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Abstract
We show that the set of Finsler metrics on a manifold contains an open everywhere
dense subset of Finsler metrics with infinite-dimensional holonomy groups.
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1 Introduction

Finsler metrics appeared already in the inaugural lecture of Riemann in 1854 [19],
under the name generalized metric. At the beginning of the XXth century, the intensive
study of Finsler metrics was motivated by the optimal transport theory. A group of
mathematicians lead by Cartheodory aimed to adapt mathematical tools which were
effective in Riemannian geometry (such as affine connections, Jacobi vector fields,
sectional curvature) for a more general situation. Finsler was a student of Cartheodory
and his dissertation [5] is one of the important steps on this way.

Riemannian geometry is one of themain sources of challenging problems in Finsler
geometry: many Riemannian results are not valid in the Finslerian setup and one asks
under what additional assumptions they are correct.

Our paper studies the holonomy groups of Finsler manifolds. We give precise defi-
nitions later; at the present point let us recall that the Berwald connection (introduced
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byBerwald in 1926 [2]) can be viewed as an Ehresmann connection on the unit tangent
bundle IM . Its holonomy group (at x ∈ M) is the subgroup of the group Di f f (Ix )
generated by the parallel transports along the loops starting and ending at x .

For Riemannian metrics, the Berwald connection specifies to the Levi–Civita con-
nection. Study of Riemannian holonomy groups is a prominent topic in Riemannian
geometry and mathematical physics. It is known (see e.g. Borel and Lichnerowicz
[3]) that the holonomy group is a subgroup of the orthogonal group; in particular it is
always finite-dimensional. Moreover, all possible holonomy groups are described and
classified due in particular to breakthrough results of Berger and Simons [1,20].

In the Finslerian case, the situation is very different and not much is known. By [21]
(see also [12,13,22]) the so-called Berwald manifolds have finite-dimensional holon-
omygroup.Also the so-calledLandsbergmanifolds have finite-dimensional holonomy
group [10], but it is not jet known whether nonberwaldian Landsberg manifolds exist
[11]. We are not aware of other examples of Finsler metrics with finite-dimensional
holonomy group, it is an interesting problem to find such.

From the other side, there are also not many explicit examples of Finsler manifolds
with infinite-dimensional holonomygroup [7,16], and all these examples have constant
curvature. A natural and fundamental question in this context is whether for a generic
Finsler manifold the holonomy group is infinite-dimensional. Its simplest version was
explicitly asked by Chern et al in [4, p. 85].

In our paper, we prove that for a generic Finsler manifold the holonomy group is
infinite-dimensional:

Theorem 1.1 In the setF ofC∞-smoothFinslermetrics on amanifold M of dimension
n ≥ 2, there exists a subset ˜F of Finsler metrics with infinite dimensional holonomy
group, which is open and everywhere dense in any Cm-topology, m ≥ 8.

What we essentially prove is that one can C∞ small perturb any Finsler metric F
at a neighbourhood of any point x ∈ M such that for every open nonempty subset
U ⊆ M containing x , the perturbed Finsler structure (U , Ft ) has infinite-dimensional
holonomy group. Moreover, the metric Ft has an open subset in the space of all C∞-
Finsler metrics equipped withCm≥8-topology such that every Finsler metric F ′′ in this
set also has infinite-dimensional holonomy group. Theorem 1.1 is true mircrolocally
and on the level of germs (see Remark 5.1). The perturbation is given by a formula.
We show that for almost every t ∈ [0, 1], the perturbation Ft on its indicatrix I t

x
has the full infinity-jet at every point y ∈ I t

x . Based on this, we conjecture that in
the generic case, the holonomy group of a Finsler manifold coincides with the full
diffeomorphism group of the indicatrix.

Our results imply that, in contrast to the Riemannian case, the closure of the holon-
omy group is not a compact group formost Finlser metric. Similar results for the linear
holonomy group (defined via the linear parallel transport) were recently obtained in
[8].

