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Abstract
In the present paper, we show how to define suitable subgroups of the orthogonal group
O(d−m) related to theunboundedpart of a strip-like domainω×R

d−m withd ≥ m+2,
in order to get “mutually disjoint” nontrivial subspaces of partially symmetric functions
of H1

0 (ω×R
d−m)which are compactly embedded in the associated Lebesgue spaces.

As an application of the introduced geometrical structure, we prove (existence and)
multiplicity results for semilinear elliptic problems set in a strip-like domain, in the
presence of a nonlinearity which either satisfies the classical Ambrosetti–Rabinowitz
condition or has a sublinear growth at infinity. The main theorems of this paper may
be seen as an extension of existence and multiplicity results, already appeared in the
literature, for nonlinear problems set in the entire space Rd , as for instance, the ones
due to Bartsch and Willem. The techniques used here are new.
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1 Introduction

1.1 Lack of Compactness and Symmetries on Unbounded Domains

Several important problems arising in many research fields such as physics and differ-
ential geometry lead to consider semilinear variational elliptic equations defined on
unbounded domains of the Euclidean space and a great deal of work has been devoted
to their study. From the mathematical point of view, probably the main interest relies
on the fact that often the tools of nonlinear functional analysis, based on compactness
arguments, cannot be used, at least in a straightforward way, and some new techniques
have to be developed.

The seminal paper [15] by Lions has inspired a (nowadays usual) way to overcome
the lack of compactness by exploiting symmetry. This approach is fruitful in the
study of variational elliptic problems in presence of a suitable continuous action of a
topological group on the Sobolev space where the solutions are being sought.

Along this direction, in the present paper, we exploit a group theoretical scheme,
raised in the study of problems which are invariant with respect to the action of
orthogonal subgroups, to show the existence of multiple solutions distinguished by
their different symmetry properties. We emphasize that a wide class of nonlinear
problems of this kind can be handled by constructing suitable subspaces, of “partially
symmetric” functions, of the ambient Sobolev space, and by applying an appropriate
version of the so-called Principle of Symmetric Criticality proved in the seminal paper
[21] by Palais.

For instance, let R+
0 = [0,∞), let ψ1, ψ2 : R+

0 → R be two functions that are
bounded on bounded sets, with ψ1(t) < ψ2(t) for every t ∈ R

+
0 and consider the

strip-like domain of the Heisenberg group H
n = C

n × R, n ≥ 1, given by

�ψ :=
{
q = (z, t) ∈ C

n × R : ψ1(|z|) < t < ψ2(|z|)
}
.

The existence of weak solutions for subelliptic problems set on �ψ has been investi-
gated in [9,16,20] by employing symmetries. The main proofs, crucially based on the
Palais Principle, are obtained by developing a suitable algebraic procedure on the uni-
tary group U(n) := U (n) × {id} that fits well with the approach developed along the
present paper. This group acts continuously on the Folland–Stein space HW 1,2

0 (�ψ)

by the action � : U(n) × HW 1,2
0 (�ψ) → HW 1,2

0 (�ψ) pointwise defined by setting,
for all τ̂ := τ × id with τ ∈ U (n),

(̂τ �u)(q) = u(τ−1z, t) for a.e. q = (z, t) ∈ H
n .

For any choice, if any, of � ≥ 1 and of �-tuple (n1, . . . , n�) such that for all i ∈
{1, . . . , �}, ni ≥ 2 and

�∑
i=1

ni = n, denoting T := U (n1) × · · · × U (n�) × {id}, the
set

FixT (HW 1,2
0 (�ψ)) :=

{
u ∈ HW 1,2

0 (�ψ) : τ̂ �u = u for any τ̂ ∈ T
}

123



A Flower-Shape Geometry and Nonlinear Problems on Strip-Like Domains 8107

is a closed subspace of HW 1,2
0 (�ψ) which is compactly embedded in the Lebesgue

space Lν(�ψ) for any ν ∈ (2, 2∗
Q), where 2∗

Q := 2Q/(Q − 2), and Q = 2n + 2 is
the homogeneous dimension of Hn ; see [4, Theorem 1.1]. This fact allows to prove
the existence of multiple T -symmetric solutions for subelliptic problems set on �ψ .

Here, we are interested on problems settled in strip-like domains of the Euclidean
spaceRd . Without loss of generality, fixedm ∈ Nwe consider a strip-like domainω×
R
d−m , where ω ⊂ R

m is an open-bounded Euclidean domain with smooth boundary
∂ω. If d ≥ m+2, we exploit some compact embedding of the space H1

0,cyl(ω×R
d−m)

of “cylindrically symmetric” functions of the Sobolev space H1
0 (ω × R

d−m) into the
Lebesgue space Lν(ω ×R

d−m) for all ν ∈ (2, 2∗), 2∗ := 2d/(d − 2). Subsequently,
assuming that d ≥ m + 4, more partial symmetries (in addition to the so-called block
radial symmetries) can be used and so more distinct subspaces of H1

0 (ω ×R
d−m) can

be introduced on which one can recover compactness (see Proposition 2.2).
The proof of themain compactness result given in Proposition 2.2 somehow follows

by [15, Théorème III.2], and it is crucially based on the use of the action induced by
the orthogonal group O(d−m) onRd−m , the unbounded part of the strip (see Sect. 2.1
below and [13, Subsection 2]). Actually, when d = m + 4 or d ≥ m + 6, we set

τd,m := (−1)d−m +
⌊
d − m − 3

2

⌋
and Id,m := {

1, . . . , τd,m
}
, (1.1)

(the symbol �·	 denotes the integer value function), and, for any i ∈ Id,m , we define

Hd,m,i :=

⎧
⎪⎨
⎪⎩

O((d − m)/2) × O((d − m)/2) if i = d − m − 2

2
O(i + 1) × O(d − m − 2i − 2) × O(i + 1) if i 
= d − m − 2

2

and

Ĥd,m,i := {idm} × Hd,m,i ⊂ {idm} × O(d − m) =: Ô(d − m).

Despite the fact that the τd,m sets FixĤd,m,i
(H1

0 (ω × R
d−m)) of the functions in

H1
0 (ω × R

d−m) which are invariant with respect to the induced action � of Ĥd,m,i on
H1
0 (ω × R

d−m) (for a precise definition see (2.3)), i.e.

FixĤd,m,i
(H1

0 (ω × R
d−m)) :=

{
u ∈ H1

0 (ω × R
d−m) : ĥ�u = u for any ĥ ∈ Ĥd,m,i

}
,

are the so-called block-radial subspaces ofH1
0 (ω × R

d−m) and therefore, by [15,
Théorème III.2], are compactly embedded in Lν(ω ×R

d−m) for all ν ∈ (2, 2∗), they
are not “mutually disjoint”. So, more effort must be done to get the multiplicity result.

To this aim, by adapting the arguments of [13, Theorem 2.2] introduced in the
whole Euclidean space, we define on R

d−m the involution function ηd,m,i (see (2.8)
below) which allows us to construct subgroups Ĥd,m ,̂ηi of Ô(d − m) (see (2.10)
for the definition) such that the sets FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)) of the functions
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u ∈ H1
0 (ω×R

d−m)which are invariant with respect to the action�i (defined by (2.11)
below) of Ĥd,m ,̂ηi on H1

0 (ω × R
d−m), i.e.

FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m))

:=
{
u ∈ H1

0 (ω × R
d−m) : ĥ �i u = u for any ĥ ∈ Ĥd,m ,̂ηi

}
,

are nontrivial subspaces of H1
0 (ω × R

d−m), still compactly embedded in Lν(ω ×
R
d−m), (see Proposition 2.2) and with the property of being “mutually disjoint”, i.e.

their mutual intersection reduces to the trivial space, as proved in Proposition 2.3. For
the precise statements and the related details see Sect. 2.2.

The new key results, of independent interest, given by Proposition 2.2 and Proposi-
tion 2.3 describe a sort of flower-shape geometry in H1

0 (ω ×R
d−m), whose τd,m + 1

petals are the τd,m Sobolev spaces FixĤd,m ,̂ηi
(H1

0 (ω ×R
d−m)) introduced above plus

the subspace of cylindrically symmetric functions H1
0,cyl(ω × R

d−m).
The advantage of this new type of symmetries in the study of nonlinear Dirichlet

problems on strip-like domains has been investigated in Theorem 1.1 and Theorem 1.2
by using variational and topological methods. In particular, while, to get the existence
result, we apply the variational argument to the space H1

0,cyl(ω×R
d−m), to obtain the

multiplicity result, we use the same approach in each petal FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m)),

and so we must require that τd,m ≥ 1 (and, therefore, that d = m + 4 or d ≥ m + 6)
and that the nonlinear term appearing in the equation satisfies suitable symmetry
assumptions to assure that the functional associated with the problem is invariant with
respect to the action of the group Ĥd,m ,̂ηi (according to the statement in (3.34)).

1.2 Nonlinear Problems on Strip-Like Domains

In the present paper, we are interested in getting existence and multiplicity results of
weak solutions to the following problem

{−�u = λα(x, y) f (u) in ω × R
d−m

u = 0 on ∂ω × R
d−m,

(Pλ)

where λ is a positive parameter and ω × R
d−m is an unbounded strip of Rd , being ω

an open bounded subset of Rm with smooth boundary ∂ω and d,m ∈ N, d ≥ m + 2.
Moreover, we assume that α : ω × R

d−m → R verifies the following integrability,
symmetry and sign conditions

α ∈ L1(ω × R
d−m) ∩ L∞(ω × R

d−m) (α1)
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α(x, y) = α(x, |y|) a.e. (x, y) ∈ ω × R
d−m (α2)

α ≥ 0 a.e. in ω × R
d−m and there exist r > 0 and α0 > 0 such that

essinfω×B(0,r) α ≥ α0 ,
(α3)

where B(0, r) is the ball in Rd−m centred at 0 with radius r , while on f : R → R we
require the next hypotheses

f is continuous in R ( f1)

f (t) = o(|t |) as |t | → 0 ( f2)

there exists σ > 2 such that 0 < σ F(t) ≤ t f (t) for any t ∈ R \ {0}, ( f3)

where F is the following antiderivative of the function f

F(t) =
∫ t

0
f (τ ) dτ , t ∈ R , (1.2)

sup
t∈R\{0}

| f (t)|
|t | + |t |q−1 < +∞ for some q ∈ (2, 2∗), ( f4)

where 2∗ is the critical Sobolev exponent given by 2∗ := 2d/(d − 2) . As a model for
f we can consider, for fixed q ∈ (2, 2∗), the function

f (t) = t |t |q−2, t ∈ R .

Assumption ( f3) is the well-known Ambrosetti–Rabinowitz condition, which is a
superlinear assumption on the term f , namely a superquadratic one on its antideriva-
tive F at infinity.

In this paper, we want to study Problem (Pλ) also under sublinear conditions at
infinity on the nonlinearity f . More precisely, we shall also consider the case in which,
instead of ( f3), the function f satisfies the following hypotheses

f (t) = o(|t |) as |t | → +∞ ( f5)
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there exists t0 ∈ R
+ such that F(t0) > 0 and F(t) ≥ 0 on [0, t0] , ( f6)

where F is given in (1.2). Note that when ( f5) is satisfied then, thanks to ( f2),
condition ( f4) is also guaranteed. A prototype for f is given by the odd extension of
the function fr defined on R

0+ by setting

fr (t) =

⎧
⎪⎨
⎪⎩

t |t |q−2 if 0 ≤ t ≤ 1

(log 2 − 1)t + 2 − log 2 if 1 < t < 2

log t if t ≥ 2 ,

with fixed q ∈ (2, 2∗).
Problem (Pλ) has a clear variational structure, indeed its solutions can be found

as critical points of the following energy functional defined by setting for all u ∈
H1
0 (ω × R

d−m)

Iλ(u) := 1

2

∫

ω×Rd−m
|∇u(x, y)|2 dx dy − λ

∫

ω×Rd−m
α(x, y)F(u(x, y)) dx dy,

(1.3)
where F is given in (1.2).

