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Abstract
We study the density of polynomials in H2(E, ϕ), the space of square integrable
functions with respect to e−ϕdm and holomorphic on the interior of E in C, where ϕ

is a subharmonic function and dm is a measure on E . We give a result where E is the
union of a Lipschitz graph and a Carathéodory domain, which we state as a weighted
L2-version of the Mergelyan theorem. We also prove a weighted L2-version of the
Carleman theorem.
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1 Introduction

Let E ⊂ C be a measurable set, m a measure on E and ϕ a measurable function,
locally bounded above on E . Denote by L2(E, ϕ) the space of measurable functions
f in E which are square integrable with respect to the measure e−ϕdm i.e.,

L2(E, ϕ) :=
{

f | ‖ f ‖2L2(E,ϕ)
=

∫
E

| f |2e−ϕdm < ∞
}

.

Set

H2(E, ϕ) = L2(E, ϕ) ∩ O(E̊)

where O(E̊) stands for the space of holomorphic functions on the interior of E .
In this paper, we generalize the classical holomorphic approximation theorems to

weighted L2-spaces. The theory of holomorphic approximation started in 1885 with
two now classical theorems: theWeierstrass theorem and the Runge theorem. The first
one states that a continuous function on a bounded interval of R can be approximated
arbitrarily well by polynomials for the uniform convergence on the interval. We prove
the following weighted L2-version of the Weierstrass theorem:

Theorem 1.1 Let γ be a Lipschitz graph over a bounded interval and ϕ a subharmonic
function in a neighborhood of γ in C. Then polynomials are dense in L2(γ, ϕ).

Recall that a Carathéodory domain� is a simply-connected bounded planar domain
whose boundary ∂� is also the boundary of an unbounded domain. Combined with
Theorem 1.3 from [2], it leads us to the following weighted L2-version of the
Mergelyan theorem:

Theorem 1.2 Let � ⊂ C be a Carathéodory domain and γ ⊂ C a Lipschitz graph with
one endpoint p in �, the rest of γ be in the unbounded component of the complement
of �. Assume that the boundary of � is C2 near p. Let ϕ be a subharmonic function
in a neighborhood of � ∪ γ . Then polynomials are dense in H2(� ∪ γ, ϕ).

Here,

H2(� ∪ γ, ϕ) := { f is measurable on � ∪ γ with f |� ∈ O(�)

and
∫

�

| f (z)|2e−ϕ(z)dλz +
∫

γ

| f |2e−ϕds < ∞
}

,

where dλz is the Lebesgue measure on � and ds is the arc length element.
We can even generalize to
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Weighted L2 Version of Mergelyan and Carleman Approximation 3891

Fig. 1 Case avoided: the arc K j
is in the bounded component of
Ki

c
where Ki is the outer snake

Theorem 1.3 We use the previous notations and assumptions. If K�, � = 1, . . . , N is
either a Lipschitz graph or a bounded Carathéodory domain in C as in Theorem1.2

such that C \
(⋃N

�=1 K�

)
is connected, Ki and K j have at most one common point

{pi j } and K j is outside of the relatively compact connected component of Ki
c

for
each i �= j . Let ϕ be a subharmonic function in a neighborhood of

⋃N
�=1 K�. Then

polynomials are dense in H2(
⋃N

�=1 K�, ϕ) (Fig. 1).

Let � be the graph of a locally Lipschitz function over the real axis in C. We may
assume � = {(t, φ(t))} with φ : R → R a locally Lipschitz continuous function.

Thanks to Theorem 1.1, we prove the following weighted L2-version of the Carle-
man theorem:

Theorem 1.4 Let � be the graph of a locally Lipschitz function over the real axis in C

and ϕ a subharmonic function in a neighborhood of �. Denote by �n, n ∈ Z the part
of the graph � over the interval [n, n + 1]. Then for any f ∈ L2(γ, ϕ) and for any
positive numbers εn, there exists an entire function F, so that for each n ∈ Z,

∫
�n

|F − f |2e−ϕds < εn .

The paper is organized as follows: In Sect. 2, we give a necessary and sufficient
condition in terms of Lelong number for the exponential e−ϕ to be integrable on an arc
in C. In Sect. 3, we prove Theorem 1.1. In Sect. 4, we prove Theorem 1.2. In Sect. 5,
we prove Theorem 1.4. In the last section, we give an example which shows that there
are no non-zero polynomials in L2(γ, ϕ) for some rectifiable non-Lipschitz arc γ and
some subharmonic function ϕ.

2 “Exponential Integrability” on Arcs inC

In the following, we assume that ϕ is subharmonic on C, even though it is enough to
assume it to be subharmonic in a neighborhood of the given subset. This fact relies on
the following lemmas.

