
The Journal of Geometric Analysis (2021) 31:8063–8079
https://doi.org/10.1007/s12220-020-00567-z

On Holomorphic Curves Tangent to Real Hypersurfaces of
Infinite Type

Joe Kamimoto1

Received: 13 August 2020 / Accepted: 12 November 2020 / Published online: 5 December 2020
© The Author(s) 2020

Abstract
Thepurposeof this paper is to investigate the geometric properties of real hypersurfaces
of D’Angelo infinite type inC

n . In order to understand the situation of flatness of these
hypersurfaces, it is natural to askwhether there exists a nonconstant holomorphic curve
tangent to a given hypersurface to infinite order.A sufficient condition for this existence
is given by using Newton polyhedra, which is an important concept in singularity
theory. More precisely, equivalence conditions are given in the case of some model
hypersurfaces.
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1 Introduction

Let M be a (C∞ smooth) real hypersurface in C
n and let p lie on M . Let r be a local

defining function for M near p (∇r �= 0 when r = 0). In [6,7], the following invariant
is introduced:

�1(M, p) := sup
γ∈�

ord(r ◦ γ )

ord(γ − p)
, (1.1)

where � denotes the set of (germs of) nonconstant holomorphic mappings γ :
(C, 0) → (Cn, p). (For a C∞ mapping h : C → C or C

n such that h(0) = 0,
let ord(h) denote the order of vanishing of h at 0.) The invariant �1(M, p) is called
the D’Angelo type of M at p. We say that M is of finite type at p if �1(M, p) < ∞
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and of infinite type at p otherwise (the latter case will be denoted by�1(M, p) = ∞).
The class of finite type plays crucial roles in the study of the local regularity in the ∂̄-
Neumann problem over pseudoconvex domains�with smooth boundary ∂�. Indeed,
it was shown by Catlin [4,5] that M = ∂� is of finite type at p if and only if a local
subelliptic estimate at p holds. From its importance, real hypersurfaces of finite type
have been deeply investigated from various points of view.

On the other hand, to understand the geometric properties of real hypersurfaces of
infinite type is also an interesting subject in the study of several complex variables.
These hypersurfaces contain some kind of strong flatness. In order to describe the
geometric structure of this flatness, the situation of contact of holomorphic curves
with the respective hypersurface must be carefully observed. In this paper, we mainly
consider the following question:

Question 1 When does there exist a nonconstant holomorphic curve γ∞ tangent to M
at p to infinite order?

Since the condition of the desired curve γ∞ in Question 1 can be written as

(r ◦ γ∞)(t) = O(t N ) as t ∈ C → 0, for every N ∈ N, (1.2)

the condition �1(M, p) = ∞ is necessary for the existence of the curve γ∞. It has
been shown in [7,11,19] that when M is real analytic, the above two conditions are
equivalent (in this case, the curve γ∞ is contained in M). Moreover, in the case of
smooth M , this equivalence is also shown in the formal series sense in [8,16]. But, in
general, the sufficient direction is not true. Indeed, the nonexistence of the curve γ∞
in (1.2) is shown in the case of some real hypersurfaces constructed in [3,9,16,22].
Understanding flatness on hypersurfaces of infinite type has been recognized to be a
delicate issue.

In this paper, in order to investigate the flatness of real hypersurfaces, we use not
only holomorphic curves but also Newton polyhedra of defining functions, which
plays important roles in singularity theory (cf. [1,2]). Approach from the viewpoint
of singularity theory is useful in the study of types and there have been many works
of the sort ([10,11,13,15,20], etc.).

First, we consider the relationship amongmany kinds of infinite type hypersurfaces.
Let �reg := {γ ∈ � : ord(γ ) = 1} and define �

reg
1 (M, p) := supγ∈�reg{ord(r ◦ γ )},

which is called regular type of M at p. Note that �reg
1 (M, p) ≤ �1(M, p).

Proposition 1.1 Let us consider the following eight conditions for a real hypersurface
M at p:

(1) �1(M, p) = ∞;
(2) �

reg
1 (M, p) = ∞;

(3) There exists a γ ∈ �reg tangent to M at p to infinite order;
(4) There exists a γ ∈ � tangent to M at p to infinite order;
(5) There exists a holomorphic coordinate (z) = (z1, . . . , zn) at p such that p = 0

and a defining function r for M on (z) is not convenient (see Sect. 2);
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Curves Tangent to Real Hypersurfaces 8065

(6) There exists a holomorphic coordinate (z) at p such that p = 0 and the New-
ton polyhedron of a defining function for M on (z) (see Sect. 2) takes the form
N+(r) = {(ξ1, . . . , ξn) ∈ R

n+ : ξn ≥ 1};
(7) The Bloom–Graham type of M at p is infinity (i.e. there are complex submanifolds

of codimension one tangent to M at p to arbitrarily higher order);
(8) M is Levi-flat near p.

Then, among the above eight conditions, the following implications hold:

(7)

(1) (2) (3) (5) (6) (8).

(4)

The proof of the above proposition will be given in Sect. 4.1.

Remark 1.2 In the above proposition, for each implication with only one direction, its
opposite direction is not true (see Remark 4.2 in Sect. 4 for details).