Since the problem is set on the strip-like domainω×R
d−m , there is no compactness

property which can be used with Iλ on the whole space. Hence, in order to find a weak
solution to Problem (Pλ), we shall choose a suitable subspace of H1

0 (ω × R
d−m)

which allows us, from one side, to recover compactness and to get, by an application
of the Mountain Pass Theorem (see [3]), a constrained critical point for the energy
functional Iλ and, from the other side, to apply the Principle of Symmetric Criticality
got by Palais in [21] (see also [27] for some applications) to show that the restriction
to that subspace does not play any role.

Finally, when d = m+4 or d ≥ m+6 and the nonlinearity f is odd, by exploiting
the flower-shape geometric structure in the Sobolev space H1

0 (ω × R
d−m) described

in Sect. 2, we get a multiplicity result for Problem (Pλ), using again variational and
topological arguments.

More precisely, our main results for Problem (Pλ) are stated in Theorem 1.1 and
Theorem 1.2 below, for the superlinear and, respectively, for the sublinear growth of
the nonlinearity at infinity.

In the superlinear framework, our result reads as follows:

Theorem 1.1 (Superlinear setting) Let ω × R
d−m be an unbounded strip of Rd , with

ω open bounded subset of Rm with smooth boundary ∂ω, d,m ∈ N, d ≥ m + 2, and
let λ be a positive parameter. Let α satisfy conditions (α1), (α2) and (α3) and let f
satisfy assumptions ( f1), ( f2), ( f3) and ( f4).

Then,

(i) Existence: for any λ > 0, there exists a nontrivial weak solution uλ of Prob-
lem (Pλ) in H1

0 (ω × R
d−m) with cylindrical symmetry;
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(ii) Multiplicity: if, in addition, d = m + 4 or d ≥ m + 6 and f is odd, then for any
λ > 0 Problem (Pλ) admits sd,m sequences of nontrivial weak solutions, with
different symmetries, where sd,m is defined as follows

sd,m = (−1)d−m +
⌊
d − m − 3

2

⌋
+ 1 . (1.4)

We would remark that the number sd,m is equal to τd,m + 1 (with τd,m given in (1.1)).
Actually, the sd,m sequences of weak solutions to Problem (Pλ) found in Theorem 1.1
are characterized by different symmetries since they are found as critical points of
the energy functional Iλ in sd,m subspaces of H1

0 (ω × R
d−m) which are “‘mutually

disjoint” (in the sense that their mutual intersection reduces to the trivial space, see,
for a precise statement, Proposition 2.3).

In the sublinear setting, our main result for Problem (Pλ) is stated here below.

Theorem 1.2 (Sublinear setting) Let ω × R
d−m be an unbounded strip of Rd , with ω

open bounded subset of Rm with smooth boundary ∂ω, d,m ∈ N, d ≥ m + 2, and let
λ be a positive parameter. Let α satisfy conditions (α1), (α2) and (α3) and let f satisfy
( f1), ( f2), ( f5) and ( f6).

Then,

(i) there exists λ̄ > 0 such that for any λ < λ̄ there are no nontrivial weak solutions
for Problem (Pλ);

(ii) there exists λ∗
E > 0 such that for any λ > λ∗

E there exist at least two nontrivial
weak solutions of Problem (Pλ) in H1

0 (ω × R
d−m) with cylindrical symmetry;

(iii) if, in addition, d = m + 4 or d ≥ m + 6 and f is odd, then there exists λ∗
M > 0

such that for any λ > λ∗
M Problem (Pλ) admits sd,m pairs of nontrivial weak

solutions, with different symmetries (sd,m is defined by (1.4)).

It is an open problem to establish whether or not λ̄ equals λ∗
E and if Problem (Pλ) has

or not a nontrivial solution for λ = λ̄ or λ = λ∗
E , as well as to check whether λ∗

E is
exactly λ∗

M or not.
The proof of part (i) in Theorem 1.2 is a rather straightforward consequence of the

definition of weak solution to (Pλ) and of the sublinear assumption ( f5) on f . While
part (i i) and (i i i) in Theorem 1.2 are just a byproduct of a more general existence and
multiplicity result for the following problem, which actually can be used to study the
stability of Problem (Pλ) with respect to changes of the nonlinearity:

{−�u = λα(x, y) f (u) + μβ(x, y)g(u) in ω × R
d−m

u = 0 on ∂ω × R
d−m,

(Pλ,μ)

where λ and μ are positive parameters, β verifies

β ∈ L1(ω × R
d−m) ∩ L∞(ω × R

d−m) (β1)

β(x, y) = β(x, |y|) a.e. (x, y) ∈ ω × R
d−m , (β2)
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and g : R → R is a function satisfying

g is continuous in R (g1)

sup
t∈R\{0}

|g(t)|
|t | + |t |q−1 < +∞ for some q ∈ (2, 2∗). (g2)

With respect to Problem (Pλ,μ), our main result reads as follows:

Theorem 1.3 Letω×R
d−m be an unbounded strip ofRd , withω open bounded subset

of Rm with smooth boundary ∂ω, d,m ∈ N, d ≥ m + 2, and let λ and μ be positive
parameters. Let α satisfy (α1), (α2) and (α3), and β satisfy (β1) and (β2). Let f satisfy
( f1), ( f2), ( f5) and ( f6) and g satisfy (g1) and (g2).

Then,

(i) there exists λ∗∗
E > 0 such that for any λ > λ∗∗

E there existsμλ,E > 0 such that for
any μ ∈ [0, μλ,E ] Problem (Pλ,μ) admits at least two nontrivial weak solutions
uλ,μ and ũλ,μ in H1

0 (ω × R
d−m) with cylindrical symmetry;

(ii) if, in addition, d = m + 4 or d ≥ m + 6 and f and g are odd, then there exists
λ∗∗
M > 0 such that for any λ > λ∗∗

M there exists μλ,M > 0 such that for any
μ ∈ [0, μλ,M ] Problem (Pλ,μ) admits sd,m pairs of nontrivial weak solutions in
H1
0 (ω × R

d−m), with different symmetries (sd,m is given in (1.4)).

The proof of Theorem 1.3 relies on an abstract critical points result due to Ricceri
(see [25, Theorem 2] or Theorem 4.1 below) and again on the flower-shape geometric
structure on theSobolev space H1

0 (ω×R
d−m) introduced inSect. 2 andon thePrinciple

of Symmetric Criticality.
We observe that, of course, λ∗∗

E and λ∗∗
M are greater than the constant λ in Theo-

rem 1.2–(i). Moreover, Theorem 1.3 asserts that the existence result of solutions to
Problem (Pλ) is stable with respect to small perturbations of the nonlinearity which
are of superlinear and subcritical growth type.

The main theorems of this paper may be seen as an extension of existence and
multiplicity results, already appeared in the literature, for nonlinear problems set in
the entire spaceRd , as for instance, the ones obtained in the papers [5,6] due to Bartsch
and Willem (see also [17]).

The techniques performed in this paper are new. Our abstract approach is in the
spirit of the theoretical setting developed by Bartsch and Willem in [5,6], as well as
of some recent contributions got in [13], see also the recent book [14] and references
therein.

Several research perspective naturally arises exploiting the flower shape geome-
try constructed along the present paper: for instance, an interesting open problem is
to investigate the existence of multiple solutions for nonlocal problems, as in [2],
under the action of exterior topological groups (see, for instance, [12] for additional
comments and related topics).

The present paper is organized as follows. In Sect. 2, we introduce the abstract
setting which allows us to reveal a flower-shape geometry in the Sobolev space
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H1
0 (ω × R

d−m). In Sect. 3 we deal with the nonlinear Problem (Pλ) and we prove
some existence, non-existence and multiplicity results for it, by using some classical
theorems in critical points theory and the geometric construction given in Sect. 2.
Section 4 is devoted to Problem (Pλ,μ), which is a nonlinear perturbation of (Pλ) with
sublinear growth, and to the proof of Theorem 1.3.

2 A Flower-Shape Geometry in Sobolev Spaces

In this section, we construct a flower-shape geometry in the Sobolev space H1
0 (ω ×

R
d−m). Precisely, by using the orthogonal group in Rd−m , d,m ∈ N with d ≥ m + 2,

and its natural action on H1
0 (ω ×R

d−m), we define in H1
0 (ω ×R

d−m) a finite number
of spaces, “mutually disjoint” and characterized by different symmetries, which are
compactly embedded into the classical Lebesgue spaces. These properties will be
crucial for getting the existence andmultiplicity results for the nonlinear problems (Pλ)
and (Pλ,μ).

2.1 Preliminaries and Notations

In this subsection, we give some preliminaries and we introduce the notation used
along the present paper. Here and in the sequel H1

0 (ω × R
d−m) denotes the Sobolev

space endowed with the inner product

〈u, v〉H1
0

:=
∫

ω×Rd−m
∇u(x, y) · ∇v(x, y) dx dy

and the norm

‖ · ‖H1
0

:=
√

〈·, ·〉H1
0

,

(indeed the Poincaré inequality holds in H1
0 (ω × R

d−m), see, e.g. [7, Chapter IX,
Remark 22] and [1, Chapter 6, 6.26]), while, given 1 ≤ ν ≤ ∞, Lν(ω ×R

d−m) is the
classical Lebesgue space with norm defined as follows

‖u‖ν :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∫

ω×Rd−m
|u(x, y)|ν dx dy

)1/ν

if ν ∈ [1,+∞)

inf
{
C ≥ 0 : |u(x, y)| ≤ C a.e. (x, y) ∈ ω × R

d−m
}

if ν = +∞ .

Since the embedding H1
0 (ω × R

d−m) ↪→ Lν(ω × R
d−m) is continuous for any ν ∈

[2, 2∗] , there exists Cν > 0 such that

‖u‖ν ≤ Cν‖u‖H1
0

for any u ∈ H1
0 (ω × R

d−m). (2.1)
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Set (O(d − m), ·) the orthogonal group in Rd−m , we consider the group

Ô(d − m) := {idm} × O(d − m)

endowed with the natural multiplication law which maps any pair (ĝ, τ̂ ) ∈ Ô(d −
m) × Ô(d − m) into

ĝ · τ̂ := idm × (g · τ) for any ĝ = idm × g, τ̂ = idm × τ ∈ Ô(d − m) , (2.2)

where g · τ represents the product in O(d − m) of g and τ . Here {idm} denotes the
trivial group inRm with the natural product and, from now on, in order to simplify the
notation, we shall omit the · symbol.

The group Ô(d −m) acts continuously and left-distributively on ω ×R
d−m by the

map

∗ : Ô(d − m) × (ω × R
d−m) → ω × R

d−m

defined by setting

ĝ ∗ (x, y) := (x, gy) ,

for all ĝ = idm × g with g ∈ O(d − m), and for (x, y) ∈ ω × R
d−m .

The map ∗ induces the natural action

� : Ô(d − m) × H1
0 (ω × R

d−m) → H1
0 (ω × R

d−m)

of the group Ô(d−m) on H1
0 (ω×R

d−m), which maps any pair (ĝ, u) ∈ Ô(d−m)×
H1
0 (ω ×R

d−m) into the function ĝ�u ∈ H1
0 (ω ×R

d−m) defined pointwise by setting
for a.e. (x, y) ∈ ω × R

d−m

ĝ�u(x, y) := u(x, g−1y) if ĝ = idm × g, g ∈ O(d − m), (2.3)

i.e. in a more involved form,

ĝ�u(x, y) = u(ĝ−1 ∗ (x, y)).

Along the present paper we denote by FixÔ(d−m)(H
1
0 (ω×R

d−m)) the set of points

of H1
0 (ω ×R

d−m) which are fixed with respect to the action � of the group Ô(d −m)

on the space H1
0 (ω × R

d−m), i.e.