Lemma 2.1 Let μ ≥ 0 be a measure on C with finite mass on each compact set. Then
there exists a subharmonic function ϕ on C so that �ϕ = μ.
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Proof Set

μ =
∞∑

n=1

μn, μn = μ|{n−1≤|z|<n} .

Let ϕn(z) = ∫
log |z − ζ |dμn(ζ ). Then ϕn(z) is harmonic on {z : |z| < n − 1}. Thus

there exists a holomorphic function hn(z) on {z : |z| < n−1} so thatϕn(z) = Re hn(z).
By using the classical Mergelyan theorem to hn(z) on {z : |z| ≤ n − 2} there exists a
polynomial Pn(z) so that

|hn(z) − Pn(z)| <
1

2n
, on {|z| ≤ n − 2}.

Then ϕ(z) =
∞∑

n=1
Re(hn(z) − Pn(z)) is subharmonic on C and �ϕ = μ. �

Lemma 2.2 Let U ⊂⊂ V be two open sets and ϕ a subharmonic function on V . Then
there exists a subharmonic function ψ on C so that ϕ = ψ + h on U, where h is
harmonic on U.

Proof Choose a smooth cut off function χ : C → [0, 1] so that χ ≡ 1 on a neigh-
borhood of U and suppχ ⊂ V . Then μ := (�ϕ) · χ is a positive measure with finite
mass on each compact set inC. By Lemma 2.1 there is a globally defined subharmonic
function ψ such that �ψ = μ. But then ϕ = ψ + h on U for some harmonic function
h. �

Since h is uniformly bounded on U , as a direct consequence, we get

Lemma 2.3 Let E ⊂⊂ U and ϕ,ψ be as in Lemma 2.2. Then the Hilbert spaces
L2(E, ϕ) = L2(E, ψ) and the norms are “equivalent”, i.e., there exist positive con-
stants C1, C2 so that

C1‖ f ‖L2(E,ϕ) ≤ ‖ f ‖L2(E,ψ) ≤ C2‖ f ‖L2(E,ϕ).

We prove similar statements to those in Section 2 of [5] but on an arc γ . Those
results will allow us to prove at the end of the section the local integrability of the
exponential e−ϕ at a point x ∈ γ if and only if the Lelong number ν(ϕ)(x) is strictly
less than 1.

Definition 2.4 A function f : E → R, E ⊂ R, is said to be L−Lipschitz, L ≥ 0, if

| f (t1) − f (t2)| ≤ L|t1 − t2|

for every pair of points (t1, t2) ∈ E × E . We say that a function is Lipschitz if it is
L−Lipschitz for some L .
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Weighted L2 Version of Mergelyan and Carleman Approximation 3893

Lemma 2.5 (Chapter 5 of [13]) If f : [a, b] → R is a Lipschitz function, then f is
differentiable at almost every point in [a, b] and

f (b) − f (a) =
∫ b

a
f ′(t)dt .

Let γ be the graph of a Lipschitz function y(t) : [a, b] → R. In the following, we
say that γ is a Lipschitz graph if γ is the graph of an L-Lipschitz function y on [a, b],
a, b < ∞. Locally Lipschitz graph means that for each point p ∈ γ , there exists a
neighborhood U where the graph is Lipschitz, up to a rotation of γ . We denote by |γ |
the arc length of γ , defined as follows

|γ | :=
∫

γ

ds =
∫ b

a
|γ ′(t)|dt,

where |γ ′(t)| = √
1 + (y′(t))2.

Let z0 = (t0, y0) ∈ C and 0 < β < 1.

Lemma 2.6 Let γ be a graph, then |γ (t) − z0| ≥ |t − t0| on [a, b].

Lemma 2.7 Let γ be a Lipschitz graph, then

∫ b

a

1

|γ (t) − z0|β |γ ′(t)|dt ≤ ConstL,a,b,β .

Proof By Lemma 2.6 we have

∫ b

a

1

|γ (t) − z0|β |γ ′(t)|dt ≤ (L + 1)
∫ b

a

1

|t − t0|β dt .