The proof is organised as follows. We first show that the standard Funk metric
FFunk has ‘sufficiently large’ holonomy algebra. For dimension 2, this was known
[7,16], we generalise these results to all dimensions. Next, we employ the trick from
[14, §3.1] and show that with the help of FFunk one can perturb an arbitrary Finsler
metric such the result also has ‘sufficiently large’ holonomy algebra. Then, we show
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that if the holonomy algebra is ‘sufficiently large’ then it is infinite-dimensional. This
step is in fact a general statement about algebras of smooth vector fields and possibly
can be applied elsewhere. Therefore, let us formulate it as Theorem 1.2 below, this
will also explain what we understand by ‘sufficiently large’.

An algebra g of vector fields on U ⊆ R
n is called 3-jet generating at x ∈ U , if the

set of 3rd jets of these vector fields at the point x coincides with the space of all 3rd
jets of vector fields at x (see Definition 3.3). In other words, every vector field can be
approximated at x with order three by a vector field from the algebra. For example, if
the algebra is locally transitive at x , i.e., if the elements of the algebra at x span the
whole TxU , then it is 0−jet generating.

Theorem 1.2 Let g be a Lie algebra of vector fields on a manifold U. If there exists a
point where it is 3-jet generating, then g is infinite-dimensional.

If dimension U is 1, the result is known and is due to Sophus Lie, see e.g. [17,
Theorem 2.70]. As examples show (see e.g. the tables at the back of [17] where vector
field algebras of arbitrary finite dimension are listed), the 3-jet generating property is
important.

2 Preliminaries

Let M be an n-dimensional manifold, T M its tangent manifold, π : T M → M the
canonical projection. Local coordinates (xi ) on M induce local coordinates (xi , yi )
on T M . The kth order jet of a function f ∈ C∞(M) (resp. smooth vector field
V ∈ X(M)) at x ∈ M will be denoted by j kx ( f ) (resp. j kx (V )). In local coordinates,
the kth order jet can be viewed as the collection of all derivatives of the function or
of the vector field up to the order k. For example, the 1st order jet of a function at a

point x can be viewed as n + 1 numbers
(

f , ∂ f
∂x1

, . . . ,
∂ f
∂xn

)

, and of a vector field V

as n(n + 1) numbers
(

V1, . . . , Vn,
∂V1
∂x1

, . . . , ∂Vn
∂xn

)

.

2.1 Finsler Manifolds, Connection

The function F : T M → R+ is called a Finsler metric, if it is a positively 1-
homogeneous continuous function, C∞-smooth on ̂T M = T M\{0} and

gi j = ∂2E
∂ yi∂ y j

is positive definite at every y ∈ ̂TxM , where E := 1
2 F

2 denotes the energy function of
F . A pair (M, F) is called a Finsler manifold. The hypersurface of TxM defined by

Ix ={ y ∈ TxM : Fx (y)=1 } (1)

is called the indicatrix at x ∈ M . The geodesics of a Finsler manifold (M, F) are
given by the solutions of the following system of second-order ordinary differential
equations
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ẍ i + 2Gi (x, ẋ) = 0, (2)

where the geodesic coefficients Gi = Gi (x, y) are determined by the formula

Gi = 1

4
gil

(

2
∂g jl

∂xk
− ∂g jk

∂xl

)

y j yk, i = 1, . . . , n. (3)

The (Berwald) parallel translation on a Finsler manifold can be introduced by con-
sidering the Ehresmann connection: the horizontal distribution is determined by the
image of the horizontal lift TxM → T(x,y)T M defined in a local basis as

δi :=
(

∂

∂xi

)h

= ∂

∂xi
− Gk

i
∂

∂ yk
, (4)

where y ∈ ̂TxM and Gi
j = ∂Gi

∂ y j
. We have the decomposition

T T M = H ⊕ V,

whereV = ker π∗ is the vertical distribution. The corresponding projectors are denoted
by h and v. The horizontal Berwald covariant derivative of a vertical vector field ξ

with respect to a vector field X ∈ X(M) is defined by

∇Xξ = [Xh, ξ ].
In local coordinates, if ξ = ξ i (x, y) ∂

∂ yi
and X(x) = Xi ∂

∂xi
, then

∇Xξ =
(

∂ξ i

∂x j
− Gk

j
∂ξ i

∂ yk
+ ∂Gi

j

∂ yk
ξ k

)

X j
∂

∂ yi
.