The following theorem gives a sufficient condition for the existence of the curve
γ∞ in Question 1. This condition is described by using Newton polyhedra of defining
functions for real hypersurfaces.

Theorem 1.3 If there exists an N -canonical coordinate (z) for M at p, then the five
conditions (1)–(5) are equivalent.

The definition ofN -canonical coordinates will be given in Sect. 2 (Definition 2.3).
The proof of the above theorem will be given in Sect. 4.2.

The following corollary can be directly obtained from Theorem 1.3.

Corollary 1.4 Suppose that �1(M, p) = ∞. If there is no γ ∈ � tangent to M at p to
infinite order, then M does not admit any N -canonical coordinates at p.

It is easy to check that the examples of hypersurface constructed in [3,9,16,22]
do not admit any N -canonical coordinates. More exactly, we will give equivalence
conditions in more restricted cases in Sects. 5 and 6.

Next, it is seen in [15] that when M is the boundary of pseudoconvex Rein-
hardt domains, M always admits anN -canonical coordinate. Therefore, Theorem 1.3
implies the following.

Corollary 1.5 Let M be the boundary of pseudoconvex Reinhardt domains (with smooth
boundary) and let p lie in M. If �1(M, p) = ∞, then there exists a γ ∈ �reg tangent
to M at p to infinite order.
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8066 J. Kamimoto

This paper is organized as follows. In Sect. 2, we recall the concepts: Newton
polyhedra, N -nondegeneracy condition and N -canonical coordinates, which were
introduced in [15]. In Sect. 3, for the analysis later, we prepare appropriate coordinates
onwhich hypersurfaces are expressed in clear form. Section 4 is devoted to the proof of
results given in the Introduction. More precise results are given in the two dimensional
case in Sect. 5 and the higher dimensional case under the Bloom–Graham infinity type
assumption in Sect. 6. Since the Bloom–Graham type is the same as the D’Angelo type
in the two-dimensional case, some results in Sect. 5 can be considered as special cases
of those in Sect. 6. But, they are separately explained to make clear their difference.
Lastly, we consider open problems in Sect. 7.

Notation, symbols and terminology.

• We denote Z+ := {n ∈ Z : n ≥ 0} and R+ := {x ∈ R : x ≥ 0}.
• The multi-indices are used as follows. For z = (z1, . . . , zn), z̄ = (z̄1, . . . , z̄n),∈

C
n , α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Z

n+, define

zα := zα1
1 · · · zαn

n , z̄β := z̄β1
1 . . . z̄βn

n ,

|α| := α1 + · · · + αn, α! := α1! · · ·αn !, 0! := 1,

Dα := ∂ |α|

∂zα1
1 · · · ∂zαn

n
, D̄β := ∂ |β|

∂ z̄β1
1 · · · ∂ z̄βn

n

.

• We always consider smooth functions, mappings, real hypersurfaces and complex
curves as their respective germs without any mentioning. The following rings of
germs of C-valued functions are considered:

– C∞
0 (Cn) is the ring of germs of C∞ functions at the origin in C

n .
– O0(C) is the ring of germs of holomorphic functions at the origin in C.

• We always take a good parametrization for corves γ ∈ � without any mentioning.
That is to say, a point on the curve, defined by t 
→ γ (t), corresponds to only one
value of t . For example, (t, t2) is good, but (t2, t4) is not good.

• We use the words pure terms for any harmonic polynomial and mixed terms for
any sum of monomials that are neither holomorphic nor anti-holomorphic.

2 Newton Polyhedra for Real Hypersurfaces

Let us define the Newton polyhedron of a real-valued smooth function F defined near
the origin in C

n . The Taylor series expansion of F at the origin is

F(z, z̄) ∼
∑

α, β∈Zn+
Cαβ zα z̄β with Cαβ = 1

α!β! Dα D̄β F(0, 0). (2.1)
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Curves Tangent to Real Hypersurfaces 8067

The Newton polyhedron of F is defined by

N+(F) = The convex hull of

⎛

⎝
⋃

α+β∈S(F)

(α + β + R
n+)

⎞

⎠ ,

where S(F) = {α + β ∈ Z
n+ : Cαβ �= 0}. The Newton diagram N (F) of F is defined

to be the union of the compact faces ofN+(F). We use coordinates (ξ) = (ξ1, . . . , ξn)

for points in the plane containing the Newton polyhedron. The following classes of
functions F simply characterized by using their Newton polyhedra often appear in
this paper:

• F is called to be flat at 0 if N+(F) is an empty set.
• F is called to be convenient at 0 if N+(F) meets every coordinate axis.

Let (z) = (z1, . . . , zn) be a holomorphic coordinate around p such that p = 0.
Let r be a local defining function for M near p on the coordinate (z). For a given
tuple (M, p; (z)), we define a quantity ρ1(M, p; (z)) ∈ Z+ ∪ {∞} as follows. If r is
convenient, then let

ρ1(M, p; (z)) := max{ρ j (r) : j = 1, . . . , n},

where ρ j (r) is the coordinate of the point at which the Newton diagram N (r) inter-
sects the ξ j -axis. Otherwise, let ρ1(M, p; (z)) := ∞. We remark that ρ1(M, p; (z))
depends on the chosen coordinate (z), but it is independent of the choice of defin-

ing functions after fixing a coordinate. Considering the curves γ j (t) = (0, . . . ,
( j)
t

, . . . , 0) ∈ �reg for j = 1, . . . , n, we can see that the inequality ρ1(M, p; (z)) ≤
�

reg
1 (M, p) always holds.
Next, let us introduce an important concept “N -nondegeneracy condition” on a

smooth function F defined near the origin in C
n .