FixÔ(d−m)(H
1
0 (ω × R

d−m))

:=
{
u ∈ H1

0 (ω × R
d−m) : ĝ�u = u for any ĝ ∈ Ô(d − m)

}
. (2.4)
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We notice that FixÔ(d−m)(H
1
0 (ω×R

d−m)) is a linear subspace of H1
0 (ω×R

d−m) and

it is exactly the space H1
0,cyl(ω × R

d−m) of cylindrically symmetric functions given
by

H1
0,cyl(ω × R

d−m)

:=
{
u ∈ H1

0 (ω × R
d−m) : u(x, y) = u(x, |y|) for a.e. (x, y) ∈ ω × R

d−m
}

.

(2.5)

We list below the following properties (see, the celebrated paper [10]) for the
embedding of H1

0,cyl(ω × R
d−m) into Lebesgue spaces:

H1
0,cyl(ω × R

d−m) ↪→ Lν(ω × R
d−m) is continuous for anyν ∈ [2, 2∗]

(2.6)

and

H1
0,cyl(ω × R

d−m) ↪→ Lν(ω × R
d−m) is compact for any ν ∈ (2, 2∗) . (2.7)

Now, let either d = m + 4 or d ≥ m + 6, so that the set Id,m defined by (1.1) is
nonempty. Then, for any i ∈ Id,m , by “grouping together” the d − m variables of the
unbounded part of the strip in blocks of at least two variables, we get τd,m = card(Id,m)

subgroups of O(d − m)

Hd,m,i :=

⎧⎪⎨
⎪⎩

O((d − m)/2) × O((d − m)/2) if i = d − m − 2

2
O(i + 1) × O(d − m − 2i − 2) × O(i + 1) if i 
= d − m − 2

2
,

which define the subgroups

Ĥd,m,i := {idm} × Hd,m,i ⊂ Ô(d − m) .

The sets

FixĤd,m,i
(H1

0 (ω × R
d−m)) :=

{
u ∈ H1

0 (ω × R
d−m) : ĝ�u = u for all ĝ ∈ Ĥd,m,i

}

are known in the literature as the subspaces of block-radial (or block-cylindrical)
functions of H1

0 (ω × R
d−m) and they are compactly embedded into Lν(ω × R

d−m)

for every ν ∈ (2, 2∗) (see [15, Théorème III.2]). Unfortunately, these τd,m subspaces
are not “mutually disjoint” and, in term of our problems (Pλ) and (Pλ,μ), this is an
obstacle to get a multiplicity result for them.
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In order to overcome this difficulty, for any i ∈ Id,m := {1, ..., τd,m}, we define the
involution ηd,m,i : Rd−m → R

d−m as follows

ηd,m,i (y)

:=

⎧
⎪⎨
⎪⎩

(y3, y1) if i = d − m − 2

2
andy := (y1, y3) ∈ R

(d−m)/2 × R
(d−m)/2

(y3, y2, y1) ifi 
= d − m − 2

2
and y := (y1, y2, y3) ∈ R

i+1 × R
d−m−2i−2 × R

i+1

(2.8)

and we set
η̂d,m,i := idm × ηd,m,i . (2.9)

By (2.2) it is easily seen that for any i ∈ Id,m

• η̂d,m,i ∈ Ô(d − m)

• η̂2d,m,i = idω×Rd−m

• η̂d,m,i /∈ Ĥd,m,i

• η̂d,m,i Ĥd,m,i η̂
−1
d,m,i = Ĥd,m,i ,

where

η̂d,m,i Ĥd,m,i η̂
−1
d,m,i :=

{
η̂d,m,i ĥη̂−1

d,m,i : ĥ ∈ Ĥd,m,i

}
.

Finally, for every i ∈ Id,m , we consider the compact subgroup of Ô(d − m) given
by

Ĥd,m ,̂ηi := 〈Ĥd,m,i , η̂d,m,i 〉

(here, to short notation, η̂i stands for η̂d,m,i ), that is

Ĥd,m ,̂ηi = Ĥd,m,i ∪ (̂ηd,m,i Ĥd,m,i
)

, (2.10)

and the action

�i : Ĥd,m ,̂ηi × H1
0 (ω × R

d−m) → H1
0 (ω × R

d−m)

of Ĥd,m ,̂ηi on H1
0 (ω × R

d−m) defined by setting

ĥ �i u(x, y) :=
{
u(x, h−1y) if ĥ := idm × h ∈ Ĥd,m,i

−u(x, g−1η−1
d,m,i y) if ĥ = idm × ηd,m,i g ∈ Ĥd,m ,̂ηi \ Ĥd,m,i , g ∈ Hd,m,i ,

(2.11)
for a.e. (x, y) ∈ ω × R

d−m .
Bearing in mind (2.3) and fixing i ∈ Id,m , the action �i can be written, for a.e.

(x, y) ∈ ω × R
d−m , as follows
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ĥ �i u(x, y)

:=
{
ĥ�u(x, y) if ĥ ∈ Ĥd,m,i

−(̂ηd,m,i ĝ)�u(x, y) if η̂d,m,i ĝ ∈ Ĥd,m ,̂ηi \ Ĥd,m,i .
(2.12)

We would observe that �i is defined for every element of Ĥd,m ,̂ηi . Indeed, if ĥ ∈
Ĥd,m ,̂ηi , then either ĥ ∈ Ĥd,m,i or ĥ = idm × ηd,m,i g ∈ Ĥd,m ,̂ηi \ Ĥd,m,i , with
g ∈ Hd,m,i .

Now,we are ready to introduce, for any i ∈ Id,m , the set FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m))

of points of H1
0 (ω ×R

d−m) which are fixed with respect to the action �i of the group
Ĥd,m ,̂ηi , i.e.

FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m))

:=
{
u ∈ H1

0 (ω × R
d−m) : ĥ �i u = u for any ĥ ∈ Ĥd,m ,̂ηi

}
. (2.13)

It is easy to see that each set FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m)) is a nontrivial linear subspace

of H1
0 (ω × R

d−m). In the next subsection, we prove some interesting properties of
this space.

2.2 Compactness and Symmetries

In this subsection,we show that each one of the τd,m spaces FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m))

is compactly embedded in the Lebesgue space Lν(ω ×R
d−m) for any ν ∈ (2, 2∗) and

we prove some geometric properties for them.

Remark 2.1 We recall that “symmetry” allows to recover compactnesswhen it involves
at least two variables. So, any block of variables on which one asks for symmetry
should be at least of dimension 2. Thus, the simplest possible setting is the block-
radial symmetry in four dimensional Euclidean space with two 2-dimensional blocks.
This justifies the requirement d ≥ m + 4 all along this subsection.

With respect to the compactness result, we get that (2.6) and (2.7) hold if we replace
H1
0,cyl(ω × R

d−m) with FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)). Precisely, our result reads as

follows:

Proposition 2.2 Let either d = m + 4 or d ≥ m + 6, d,m ∈ N. Let i ∈ Id,m and
FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)) be defined as in (2.13).
Then, the embedding

FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)) ↪→ Lν(ω × R

d−m)

• is continuous for any ν ∈ [2, 2∗]
• is compact for any ν ∈ (2, 2∗) .
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Proof Let us fix i ∈ Id,m . Since Ĥd,m,i ⊂ Ĥd,m ,̂ηi , the first relation of (2.11) (or, equiv-
alently, of (2.12)) and the continuity of the action �i imply that FixĤd,m ,̂ηi

(H1
0 (ω ×

R
d−m)) is a closed subspace of the space of block-radial functions FixĤd,m,i

(H1
0 (ω×

R
d−m)).
Furthermore, the space FixĤd,m,i

(H1
0 (ω × R

d−m)) is continuously embedded in

Lν(ω ×R
d−m) for any ν ∈ [2, 2∗] and is compactly embedded in Lν(ω ×R

d−m) for
any ν ∈ (2, 2∗) (see [15, Théorème III.2]). Hence, the embedding

FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)) ↪→ Lν(ω × R

d−m)

is also continuous for any ν ∈ [2, 2∗] and compact for any ν ∈ (2, 2∗) and this ends
the proof of Proposition 2.2. ��

Now,we prove that the subspaces FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m)) aremutually disjoint,

as stated here below. A key point along the proof of Proposition 2.3 is the transitive
action of the subgroups 〈Hd,m,i , Hd,m, j 〉 ⊂ O(d − m) on the Euclidean unit sphere
S
d−m−1 ⊂ R

d−m and the structure of the action of Ĥd,m ,̂ηi on H1
0 (ω×R

d−m) defined
in (2.11).

Proposition 2.3 Let either d = m + 4 or d ≥ m + 6, d,m ∈ N. Let i ∈ Id,m and
FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)) be defined as in (2.13).
Then, the following statements hold:

(i) if d = m + 4 or d ≥ m + 6, then

FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)) ∩ H1

0,cyl(ω × R
d−m) = {0}

for any i ∈ Id,m;
(ii) if d = m + 6 or d ≥ m + 8, then

FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)) ∩ FixĤd,m ,̂η j

(H1
0 (ω × R

d−m)) = {0}

for any i, j ∈ Id,m with i 
= j .

Proof Let us prove assertion (i). Fix i ∈ Id,m and let u ∈ FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m))∩

H1
0,cyl(ω × R

d−m). Since u is Ĥd,m ,̂ηi –invariant, taking into account (2.11) we have

u(x, y) = −u(x, g−1η−1
d,m,i y) for a.e. (x, y) ∈ ω×R

d−m and for all g ∈ Hd,m,i .

(2.14)
Moreover, since u is radial in the second component, i.e. u(x, y) = u(x, |y|), and
|y| = |g−1η−1

d,m,i y| for every y ∈ R
d−m , by (2.14) we have that u(x, y) = −u(x, y)

for a.e. (x, y) ∈ ω × R
d−m and so u must be identically zero in ω × R

d−m .
Now let us show assertion (i i). Let d = m+6 or d ≥ m+8 so that τd,m ≥ 2. Then,

fix i, j ∈ Id,m , with i < j , and u ∈ FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m))∩FixĤd,m ,̂η j

(H1
0 (ω×
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R
d−m)). Since, as can be easily seen, the function u is both Ĥd,m,i–, and Ĥd,m, j–

invariant, we deduce that u is also 〈Ĥd,m,i , Ĥd,m, j 〉–invariant, that is

u(x, y) = u(ĝi j �i j (x, y)) (2.15)

for every ĝi j ∈ 〈Ĥd,m,i , Ĥd,m, j 〉 and for a.e. (x, y) ∈ ω × R
d−m , where �i j denotes

the natural action of the group 〈Ĥd,m,i , Ĥd,m, j 〉 on ω ×R
d−m induced by �i and � j .

Now, as proved in [13, Theorem 2.2 - Part (ii)], the group 〈Hd,m,i , Hd,m, j 〉 acts
transitively on the sphere Sd−m−1. Hence, for any (x, y) ∈ ω × R

d−m

〈Ĥd,m,i , Ĥd,m, j 〉(x, y) = {x} × |y|Sd−m−1.

As a consequence of (2.15), the function u is cylindrically symmetric, and we can
apply (i) thus obtaining that u is identically zero in ω × R

d−m . This concludes the
proof of Proposition 2.3. ��

We suggest the recent monograph [22] as a comprehensive reference for prelimi-
naries and, in particular, for the main properties related to Sobolev spaces.

3 Dirichlet Problems on Strip-Like Domains

This section is devoted to the study of the nonlinear Problem (Pλ), under either super-
linear assumption on the nonlinearity f at infinity (see ( f3)) or sublinear condition
again at infinity (see ( f5)).