2.2 Parallel Translation and Curvature

Parallel vector fields along a curve c are characterized by the property that their covari-
ant derivative vanishes. Parallel translation can be obtained through the following
geometric construction: the horizontal lift of a curve c : [0, 1] → M with initial con-

dition X0 ∈ Tc(0)M is a curve ch : [0, 1] → T M such that π ◦ ch =c, dc
h

dt =( dc
dt

)h and
ch(0)= X0. Then the parallel translation of X0 along the curve c from c(0) to c(1) is

Pc(X0) = ch(1). (5)

The horizontal distribution H is, in general, non-integrable. The obstruction to its
integrability is given by the curvature tensor R = 1

2 [h, h] which is the Nijenhuis
torsion of the horizontal projector h associated to the subspace H. The curvature
tensor field is defined by

R = Ri
jk(x, y) dx j ⊗ dxk⊗ ∂

∂ yi
(6)
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where

Ri
jk = ∂Gi

j

∂xk
− ∂Gi

k

∂x j
+ Gm

j G
i
km − Gm

k G
i
jm (7)

in a local coordinate system with Gi
jk = ∂Gi

j
∂ yk

.

Remark 2.1 From formula (3) we get that the geodesic coefficients Gi (x, y) can be
calculated in terms of the 3rd order jet of the Finsler function F at (x, y). Therefore,
the coefficients Ri

jk(x, y) of the curvature tensor and the curvature vector fields

Ri j := R(δi , δ j ), i, j = 1, . . . , n, (8)

can be expressed algebraically by the 5th order jet of F . More generally, the value
of kth order covariant derivatives and kth successive Lie brackets of curvature vector
fields can be expressed algebraically by the (k + 5)th order jet of F .

2.3 The Holonomy Group, the Holonomy Algebra and Its Subalgebras

The holonomy group Holx (M, F) of a Finsler manifold (M, F) at a point x ∈ M
is the group generated by parallel translations along piece-wise differentiable closed
curves starting and ending at x . Since the parallel translation (5) is 1-homogeneous
and preserves the norm, one can consider it as a map

Pc : Ix → Ix ; (9)

therefore, the holonomy group can be seen as a subgroup of the diffeomorphism group
of the indicatrix:

Holx (M, F) ⊂ Di f f (Ix ),

and its tangent space at the identity, is called the holonomy algebra:

hol x (M, F) ⊂ X (Ix ) . (10)

We are listing below the most important properties of the holonomy algebra (see [7]):

Property 2.2 (1) hol x (M, F) is a Lie subalgebra of X (Ix ),
(2) the exponential image of hol x (M, F) is in the topological closure ofHolx (M, F).

The infinitesimal holonomy algebra hol∗x (M, F) is generated by curvature vector fields
and their horizontal Berwald covariant derivatives, that is:

hol∗x (M, F) :=
〈

∇Z1 . . . ∇Zk R(Xh,Y h)
∣

∣ X ,Y , Z1, . . . , Zk ∈ X (M)
〉

Lie
. (11)

The infinitesimal holonomy algebra hol∗x (M, F) is a Lie subalgebra of hol x (M, F).
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Remark 2.3 The infinitesimal holonomy algebra is local in nature, that is for any open
neighbourhoodU of x ∈ M wegethol∗x (M, F) = hol∗x

(

U , F |π−1(U )

)

.For that reason,
we will simplify the notation

hol∗x (F) := hol∗x (M, F)

by omitting the neighborhood of the point where the infinitesimal holonomy algebra
is determined. Indeed, the curvature vector fields, their horizontal Berwald covariant
derivatives and their Lie brackets can be computed on an arbitrarily small neighbour-
hood of x , therefore, their value at x can be determined locally.

We have the inclusions of Lie algebras:

hol∗x (F) ⊂ hol x (M, F) ⊂ X (Ix ) , (12)

therefore, at the level of groups, we get

exp
(

hol∗x (F)
) ⊂ exp

(

hol x (M, F)
) ⊂ Holcx

(

M, F) ⊂ Di f f (Ix ) (13)

where Holcx (M) denotes the topological closure of the holonomy group with respect
to the C∞–topology of Di f f (Ix ). We call a Lie algebra infinite dimensional if it
contains infinitely many R−linearly independent elements. Clearly, using the tangent
property of the holonomy algebra, if hol x (M, F) is infinite dimensional, then the
holonomy group cannot be a finite dimensional Lie group. This observation motivates
the following

Definition 2.4 The holonomy group of a Finsler manifold (M, F) is called infinite
dimensional if its holonomy algebra is infinite dimensional.