If t0 > b, then

(L + 1)
∫ b

a

1

|t − t0|β dt ≤ (L + 1)
∫ b

a

1

|t − b|β dt

= (L + 1)
(b − t)1−β |ab

1 − β

= (L + 1)
(b − a)(1−β)

1 − β
;
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If t0 < a, then

(L + 1)
∫ b

a

1

|t − t0|β dt ≤ (L + 1)
∫ b

a

1

|t − a|β dt

= (L + 1)
(t − a)1−β |ba

1 − β

= (L + 1)
(b − a)(1−β)

1 − β
;

If a ≤ t0 ≤ b, then

(L + 1)
∫ b

a

1

|t − t0|β dt ≤ (L + 1)
∫ t0

a

1

(t0 − t)β
dt + (L + 1)

∫ b

t0

1

(t − t0)β
dt

≤ (L + 1)
(t0 − t)1−β

1 − β
|at0 +(L + 1)

(t − t0)1−β

1 − β
|bt0

≤ 2(L + 1)
(b − a)(1−β)

1 − β
.

Thus no matter whatever the condition on t0, we have that

∫ b

a

1

|γ (t) − z0|β |γ ′(t)|dt ≤ ConstL,a,b,β .

�
We generalize the previous Lemma to a product

Lemma 2.8 Let γ be a Lipschitz graph. Suppose zi ∈ C, βi > 0, for i = 1, . . . , m
and

∑m
i=1 βi = β < 1. Then

∫ b

a

m∏
i=1

(
1

|γ (t) − zi |
)βi

|γ ′(t)|dt < ConstL,a,b,β .

Proof According to Corollary 2.3 in [5] we know that

m∏
i=1

(
1

|γ (t) − zi |
)βi

≤
m∑

i=1

βi

β

(
1

|γ (t) − zi |
)β

.

By Lemma 2.7, we finally have

∫ b

a

m∏
i=1

(
1

|γ (t) − zi |
)βi

|γ ′(t)|dt < ConstL,a,b,β .

�
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Weighted L2 Version of Mergelyan and Carleman Approximation 3895

Let γ be a Lipschitz graph. We take an arc length parametrization of γ that we
denote by s. Let h be a function on γ , define

∫
γ

hds :=
∫ b

a
h(γ (t))|γ ′(t)|dt .

From Lemma 2.8, we are able to prove

Theorem 2.9 Let γ be a Lipschitz graph. Let μ be any nonnegative measure with total
mass β < 1 on an open set U in C containing γ . If ϕ(z) = ∫

log |z − ζ |dμ(ζ ), then
we have

∫
γ

e−ϕds < CL,β,a,b

where CL,β,a,b > 0 is a constant depending on L, β, a, b.

Proof Define ψn(z, ζ ) = max{log |z − ζ |,−n} and

ϕn(z) =
∫

ψn(z, ζ )dμ(ζ ).

Then ϕn is continuous and ϕn ↘ ϕ pointwise. Hence e−ϕn(z) ↗ e−ϕ(z). Therefore, it
is enough to show

∫
γ

e−ϕnds ≤ CL,β,a,b + 1

n
.

We fix n. Let δ > 0. Since ψn is continuous, by Lemma 2.4 in [5], there exist ζi ∈ U
such that the measure μn = ∑m

i=1 βiδζi has total mass β < 1 and |ϕ̃n − ϕn| < δ,

where

ϕ̃n(z) :=
∫

ψn(z, ζ )dμn(ζ ) =
m∑

i=1

βiψn(z, ζi ) ≥
m∑

i=1

βi log |z − ζi |.

Hence, we get

∫
γ

e−ϕnds ≤ eδ

∫
γ

e−ϕ̃nds

≤ eδ

∫ b

a

m∏
i=1

1

|γ (t) − ζi |βi
|γ ′(t)|dt . (2.1)

By Lemma 2.8, we get

∫ b

a

m∏
i=1

1

|γ (t) − ζi |βi
|γ ′(t)|dt < CL,β,a,b. (2.2)
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Hence, by combining (2.1) and (2.2) and by choosing δ small enough, we get

∫
γ

e−ϕnds ≤ CL,β,a,b + 1

n
.

�
Corollary 2.10 Theorem 2.9 holds with possibly larger constant for subharmonics

function ϕ on a neighborhood U of γ in C with μ := 1

2π
�ϕ|U being of total mass on

U strictly less than 1.

Proof By Riesz decomposition theorem (see for example Theorem 3.7.9 in [12]), we
can decompose any subharmonic function as ϕ(z) = ∫

U log |z − ζ |dμ(ζ ) + h(z)
where h is harmonic. Because h is bounded on U , Theorem 2.9 gives the result with
a constant depending, in addition, on h. �
We recall now the definition of the Lelong number ν(ϕ) of a subharmonic function ϕ

at a point z in C, where ϕ �≡ −∞, that is equal to the mass of the “Riesz” measure

μ = 1

2π
�ϕ at the point z. Below is an equivalent definition given by [8,9],

ν(ϕ)(z) := lim
r→0+

max|ζ−z|=r ϕ(ζ )

log r
.

