γ = (V , E) be a Cayley graph with polynomial growth of order
D. There exists C such that for any finite subset Ω ⊂ V , δΩ its boundary, and
Ω̄ := Ω ∪ δΩ, we have that

|Ω̄| (D−1)
D

|δΩ| ≤ C . (2)

For the proof of this proposition, we refer to [6]. In fact, the result that we give
corresponds to the first particular case of Theorem 1 of [6], but formulated in the
setting of Cayley graphs.

3 Isoperimetric Upper Bound for �1 in Cayley Graphs with Polynomial
Growth

In this section, we prove the results presented in the introduction and give examples
of application.
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8150 H. Perrin

The following variational characterization of the Steklov eigenvalues on graphs
with boundary is important for the proof of our main result, Theorem 1.

σ j = min
E

max
v∈E,v �=0

R(v), (3)

where E is the set of all linear subspaces of R
V of dimension j + 1, and R(v) is the

Rayleigh quotient associated to the Dirichlet-to-Neumann operator (see [13])

R(v) :=
∑

i∼ j (v(i) − v( j))2∑
i∈B v(i)2

.

3.1 Proof of Theorem 1

The proof consists of finding two regions of the graph with boundary with a sufficient
number of vertices of the boundary, then building test functions, evaluating their
Rayleigh quotient, and using the variational characterization in order to obtain an
upper bound for σ1.

Proof By Lemma 1, there exists c1 such that a ball of radius 3R in Γ is the union of
c1 balls of radius 1

2 R.
If |B| ≤ c1 + 1, it is easy to show that the result is true using that σ1 is bounded

from above by d, the degree of the host Cayley graph: we have that

σ1 ≤ d = d|B|
|B| ≤ d(c1 + 1)

|B| =: c2 1

|B|
and, if D ≥ 2,

σ1 ≤ c2
1

|B| ≤ c2
|V ′| D−2

D

|B| .

From now on, we will assume |B| > c1 + 1. We define

α := |B|
c1 + 1

.

Let x ∈ V . We set

rx := min{r ∈ N : |B(x, r) ∩ B| ≥ α}

and

R := min
x∈V rx .
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Then, we have that ∀x ∈ V , |B(x, R − 1) ∩ B| < α and there exists
x0 such that |B(x0, R) ∩ B| ≥ α. We remark that R ≥ 1. Since B(x, R − 1) ≥
B

(
x, 1

2 R
)
we have that B(x0, 3R) is the union of c1 balls of radius R − 1. This

implies

|B(x0, 3R) ∩ B| < c1α

and consequently

|B(x0, 3R)c ∩ B| = |B| − |B(x0, 3R) ∩ B|
> |B| − c1α

= |B| − c1
|B|

c1 + 1

= |B|
c1 + 1

= α.

Hence, we have found two regions, B(x0, R) and B(x0, 3R)c, such that

|B(x0, R) ∩ B| ≥ α

and

|B(x0, 3R)c ∩ B| > α.

Wedefine two test functions, onewith support B(x0, 2R), and the otherwith support
B(x0, 2R)c.

f1(y) =

⎧⎪⎨
⎪⎩
1 if y ∈ B(x0, R),

1 − k
R if k := d(y, B(x0, R)) ≤ R,

0 otherwise,

f2(y) =

⎧⎪⎨
⎪⎩
1 if y ∈ B(x0, 3R)c,

1 − k
R if k := d(y, B(x0, 3R)c) ≤ R,

0 otherwise.

We consider the linear subspace W of R
V generated by f1 and f2. The variational

characterization of Eq. (3) gives

σ1 ≤ max
v∈W R(v).

Since f1 and f2 have disjoint support, it implies

σ1 ≤ max{R( f1), R( f2)}.
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8152 H. Perrin

R( f1) can be evaluated in the following way. The denominator is

∑
i∈B

f1(i)
2 ≥ |B(x0, R) ∩ B| ≥ α = |B|

c1 + 1
.

The only edges contributing to the sum in the numerator
∑

i∼ j ( f1(i)− f1( j))2 are
the ones in B(x0, 2R) \ B(x0, R). In this annulus, for two adjacent vertices, we have
that ( f1(i) − f1( j))2 ≤ 1

R2 . Moreover, the number of edges in this annulus is smaller
than or equal to the number of edges in B(x0, 3R). Hence we have

∑
i∼ j

( f1(i) − f1( j))
2 ≤

∑
i∼ j,i, j∈B(x0,3R)

1

R2 .

Because the graph has polynomial growth of order D, there exists c3 > 0 such that
|B(x0, 3R)| ≤ c3(3R)D . We recall that the graph is the Cayley graph defined by a
group G and a generating set S of G. The degree of the graph is |S| = |B(y, 1)| ≤
c3. By the handshaking lemma, |E(B(x0, 3R), B(x0, 3R))| ≤ 1

2 |B(x0, 3R)||S| ≤
1
2c

2
3(3R)D := c4RD . Consequently, for D = 1 or 2, we have

∑
i∼ j,i, j∈B(x0,3R)

1

R2 ≤ c4
RD

R2 ≤ c4

and the Rayleigh quotient of f1 becomes

R( f1) =
∑

i∼ j ( f1(i) − f1( j))2∑
i∈B f1(i)2

≤ (c1 + 1)c4
|B| =: c5

|B| .

If D ≥ 2, we note that we have the following equality:

∑
i∼ j,i, j∈B(x0,3R)

1

R2 =
⎛
⎝ ∑

i∼ j,i, j∈B(x0,3R)

1

RD

⎞
⎠

2
D

⎛
⎝ ∑

i∼ j,i, j∈B(x0,3R)

1

⎞
⎠

D−2
D

.