We refer to [7] for a discussion of the tangent Lie algebras of diffeomorphism groups
and of the relation between the holonomy group and the holonomy algebra.

3 On the Holonomy of the Standard FunkMetric

A Funk metric can be described as follows. Let � be a bounded convex domain in Rn

and denote its boundary by ∂�. We can define a Finsler norm function F�(x, y) in
the interior of � for any vector y ∈ Tx� by the formulas

F�(x, y) > 0, x + y

F�(x, y)
= z,

where z ∈ ∂�. This norm function is called the Funk norm function induced by �.
The Funk norm induced by the origo centered unit ball Bn ⊂ R

n will be called the
standard Funk norm and will be denoted by F

B
n . We denote by o = (0, . . . , 0) the

origin in Rn .
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Remark 3.1 The holonomy of (B
2
, F

B
2 ) was investigated in [16, Chapter 5]. It was

proved that the infinitesimal holonomy algebra hol∗o(FB2 ) contains the Fourier algebra

F(S1) whose elements are vector fields f d
dt such that f (t) has finite Fourier series.

One has
F(S1) ⊂ hol∗o(FB2 ) ⊂ X

(

S
1
)

. (14)

Since F(S1) is dense in X
(

S
1
)

, we get the same from (14) for hol∗o(FB2). Using the
exponential map, one can obtain from (13) that the closure of the holonomy group
of the Finsler surface (B2, FB2) is Di f f+(S1), the group of orientation preserving
diffeomorphisms of the circle [16, Theorem 5.2].

Proposition 3.2 The infinitesimal holonomy algebra of the standard Funk metric F
B
n

at o ∈ R
n is infinite dimensional.

Proof For n = 2 the proof follows directly from Remark 3.1 since (14) shows that
hol∗o(FB2 ) contains the infinite dimensional Lie algebra F(S1).

Let us consider the n > 2 case. For each tangent 2-plane K ⊂ ToBn the restriction
of F

B
n to B

2 := B
n ∩ K is the standard Funk metric on B

2. One can suppose that
K is the 2-plane generated by ∂

∂x1
and ∂

∂x2
. Then, using the totally geodesic property,

the curvature vector field and its successive covariant derivatives with respect to the
directions ∂

∂x1
and ∂

∂x2
on B

2 at o can be inherited as restriction of the corresponding
vector fields of Bn . Consequently, the elements of the Fourier algebra can be obtained
as the restriction of elements of the infinitesimal holonomy algebra hol∗(FBn ) and we
have

F(S1) ⊂ hol∗o(FB2 ) � hol∗o(FBn
∣

∣

B
n∩K) ⊂ hol∗o(FBn ).

It follows that hol∗o(FBn ) contains infinitely many R-independent vector fields which
can be expressed by the curvature vector fields and their covariant derivatives. ��
Definition 3.3 A set V ⊂ X (M) of vector fields on a manifold M is called

(1) k-jet generating at x ∈ M if the natural map j kx : V → J kx (X (M)) is surjective,
(2) jet generating on M if at any x ∈ M and for any k ≥ 0 it is k-jet generating.

We have the following

Proposition 3.4 The infinitesimal holonomy algebra hol∗o(FBn ) of the standard Funk
metric at the point o ∈ B

n
has the jet generating property on the indicatrix Io.

Proof According to Definition 3.3, we have to show that for any y ∈ Io and k ∈ N

the jet-projection hol∗o(FBn ) → J ky (X (Io)) is onto.
In the case n = 2, we get from Remark 3.1 that hol∗o(FB2 ) is dense in X (Io). It

follows that the restriction of the kth order jet projection on the infinitesimal holonomy
algebra

j ky : hol∗o(FB2) −→ J ky (X (Io)), (15)

is onto. In other words, any given kth order jet in J ky (X (Io)) can be realized as the
k-jet of an element of the infinitesimal holonomy algebra. Clearly we have the jet
generating property.
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Let us consider the n > 2 case. If y ∈ Io and v ∈ Ty(Io), let Ky,v be the 2-plane
determined by these vectors. Using the argument of the proof of Proposition 3.2 and
(15) we get that

j ky : hol∗o(FBn
∣

∣Io∩Ky,v
) −→ J ky (X

(Io ∩ Ky,v
)