As already remarked, since the equation in (Pλ) has a variational nature, its weak
solutions can be seen as critical points of the energy functional Iλ defined by (1.3). It
is standard to see that, thanks to (α1) and ( f2), ( f4) in the superlinear setting or ( f2),
( f5) (note that ( f2) and ( f5) imply ( f4)) in the sublinear framework, the functional Iλ

is well defined on H1
0 (ω × R

d−m), and that Iλ ∈ C1(H1
0 (ω × R

d−m)) with

〈I ′
λ(u), ϕ〉 =

∫

ω×Rd−m
∇u(x, y)∇ϕ(x, y) dx dy

−λ

∫

ω×Rd−m
α(x, y) f (u(x, y))ϕ(x, y) dx dy (3.1)

for any u, ϕ ∈ H1
0 (ω × R

d−m) .
We shall prove in Sect. 3.1 and in Sect. 3.2, respectively, the existence and multi-

plicity results stated in Theorem 1.1 and in Theorem 1.2.

3.1 Problem (P�) with Superlinear Growth at Infinity

In this subsection, we study the semilinear equation (Pλ), when f satisfies the
Ambrosetti–Rabinowitz condition ( f3). The main tools are given by the Mountain
Pass Theorem of Ambrosetti and Rabinowitz (see [3,23]), the Principle of Symmetric

123



8120 G. Devillanova et al.

Criticality of Palais (see [21]) and the flower-shape geometry in the Sobolev space
H1
0 (ω × R

d−m) introduced in Sect. 2.
This subsection is devoted to the proof of Theorem1.1: in particular in Sect. 3.1.1we

prove the existence result (i), while in Sect. 3.1.2 we prove the multiplicity result (i i)
of nontrivial weak solutions to Problem (Pλ).

3.1.1 A Mountain Pass Existence Result for Problem (P�)

In this subsection, we prove the existence result stated in Theorem 1.1, by applying
the Mountain Pass Theorem to the energy functional Iλ defined in (1.3).

As it is well known, in order to follow this strategy, it is necessary to have some
compactness properties on the functional, and so we shall exploit (2.7) by work-
ing, with fixed λ > 0, with the functional Jλ defined as the restriction of Iλ to the
space H1

0,cyl(ω × R
d−m), i.e.

Jλ(u) := (Iλ)| H1
0,cyl(ω×Rd−m)(u), u ∈ H1

0,cyl(ω × R
d−m) .

The main ingredients of our proof are the application of the following results:

• theMountain Pass TheorembyAmbrosetti andRabinowitz (see [3]) to get a critical
point uλ ∈ H1

0,cyl(ω × R
d−m) for the functional Jλ;

• the Principle of Symmetric Criticality by Palais (see [21]) to prove that H1
0,cyl(ω×

R
d−m) is a natural constraint for the functional Iλ, i.e. critical points of Iλ con-

strained on H1
0,cyl(ω ×R

d−m) are actually critical points of Iλ in H1
0 (ω ×R

d−m).

First of all, let us show that Jλ satisfies the geometric Mountain Pass structure. For
this, note that by conditions ( f2) and ( f4), it is standard to see that for any ε > 0, there
exists δ = δ(ε) > 0 such that for any t ∈ R

| f (t)| ≤ ε|t | + δ(ε)|t |q−1 (3.2)

and, as a consequence, such that

|F(t)| ≤ ε

2
|t |2 + δ(ε)

q
|t |q . (3.3)

Now, let us proceed by steps.

Claim 3.1.1 There exist ρ > 0 and γρ > 0 such that Jλ(u) ≥ γρ for any u ∈
H1
0,cyl(ω × R

d−m) with ‖u‖H1
0

= ρ.
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Proof Let u be a function in H1
0,cyl(ω × R

d−m). By (α1), (α3), (2.6), (3.3) and the
positivity of λ, we get that for any ε > 0

Jλ(u) ≥ 1

2
‖u‖2

H1
0

− ελ

2
‖α‖∞‖u‖22 − δ(ε)λ

q
‖α‖∞‖u‖qq

≥ 1

2

(
1 − ελC2

2‖α‖∞
)
‖u‖2

H1
0

− δ(ε)λCq
q

q
‖α‖∞‖u‖q

H1
0

= ‖u‖2
H1
0

[
1

2

(
1 − ελC2

2‖α‖∞
)

− δ(ε)λCq
q

q
‖α‖∞‖u‖q−2

H1
0

]
,

(3.4)

where the constant C2 (resp. Cq ) is the constant Cν in (2.1) with ν = 2 (resp. ν = q).
By choosing ε > 0 small enough to have ελC2

2‖α‖∞ < 1, we get that there exist
suitable positive constants κ̄ and κ̃ such that

inf
u∈H1

0,cyl(ω×R
d−m)

‖u‖
H1
0
=ρ

Jλ(u) ≥ ρ2(κ̄ − κ̃ρq−2) =: γρ > 0 , (3.5)

provided ρ is sufficiently small (i.e. ρ such that κ̄ − κ̃ρq−2 > 0). Hence, Claim 3.1.1
is proved. ��
Claim 3.1.2 There exists a strictly positive function u ∈ H1

0,cyl(ω × R
d−m) such that

‖u‖H1
0

> ρ and Jλ(u) < γρ , where ρ and γρ are given in Claim 3.1.1.

Proof First of all, note that as a consequence of ( f1) and ( f3), we easily have that there
exist two positive constants a1 and a2 such that

F(t) ≥ a1|t |σ − a2 for any t ∈ R . (3.6)

Let u ∈ H1
0,cyl(ω × R

d−m) be such that ‖u‖H1
0

= 1 and u > 0 a.e. in ω × R
d−m

and let s > 0 . By (α1), (α3) and (3.6), we have, since λ > 0, that

Jλ(su) = s2

2
‖u‖2

H1
0

− λ

∫

ω×Rd−m
α(x, y)F(su(x, y)) dx dy

≤ s2

2
− λa1α0s

σ ‖u‖σ
σ + λa2‖α‖1 .

(3.7)

Since σ > 2, passing to the limit as s → +∞, we get that Jλ(su) → −∞, so that
Claim 3.1.2 follows taking u = s̄u, with s̄ sufficiently large. ��
Claim 3.1.3 The functionalJλ satisfies the Palais–Smale condition at any level c ∈ R,
that is for any sequence (uk)k in H1

0,cyl(ω × R
d−m) such that, as k → +∞,

Jλ(uk) → c (3.8)
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and

sup
{∣∣〈J ′

λ(uk), ϕ 〉∣∣ : ϕ ∈ H1
0,cyl(ω × R

d−m) , ‖ϕ‖H1
0

= 1
}

→ 0 , (3.9)

there exists u∞ ∈ H1
0,cyl(ω × R

d−m) such that, up to a subsequence,

‖uk − u∞‖H1
0

→ 0 as k → +∞ . (3.10)

Proof Let (uk)k be a Palais–Smale sequence for Jλ, i.e. a sequence satisfying (3.8)
and (3.9) for some fixed c ∈ R. First of all, let us prove that (uk)k is bounded in
H1
0,cyl(ω ×R

d−m). At this purpose, note that, by (3.8) and (3.9), it easily follows that

Jλ(uk) − 1

σ
〈J ′

λ(uk), uk〉 ≤ κ
(
1 + ‖uk‖H1

0

)
for any k ∈ N, (3.11)

for a suitable positive constant κ , where σ is the constant in ( f3).
Moreover, thanks to (α3) and ( f3), we get that, for any k ∈ N,

Jλ(uk) − 1

σ
〈J ′

λ(uk), uk〉 =
(
1

2
− 1

σ

)
‖uk‖2H1

0

− λ

σ

∫

ω×Rd−m
α(x, y)

(
σ F(uk(x, y)) − f (uk(x, y)) uk(x, y)

)
dx dy

≥
(
1

2
− 1

σ

)
‖uk‖2H1

0
.

(3.12)

So, by combining (3.11) and (3.12) we get, for a suitable positive constant κ∗, that

‖uk‖2H1
0

≤ κ∗
(
1 + ‖uk‖H1

0

)
for any k ∈ N .

Hence, the sequence (uk)k is bounded in H1
0,cyl(ω × R

d−m) and so, by definition of
Jλ and (3.9), we have that, as k → +∞,

0 ← 〈J ′
λ(uk), uk〉 = ‖uk‖2H1

0
− λ

∫

ω×Rd−m
α(x, y) f (uk(x, y))uk(x, y) dx dy .

(3.13)
Since H1

0,cyl(ω ×R
d−m) is a reflexive space, we also get, up to a subsequence, still

denoted by (uk)k , that there exists u∞ ∈ H1
0,cyl(ω × R

d−m) such that

uk → u∞ weakly in H1
0 (ω × R

d−m) as k → +∞ . (3.14)

Moreover, by applying the compact embedding (2.7),we get, again up to a subsequence
still denoted by (uk)k , that,

uk → u∞ in Lν(ω × R
d−m) as k → +∞ for any ν ∈ (2, 2∗) , (3.15)
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and, as a consequence, that

uk → u∞ a.e. in ω × R
d−m as k → +∞ , (3.16)

while, by using the continuous embedding (2.6),we deduce that there exist two positive
constants κ2 and κ2∗ such that

‖uk‖2 ≤ κ2 and ‖uk‖2∗ ≤ κ2∗ for any k ∈ N . (3.17)

Now, we claim that, as k → +∞,

∫

ω×Rd−m
α(x, y) f (uk(x, y))u∞(x, y) dx dy

→
∫

ω×Rd−m
α(x, y) f (u∞(x, y))u∞(x, y) dx dy. (3.18)

Indeed, by ( f1) and (3.16), we get that

f (uk(·)) → f (u∞(·)) a.e. in ω × R
d−m as k → +∞. (3.19)

Moreover, since α satisfies condition (α1), it is easy to see (since |α|ν = |α|ν−1|α| ≤
‖α‖ν−1∞ |α| in ω × R

d−m) that

α ∈ Lν(ω × R
d−m) for any ν ∈ [1,+∞]. (3.20)

Now, by (2.1), (3.2) with ε = 1 and set δ := δ(1), by (3.20) and the Hőlder
Inequality, we have that, set q ′ := q/(q − 1), the conjugate exponent of q,

∫

ω×Rd−m

∣∣∣α(x, y) f (uk(x, y))
∣∣∣
q ′
dx dy

≤
∫

ω×Rd−m

∣∣α(x, y)
∣∣q ′(|uk(x, y)| + δ|uk(x, y)|q−1

)q ′
dx dy

≤ 2q
′−1
( ∫

ω×Rd−m

∣∣α(x, y)
∣∣q ′ |uk(x, y)|q ′

dx dy

+ δq
′
∫

ω×Rd−m

∣∣α(x, y)
∣∣q ′ |uk(x, y)|q dx dy

)

≤ 21/(q−1)‖α‖q ′
q/(q−2)‖uk‖q

′
q + 21/(q−1)δq

′ ‖α‖q ′
∞‖uk‖qq

≤ 21/(q−1)Cq ′
q ‖α‖q ′

q/(q−2)‖uk‖q
′
H1
0

+ 21/(q−1)δq
′
Cq
q ‖α‖q ′

∞‖uk‖qH1
0

(3.21)

for any k ∈ N, where Cq is the constant given in (2.1) with ν = q. Since (uk)k is

bounded in H1
0,cyl(ω×R

d−m), by (3.21) we deduce that the sequence
(
α(·) f (uk(·))

)
k
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is bounded in Lq ′
(ω × R

d−m), which, together with (3.19), yields that

α(·) f (uk(·)) → α(·) f (u∞(·)) weakly in Lq ′
(ω × R

d−m) (3.22)

as k → +∞. Then, we get (3.18) by testing this weak convergence with u∞.
Now, we claim that, as k → +∞,

∫

ω×Rd−m
α(x, y) f (uk(x, y))

(
uk(x, y) − u∞(x, y)

)
dx dy → 0 . (3.23)

Indeed, by (3.2), the Hőlder Inequality and (3.17), we have that

∣∣∣
∫

ω×Rd−m
α(x, y) f (uk(x, y))

(
uk(x, y) − u∞(x, y)

)
dx dy

∣∣∣

≤ ε‖α‖∞
∫

ω×Rd−m
|uk(x, y)| |uk(x, y) − u∞(x, y)| dx dy

+ δ(ε)‖α‖∞
∫

ω×Rd−m
|uk(x, y)|q−1|uk(x, y) − u∞(x, y)| dx dy

≤ ε‖α‖∞‖uk‖2‖uk − u∞‖2 + δ(ε)‖α‖∞‖uk‖q−1
q ‖uk − u∞‖q

≤ ε‖α‖∞κ2(κ2 + ‖u∞‖2) + δ(ε)‖α‖∞‖uk‖q−1
q ‖uk − u∞‖q .