From this definition, Kiselman [8], Theorem 4.1 proves that if e−ϕ is locally integrable
at z in Cn then ν(ϕ)(z) < 2n.

We recall the following result which is a converse of the previous property in
complex dimension one:

Theorem 2.11 If ϕ �≡ −∞ is subharmonic and ν(ϕ)(z) < 2 for a point z, then e−ϕ

is locally integrable in a neighborhood of z.

Proof We refer to the note at top of p. 99 in Hörmander’s book [7]. This is also a
consequence of Theorem 2.5 in [5]. We also refer to Proposition 7.1 in [14] for a
generalization to higher dimensions1. �
Now we state the previous Theorem for points in a Lipschitz graph.

Theorem 2.12 Let γ be a Lipschitz graph and ϕ �≡ −∞ a subharmonic function on
C. Then ν(ϕ)(γ (t)) < 1 for a point γ (t) ∈ γ if and only if e−ϕ is locally integrable
in a neighborhood of γ (t) on γ .

Proof ⇒) By hypothesis, ν(ϕ)(γ (t)) = 1

2π
�ϕ(γ (t)) < 1 so this is a direct conse-

quence of Corollary 2.10.
⇐) If there exists z0 = (t0, y0) ∈ γ so that ν(ϕ)(z0) ≥ 1, then we have

1
2π �ϕ(z0) ≥ 1. Therefore we have 1

2π �ϕ − δz0 ≥ 0 on C. Hence we may find a

1 Many authors refer to this result as “Skoda’s exponential integrability”
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Weighted L2 Version of Mergelyan and Carleman Approximation 3897

subharmonic function ψ on C such that 1
2π �ψ = 1

2π �ϕ − δz0 . Up to a harmonic
function we may write ϕ = log |z − z0| + ψ . Thus

∫
U (z0)∩γ

e−ϕds =
∫

U (z0)∩γ

1

|z − z0|e
−ψds, ψ is locally bounded above near z0

≥ C
∫

U (z0)∩γ

1

|z − z0|ds

≥ C
∫ t0+η

t0−η

1√
1 + L2|t − t0|

dt

= C
1√

1 + L2

(∫ t0

t0−η

1

t0 − t
dt +

∫ t0+η

t0

1

t − t0
dt

)

= C
1√

1 + L2

(
lim

ε→0+

∫ t0−ε

t0−η

1

t0 − t
dt + lim

ε→0+

∫ t0+η

t0+ε

1

t − t0
dt

)

= 2C
1√

1 + L2
lim

ε→0+(ln η − ln ε)

= ∞,

where η is a sufficiently small constant. �
Let α > 0. We will write ν(ϕ) < α to mean that ν(ϕ)(z) < α for all points z in the
given subset. However, ν(ϕ) ≥ α should be understood as there exist at least one point
z such that ν(ϕ)(z) ≥ α.

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 which generalizes the Weierstrass theorem to
weighted L2-spaces onLipschitz graphs. The particularity here is to allow theweightϕ
to have singularities on the given set. We will then carefully take the local integrability
of e−ϕ (Sect. 2) into account.

We first recall some classical results

Theorem 3.1 (Weierstrass 1883 [15]) Suppose f is a continuous function on a closed
bounded interval [a, b] ⊂ R. For each ε > 0 there exists a polynomial P such that

| f (x) − P(x)| < ε, ∀x ∈ [a, b].

Theorem 3.2 (Lavrent’ev, 1936 [10]) Let K ⊂ C be compact with C \ K connected.
Suppose that f is continuous on K . If K̊ = ∅, then for each ε > 0 there exists a
polynomial P such that

| f (x) − P(x)| < ε, ∀x ∈ K .
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3898 S. Biard et al.

Theorem 3.3 (Mergelyan, 1951 [11]) Let K ⊂ C be compact with C \ K connected.
Suppose that f is continuous on K and holomorphic on K̊ . Then, for each ε > 0 there
exists a polynomial P such that

| f (x) − P(x)| < ε, ∀x ∈ K .

In order to prove Theorem 1.1, we first prove

Theorem 3.4 Let γ be a Lipschitz graph over [a, b]. Suppose that ϕ is measurable on
γ and that

∫
γ

e−ϕds < ∞.

Then polynomials are dense in L2(γ, ϕ).

In order to prove this theorem we need the following Lemma.
For each nonnegative real valued f ∈ L2(γ, ϕ), define fn = min{ f , n}.

Lemma 3.5 fn → f in L2(γ, ϕ) as n ↗ ∞.