) (16)

is onto. It follows that for y ∈ Io and v ∈ Ty(Io), any kth order v-directional derivative
can be realised by elements of the holonomy algebra. Using the local coordinate
system y1, . . . , yn−1 on the n − 1-dimensional indicatrix Io we get that for any given
(z, z1, . . . , zk) ∈ (R(n−1))(k+1) there exist ξ ∈ hol∗o(FBn ) such that

ξ
∣

∣

y = z, (Dvξ)
∣

∣

y = z1, . . . (D(k)
v ξ)

∣

∣

y = zk, (17)

where we consider a locally constant extension of v when the higher order derivatives
are computed. For the completion of the proof, however, we must be able to generate
all k-th jet at y, that is the terms corresponding to mixed partial derivatives as well.
This is possible, by using higher order derivatives corresponding to several directions.
Indeed, one can use the polarization technique to show that the kth order mixed partial
derivatives are determined by the kth order directional derivatives, a similar way as the
quadratic form determines the corresponding symmetric bilinear form, or more gen-
erally, as the homogeneous from of degree k determines the corresponding symmetric
multilinear k-from. Indeed, considering any v1, . . . vk ∈ Ty(Io) and their constant
extension in a neighbourhood of y, we get

Dv1

(Dv2 · · · (Dvk ξ)
) = 1

k!
k

∑

s=1

∑

1≤ j1<···< js≤k

(−1)k−sD(k)
v j1+···+v js

ξ. (18)

It follows that any mixed derivative can be realized for appropriately chosen (higher
order) directional derivatives, therefore the k-jet generating property is satisfied. The
argument works for any y ∈ Io and k ∈ N, therefore, the jet generating property
holds. ��
Remark 3.5 [The jet generating property of curvature vector fields and their deriva-
tives] One can easily show that in the 2-dimensional case, at any point y ∈ Io, the set
of the curvature vector field and its derivatives up to order k contains k + 1 linearly
independent k-jet, therefore, this set has the k-jet generating property. In the higher
dimensional cases, from the argument of Proposition 3.4 using 2-dimensional planes,
one can obtain that for any point y ∈ Io and any direction v ∈ Ty(Io), the curvature
vector fields and their derivatives up to order k can be used to express the directional
derivatives (17). From formula (18) one obtains that any kth order derivative can be
obtained by the derivatives of the curvature vector fields up to order k, that is the set

{Ri j , ∇p1Ri j , . . . , ∇p1...pkRi j | 1 ≤ i, j, p1 . . . pk ≤ n
} ⊂ X (Io) (19)

has the k-jet generating property.
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4 The Funk-Perturbed Finsler Metrics

In this section,we investigate the holonomygroupof aFinslermetric perturbedwith the
standard Funk metric. We present some technical properties of the Funk deformation
which are essential in the proof of Theorem 1.1.

Let (M, F) be a Finsler manifold and x0 ∈ M be a fixed point. We can chose an
x0-centered coordinate system (U , x) such that x(U ) ⊂ B

n . The associated coordi-
nate system on T M will be denoted by (π−1(U ), χ = (x, y)). We also consider a
bump function ψ : M → R, such that supp(ψ) ⊂ U and ψ |Ũ = 1 for some open
neighbourhood Ũ ⊂ U of x0. We denote by ψ̄ := ψ ◦ π the pull-back of ψ by the
projection π .

Using the standard Funk norm function FBn , we introduce the Finsler norm F̄ :
T M → R by the formula

F̄2 = ψ · (FBn ◦ χ)2 + (1 − ψ) · F2. (20)

We remark that F̄ is the pull-back of the standard Funk norm function on π−1(Ũ ).

Using (20) we define a smooth perturbation of the Finsler function F as a 1-
parameter family of functions Ft , where

F2
t = (1 − t)F2 + t F̄2, t ∈ [0, 1].

Then, Ft is a 1-parameter family of Finsler metrics. Indeed, F and F̄ are positively
1-homogeneous continuous function, smooth on̂T M , therefore, Ft verifies these prop-
erties. Moreover, taking the squares in (4) ensures that the bilinear form

gti j = (1 − t) gi j + t ḡi j , t ∈ [0, 1] (21)

of Ft is positive definite as well.