The left factor is bounded by a constant:

⎛
⎝ ∑

i∼ j,i, j∈B(x0,3R)

1

RD

⎞
⎠

2
D

≤ c
2
D
4 =: c6.

For the right factor, we have

⎛
⎝ ∑

i∼ j,i, j∈B(x0,3R)

1

⎞
⎠

D−2
D

≤
(c3
2

|V ′|
) D−2

D
,
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and we obtain

∑
i∼ j,i, j∈B(x0,3R)

1

R2 ≤ c6
(c3
2

) D−2
D |V ′| D−2

D =: c7|V ′| D−2
D .

Hence, if D ≥ 2, the numerator of the Rayleigh quotient satisfies

∑
i∼ j

( f1(i) − f1( j))
2 ≤ c7|V ′| D−2

D .

The Rayleigh quotient of f1 becomes

R( f1) =
∑

i∼ j ( f1(i) − f1( j))2∑
i∈B f1(i)2

≤ (c1 + 1)c7|V ′| D−2
D

|B| =: c8 |V ′| D−2
D

|B| .

By the definition of the test functions, the same upper bound can be obtained for
f2. We conclude that

σ1 ≤ max{R( f1), R( f2)} ≤
⎧⎨
⎩
c5

1
|B| if D ≤ 2,

c8
|V ′| D−2

D

|B| if D ≥ 2.

In order to unify the case |B| ≤ c1 + 1 and the general case, we take C :=
max{c5, c2} if D ≤ 2 or C := max{c8, c2} if D ≥ 2. This completes the proof. ��
Remark 2 The proof is qualitative rather than quantitative since the goal here is not to
find an optimal constant (the constant depends on the generating set of the group).

Example 2 An example of a group with polynomial growth of order D is Z
D .

Example 3 The Heisenberg group over Z,

Heis(Z) =
⎧⎨
⎩

⎛
⎝1 x z
0 1 y
0 0 1

⎞
⎠ : x, y, z ∈ Z

⎫⎬
⎭ ,

is an example of a group with polynomial growth of order 4, which is not quasi-
isometric toZ

4 (on this affirmation, see [9], p. 13, for example). Hence, for the Steklov
problem on a graph with boundary (Γ ′ = (V ′, E ′), B) included in a Cayley graph

associated to the Heisenberg group, σ1 is bounded from above by C(Heis(Z))
|V ′|1/2

|B| .

Example 4 An important theorem due to M. Gromov characterizes finitely generated
groups of polynomial growth (see [11]). It says that a group is of polynomial growth if
and only if it has a nilpotent subgroup of finite index. Lattices in nilpotent Lie groups,
which are finitely generated and themselves nilpotent, are other examples where the
theorem holds (for the existence of such lattices, see, e.g., [15] and [8]).
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Remark 3 Given a Cayley graph Γ = (V , E) with polynomial growth of order 1 or 2,
Theorem 1 shows that for a sequence {(Γ ′

n, Bn)}n∈N of graphs with boundary included
in Γ and satisfying |Bn| → ∞, we have that σ1 tends to 0 as n tends to infinity.

3.2 Application to Subgraphs

Proof of Corollary 1 By the isoperimetric inequality in Proposition 1, there exists c1 >

0 such that |Ω̄| (D−1)
D

|δΩ| ≤ c1, where Ω̄ = δΩ ∪ Ω . We raise the latter inequality to

the power of D−2
D−1 and obtain |Ω̄| D−2

D ≤ (c1|δΩ|) D−2
D−1 =: c2|δΩ| D−2

D−1 . By Theorem 1,

there exists c3 such that σ1 ≤ c3
|Ω̄| D−2

D

|δΩ| . Consequently,

σ1 ≤ c3
|Ω̄| D−2

D

|δΩ| ≤ c3c2
|δΩ| D−2

D−1

|δΩ| = c3c2
1

|δΩ| 1
D−1

=: c4 1

|δΩ| 1
D−1

.

��

Remark 4 For D = 1,we remark that by Theorem1,we have that σ1(Ω) ≤ C(Γ ) 1
|δΩ| .

Proof of Corollary 2 By the isoperimetric inequality in Proposition 1, there exists c1 >

0 such that |Ω̄| (D−1)
D

|δΩ| ≤ c1. By Theorem 1, there exists c2 such that σ1 ≤ c2
|Ω̄| D−2

D

|δΩ| .
Hence, we have

σ1 ≤ c2
|Ω̄| D−2

D

|δΩ| = c2
|Ω̄| D−1

D |Ω̄| −1
D

|δΩ| ≤ c2c1|Ω̄| −1
D =: c3 1

|Ω̄| 1
D

.

��

Remark 5 Since Ω̄ = δΩ ∪ Ω , we also have σ1 ≤ C(Γ ) 1

|Ω| 1
D
and σ1 ≤ C(Γ ) 1

|δΩ| 1D
but this last bound is weaker than Corollary 1.

Remark 6 In a Cayley graph with polynomial growth of order D ≥ 2, for a sequence
{Ωn}n∈N of finite subsets satisfying |Ωn| → ∞, we have that σ1(Ωn) tends to 0 as n
tends to infinity.

Remark 7 For graphs with boundary induced by a finite subset of Z
n , the result of

Corollary 2 was recently obtained by Han and Hua (see [12, Corollary 1.4]), who also
give an explicit constant.
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