Let κ be a compact face of N+(F). The κ-part of F is the polynomial defined by

Fκ(z, z̄) =
∑

α+β∈κ
Cαβ zα z̄β. (2.2)

The set of holomorphic curves �κ is defined by

�κ := {(c1ta1, . . . , cntan ) : c ∈ (C \ {0})n, t ∈ C, a ∈ N
n determines κ },

where c = (c1, . . . , cn) ∈ (C\{0})n , a = (a1, . . . , an) ∈ N
n and “a ∈ N

n determines
κ” means that the set {ξ ∈ N+(F) : ∑n

j=1 a jξ j = l} coincides with the face κ for
some l ∈ N.

Definition 2.1 Let κ be a compact face of N+(F). The κ-part Fκ of F is said to be
N -nondegenerate if

Fκ ◦ γ �≡ 0 for any γ ∈ �κ.
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8068 J. Kamimoto

A function F is said to be N -nondegenerate, if Fκ is N -nondegenerate for every
compact face κ of N+(F).

The above concept is analogous to the nondegeneracy condition introduced by Kouch-
nirenko [18], which plays important roles in the singularity theory. Detailed properties
of this condition are explained in [15].

Definition 2.2 A holomorphic coordinate (z) at p is said to beN -canonical for M at
p if a local defining function r for M on (z) is N -nondegenerate.

The following relationship

�1(M, p) ≥ �
reg
1 (M, p) ≥ ρ1(M, p; (z)) (2.3)

is always established for every coordinate (z) at p. The following theorem shows that
the equalities in (2.3) are satisfied under the N -nondegeneracy condition.

Theorem 2.3 [15] If there exists anN -canonical coordinate (z)at p, then the following
equalities hold:

�1(M, p) = �
reg
1 (M, p) = ρ1(M, p; (z)). (2.4)

Note that the above theorem is valid for the infinite type case. From the above theorem,
the existence of N -canonical coordinates implies that both values of �1(M, p) and
�

reg
1 (M, p) can be directly seen from geometrical Newton data of M at p.

3 Standard Coordinates

Let M be a real hypersurface in C
n+1 (n ≥ 1) and let p lie in M .

It follows from Taylor’s formula that there exists a holomorphic coordinate
(z, w) := (z1, . . . , zn, w) at p on which a local defining function r for M is expressed
near the origin as in the following form:

r(z, w, z̄, w̄) = 2Re(w) + F(z, z̄) + R1(z, z̄) · Im(w) + R2(z, w, z̄, w̄), (3.1)

where

(i) F ∈ C∞
0 (Cn) satisfies that F(0, 0) = 0 and |∇F(0, 0)| = 0;

(ii) R1 ∈ C∞
0 (Cn) and R2 ∈ C∞

0 (Cn+1). Moreover, R1, R2 satisfies that ord(R1) ≥
1 and |R2| ≤ C |Im(w)|2 near (z, w) = 0 where C is a positive constant inde-
pendent of (z, w).

Of course, there may be many such coordinates, which are said to be standard for M
at p.

Furthermore, if there exists a holomorphic coordinate (z, w) := (z1, . . . , zn, w)

around p on which a local defining function r for M is expressed near the origin as in
the model form:

r(z, w, z̄, w̄) = 2Re(w) + F(z, z̄), (3.2)
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Curves Tangent to Real Hypersurfaces 8069

where F is as in (3.1), then (z, w) is called a good (standard) coordinate for M at p.
Note that good coordinates do not always exist for all hypersurfaces.

4 Proofs of Results in the Introduction

Let M be a real hypersurface in C
n and let p lie in M .

From Theorem 2.3, under theN -nondegeneracy condition, a defining function for
M is convenient if and only if M is of finite type at p. Roughly speaking, when M
does not satisfy the convenience condition, M contains a flat part in one direction. The
following lemma exactly explains such situation.

Lemma 4.1 Let r be a local defining function for M near p on some holomorphic
coordinate (z). Then the following four conditions are equivalent:

(i) r is not convenient (i.e. ρ1(M, p; (z)) = ∞);
(ii) There exists k ∈ {1, . . . , n} such that N+(r) does not intersect ξk-axis;
(iii) There exists k ∈ {1, . . . , n} such that the Taylor series of r does not contain any

term consisting of zk and z̄k only;
(iv) There exists k ∈ {1, . . . , n} such that (r ◦ γk)(t) = O(t N ) for every N ∈ N,

where γk = (0, . . . ,
(k)
t , . . . , 0) ∈ �reg.

The following lemma expresses a property of flat hypersurfaces by using the lan-
guage of Newton polyhedra.