Proposition 4.1 Any element of the infinitesimal holonomy algebra hol∗x0(Ft ) can be
expressed as an algebraic fraction of polynomials in t whose coefficients are deter-
mined by jkx0F and jkx0 F̄ for some k ∈ N.

Proof The geodesic coefficients Gi
t , i = 1, . . . , n of Ft can be calculated in terms

of j3x0(Ft ), therefore, in terms of t , j3x0(F), and j3x0(F̄). More precisely, their expres-
sions are algebraic fractions of polynomials in t whose coefficients are determined
by the third-order jets of F and F̄ . Similarly, the curvature vector fields of Ft can be
expressed as algebraic fractions of polynomials in t whose coefficients are determined
by j5x0(F) and j5x0(F̄). More generally, using Remark 2.1, the value of kth order covari-
ant derivatives and kth successive Lie brackets of curvature vector fields of Ft can be
expressed as algebraic fractions of polynomials in t whose coefficients are determined
by j k+5

x0 (F) and j k+5
x0 (F̄). ��

Proposition 4.2 For any y0 ∈ Io the set of parameters t ∈ [0, 1], where the 3-jet
generating property of the infinitesimal holonomy algebra hol∗x0(Ft ) ⊂ X

(I t
x0

)

of the
Funk perturbation (4) is not satisfied, is finite.
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Proof Let us suppose that y0 ∈ I t
x0 ⊂ Tx0M for every t ∈ [0, 1]. If not, then we can

consider ˜Ft (x, y) := Ft (x, y)/Ft (x0, y0) which is just a rescaling with a constant for
any given t , therefore it doesn’t affect the jet generating property on the indicatrix.

From Proposition 3.4 we know that the Funk metric has the jet generating property,
therefore for t = 1, there are vector fields

{W1, . . . ,Wl} ∈ hol∗x0(Ft=1), (22)

l := dim
(

J 3y0
(

X
(I t=1

x0

) ))

in the infinitesimal holonomy algebra, such that any third-
order jet at y0 can be realized with their combination. Those vector fields are linear
combination of curvature vector fields, their derivatives and their Lie brackets. Let us
consider them for any Ft , t ∈ [0, 1]. We get a set in the infinitesimal holonomy algebra
of Ft at x0:

{W1(t), . . . ,Wl(t)} ∈ hol∗x0(Ft ). (23)

Using Proposition 4.1, these vector fields are algebraic fractions of polynomials in t
whose coefficients are determined by j kx0(F) and j kx0(F̄) for some k ∈ N. It follows
that the determinant of the l × l matrix composed by the 3rd order jet coordinates of
(23) at y0:

Pt := det

⎛

⎜

⎝

j3y0(W1(t))
...

j3y0(Wl(t))

⎞

⎟

⎠
, (24)

is an algebraic fraction of polynomials in t whose coefficients are determined by
j3x0(F) and j3x0(F̄) for some k ∈ NwithPt=1 �≡ 0. Since every non-trivial polynomial
has finitely many roots, Pt can only be zero at finitely many values t ∈ [0, 1]. By
continuity, there is a neighbourhood of y0 where this property is satisfied. ��

5 Density of Finsler Metrics with Infinite Dimensional Holonomy
Group

In this section, we prove Theorems 1.2 and 1.1.

5.1 Proof of Theorem 1.2

We prove the theorem by contradiction: let us suppose that g ⊂ X (U ) is a finite
dimensional Lie algebra on an n-dimensional manifold U and it is generating the
third order jets at x0 ∈ U . As before, the last property means that the 3-jet projection
g → J 3x0(X (U )) is onto.

We remark that a manifold with a finite dimensional Lie algebra of vector fields
with locally transitive action is real analytic (in the sense that there exist a real-analytic
atlas such that the vector fields of the Lie algebra are real-analytic). Indeed, a finite
dimensional Lie algebra generates a Lie group, and one can provide an analytic atlas
on this Lie group so that the group multiplication is analytic. Moreover, local Lie
subgroups are real analytic submanifolds, because they are images of the exponential
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map. For more about Lie groups and related topics, we refer to [9,18]. It follows that
locally, a manifold with transitive action of a Lie group is the factor group of the Lie
group by the stabilizer of one element, which is a local Lie subgroup, then it is also
analytic.