(3.24)

By (3.15), (3.24) and the arbitrariness of ε, we get (3.23).
Finally, (3.18) and (3.23) yield that, as k → +∞,

∫

ω×Rd−m
α(x, y) f (uk(x, y))uk(x, y) dx dy

→
∫

ω×Rd−m
α(x, y) f (u∞(x, y))u∞(x, y) dx dy . (3.25)

Now, we are in position to conclude our proof. Indeed, as a consequence of (3.13)
and (3.25) we deduce that

‖uk‖2H1
0

→ λ

∫

ω×Rd−m
α(x, y) f (u∞(x, y))u∞(x, y) dx dy as k → +∞ .

(3.26)
Furthermore,

0 ← 〈J ′
λ(uk), u∞〉 =

∫

ω×Rd−m
∇uk(x, y)∇u∞(x, y) dx dy

− λ

∫

ω×Rd−m
α(x, y) f (uk(x, y))u∞(x, y) dx dy

(3.27)

as k → +∞. So, by using (3.14) and (3.18) in (3.27), we obtain

‖u∞‖2
H1
0

= λ

∫

ω×Rd−m
α(x, y) f (u∞(x, y))u∞(x, y) dx dy . (3.28)
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Therefore, (3.26) and (3.28) state that

‖uk‖H1
0

→ ‖u∞‖H1
0

as k → +∞. (3.29)

Finally, thanks to (3.14) and (3.29), we have that

‖uk − u∞‖2
H1
0

= ‖uk‖2H1
0

+ ‖u∞‖2
H1
0

− 2
∫

ω×Rd−m
∇uk(x, y)∇u∞(x, y) dx dy

→ 2‖u∞‖2
H1
0

− 2‖u∞‖2
H1
0

= 0 as k → +∞ ,

(3.30)
and this concludes the proof of Claim 3.1.3. ��

Now,we are ready to provide the proof of the existence result stated in Theorem 1.1.

Proof of Theorem 1.1 Let λ > 0 be fixed. Thanks to Claim 3.1.1, Claim 3.1.2 and
Claim 3.1.3 we get, by applying the Mountain Pass Theorem, the existence of uλ ∈
H1
0,cyl(ω × R

d−m), uλ 
≡ 0 (indeed, by (3.5) Jλ(uλ) ≥ γρ > 0 = Jλ(0)), which is a
critical point for the functional Jλ, i.e. such that

∫

ω×Rd−m
∇uλ(x, y)∇ϕ(x, y) dx dy

−λ

∫

ω×Rd−m
α(x, y) f (uλ(x, y))ϕ(x, y) dx dy = 0

for any ϕ ∈ H1
0,cyl(ω × R

d−m) . Hence, uλ is a constrained critical point of Iλ on

H1
0,cyl(ω × R

d−m).

Finally, it remains to prove that H1
0,cyl(ω×R

d−m) is a natural constraint for Iλ. This
is an easy consequence of the Principle of Symmetric Criticality by Palais. Indeed,
thanks to the fact that O(d −m) is the orthogonal group inRd−m , it is easy to see that
the action �, defined in (2.3), of the group Ô(d−m) is an isometry on H1

0 (ω×R
d−m).

Indeed, for any ĝ ∈ Ô(d − m), with ĝ = idm × g , g ∈ O(d − m), and for any
u ∈ H1

0 (ω × R
d−m), we have (by changing the integration variable)

‖ĝ�u‖2
H1
0

=
∫

ω×Rd−m
|∇u(x, g−1y)|2 dx dy

=
∫

ω×Rd−m
|∇u(x, y)|2 dx dy = ‖u‖2

H1
0
. (3.31)

Moreover, by using (α2) and again the fact that O(d−m) is the orthogonal group in
R
d−m , we get that Iλ is invariant with respect to Ô(d −m). Indeed, since |y| = |gy|

for all y ∈ R
d−m and g ∈ O(d − m), by (α2), we get that

α(x, y) = α(x, |y|) = α(x, gy) a.e. (x, y) ∈ ω×R
d−m and for any g ∈ O(d−m) ,

(3.32)
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and so, as a consequence, we deduce that, for any ĝ ∈ Ô(d −m), with ĝ = idm × g ,
g ∈ O(d − m), and for any u ∈ H1

0 (ω × R
d−m),

Iλ(ĝ�u) = 1

2

∫

ω×Rd−m
|∇u(x, g−1y)|2 dx dy

− λ

∫

ω×Rd−m
α(x, y)F(u(x, g−1y)) dx dy

= 1

2

∫

ω×Rd−m
|∇u(x, y′)|2 dx dy′

− λ

∫

ω×Rd−m
α(x, gy′)F(u(x, y′)) dx dy′

= 1

2

∫

ω×Rd−m
|∇u(x, y)|2 dx dy

− λ

∫

ω×Rd−m
α(x, y)F(u(x, y)) dx dy

= Iλ(u).

(3.33)

Hence, by (3.31) and (3.33) we obtain, by the Principle of Symmetric Criticality,
that uλ is a critical point of Iλ. Then, we have shown the existence of a nontrivial
weak solution uλ to Problem (Pλ), with cylindrical symmetry, concluding the proof
of Theorem 1.1–(i). ��

3.1.2 A Multiplicity Result for Problem (P�)

This subsection is devoted to the proof of the multiplicity result stated in Theorem 1.1.
Fixed λ > 0 and i ∈ Id,m , our strategy consists in arguing as in Sect. 3.1.1, just
by replacing the space H1

0,cyl(ω ×R
d−m) with the space FixĤd,m ,̂ηi

(H1
0 (ω ×R

d−m))

defined by (2.13) andJλ with the restrictionJλ,i of Iλ to FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m)),

i.e.

Jλ,i (u) := (Iλ)| FixĤd,m ,̂ηi
(H1

0 (ω×Rd−m))(u), u ∈ FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)) .

Furthermore, as usual when dealing with odd nonlinearities, we apply the Symmetric
Mountain Pass Theorem due to Ambrosetti–Rabinowitz (see again [3]) to our func-
tional.

Now, we give the following claims, stated for fixed λ > 0 and i ∈ Id,m .

Claim 3.1.4 There exist ρi > 0 and γρi > 0 such that Jλ,i (u) ≥ γρi for any u ∈
FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)) with ‖u‖H1
0

= ρi .

Proof The claim follows verbatim the proof of Claim 3.1.1. ��
As for the geometry required by the Symmetric Mountain Pass Theorem, we need

the next property on Jλ,i :
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Claim 3.1.5 For any finite dimensional subspace F of FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)),

there exists R > ρi such that Jλ,i (u) ≤ 0 for any u ∈ F with ‖u‖H1
0

≥ R , where ρi

is given in Claim 3.1.4.

Proof Let F be a finite dimensional subspace of FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)) and let

u ∈ F. By using the same arguments considered in Claim 3.1.2, we have, see (3.7),
that

Jλ,i (u) ≤ 1

2
‖u‖2

H1
0

− λa1α0‖u‖σ
σ + λa2‖α‖1 ,

and so, by taking into account that in F, all the norms are equivalent and that σ > 2,
we get that

Jλ,i (u) → −∞ as ‖u‖H1
0

→ +∞,

and this concludes the proof of Claim 3.1.5. ��
Proof of Theorem 1.1 Let us fix λ > 0 and i ∈ Id,m , see (1.1). As we already
said, we can argue as in Sect. 3.1.1, just by replacing H1

0,cyl(ω × R
d−m) with

FixĤd,m ,̂ηi
(H1

0 (ω ×R
d−m)) and Jλ with Jλ,i . By taking into account Proposition 2.2

and using the same arguments considered in the proof of Claim 3.1.3, we easily have
that the functional Jλ,i satisfies the Palais–Smale (compactness) condition at any
level c ∈ R. In addition, it fulfills the geometric conditions stated in Claim 3.1.4 and
Claim 3.1.5.

Now, since f is odd, by the Symmetric Mountain Pass Theorem (see [3] and also
the version given in [24, Chapter 1]) applied to the functional Jλ,i , we obtain the
existence of an unbounded sequence (u(i)

λ,k)k of critical points u
(i)
λ,k ofJλ,i , constrained

on FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)), i.e. such that

∫

ω×Rd−m
∇u(i)

λ,k(x, y)∇ϕ(x, y) dx dy

−λ

∫

ω×Rd−m
α(x, y) f (u(i)

λ,k(x, y))ϕ(x, y) dx dy = 0

for any ϕ ∈ FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)) and for any k ∈ N .

Now, we claim that FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)) is a natural constraint for Iλ, i.e.

u(i)
λ,k is a critical point of Iλ for any k ∈ N. Indeed, not only the action �i , defined

by (2.11), of the group Ĥd,m ,̂ηi on the space H1
0 (ω × R

d−m) is an isometry, but also
Iλ is invariant with respect to the action �i of the group Ĥd,m ,̂ηi . Indeed, since f is
odd (and so F is even) and Ĥd,m ,̂ηi is a subgroup of the group Ô(d − m), by (3.32),
we have that

Iλ(̂h �i u) = Iλ(u) for all ĥ ∈ Ĥd,m ,̂ηi , u ∈ H1
0 (ω × R

d−m). (3.34)
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Then, by applying the Principle of Symmetric Criticality of Palais to Iλ, we get that
each u(i)

λ,k ∈ FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m)) is a nontrivial weak solution for Problem (Pλ)

for any k ∈ N.
Finally, we note that, by Proposition 2.3–(i), for any i ∈ Id,m and any k ∈ N, u(i)

λ,k

is distinct from the critical point uλ ∈ H1
0,cyl(ω × R

d−m) provided in the existence
part of Theorem 1.1. Moreover, Proposition 2.3–(i i) yields that (when d = m + 6
or d ≥ m + 8) u(i)

λ,h 
= u( j)
λ,k for any i, j ∈ Id,m with i 
= j , and any h, k ∈ N.

Hence, by introducing the constant sequence (u(0)
λ,k)k of constant value the critical

point uλ ∈ H1
0,cyl(ω × R

d−m), we get card(Id,m) + 1 distinct sequences of weak
solutions to (Pλ). Since, by (1.1), card(Id,m) = τd,m = sd,m − 1, we conclude the
proof of Theorem 1.1–(i i). ��
Remark 3.1 In order to assure the invariance (see (3.34)) of the functional Iλ with
respect to the action �i of the group Ĥd,m ,̂ηi , for any i ∈ Id,m , it is not enough,
(as instead happens for the analogous property (3.33)), to assume just the cylindrical
symmetry property on the weight α (see condition (α2)). Indeed, by (2.12), we have

Iλ(̂h �i u) :=
{Iλ(̂h�u) if̂h ∈ Ĥd,m,i

Iλ

(−(̂ηd,m,i ĝ)�u
)

if η̂d,m,i ĝ ∈ Ĥd,m ,̂ηi \ Ĥd,m,i ,
(3.35)

and the presence of the minus sign in the second case makes the evenness of Iλ

necessary to get the invariance (3.34) and this justifies the oddness requirement on f
while getting themultiplicity result. (The samewill be truewhile getting the invariance
of the functional Iλ,μ associated to Problem (Pλ,μ), and this justifies the oddness
requirement on both f and g).