Lemma 4.2 The following two conditions are equivalent:

(i) There exists a standard coordinate for M at p such that F in (3.1) is flat at the
origin;

(ii) There exists a holomorphic coordinate (z) at p such that p = 0 and the New-
ton polyhedron of a defining function r for M on (z) takes the form: N+(r) =
{(ξ1, . . . , ξn) ∈ R

n+ : ξn ≥ 1}.
Since the above two lemmas are easy, their proofs are omitted.

4.1 Proof of Proposition 1.1

(3) ⇐⇒ (5) was stated in Lemma 4.1. (6) �⇒ (7) is easy to see from Lemma 4.2.
(7) �⇒ (2) is shown in [9]. (Lemma 5 in [9] states (7) �⇒ (1), but its proof actually
implies the above stronger implication.) The other implications are obvious.

Remark 4.3 Let us consider the converse of each implication in Proposition 1.1. We
give an example of the hypersurface showing that the converse does not hold in the
implication with only one direction. All our examples of hypersurface M in C

n+1

(n ∈ N) are pseudoconvex and admit a good coordinate, i.e., M is locally expressed as
in the model form: 2Re(w) + F(z, z̄) = 0, as in (3.2). Thus, we only write a function
F(z, z̄) for each case. In the two-dimensional case, the converses of some implications
are also true (see Sect. 5). In these cases, counterexamples must be constructed in C

n

with n ≥ 3.
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8070 J. Kamimoto

• ((1) � (2)) F(z, z̄) = |z31 − z22|2 + |z3|2 + · · · + |zn|2 (n ≥ 2);
• ((2) � (3)) F(z, z̄) = f (z1, z̄1) + |z2|2 + · · · + |zn|2 (n ∈ N);
• ((1) � (4)) F(z, z̄) = f (z1, z̄1) + |z2|2 + · · · + |zn|2 (n ∈ N);
• ((4) � (3)) F(z, z̄) = |z31 − z22|2 + |z3|2 + · · · + |zn|2 (n ≥ 2);
• ((5) � (6)) F(z, z̄) = |zn|2 (n ≥ 2);
• ((2) � (7)) F(z, z̄) = |zn|2 (n ≥ 2);
• ((7) � (6)) F(z, z̄) = f (zn, z̄n) (n ∈ N);
• ((6) � (8)) F(z, z̄) = exp(−|zn|−2) (n ∈ N).

Here f ∈ C∞
0 (C) is a subharmonic function admitting a divergent Taylor series at the

origin. It was constructed in [9] (see Remark 5.8).
It is shown in [16,22] (see also Corollary 6.4 in this paper) that the second example

shows (2) � (3) and (1) � (4) in the two-dimensional case. The higher dimensional
case can be easily shown. It is easy to check that the other hypersurfaces are coun-
terexamples.

4.2 Proof of Theorem 1.3

It suffices to show the implication: (1) �⇒ (5).
Let (z) be an N -canonical coordinate for M at p and let r be a local defining

function for M near p on the coordinate (z). From Theorem 2.3, the condition (1)
implies ρ1(M, p; (z)) = ∞, which is equivalent to the condition (5) from Lemma 4.1.

5 Two Dimensional Case

In this section, we more precisely consider Question 1 in the Introduction in the case
when a real hypersurface M is in C

2. Let p ∈ M .
In the two dimensional case, many implications in Proposition 1.1 can be refined

by equivalences.

Proposition 5.1 Let M be a real hypersurface in C
2 and let p lie in M. Among the

above eight conditions for M at p in Proposition 1.1, the following implications hold:

(7)

(1) (2) (3) (5) (6) (8).

(4)

Proof (5) �⇒ (6) is obvious. It is known in [7] that (1), (2), (7) are equivalent. (4)
�⇒ (3) will be shown in Lemma 5.2, below. ��
Lemma 5.2 If γ ∈ � is tangent to M ⊂ C

2 at p to infinite order, then γ ∈ �reg.
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Curves Tangent to Real Hypersurfaces 8071

Proof Let (z, w) be a standard coordinate for M at p such that M is expressed as in
(3.1).

First, if F is flat at 0, then the curve γ , satisfying (r ◦ γ )(t) = O(t N ) for every
N ∈ N, essentially takes the form: γ (t) = (t, 0). This curve is regular.

Next, let us consider the case when ord(F) = m with some m ∈ N. In this case,
the Newton polyhedron of r takes the form N+(r) = {ξ ∈ R

2+ : ξ1/m + ξ2 ≥ 1}.
Let κ := {ξ ∈ R

2+ : ξ1/m + ξ2 = 1}, which is the only compact facet of N+(r). If
rκ were N -nondegenerate, then Theorem 2.3 implies �1(M, p) = m < ∞, which
is a contradiction. If rκ is notN -nondegenerate, then a desired curve must be written
in the form γ (t) = (t, ctm + O(tm+1)) with c �= 0 from the definition of the N -
nondegeneracy. This curve is also regular. ��

From Theorem 2.3, we can see the following.

Theorem 5.3 Let M ⊂ C
2. If there exists an N -canonical coordinate for M at p, then

the seven conditions (1)–(7) in Proposition 5.1 are equivalent.

The following lemma is essentially the same as Theorem 2 in [16] (see also [17]).

Lemma 5.4 Let M ⊂ C
2. If �1(M, p) = ∞, then the Taylor series of F in (3.1) at

the origin consists of only pure terms on every standard coordinate.