We say that the order of singularity of an element v ∈ g at x0 is k ∈ N, noted as
Ox0(v) = k, if the value and all partial derivatives up to order k at x0 are zero, and v

has a non-vanishing (k + 1)st order derivative. Each nonzero element has finite order
by analyticity. Let us consider the set g1 ⊂ g with order of singularity at least one,
that is

g1 :=
{

v ∈ g
∣

∣

∣ v(x0) = 0,
∂v

∂xi
(x0) = 0, i = 1, . . . , n

}

.

It is easy to see that g1 is a Lie subalgebra of g. Indeed, the j th component of the
commutator of two vector fields v, u ∈ g1 is given by

[v, u] j =
∑

i

(

∂v j
∂xi

ui − ∂u j
∂xi

vi

)

and has singularity of order at least two at x0. Actually, for any two vector fields V ,U
from g1 such that V has order of singularity k and U has order of singularity m their
commutator has order of singularity k + m.

Since g is finite dimensional, so is g1. It follows that the order of singularity is
bounded on g1. Indeed, if not, then there would be a sequence of vectors in g1 with
strictly monotone increasing order of singularity at x0 which would produce an infinite
number of linearly independent elements which is impossible.

Let v1 ∈ g1 be a non-zero element with maximal order Ox0(v1) = k of singularity
at x0. Using the 3-jet generating property, we have k ≥ 2. Then, for any v ∈ g1 we
have [v, v1] ∈ g1 andOx0([v, v1]) > k. Since k is maximal, it follows that [v, v1] = 0,
and it shows that v1 commutes with every elements of g1.

On the other hand, it is possible to choose a point x̂0 ∈ U in a neighbourhood of x0
such that v1(x̂0) �= 0 and g1 has the 1-jet generating property at x̂0. It follows that one
can choose an element v2 ∈ g1 such that v2(x̂0) = 0 but Dv1v2 �= 0. Therefore, the
commutator [v1, v2] at x̂0 is non-zero. This is a contradiction since v1 is an element
which commutes with every element of g1. Theorem 1.2 is proved.

5.2 Proof of Theorem 1.1

Let F be the set of C∞-smooth Finsler metrics on a given manifold M and let us
consider the subset ˜F ⊂ F characterized by the following property: F̃ ∈ ˜F if and
only if there exists a point x0 ∈ M such that the curvature vector fields and their
derivatives

{Ri j , ∇kRi j , ∇klRi j , ∇klhRi j | 1 ≤ i, j, k, l, h ≤ n
} ⊂ X

(Ix0
)

, (25)
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up to order 3 has the 3−jet generating property at least at one point of the indicatrix
at x0. Then

(i) the holonomy group at x0 of any F̃ ∈ ˜F is infinite dimensional,
(ii) the set ˜F is dense in F with respect to the Cm topology for each m ≥ 8 (in fact

for any m ≥ 0),
(iii) the set ˜F is open in F with respect the the Cm̃ topology for m̃ ≥ 8.

Indeed, (i) follows from Theorem 1.2: the infinitesimal holonomy algebra hol∗x0(F̃) is
infinite dimensional, consequently, the holonomy algebra and the holonomy group of
F̃ at x0 are infinite-dimensional.

To show (ii), let us consider the Funk-perturbation Ft given by (4), a point x0 in
M and a point y0 of the indicatrix at x0. By Proposition 4.2 there exists a sufficiently
small t > 0 such that the curvature vector fields and their derivatives up to order 3 has
the 3−jet generating property at y0. For sufficiently small t the metric Ft is sufficiently
close to F in Cm-topology.

In order to prove (iii), we observe that the jet-generating condition is an open
condition, so if it is fulfilled at y0 ∈ Ix0 , it is fulfilled at any point y1 ∈ Ix1 sufficiently
close to y0 in Cm≥8-topology on T M .

Theorem 1.1 is proved.

Remark 5.1 In the proof of Theorem 1.1, it was showed that for a convenient per-
turbation the infinitesimal holonomy algebra at a point is infinite-dimensional. This
remains valid mircrolocally and on the level of germs.
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