3.2 Problem (P�) with Sublinear Growth at Infinity

In this subsectionwe consider the semilinear Problem (Pλ) in the case inwhich the term
f satisfies sublinear growth assumptions at infinity, namely condition ( f5) (and ( f6))
instead of ( f3) and we prove Theorem 1.2. As already remarked, assumptions ( f2)
and ( f5) imply ( f4).

Proof of Theorem 1.2 Let us start with assertion (i). First of all, note that conditions
( f1), ( f2), ( f5) and the Weierstrass Theorem yield that there exists a positive constant
κ f , depending on f , such that

| f (t)| ≤ κ f |t | for any t ∈ R . (3.36)

Now, we argue by contradiction and we assume that there exists a sequence (λk)k
in R+

0 such that
λk → 0 as k → +∞, (3.37)

and such that Problem (Pλ) with λ = λk admits a nontrivial weak solution uk ∈
H1
0 (ω × R

d−m) for any k ∈ N. Thus, by taking uk as a test function in the equation
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and by using (3.36), we get that

‖uk‖2H1
0

= λk

∫

ω×Rd−m
α(x, y) f (uk(x, y))uk(x, y) dx dy

≤ λk‖α‖∞
∫

ω×Rd−m
| f (uk(x, y))uk(x, y)| dx dy

≤ λkκ f ‖α‖∞‖uk‖22
≤ λkκ f C

2
2‖α‖∞‖uk‖2H1

0
,

(3.38)

for any k ∈ N, whereC2 is the constant given in (2.1) with ν = 2. So, unless uk ≡ 0 for
all large enough k, wewould deduceλk ≥ (κ f C2

2‖α‖∞)−1 in contradictionwith (3.37)
for infinitely many values of k. Hence, the non-existence result stated in (i) is proved.

Finally, for what concerns assertions (i i) and (i i i), here we just observe that Prob-
lem (Pλ) is a particular case of Problem (Pλ,μ), with μ = 0. So, assertions (i i) and
(i i i) are a consequence of Theorem 1.3 (whose proof will be provided in Sect. 4).
This concludes the proof of Theorem 1.2.

4 A Nonlinear Perturbation of Problem (P�) with Sublinear Growth

In this section we deal with Problem (Pλ,μ), which can be seen as a nonlinear pertur-
bation of Problem (Pλ). Precisely, here we prove the existence and multiplicity results
stated in Theorem 1.3.

Weak solutions to Problem (Pλ,μ) can be found as critical points of the energy
functional Iλ,μ : H1

0 (ω × R
d−m) → R naturally associated with it and defined by

setting, for any u ∈ H1
0 (ω × R

d−m),

Iλ,μ(u) := 1

2

∫

ω×Rd−m
|∇u(x, y)|2 dx dy − λ

∫

ω×Rd−m
α(x, y)F(u(x, y)) dx dy

− μ

∫

ω×Rd−m
β(x, y)G(u(x, y)) dx dy ,

where F is the function defined in (1.2) and G is analogously given by

G(t) =
∫ t

0
g(τ ) dτ, t ∈ R . (4.1)

Under the assumptions ( f1), ( f2), ( f5), (g1), (g2), (α1), (β1) and thanks to the
embeddings in (2.1), it is standard to check that Iλ,μ is well defined on H1

0 (ω×R
d−m)
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and that Iλ,μ ∈ C1(H1
0 (ω × R

d−m)) with

〈I ′
λ,μ(u), ϕ〉 =

∫

ω×Rd−m
∇u(x, y)∇ϕ(x, y) dx dy

− λ

∫

ω×Rd−m
α(x, y) f (u(x, y))ϕ(x, y) dx dy

− μ

∫

ω×Rd−m
β(x, y)g(u(x, y))ϕ(x, y) dx dy

for any u, ϕ ∈ H1
0 (ω × R

d−m) .
For the proof of Theorem 1.3, the main tools are the following ones:

• the abstract critical points result stated in [25, Theorem 2] (see also Theorem 4.1
below), which assures the existence of multiple critical points for a suitable func-
tional;

• the Principle of Symmetric Criticality due to Palais (see [21]);
• the flower-shape geometry in the Sobolev space H1

0 (ω × R
d−m) described in

Sect. 2.

4.1 Existence of At Least Two NontrivialWeak Solutions

This subsection is devoted to the proof of the existence of at least two nontrivial weak
solutions of Problem (Pλ,μ) in H1

0 (ω ×R
d−m) with cylindrical symmetry. In order to

do this, we use the abstract critical points result [25, Theorem 2] due to Ricceri, stated
here below for the reader’s convenience.

Theorem 4.1 [25, Theorem 2] Let (X , ‖ · ‖) be a real, separable and reflexive Banach
space. Let � : X → R be a coercive, sequentially weakly lower semicontinuous
C1 functional, bounded on each bounded subset of X, whose derivative admits a
continuous inverse in the dual of X and such that

any sequence (xk)k ⊂ X such that xk → x weakly in X and lim inf
k→∞ �(xk) ≤ �(x)

admits a strongly converging subsequence.
(4.2)

Let J : X → R be a C1 functional with compact derivative. Assume that

� has a strict local minimum x0 with �(x0) = J (x0) = 0 . (4.3)

Finally, set

a := max

{
0, lim sup

‖x‖→+∞
J (x)

�(x)
, lim sup

x→x0

J (x)

�(x)

}
(4.4)

b := sup
x∈�−1(]0,+∞[)

J (x)

�(x)
, (4.5)
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assume that a < b.
Then, for each compact interval I ⊂]b−1, a−1[ (with the conventions 1

0 = +∞
and 1

+∞ = 0) there exists r > 0 with the following property: for every λ ∈ I and

every C1 functional � : X → R with compact derivative, there exists δ > 0 such
that, for each μ ∈ [0, δ], the equation

�′(x) = λJ ′(x) + μ� ′(x) (4.6)

has at least three solutions whose norms are less than r.

By looking at the functional Iλ,μ, we shall apply Theorem 4.1 by taking X =
H1
0,cyl(ω × R

d−m) and

�(u) := 1

2

∫

ω×Rd−m
|∇u(x, y)|2 dx dy = 1

2
‖u‖2

H1
0

(4.7)

J (u) :=
∫

ω×Rd−m
α(x, y)F(u(x, y)) dx dy (4.8)

and

�(u) :=
∫

ω×Rd−m
β(x, y)G(u(x, y)) dx dy , (4.9)

so that, since

Iλ,μ(u) = �(u) − λJ (u) − μ�(u) for any u ∈ H1
0,cyl(ω × R

d−m) ,

solutions to (4.6) give critical points of Iλ,μ constrained on H1
0,cyl(ω × R

d−m).
Then, by using the Principle of Symmetric Criticality by Palais, we get at least three

solutions to Problem (Pλ,μ).

Proof of Theorem 1.3-(i): The proof consists simply in showing that all requirements in
Theorem 4.1 are fulfilled by the space H1

0,cyl(ω ×R
d−m) and by the three introduced

functionals �, J and �, in determining the function x0 in (4.3) and in checking the
inequality a < b between the constants a and b defined by (4.4) and (4.5), respectively.

(1) The space X : X = H1
0,cyl(ω × R

d−m) is a real, separable and reflexive Banach
space;

(2) The functional �: since � = 1/2‖ · ‖2
H1
0
, the requirements of Theorem 4.1

are trivially satisfied. In particular, for what concerns property (4.2), let (xk)k
be a sequence in X such that xk → x weakly in X as k → +∞ and
lim inf
k→∞ �(xk) ≤ �(x). Since � is sequentially weakly lower semicontinuous, the

assumption lim inf
k→∞ �(xk) ≤ �(x) gives

lim inf
k→∞ ‖xk‖2H1

0
≤ ‖x‖2

H1
0

≤ lim inf
k→∞ ‖xk‖2H1

0
,
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so that there exists a subsequence of (xk)k , still denoted by xk , such that ‖xk‖H1
0

→
‖x‖H1

0
as k → +∞. This and the weak convergence of (xk)k imply that xk → x

in X as k → +∞. Therefore, (4.2) holds;
(3) The functional J : we shall prove the fulfilment of the requirements on J in

Lemma 4.2 below;
(4) The functional �: we shall prove the fulfilment of the requirements on � in

Lemma 4.3 below;
(5) The assumption (4.3): since � = 1/2‖ · ‖2

H1
0
and F is defined by (1.2), (4.3) is

trivially true with x0 = 0;
(6) The inequality a < b between the constants defined in (4.4) and (4.5): by

Claim 4.1.1 and Claim 4.1.2 we get that a = 0, while, by Claim 4.1.3 we prove
that b > 0.

Then, set λ∗∗
E := b−1, we get that, for any λ > λ∗∗

E , there exists μλ,E > 0 such that
for any μ ∈ [0, μλ,E ] the functional Iλ,μ admits two nontrivial critical points uλ,μ

and ũλ,μ constrained on H1
0,cyl(ω × R

d−m).
Finally, thanks to (α2) and (β2), we can apply the Principle of Symmetric Criti-

cality by Palais (arguing as in (3.31) and (3.33)) and deduce that uλ,μ and ũλ,μ are
critical points of Iλ,μ in H1

0 (ω × R
d−m), i.e. these critical points are solutions to

Problem (Pλ,μ). This ends the proof of Theorem 1.3–(i). ��
Now, the remaining part of this subsection will be devoted to state and prove the

lemmas and claims used in the proof of Theorem 1.3–(i).
First of all, we start by proving the required compactness property of the functionals

J and�, as stated in the following lemmas, inwhich the compactness of the embedding
H1
0,cyl(ω × R

d−m) ↪→ Lν(ω × R
d−m) for any ν ∈ (2, 2∗) (see (2.7)) plays a crucial

role.

Lemma 4.2 Assume ( f1), ( f2), ( f5), (α1) and (α2). Then, the functional J ∈
C1(H1

0 (ω × R
d−m)) and J ′ is compact in H1

0,cyl(ω × R
d−m).

Proof The proof of this assertion is quite standard: we repeat it here just for the reader’s
convenience.

First of all, note that J ∈ C1(H1
0 (ω × R

d−m)), thanks to the assump-
tions ( f1), ( f2), ( f5) on f and to the fact that α satisfies (α1) and since (2.1) holds.
Moreover, it is easy to see that

〈J ′(u), ϕ〉 =
∫

ω×Rd−m
α(x, y) f (u(x, y))ϕ(x, y) dx dy (4.10)

for any u, ϕ ∈ H1
0 (ω × R

d−m).
Now, let (uk)k ⊂ H1

0,cyl(ω ×R
d−m) be a bounded sequence. Then, due to (2.7), up

to a subsequence, still denoted by (uk)k , there exists u∞ ∈ H1
0,cyl(ω × R

d−m) such
that

uk → u∞ weakly in H1
0 (ω × R

d−m)

uk → u∞ in Lq(ω × R
d−m) for any q ∈ (2, 2∗)

uk → u∞ a.e. in ω × R
d−m

(4.11)
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as k → +∞ and, furthermore there exists � ∈ Lq(ω × R
d−m) such that

|uk(x, y)| ≤ �(x, y) for a.e. (x, y) ∈ ω × R
d−m, for any k ∈ N . (4.12)

Thus, since ( f1), (3.36), (4.11) and (4.12) hold, the Dominated Convergence The-
orem yields that

f (uk) → f (u∞) in Lq(ω × R
d−m) as k → +∞ . (4.13)

Now, by (α1) (which assures that α ∈ Lν(ω × R
d−m) for any ν ∈ [1,+∞],

see (3.20)), the Hőlder Inequality, (2.1) (applied with ν = 2) and (4.13), (set q ′ :=
q/(q − 1) the conjugate exponent of q) we have that, for all ϕ ∈ H1

0,cyl(ω × R
d−m),

‖ϕ‖H1
0

= 1,

∣∣∣∣
∫

ω×Rd−m
α(x, y)

(
f (uk(x, y)) − f (u∞(x, y))

)
ϕ(x, y) dx dy

∣∣∣

≤
( ∫

ω×Rd−m

∣∣∣α(x, y)
(
f (uk(x, y)) − f (u∞(x, y))

)∣∣∣
q ′
dx dy

)1/q ′
‖ϕ‖q

≤ ‖α‖q ′
q/(q−2)‖ f (uk) − f (u∞)‖q ′

q ‖ϕ‖q
≤ Cq‖α‖q ′

q/(q−2)‖ f (uk) − f (u∞)‖q ′
q → 0 as k → +∞ ,

(4.14)

where Cq is the constant given in (2.1) with ν = q. As a consequence of (4.10) and
(4.14), we obtain that

∥∥J ′(uk) − J ′(u∞)
∥∥ → 0 as k → +∞. Hence, J ′ is compact

in H1
0,cyl(ω × R

d−m) and the proof of Lemma 4.2 is complete. ��

Lemma 4.3 Assume (g1), (g2), (β1) and (β2). Then, the functional � ∈ C1(H1
0 (ω ×

R
d−m)) and � ′ is compact in H1

0,cyl(ω × R
d−m).