Proof Let us assume the existence of a standard coordinate (z, w) on which the Taylor
series of F contains a mixed term. Let m be the minimum order of the mixed terms
of Taylor series of F and let pm(z, z̄) denote the sum of the mixed terms of order m.

It is easy to construct a standard coordinate (z, w∗) on which M can be expressed
by the equation:

2Re(w∗) + pm(z, z̄) + Q(z, z̄) + R∗
1 · Im(w∗) + R∗

2 = 0,

where Q ∈ C∞
0 (C) with ord(Q) ≥ m + 1 and R∗

1 , R∗
2 have the same properties as

those of R1, R2 in (3.1), respectively. Since 2Re(w∗) + pm(z) is N -nondegenerate,
the above (z, w∗) is N - canonical for M at p. It follows from Theorem 2.3 that
�1(M, p) = m < ∞, which is a contradiction. ��

From the above lemma, when �1(M, p) = ∞, the Taylor series of F can be
expressed as 2

∑∞
j=2 Re(c j z j ) where c j ∈ C. When the hypersurface M and p ∈ M

are fixed, the sequence of complex numbers {c j } j∈N is determined by the chosen
standard coordinates (z, w) only. For a given coordinate (z, w), we define the formal
power series:

S(z) =
∑∞

j=2
c j z

j (z ∈ C). (5.1)

If M is real analytic, then the series S(z) converges near the origin. But, its converse
is not always true. From Cauchy-Hadamard’s formula, positivity of the convergence
radius of the power seriesS(z) is equivalent to the condition lim sup j→∞ |c j |1/ j < ∞.

123



8072 J. Kamimoto

Hereafter in this section, we only consider the case when the hypersurface admits
a good coordinate at p. That is to say, M can be expressed as in the model form

r(z, w, z̄, w̄) = 2Re(w) + F(z, z̄) = 0, (5.2)

where F is the same as that in (3.1).
The following theorem gives equivalence conditions for Question 1 in the Intro-

duction in the two-dimensional model case.

Theorem 5.5 Let M be a real hypersurface in C
2 admitting a good coordinate at p

as in (5.2). If �1(M, p) = ∞, then the following three conditions are equivalent.

(i) There exists a γ ∈ �reg tangent to M at p to infinite order;
(ii) There exists a good coordinate (z, w) for M at p on which F is flat;
(iii) There exists a good coordinate (z, w) for M at p such that the convergence

radius of the power series S(z) in (5.1) is positive.

Proof (ii) �⇒ (i) and (ii) �⇒ (iii) are obvious.
First, let us show (iii) �⇒ (ii). From (iii), the power series S(z) can be regarded

as a holomorphic function defined on some open neighborhood of z = 0. Putting
w∗ = w − S(z), we can express the hypersurface M on the good coordinate (z, w∗)
by the equation 2Re(w∗) + F∗(z, z̄) = 0, where F∗(z, z̄) = F(z, z̄) − 2Re(S(z)).
Since F(z) − 2Re(S(z)) is flat at z = 0, the existence of coordinate in (ii) is shown.

Next, let us show (i) �⇒ (iii). We may assume that the regular holomorphic curve
in (i) can be expressed as γ (t) = (t,−h(t)) on a good coordinates (z, w) satisfying
that (r ◦ γ )(t) = O(t N ) for every N ∈ N. Here h is holomorphic near the origin and
satisfies h(0) = 0. Let

∑∞
j=1 a j t j be the Taylor series of h at t = 0, which converges

on an open neighborhood of t = 0. Now, after the first finite sum of the Taylor series
of h and F are substituted into the equations (r ◦ γ )(t) = −2Re(h(t)) + F(t, t̄) = 0,
we have

Re

(∑N

j=1
a j t

j
)

−
∑N

j=2
Re(c j t

j ) = O(t N+1),

for every N ∈ N. From the above equality, we can see that c j = a j for every j ∈ N.
This means that S(t) converges and S(t) = h(t) on an open neighborhood of t = 0.

��
Remark 5.6 The condition (iii) in Theorem 5.5 is weaker than the condition: M is real
analytic near p. Indeed, as mentioned in the Introduction, the real analyticity of M
implies the existence of desired curves in (i) in the theorem [7,11,19]. The hypersurface
M defined by 2Re(w) + e−1/|z|2 = 0 with p = (0, 0) satisfies the conditions (ii) and
(iii), but M is not real analytic at p.

In [3,16,22], smooth real hypersurfaces in C
2 admitting no curve γ∞ in (1.2) are

constructed. It follows from Theorem 5.5 that there are many such hypersurfaces.

Corollary 5.7 Let M be a real hypersurface defined by the equation (5.2). If
�1(M, p) = ∞, then the following two conditions are equivalent.
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Curves Tangent to Real Hypersurfaces 8073

(i) There is no γ ∈ � tangent to M at 0 to infinite order;
(ii) The convergence radius of the power series S(z) equals zero.