Proof We need to prove that
∫
γ

| f − fn|2e−ϕds → 0. Now | f |2e−ϕ is an L1 function

and | f − fn|2e−ϕ ≤ | f |2e−ϕ. Moreover | f − fn|2e−ϕ → 0 a.e.. Hence by the
Lebesgue dominated convergence theorem, we have that

∫
γ

| f − fn|2e−ϕds → 0.

�
Proof of Theorem 3.4 Let f be such that

∫
γ

| f |2e−ϕds < ∞. To approximate f by
polynomials, it suffices to consider the case when f ≥ 0. If P is any polynomial, then
‖P − f ‖L2(γ,ϕ) ≤ ‖P − fn‖L2(γ,ϕ) + ‖ fn − f ‖L2(γ,ϕ). So by Lemma 3.5, it suffices
to approximate nonnegative bounded measurable functions fn by polynomials.

Each bounded measurable function fn can be uniformly approximated by simple
functions on γ . Since

∫
γ
e−ϕds < ∞, this approximation also holds in the weighted

normof L2(γ, ϕ). Each simple function is thefinite linear combinationof characteristic
functions on measurable sets in γ , hence it suffices to approximate a characteristic
function by polynomials on measurable sets in γ . Since e−ϕ is L1 integrable, there
exists for any ε > 0 a constant δ > 0 so that if E is any measurable set in γ with
Lebesgue measure |E | < δ, then

∫
E e−ϕds < ε. For any measurable set F there

exists a finite union of graphs over intervals I so that |F \ I |, |I \ F | < δ/2. Hence
‖χF − χI ‖L2(F,ϕ) < ε. Then it suffices to approximate a characteristic function of a
graph over an interval in [a, b] in γ .

Let I be a graph over an interval in γ and δ > 0. There exists f ∈ C0(I ,C) so that

B := {s ∈ C | f (s) �= χI (s)} has a Lebesgue measure less than
δ

8
.
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So

∫
I
| f − χI |2e−ϕds ≤

∫
B
e−ϕds ≤ ε.

By the Lavrent’ev theorem, it suffices to approximate a continuous function by
polynomials, and then we are done. �
Remark 3.6 Theorem 3.4 holds for non-Lipschitz rectifiable graphs.

Theorem 1.1 generalizes Theorem 3.4 by relaxing the assumption on the integra-
bility of e−ϕ on γ . To prove this generalization, we need the following result.

Theorem 3.7 Let γ be a Lipschitz graph over [a, b] and ϕ a subharmonic function
on C. Then polynomials are dense in L2(γ, ϕ) if and only if the function

√
Q can be

approximated arbitrarily well by polynomials in L2(γ, ϕ) where Q is a polynomial
vanishing at the points γ (t) to order [ν(ϕ)(γ (t))] with Lelong number ν(ϕ)(γ (t)) ≥ 1.

Here [ν(ϕ)(γ (t))] := max{m ∈ Z | ν(ϕ)(γ (t)) ≥ m} is also called the floor function
of ν(ϕ) at γ (t).

Proof By Theorems 2.12 and 3.4, it suffices to consider ν(ϕ) ≥ 1. Then there exist
finitely many points γ (t1), . . . , γ (tn) such that ν(ϕ)(γ (ti )) ≥ 1 for ti ∈ [a, b], i =
1, . . . , n and Q which can be expressed as Q(z) = ∏n

j=1(z − γ (ti ))[ν(ϕ)(γ (ti ))]. We
may then choose a subharmonic function ψ so that ϕ = ψ + log |Q| with ν(ψ) < 1
on γ .
⇒) Remark that

√
Q ∈ L2(γ, ϕ) by Theorem 2.12:

∫
γ

|√Q|2e−ϕds =
∫

γ

|√Q|2e−ψ−log |Q|ds =
∫

γ

e−ψds < ∞.

Then by assumption, there exists a polynomial that approximates arbitrarily well
√

Q.
⇐) Remark that f ∈ L2(γ, ϕ) is equivalent to

∫
γ

∣∣∣∣ f√
Q

∣∣∣∣
2

e−ψds < ∞.

So
f√
Q

∈ L2(γ, ψ) and by Theorem 3.4, for each ε > 0, there exists a polynomial

P so that

∫
γ

∣∣∣∣ f√
Q

− P

∣∣∣∣
2

e−ψds =
∫

γ

| f − P
√

Q|2e−ϕds < ε.

Thus if
√

Q can be approximated arbitrarily well by polynomials in L2(γ, ϕ), then f
can be approximated by polynomials in L2(γ, ϕ). �
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3900 S. Biard et al.