Proof In order to get that the functional � ∈ C1(H1
0 (ω ×R

d−m)) we can argue as in
the proof of Lemma 4.2, by taking into account assumptions (β1), (g1) and (g2), while
the proof of the compactness of � ′ is a more delicate question since we can not use
the Dominated Convergence Theorem as in the previous lemma (indeed, the function
g is not necessarily sublinear and so it does not need to satisfy a relation analogous
to (3.36)).

Let (uk)k ⊂ H1
0,cyl(ω×R

d−m) be a bounded sequence. First of all, let us show that

(
� ′(uk)

)
k
is bounded in the dual space of H1

0,cyl(ω × R
d−m) . (4.15)

For this purpose, note that by (g2) there exists a positive constant C > 0 such that

|g(t)| ≤ C(|t | + |t |q−1) for all t ∈ R (4.16)
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so, by (β1), (2.1) (twice appliedwith ν = 2 and ν = q), (2.6) and theHőlder Inequality,
we have that, for any k ∈ N,

∥∥� ′(uk)
∥∥ = sup

ϕ∈H1
0,cyl(ω×R

d−m)

‖ϕ‖
H1
0
=1

∫

ω×Rd−m

∣∣∣β(x, y)g(uk(x, y))ϕ(x, y)
∣∣∣ dx dy

≤ C‖β‖∞
(∫

ω×Rd−m
|uk(x, y)| |ϕ(x, y)| dx dy

+
∫

ω×Rd−m
|uk(x, y)|q−1|ϕ(x, y)| dx dy

)

≤ C‖β‖∞
(
‖uk‖2‖ϕ‖2 + ‖uk‖q−1

q ‖ϕ‖q
)

≤ C‖β‖∞
(
C2
2‖uk‖H1

0
+ Cq

q ‖uk‖q−1
H1
0

)

≤ C̃ ,

(4.17)

where C̃ > 0 is a suitable constant which is independent of k ∈ N, since (uk)k is
bounded in H1

0 (ω × R
d−m). Hence, (4.15) is proved.

As a consequence of (4.15), there existsH in the dual space of H1
0,cyl(ω × R

d−m)

such that, as k → +∞,

� ′(uk) → H weakly in the dual space of H1
0,cyl(ω × R

d−m). (4.18)

In order to complete the proof, we need to prove that

‖� ′(uk) − H‖ → 0 as k → +∞ . (4.19)

To get this goal, we argue by contradiction and we suppose that there exists δ > 0 and
k∗ ∈ N such that δ − 1

k∗ > 0, and

‖� ′(uk) − H‖ > δ for all k > k∗ .

Then, for k > k∗ there exists ϕk ∈ H1
0,cyl(ω × R

d−m) such that ‖ϕk‖H1
0

= 1 and

〈� ′(uk) − H, ϕk〉 > δ − 1

k∗ . (4.20)

Since (ϕk)k is bounded in H1
0,cyl(ω ×R

d−m) and (2.7) holds, up to a subsequence,

still denoted by (ϕk)k , there exists ϕ∞ ∈ H1
0,cyl(ω × R

d−m) such that, as k → +∞,

ϕk → ϕ∞ weakly in H1
0 (ω × R

d−m) (4.21)

and
ϕk → ϕ∞ in Lq(ω × R

d−m). (4.22)
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Now, by (β1) (which yields that β ∈ Lν(ω ×R
d−m) for any ν ∈ [1,+∞], see the

analogous argument (3.20) for the weight α), (g2), the Hőlder Inequality and (4.16),
we have that

∣∣∣〈� ′(uk), ϕk − ϕ∞〉
∣∣∣

≤
∫

ω×Rd−m

∣∣∣β(x, y)g(uk(x, y))
(
ϕk(x, y) − ϕ∞(x, y)

)∣∣∣ dx dy

≤ C
∫

ω×Rd−m
|β(x, y)| |uk(x, y)| |ϕk(x, y) − ϕ∞(x, y)| dx dy

+ C
∫

ω×Rd−m
|β(x, y)| |uk(x, y)|q−1|ϕk(x, y) − ϕ∞(x, y)| dx dy

≤ C
( ∫

ω×Rd−m
|β(x, y)uk(x, y)|q ′

dx dy
)(q−1)/q‖ϕk − ϕ∞‖q

+ C‖β‖∞‖uk‖q−1
q ‖ϕk − ϕ∞‖q

≤ C‖β‖q ′
q/(q−2)‖uk‖q

′
q ‖ϕk − ϕ∞‖q + C‖β‖∞‖uk‖q−1

q ‖ϕk − ϕ∞‖q
≤ CCq ′

q ‖β‖q ′
q/(q−2)‖uk‖q

′
H1
0
‖ϕk − ϕ∞‖q

+ CCq−1
q ‖β‖∞‖uk‖q−1

H1
0

‖ϕk − ϕ∞‖q → 0

(4.23)

as k → +∞, thanks to (4.22) and to the boundedness of (uk)k in H1
0 (ω × R

d−m).
Here C is the positive constant in (4.16) and Cq is the Sobolev embedding constant
given in (2.1) with ν = q and q ′ := q/(q − 1), the conjugate exponent of q.

Moreover, due to (4.21) and, respectively, to (4.18), we have that

〈H, ϕk − ϕ∞〉 → 0 and 〈� ′(uk) − H, ϕ∞〉 → 0

as k → +∞. Therefore, by (4.23), we have that

〈� ′(uk) − H, ϕk〉 = 〈� ′(uk), ϕk − ϕ∞〉 − 〈H, ϕk − ϕ∞〉
+ 〈� ′(uk) − H, ϕ∞〉 → 0 as k → +∞,

(4.24)

which contradicts (4.20), since δ − 1
k > δ − 1

k∗ > 0 for all k > k∗. Hence, (4.19)
holds and this, as already said, ends the proof of Lemma 4.3. ��

Now, we state the claims concerning the functional � and J , used in the proof of
Theorem 1.3–(i) in order to get the inequality a < b between the constants a and b
defined by (4.4) and (4.5), respectively.

Claim 4.1.1 Assume ( f1), ( f2), ( f5) and (α1). Then, the following inequality holds

lim sup
‖u‖

H1
0
→+∞

J (u)

�(u)
≤ 0 .
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Proof First of all, let us observe that by ( f1), ( f2), ( f5) and the Weierstrass Theorem,
we get that for any ε > 0, there exists Kε > 0 such that for any t ∈ R

| f (t)| ≤ ε|t | + Kε ,

so that
|F(t)| ≤ ε

2
|t |2 + Kε|t | . (4.25)

As a consequence of (3.20), (4.25) and the Hőlder Inequality, we have that, for any
u ∈ H1

0,cyl(ω × R
d−m) \ {0},

J (u)

�(u)
=

2
∫

ω×Rd−m
α(x, y)F(u(x, y)) dx dy

‖u‖2
H1
0

≤ ε‖α‖∞‖u‖22 + 2Kε‖α‖2‖u‖2
‖u‖2

H1
0

≤ ε‖α‖∞C2
2 + 2KεC2‖α‖2

‖u‖H1
0

(4.26)

thanks to (2.6) (hereC2 is the Sobolev embedding constant given in (2.1), with ν = 2).
Passing to the limsup as ‖u‖H1

0
→ +∞ in (4.26), we get that

lim sup
‖u‖

H1
0
→+∞

J (u)

�(u)
≤ ε‖α‖∞C2

2 .

Now, the arbitrariness of ε gives the assertion of Claim 4.1.1. ��
Claim 4.1.2 Assume ( f1), ( f2), ( f5) and (α1). Then, the following inequality holds

lim sup
‖u‖

H1
0
→0

J (u)

�(u)
≤ 0 .

Proof We can argue similarly to Claim 4.1.1, just replacing (4.25) with the next
inequality

|F(t)| ≤ ε

2
|t |2 + Kε|t |ν, t ∈ R , (4.27)

where 2 < ν < 2∗. By (2.1), (2.6) and (4.27), we get that for any u ∈ H1
0,cyl(ω ×

R
d−m) \ {0}

J (u)

�(u)
≤ ε‖α‖∞‖u‖22 + 2Kε‖α‖∞‖u‖ν

ν

‖u‖2
H1
0

≤ ε‖α‖∞C2
2 + 2Kε‖α‖∞Cν

ν ‖u‖ν−2
H1
0

.
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Thus, passing to the limsup as ‖u‖H1
0

→ 0 in the above inequality and by taking into
account that ν > 2 and the arbitrariness of ε, we get the assertion, concluding the
proof of Claim 4.1.2. ��

In the next claim, assumptions (α3) and ( f6) are essential.

Claim 4.1.3 Assume ( f1), ( f2), ( f5), ( f6), (α1) and (α3). Then, the following inequality
holds

sup

{
J (u)

�(u)
: u ∈ H1

0,cyl(ω × R
d−m) \ {0}

}
> 0 .

Proof It is enough to show that there exists ū ∈ H1
0,cyl(ω × R

d−m) \ {0} such that

J (ū)

�(ū)
> 0 . (4.28)

At this purpose, let t0 be as in ( f6) and r > 0 be as in (α3). Let us fix r1 and r2 with
0 < r1 < r2 < r and, for any ε ∈ (0, (r2−r1)/2

)
, define the function vε : Rd−m → R

as follows

vε(y) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if |y| < r1
t0
ε

(
|y| − r1

)
if r1 ≤ |y| ≤ r1 + ε

t0 if r1 + ε < |y| < r2 − ε

t0
ε

(
r2 − |y|

)
if r2 − ε ≤ |y| ≤ r2

0 if |y| > r2.

Note that
supp vε ⊂

{
y ∈ R

d−m : r1 ≤ |y| ≤ r2
}

0 ≤ vε(y) ≤ t0 for any y ∈ R
d−m .

(4.29)

Now, let K and ω′ be two open sets in Rm with

K � ω̄′ ⊂ ω and Lebesgue measure L(K ) > 0 (4.30)

and let ϕ̃ ∈ C∞
0 (ω′) be a positive function such that ‖ϕ̃‖∞ = 1 and ϕ̃ ≡ 1 on K . Let

ϕ ∈ C∞
0 (ω) be the natural extension of ϕ̃ on ω, given by

ϕ(x) =
{

ϕ̃(x) if x ∈ ω′

0 if x ∈ ω \ ω′,
(4.31)

and define the function uε : ω × R
d−m → R as follows

uε(x, y) = ϕ(x)vε(y) for a.e. (x, y) ∈ ω × R
d−m . (4.32)
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It is easy to check that, for any ε ∈ (
0, (r2 − r1)/2

)
, uε ∈ H1

0,cyl(ω × R
d−m).