Remark 5.8 From (ii) in the above corollary, it is quite easy to construct smooth hyper-
surfaces satisfying the condition (i). Let {c j } j∈N be a sequence of complex numbers
such that the convergence radius of

∑∞
j=2 c j z j is zero. By using a classical lemma of

E. Borel (cf. [21], Theorem 1.5.4, or [14], Theorem 1.2.6), for the formal power series
of (x, y) ∈ R

2 (z = x + iy):

∑∞
j=2

Re(c j z
j ) =

∑
( j,k)∈Z2+

C jk x j yk with C jk ∈ R, (5.3)

there exists a real-valued C∞ function f defined near the origin in R
2 whose Taylor

series at the origin is (5.3). Then the real hypersurface defined by 2Re(w)+ f (z, z̄) = 0
satisfies the condition (i). We remark that the above hypersurface cannot always be
uniquely determined from the sequence {c j } j∈N.

In [16,22], similar examples of hypersurfaces have been found. Since their con-
structions do not use a lemma of E. Borel directly, they look much more elaborate.

Furthermore, it is shown in [9] that when {c j } j∈N is an increasing sequence of
positive real numbers, the above function f can be selected to be a subharmonic
function on C. Therefore, there are many pseudoconvex real hypersurfaces satisfying
the condition (i) in the corollary.

6 Higher Dimensional Case

In this section, we generalize results given in the previous section to the higher dimen-
sional case. Let M be a real hypersurface in C

n+1 (n ≥ 1) and let p lie in M . In this
section, we always consider the case when M is of Bloom–Graham infinite type at p.
First, let us recall the exact definition of the Bloom–Graham type in [3]. We remark
that the following definition is an equivalence condition for their original type. This
equivalence is also shown in [3].

Definition 6.1 Let X be a set of n-dimensional complex submanifolds containing p.
We say that the Bloom–Graham type of M is m (< ∞), if there is a X ∈ X tangent to
M at p to order m but no X ∈ X tangent to a higher order. Otherwise, we say that the
Bloom–Graham type of M is infinity at p (see the condition (7) in Proposition 1.1).

In the case of Bloom–Graham infinity type, a similar property to Lemma 5.4 can
be seen.

Lemma 6.2 If the Bloom–Graham type of M at p is infinity, then the Taylor series of
F in (3.1) at the origin consists of only pure terms on every standard coordinate (see
Sect. 3).

Proof Let us assume the existence of a standard coordinate (z, w) on which the Taylor
series of F contains a mixed term. Let m be the minimum order of the mixed terms
of Taylor series of F .
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It is easy to construct a new standard coordinate (z, w∗) on which M can be
expressed by the equation

2Re(w∗) + Pm(z, z̄) + Q(z, z̄) + R∗
1 · Im(w∗) + R∗

2 = 0,

where Pm is a non-zero mixed homogenous polynomial of degree m without pure
terms, Q ∈ C∞

0 (Cn) with ord(Q) ≥ m + 1 and R∗
1 , R∗

2 have the same properties as
those of R1, R2 in (3.1), respectively. It follows from the definition that the Bloom–
Graham type of M at p equals m < ∞, which is a contradiction. ��

From Lemma 6.2, the Taylor series of F at the origin in C
n can be expressed as

2
∑

α∈Zn+ Re(cαzα) where cα ∈ C. When the hypersurface M and p ∈ M are fixed,
the sequence {cα}α∈Zn+ is determined by the chosen standard coordinates (z, w). For
a given coordinate (z, w), we define the formal power series

S(z) =
∑

α∈Zn+
cαzα (z ∈ C

n). (6.1)

Hereafter in this section, we only consider the case when the hypersurface admits
a good coordinate at p. That is to say, M can be expressed as in the model form

r(z, w, z̄, w̄) = 2Re(w) + F(z, z̄) = 0, (6.2)

where F is the same as in (3.1).
Let �̂ be the set of (germs of) nonconstant holomorphic curves γ̂ = (γ̂1, . . . , γ̂n) :

(C, 0) → (Cn, 0). Let
∑∞

k=1 a jk tk be the Taylor series of γ̂ j for j = 1, . . . , n.
After these Taylor series are substituted into S(z1, . . . , zn) with z j = γ̂ j (t), a formal
computation gives the formal power series, denoted by (S ◦ γ̂ )(t), in the following.

(S ◦ γ̂ )(t) = S(γ̂1(t), . . . , γ̂n(t)) =
∑

α∈Zn+
cα

n∏

j=1

(∑∞
k=1

a jk tk
)α j

=:
∑∞

j=2
c j t

j . (6.3)

The relationship between F and S implies that

(F ◦ γ̂ )(t) = 2
∑N

j=2
Re(c j t

j ) + O(t N+1), (6.4)

for every N ∈ N.
The following theorem is a natural generalization of Theorem 5.6. Let � denote the

set of nonconstant holomorphic mappings γ : (C, 0) → (Cn+1, p).

Theorem 6.3 Let M be a real hypersurface in C
n+1 (n ≥ 1) admitting a good coordi-

nate at p as in (6.2). If the Bloom–Graham type of M at p is infinity, then the following
three conditions are equivalent.
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(i) There exists a γ ∈ � tangent to M at p to infinite order;
(ii) There exists a good coordinate (z, w) for M at p on which (F ◦ γ̂ )(t) is flat at

t = 0 for some γ̂ ∈ �̂;
(iii) There exists a good coordinate (z, w) for M at p such that the formal power series

(S ◦ γ̂ )(t) in (6.3) converges on an open neighborhood of t = 0 for some γ̂ ∈ �̂,
where S is as in (6.1).