Proof of Theorem 1.1 By Theorem 2.12 again, it suffices to consider ν(ϕ) ≥ 1. Let Q
and ψ be as in the proof of Theorem 3.7. We prove that for every ε > 0, there is a
polynomial P that vanishes at γ (ti ) to order [ν(ϕ)(γ (ti ))] so that

∫
γ

∣∣∣√Q − P
∣∣∣2 e−ϕds =

∫
γ

∣∣∣∣1 − P√
Q

∣∣∣∣
2

e−ψds < ε. (3.1)

For convenience, we look for P such as

P(z) = Q(z) · P̃(z) =
n∏

j=1

(z − γ (t j ))
[ν(ϕ)(γ (t j ))] · P̃(z).

Then (3.1) is equivalent to find some polynomial P̃ so that

∫
γ

∣∣∣∣1 − Q · P̃√
Q

∣∣∣∣
2

e−ψds < ε. (3.2)

Let δ > 0. Set g(z) = 1√
Q(z)

except on the arcs Ii on γ with length 2δ and center

at γ (ti ). We can make g continuous and |√Q(z)g(z)| ≤ 1 on such arcs of length 2δ.
Then

∫
γ

∣∣∣1 − √
Qg

∣∣∣2 e−ψds ≤ 4
n∑

i=1

∫
Ii

e−ψds

= 4
∫

⋃n
i=1 Ii

e−ψds. (3.3)

Since
⋃n

i=1 Ii is a measurable set of measure 2δn and e−ψ ∈ L1
loc, we may choose δ

sufficiently small in order for (3.3) to be < ε. Since g ∈ L2(γ, ψ), by Theorem 3.4,
there exists a polynomial A satisfying

∫
γ

|g − A|2e−ψds <
ε(

max
γ (t)∈γ

|Q(γ (t))|
)2 .

Then by Cauchy–Schwarz and the previous estimate,
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Fig. 2 Example of a situation
that might happen in Theorem
4.2 where �1 and �2 are outer
snakes with no common point

Ω2

Ω1

∫
γ

|√Q|2|g − A|2e−ψds

≤
(∫

γ

|√Q|4|g − A|2e−ψds

)1/2 (∫
γ

|g − A|2e−ψds

)1/2

,

≤
(
max

γ
|Q|

)2

·
∫

γ

|g − A|2e−ψds,

< ε. (3.4)

Combine (3.3) and (3.4), we may choose P̃ = A. �
Remark 3.8 In fact we show that P ∩ L2(γ, ϕ) is dense in L2(γ, ϕ) where P is the set
of all polynomials. If ν(ϕ) ≥ 1, not all polynomials are in L2(γ, ϕ), e.g. 1 /∈ L2(γ, ϕ).

4 Proof of Theorem 1.2

In this section, we give a weighted L2-version of the Mergelyan theorem for compact
sets in C that are the union of bounded Carathéodory domains and Lipschitz graphs.
Recall the following theorem

Theorem 4.1 (Theorem 1.3 in [2]) Let � ⊂ C be a Carathéodory domain and ϕ a
subharmonic function in C. Then polynomials are dense in H2(�, ϕ).

One generalization of Theorem 4.1 is the following

Theorem 4.2 Let �1 ⊂ C be a Carathéodory domain, let �2 be another Carathéodory
domain which is inside of a bounded component of �1

c
. Let ϕ be a subharmonic

function in C. Then polynomials are dense in H2(�1 ∪ �2, ϕ) (Fig. 2).
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In order to prove this theorem we need the following proposition which can be
easily deduced from the proof of Proposition 1.2 in [2].

Proposition 4.3 Let � be a bounded Carathéodory domain and ϕ a subharmonic
function in C. Then for each f ∈ H2(�, ϕ) there exist functions fn ∈ H2(�n, ϕ)

such that ‖ fn − f ‖L2(�,ϕ) → 0 and ‖ fn‖L2(�n\�,ϕ) → 0 as n → ∞, where �n ⊃ �

is a sequence of bounded simply-connected domains so that ∂�n converges to ∂� in
the sense of the Hausdorff distance.

Proof of Theorem 4.2 First we consider the case

ν(ϕ) < 2 on �1 ∪ �2. (4.1)

By Theorem 4.1, for each ε > 0 there exists a holomorphic polynomial P1 so that

∫
�2

| f − P1|2e−ϕdλz <
ε

26
. (4.2)

Put

g =
{

f − P1 on �1

0 on �2.

Since �i , i = 1, 2 is a Carathéodory domain, there exists a sequence {�i,n} of Jordan
domains such that �i ⊂ �i,n and �i,n+1 ⊂ �i,n and the Hausdorff distance between
∂�i,n and ∂�i tends to zero as n → ∞ (see Chapter I, Section 3 of [6]). Let n be
sufficiently large so that �1 ∩ �2,n = ∅.