Furthermore, taking into account (4.29), we get that

supp uε ⊆ ω ×
{
y ∈ R

d−m : r1 ≤ |y| ≤ r2
}

uε(x, y) = ϕ(x)vε(y) ≤ vε(y) ∈ [0, t0] a.e. (x, y) ∈ ω × R
d−m .

(4.33)

Condition ( f6), (the first requirement in) (α3) and (4.33) yield that

F(uε(x, y)) ≥ 0 and α(x, y)F(uε(x, y)) ≥ 0 for a.e. (x, y) ∈ ω × R
d−m . (4.34)

Then, by (4.31), (4.32), (4.33), (4.34), (the second requirement in) (α3), by the choice
of r1 and r2 (and by the rough estimate F(t) ≥ −2max[−r ,r ] |F | for all |t | ≤ r ), we
get that

J (uε) =
∫

ω×{y∈Rd−m : r1≤|y|≤r2}
α(x, y)F(uε(x, y)) dx dy

≥ α0

(∫

K×{y∈Rd−m : r1≤|y|≤r1+ε}
F
( t0

ε

(|y| − r1
))

dx dy

+
∫

K×{y∈Rd−m : r1+ε≤|y|≤r2−ε}
F(t0) dx dy

+
∫

K×{y∈Rd−m : r2−ε≤|y|≤r2}
F
( t0

ε

(
r2 − |y|)

)
dx dy

)

≥ α0

{
F(t0)L(K ) ωd−m

[
(r2 − ε)d−m − (r1 + ε)d−m

]

−2max|t |≤r
|F(t)|L(K ) ωd−m

[
(r1 + ε)d−m − rd−m

1 + rd−m
2 − (r2 − ε)d−m

]}

→ α0F(t0)L(K ) ωd−m
(
rd−m
2 − rd−m

1

)
> 0 as ε → 0,

(4.35)
where, as usual, ωd−m is the volume of the unit ball in R

d−m .
Thus, since � = 1/2‖ · ‖2

H1
0
, we obtain (4.28) by (4.35) by taking ū = uε with ε

small enough. This ends the proof of Claim 4.1.3. ��

4.2 AMultiplicity Result

In this subsection we provide the multiplicity result stated in Theorem 1.3–(i i). In
order to get this goal, the main idea consists in applying, for any i ∈ Id,m (see (1.1)),
Theorem 4.1 with X = FixĤd,m ,̂ηi

(H1
0 (ω×R

d−m)) to the three functionals�i , Ji and
�i , which are the respective restrictions of the functionals�, J and� (see (4.7), (4.8)
and (4.9)) to the space FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)), i.e.
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�i (u) := �(u)| FixĤd,m ,̂ηi
(H1

0 (ω×Rd−m))(u)

Ji (u) := J (u)| FixĤd,m ,̂ηi
(H1

0 (ω×Rd−m))(u)

�i (u) := �(u)| FixĤd,m ,̂ηi
(H1

0 (ω×Rd−m))(u),

for any u ∈ FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)).

Proof of Theorem 1.3-(ii): Let us fix i ∈ Id,m . By arguing as in the Sect. 4.1, we are able
to check that all requirements of Theorem 4.1 asked to the space and to the functionals
are fulfilled by FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)) and �i , Ji and �i , respectively.
In particular, defining ai and bi according to (4.4) and (4.5) by replacing � and J

with�i and Ji , respectively, and H1
0,cyl(ω×R

d−m)with FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m)),

we have that ai = 0. Moreover, by Claim 4.2.1 below, we prove that bi > 0.
Then, set

λ∗
i := b−1

i and λ∗
M := max

i∈Id,m
{λ∗

E , λ∗
i },

we get that for any λ > λ∗
M there exists μλ,M > 0 such that for any μ ∈ [0, μλ,M ],

the functional Iλ,μ admits two nontrivial critical points uλ,μ,i and ũλ,μ,i constrained
on FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)).
Then, thanks to (α2) and (β2) and the oddness assumption on f and g, we can apply

the Principle of Symmetric Criticality by Palais, (see Remark 3.1, (3.31) and (3.33)
also with α and f replaced by β and g, respectively) and deduce that these critical
points are solutions to Problem (Pλ,μ).

Note that Proposition 2.3–(i) allows us to say that, for any i ∈ Id,m , the solutions
uλ,μ,i and ũλ,μ,i are distinct from both uλ,μ and ũλ,μ got in H1

0,cyl(ω × R
d−m).

Moreover when d = m + 6 or d ≥ m + 8 by Proposition 2.3–(i i), we get that uλ,μ,i ,
ũλ,μ,i /∈ {uλ,μ, j , ũλ,μ, j } for any i, j ∈ Id,m with i 
= j . Since we have added to the
pair (uλ,μ, ũλ,μ), got in H1

0,cyl(ω × R
d−m), τd,m = sd,m − 1 (see (1.1) and (1.4))

pairs of solutions (uλ,μ,i , ũλ,μ,i ) got in the “petals” FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)),

we deduce that Problem (Pλ,μ) admits sd,m pairs of nontrivial weak solutions, with
different symmetries, provided λ is sufficiently large andμ is small enough. The proof
of Theorem 1.3–(i i) is then complete. ��

So, we conclude this subsection just by proving the natural counterpart of
Claim 4.1.3 in FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)), where assumption (α3) and ( f6) plays
a crucial rule.

Claim 4.2.1 Assume ( f1), ( f2), ( f5), ( f6), (α1) and (α3). Then, the following inequality
holds

sup

{
Ji (u)

�i (u)
: u ∈ FixĤd,m ,̂ηi

(H1
0 (ω × R

d−m)) \ {0}
}

> 0 for all i ∈ Id,m .
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Proof Let us fix i ∈ Id,m and let any y ∈ R
d−m be decomposed as follows

y :=

⎧
⎪⎨
⎪⎩

(y1, y3) ∈ R
(d−m)/2 × R

(d−m)/2 if i = d − m − 2

2
(y1, y2, y3) ∈ R

i+1 × R
d−m−2i−2 × R

i+1 if i 
= d − m − 2

2
.

(4.36)

As inClaim4.1.3,we have to construct a functionūi ∈ FixĤd,m ,̂ηi
(H1

0 (ω×R
d−m))\

{0} such that
Ji (ūi )

�i (ūi )
> 0 . (4.37)

At this purpose, we follow [13] and we adapt to our setting the function introduced
therein. Let r be as in (α3) and let us fix r1 and r2 with 0 < r1 < r2 < r and such that
(5 + 4

√
2)r1 > r2. For any ε ∈ (0, 1], let us consider the following subset of Rd−m

B1,3
ε,i :=

⎧⎪⎪⎨
⎪⎪⎩

{
(y1, y3) ∈ R

(d−m)/2 × R
(d−m)/2 : (y1, y3) satisfies (4.38)

}
if i = d−m−2

2

{
(y1, y3) ∈ R

i+1 × R
i+1 : (y1, y3) satisfies (4.38)

}
if i 
= d−m−2

2

and

B3,1
ε,i :=

⎧
⎪⎪⎨
⎪⎪⎩

{
(y1, y3) ∈ R

(d−m)/2 × R
(d−m)/2 : (y3, y1) satisfies (4.38)

}
if i = d−m−2

2

{
(y1, y3) ∈ R

i+1 × R
i+1 : (y3, y1) satisfies (4.38)

}
if i 
= d−m−2

2 ,

where (
|y1| − r2 + 3r1

4

)2 + |y3|2 ≤ ε2
(r2 − r1

4

)2
, (4.38)

and the set

B2
ε,i :=

{
y2 ∈ R

d−m−2i−2 : y2 satisfies (4.39)
}

when i 
= d − m − 2

2
,

where
|y2| ≤ ε

r2 − r1
4

. (4.39)

Note that, if i = d−m−2
2 , i.e. when no coordinate block y2 can be defined, we are

assuming that (4.39) is, of course, satisfied. We also observe that the assumptions on
r1 and r2 give that B

1,3
1,i and B3,1

1,i are disjoint. As a consequence, being ε ≤ 1, we get
that

B1,3
ε,i ∩ B3,1

ε,i = ∅
B1,3

ε,i ∩ B3,1
1,i = B1,3

1,i ∩ B3,1
ε,i = ∅ .

(4.40)
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Moreover, let us define

Sε,i :=

⎧⎪⎪⎨
⎪⎪⎩

B1,3
ε,i ∪ B3,1

ε,i if i = d−m−2
2{

(y1, y2, y3) ∈ R
i+1 × R

d−m−2i−2 × R
i+1 :

(y1, y3) ∈ B1,3
ε,i ∪ B3,1

ε,i and y2 ∈ B2
ε,i

}
if i 
= d−m−2

2 .

(4.41)

Now, let t0 be as in ( f6) and, for any ε > 0, let vε,i : Rd−m → R be the function
given by

vε,i (y) :=
[(

r2 − r1
4

− max

{√(
|y1| − r2 + 3r1

4

)2 + |y3|2, ε r2 − r1
4

})+

−
(
r2 − r1

4
− max

{√(
|y3| − r2 + 3r1

4

)2 + |y1|2, ε r2 − r1
4

})+]

·
(
r2 − r1

4
− max

{
|y2|, ε r2 − r1

4

})+ 16t0
(r2 − r1)2(1 − ε)2

.

By direct computations and taking into account (4.40), it is easy to see that

0 ≤ vε,i (y) ≤ t0 for any y ∈ R
d−m

|vε,i (y)| = t0 for any y ∈ Sε,i .
(4.42)

Now, let K and ω′ be two open sets in R
m satisfying (4.30), let ϕ be the cut-off

function given in (4.31) and define the function uε,i : ω × R
d−m → R by setting

uε,i (x, y) := ϕ(x)vε,i (y) for a.e. (x, y) ∈ ω × R
d−m .

First of all, note that, as in [13], it is easily seen that

L((K × S1,i ) \ (K × Sε,i )) → 0 as ε → 1− , (4.43)

while direct computations ensure that uε,i ∈ H1(ω×R
d−m).Moreover, since supp uε,i

is a compact subset of ω ×R
d−m , by [7, Lemma IX.5] it follows that uε,i ∈ H1

0 (ω ×
R
d−m). Arguing as in (3.34) (see also Remark 3.1), it is easy to check also that

uε,i ∈ FixĤd,m ,̂ηi
(H1

0 (ω × R
d−m)).

Finally, the definition of vε,i and the choice of r1 and r2 give that

supp uε,i ⊂ ω × S1,i

⊆
{
(x, y) ∈ ω × R

d−m : r1 ≤ |y| ≤ r2
}

⊆
{
(x, y) ∈ ω × R

d−m : |y| ≤ r
}

.

(4.44)
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In addition, by (4.31) and (4.42), we get that

‖uε,i‖∞ ≤ t0
|uε,i (x, y)| = t0 for a.e. (x, y) ∈ K × Sε,i .

(4.45)

All in all, arguing as in the proof of Claim 4.1.3, (α3), ( f6), (4.43), (4.44) and (4.45)
yield that

Ji (uε,i ) =
∫

ω×S1,i
α(x, y)F(uε,i (x, y)) dx dy

≥ α0

∫

K×S1,i
F(uε,i (x, y)) dx dy

≥ α0

(
F(t0)L(K × Sε,i ) − 2max|t |≤r

|F(t)|L((K × S1,i ) \ (K × Sε,i ))

)

→ α0 F(t0) lim
ε→1− L(K × Sε,i ) > 0

as ε → 1−. As a consequence of this, by choosing ūi = uε,i with ε sufficiently close
to 1, we obtain (4.37), and so Claim 4.2.1 is proved. ��
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18. Molica Bisci, G., Rădulescu, V.: On the nonlinear Schrödinger equation on the Poincaré ball model.
Nonlinear Anal. 201, 111812 (2020)
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