Proof First, let us show (ii)�⇒ (i). Let γ (t) = (γ̂ (t), 0) ∈ �, where γ̂ is as in (ii), and
let r be a defining function for M as in (6.2). Then we have (r ◦ γ )(t) = (F ◦ γ̂ )(t) =
O(t N ) for every N ∈ N, which implies (i).

Second, let us show (iii) �⇒ (ii). Let I := { j : γ̂ j �≡ 0}. Define the map TI :
C

n → C
n by (w1, . . . , wn) = TI (z1, . . . , zn) where w j = z j if j ∈ I and w j = 0

otherwise. It follows from Abel’s lemma (cf. [12]) that the convergence of (S ◦ γ̂ )(t)
for some t �= 0 implies that the power series (S ◦ TI )(z) converges on an open
neighborhood of z = 0, which means that S ◦ TI can be regarded as a holomorphic
function there. Letting w∗ = w − (S ◦ TI )(z), we can express the hypersurface M
on the good coordinate (z, w∗) by the equation: 2Re(w∗) + F∗(z, z̄) = 0, where
F∗(z, z̄) = F(z, z̄) − 2Re((S ◦ TI )(z)). By using the equality S ◦ TI ◦ γ̂ = S ◦ γ̂ ,
(F∗ ◦ γ̂ )(t) = (F ◦ γ̂ )(t) − 2Re(S ◦ γ̂ )(t) is flat at t = 0, which implies (ii).

Third, let us show (i) �⇒ (iii). We may assume that a holomorphic curve in (i)
can be expressed as γ (t) = (γ̂ (t),−h(t)), where γ̂ ∈ �̂ and h ∈ O0(C) with
h(0) = 0, on a good coordinates (z, w). Note that (i) is equivalent to the condition
(r ◦ γ )(t) = O(t N ) for every N ∈ N. Let

∑∞
j=1 a j t j be the Taylor series of h at

t = 0, which converges on an open neighborhood of t = 0. Now, after the first finite
sum of the Taylor series of h and F ◦ γ̂ in (6.4) are substituted into the equations
(r ◦ γ )(t) = −2Re(h(t)) + (F ◦ γ̂ )(t) = O(t N ) for every N ∈ N, we have

Re

(∑N

j=1
a j t

j
)

−
∑N

j=2
Re(c j t

j ) = O(t N+1),

for every N ∈ N. From the above equality, we can see that c j = a j for every j ∈ N.
This means that (S ◦ γ̂ )(t) converges and (S ◦ γ̂ )(t) = h(t) on an open neighborhood
of t = 0.

��
In [9], smooth pseudoconvex real hypersurfaces inC

n+1 of Bloom–Graham infinite
type admitting no curve γ∞ in (1.2) are constructed. It follows from Theorem 6.3 that
many such hypersurfaces can be easily constructed.

Corollary 6.4 Let M be a real hypersurface defined by the equation (6.2). If the Bloom–
Graham type of M at 0 is infinity, then the following three conditions are equivalent.

(i) There is no γ ∈ � tangent to M at 0 to infinite order;
(ii) For all γ̂ ∈ �̂, the formal power series (S ◦ γ̂ )(t) does not converge at any point

on a delated open neighborhood of t = 0;
(iii) The formal power series S(z) does not converge at any point on a delated open

neighborhood of z = 0.
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Proof We remark that (ii)�⇒ (iii) can be shown by using Abel’s lemma (cf. the proof
of (iii) �⇒ (ii) in Theorem 6.3). The other implications can be directly obtained from
Theorem 6.3. ��

Remark 6.5 From (iii) in the above corollary, it is easy to construct smooth pseudo-
convex hypersurfaces of Bloom–Graham infinite type satisfying the condition (i). One
of simple examples of hypersurfaces is given by the equation Re(w) + f1(z1, z̄1) +
· · ·+ fn(zn, z̄n) = 0, where f j ( j = 1, . . . , n) are subharmonic functions constructed
in [9] (see also Remark 5.8). The example constructed in [9] takes the same form, but
this example needs some additional conditions for each f j .

Roughly speaking, when the flatness of hypersurfaces is stronger, it becomes easier
to find the curve tangent to M to higher order. Thus, the following question seems to
be more difficult: does there exist a smooth pseudoconvex real hypersurface in C

n+1

(n ≥ 2) of the Bloom–Graham finite type that admits no γ ∈ � tangent to M to infinite
order? The following theorem gives an affirmative answer.

Theorem 6.6 Let n ≥ 2. There exists a smooth pseudoconvex real hypersurface M
in C

n+1 with �1(M, p) = ∞ and �
reg
1 (M, p) < ∞ (in particular, M is of Bloom–

Graham finite type at p) that admits no γ ∈ � tangent to M at p to infinite order.