Since g ∈ H2(�1, ϕ), by using Proposition 4.3 on �1, for each ε > 0 we get for
large enough n functions g1,n ∈ H2(�1,n, ϕ) so that

‖g1,n − g‖L2(�1,ϕ) <
ε

26
(4.3)

and

‖g1,n‖L2(�1,n\�1,ϕ) <
ε

26
. (4.4)

By Theorem 4.1, for each n there exists a polynomial Qn so that

∫
�1,n

|g1,n − Qn|2e−ϕdλ <
ε

26
. (4.5)
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Thus for sufficiently large n we have

∫
�1

| f − P1 − Qn|2e−ϕdλz

≤ 2
∫

�1

| f − P1 − g1,n|2e−ϕdλz + 2
∫

�1

|g1,n − Qn|2e−ϕdλz

≤ 2
∫

�1

|g − g1,n|2e−ϕdλz + ε

13
by (4.5)

≤ 2ε

13
by (4.3);

and

∫
�2

| f − P1 − Qn|2e−ϕdλz

≤ 2
∫

�2

| f − P1|2e−ϕdλz + 2
∫

�2

|Qn|2e−ϕdλz

≤ 2ε

26
+ 4

∫
�2

|Qn − g1,n|2e−ϕdλz + 4
∫

�2

|g1,n|2e−ϕdλz by (4.2)

≤ 5ε

13
by (4.4), (4.5).

Next we consider the case ν(ϕ) ≥ 2. Then there exist finitely many points z j ∈
�1 ∪ �2, 1 ≤ j ≤ N so that ν(ϕ) ≥ 2 at those points. We may find a polynomial Q
with zeros at those points, subharmonic function ψ satisfying ϕ = ψ + 2 log |Q| and
ν(ψ) < 2 on �1 ∪ �2. Let f ∈ O(�1 ∪ �2) ∪ L2(�1 ∪ �2, ϕ),

f

Q
∈ O(�1 ∪ �2) ∩ L2(�1 ∪ �2, ψ).

Then by the first case, f
Q can be approximated by a polynomial P in L2(�1 ∪�2, ψ).

Thus f can be approximated by the polynomial P · Q in L2(�1 ∪ �2, ϕ). �

The proof of the main theorem of this section, Theorem 1.2, is divided into 3 cases
that correspond to the locus of the zeros of the polynomial Q in the decomposition of
the weight function ϕ = ψ + log |Q|. We will then need the following result:

Theorem 4.4 Let � be a Carathéodory domain and ϕ a subharmonic function in
C. Suppose P is a polynomial with

∫
�

|P|2e−ϕdλ < ∞. Let p ∈ ∂� and a disc
� ⊂ �c with p ∈ ∂�. Then we can approximate P by P̃ which is holomorphic on a
neighborhood of � with P̃(p) = 0 in the norm of L2(�, ϕ).
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Proof Set M = ∫
�

|P(z)|2e−ϕ(z)dλz . Then for each ε > 0 there exists a small neigh-
borhood U (p) of p so that

∫
U (p)∩�

|P(z)|2e−ϕ(z)dλz <
ε

2
.

Take hn(z) =
(

p−q
z−q

)n
, choose n sufficiently large so that

|hn(z)|2 <
ε

2M
on (U (p))c ∩ � and |hn(z)|2 < 1 on U (p) ∩ �.

Now fix such n. Set P̃(z) = (1− hn(z)) · P(z), then P̃ is holomorphic on a neighbor-
hood of � with P̃(p) = 0 satisfying

∫
�

|P̃(z) − P(z)|2e−ϕ(z)dλz =
∫

U (p)∩�

|hn(z)P(z)|2e−ϕ(z)dλz +
∫

�\U (p)

|hn(z)P(z)|2e−ϕ(z)dλz

≤ max
z∈U (p)∩�

|hn(z)|2 ·
∫

U (p)∩�

|P(z)|2e−ϕ(z)dλz

+ max
z∈(U (p))c∩�

|hn(z)|2 ·
∫

(U (p))c∩�

|P(z)|2e−ϕ(z)dλz

<
ε

2
+ ε

2= ε.

�
Remark 4.5 The assumption on the existence of such a disc on the boundary of � is
verified when ∂� is C2.
Proof of Theorem 1.2 First we consider: Case 1:

ν(ϕ) < 1 on γ and ν(ϕ) < 2 on �.