Proof Notice that since a desired real hypersurface M satisfies that �
reg
1 (M, p) <

�1(M, p), there is no N -canonical coordinate for M from Theorem 2.3.
First, let us construct a desired real hypersurface M in C

3. Let {c j } j∈N be an
increasing sequence of positive real numbers such that the power series

∑∞
j=8 c j z j

does not converge away from the origin. Let f be a real-valued smooth subharmonic
function defined near the origin in C whose Taylor series is 2

∑∞
j=8 Re(c j z j ) (see

Remark 5.8). Let us consider the smooth function F defined near the origin in C
2 as

F(z, z̄) =
∣∣∣z31 − z22

∣∣∣
2 + f (z1, z̄1). (6.5)

Let M be a smooth real hypersurface in C
3 defined by r(z, w) = 2Re(w)+ F(z, z̄) =

0. The pseudoconvexity of M is obvious.
Now, let us consider �1(M, 0) and �

reg
1 (M, 0) by using the Newton polyhedron

of N+(r). It is easy to see

N+(r) := {ξ ∈ R
3+ : ξ1/6 + ξ2/4 + ξ3 ≥ 1}.

Let κ0 := {(ξ1, ξ2, 0) ∈ N+(r) : ξ1/6 + ξ2/4 = 1}, which is a compact face of
N+(r). Then Fκ0 is not N -nondegenerate, while Fκ ’s are N -nondegenerate for the
other compact faces κ . Therefore, Theorems 7.3 and 8.4 in [15] implies that if γ ∈ �

does not take the form

γ (t) = (t2,±t3 + o(t3), o(t12)), (6.6)
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then we have

1 ≤ ord(r ◦ γ )

ord(γ )
≤ 6.

In particular, every γ ∈ �reg does not take the form (6.6), so it is easy to see
�

reg
1 (M, 0) = 6. More precisely, we consider the case when γ takes the form (6.6).

Lemma 6.7 Let N be an arbitrary integer with N ≥ 10. Then the following two
conditions are equivalent.

(i) ord(r ◦ γ ) ≥ 2N + 2;
(ii) γ (t) = (t2,±t3 + O(t N+1),−∑N

j=8 c j t2 j + O(t2N+2)).

Proof By dividing the function r into a polynomial part and the remainder part, a
defining function for M can be rewritten as follows.

r(z, w) = 2Re

(
w +

∑N

j=8
c j z

j
1

)
+

∣∣∣z31 − z22

∣∣∣
2 + RN+1(z1, z̄1), (6.7)

where RN+1 ∈ C∞
0 (C) with ord(RN+1) ≥ N + 1.

First, we show (i) �⇒ (ii). It suffices to treat the curves of the form (6.6), which
will be more exactly denoted by γ (t) = (t2,±t3 + g(t), h(t)) where g ∈ O0(C) with
ord(g) > 3 and h ∈ O0(C) with ord(h) > 12. Substituting this γ (t) into (6.7), we
have

(r ◦ γ )(t) = 2Re

(
h(t) +

∑N

j=8
c j t

2 j
)

+ |g(t)|2 + RN+1(t
2, t2). (6.8)

Since RN+1(t2, t2) = O(t2N+2) and the mixed terms and the pure terms cannot
be canceled, g and h must satisfy that g(t) = O(t N+1) and h(t) + ∑N

j=8 c j t2 j =
O(t2N+2), which imply the condition (ii).

Next, we show (ii)�⇒ (i). Substituting the equation in (ii) into (6.7), we can easily
see ord(r ◦ γ ) ≥ 2N + 2. ��

It follows from the above lemma that �1(M, p) = ∞.
Now, let us assume that there exists a curve γ∞ ∈ � such that ord(r ◦ γ∞) ≥ N

for every N ∈ N. Let γ∞(t) =: (γ1(t), γ2(t), γ3(t)). Since γ∞ satisfies the condition
(i) in Lemma 6.7, the condition (ii) implies that γ3(t) = −∑N

j=8 c j t2 j + O(t2N+2)

for every N ∈ N. But,
∑∞

j=8 c j t2 j does not converge away from the origin, which is
a contradiction to the holomorphy of γ3. As a result, we see that there exists no γ ∈ �

tangent to M at the origin to infinite order.
In higher dimensional case C

n+1 with n ≥ 3, the following F is considered:

F(z, z̄) =
∣∣∣z31 − z22

∣∣∣
2 + f (z1, z̄1) +

∑n

j=3
|z j |2,
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where f is the same as that in (6.5). It is easy to construct higher dimensional hyper-
surfaces satisfying the properties in the theorem by using F in (6.5) in a similar fashion
to the three-dimensional case. ��

7 Open Problems

Theorems 5.5 and 6.3 only treat real hypersurfaces of the model form as in (3.2). The
following problem is naturally raised.

Problem 7.1 Let n ≥ 1 and let M be a general smooth (pseudoconvex) real hyper-
surface in C

n+1 and p ∈ M . Give equivalence conditions for the existence of γ ∈ �

tangent to M at p to infinite order, analogous to those in Theorems 5.5 and 6.3.

The second problem is concerned with Theorem 6.6.

Problem 7.2 Let n ≥ 2 and let M be a smooth (pseudoconvex) real hypersurface in
C

n+1 with�
reg
1 (M, p) < ∞ for p ∈ M . Give equivalence conditions for the existence

of γ ∈ � tangent to M at p to infinite order.

Theorem 6.6 only provides a simple example to the nonexistence of the desired
γ ∈ �.
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