Let f ∈ O(�)∪L2(�∪γ, ϕ). ByTheorem4.1, for each ε > 0, there exists polynomial
P1 so that

∫
�

| f (z) − P1(z)|2e−ϕ(z)dλz <
ε

16
. (4.6)

By the Theorem 1.1, there exists polynomial P2 so that

∫
γ

| f − P2|2e−ϕds <
ε

16
. (4.7)
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Since � is a Carathéodory domain, there exists a sequence {� j } of bounded simply-
connected domains such that � ⊂ � j and � j+1 ⊂ � j and the Hausdorff distance
between ∂� j and ∂� tends to zero as j → ∞. By Corollary 2.10 we may choose j
sufficiently large so that

max

{∫
γ∩� j

| f |2e−ϕds,
∫

γ∩� j

|P1|2 e−ϕds

}
<

ε

64
. (4.8)

Now fix such j . Let χ : C → [0, 1] be a smooth function with χ ≡ 1 on � j+1 and
χ ≡ 0 outside of � j . Set

h(z) = χ(z)P1(z) + (1 − χ(z))P2(z).

Then h(z) is holomorphic on �, continuous on � ∪ γ . Set

M =
∫

�

e−ϕ(z)dλz +
∫

γ

e−ϕds.

By Mergelyan approximation theorem, there exists a polynomial P so that

|P − h|2 <
ε

16M
on � ∪ γ.

Then

‖ f − P‖2L2(�∪γ,ϕ)

≤ 2‖ f − h‖2L2(�∪γ,ϕ)
+ 2‖h − P‖2L2(�∪γ,ϕ)

≤ 2
∫

�

| f (z) − P1(z)|2e−ϕ(z)dλz + 2
∫
(� j)

c∩γ

| f − P2|2e−ϕds

+ 2
∫

γ∩� j

| f − h|2e−ϕds + ε

8

≤ 2
∫

γ∩� j

| f − χ · P1 − (1 − χ)P2|2e−ϕds + 3ε

8
by (4.6), (4.7)

≤ 4
∫

γ∩� j

| f − P1|2χ2e−ϕds

+ 4
∫

γ∩� j

| f − P2|2(1 − χ)2e−ϕds + 3ε

8

≤ 8
∫

γ∩� j

| f |2e−ϕds + 8
∫

γ∩� j

|P1|2e−ϕds + 5ε

8
by (4.7)

≤ 7ε

8
by (4.8).

123



3906 S. Biard et al.

Now we consider Case 2:

1 ≤ ν(ϕ) < 2 on γ and ν(ϕ)(z) < 2 on �.

Then there exist finitely many points γ (ti ) ∈ γ , ti ∈ [a, b], 1 ≤ i ≤ N such that

t1 < t2 < t3 < . . . < tN and 1 ≤ ν(ϕ)(γ (ti )) < 2,

a polynomial Q and a subharmonic function ψ satisfying ϕ = ψ + log |Q| where Q
vanishes only at γ (ti ) and ν(ψ) < 1 on γ . Since the polynomial Q has no zeros on
� \ {γ (a)}, ν(ψ)(z) = ν(ϕ)(z) for each z ∈ � \ {γ (a)}.
We need now to distinguish two subcases depending on the nature of p := γ (a):
Subcase A: If t1 = a. Let f ∈ O(�) ∪ L2(� ∪ γ, ϕ). Then by Theorem 4.1 there
exists a polynomial P1 satisfying

‖ f − P1‖L2(�,ϕ) < ε.

Since the boundary of � is C2 near p, by Theorem 4.4, we may choose a holomorphic
function P1 on � j satisfying

P1(p) = 0 and ‖ f − P1‖L2(�,ϕ) <
ε

16
. (4.9)

By the construction in the proof of Theorem 1.1, there exists a polynomial P2 so that

∫
γ

| f − P2 · Q|2e−ϕds <
ε

16
. (4.10)

Set M =
∫

�

e−ψ(z)dλz +
∫

γ

e−ψds. Since f ∈ O(�) ∪ L2(� ∪ γ, ϕ), by (4.9) we

may choose j sufficiently large so that γ (ti ) ∈ (� j )
c, 2 ≤ i ≤ N and

max

{∫
γ∩� j

| f |2e−ϕds,
∫

γ∩� j

|P1|2 e−ϕds

}
<

ε

64
. (4.11)

Now fix such j . Choose χ be as above and

h(z) = χ(z)P1(z) + (1 − χ(z))P2(z)Q(z).

Then h and h
Q are holomorphic on � j , continuous on � j ∪ γ . By Theorem 3.3 there

exists a polynomial G so that

∣∣∣∣ h

Q
− G

∣∣∣∣
2

<
ε

32M · max
� j ∪γ

|Q| on � ∪ γ.
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Then

‖ f − G · Q‖2L2(�∪γ,ϕ)

=
∥∥∥∥ f√

Q
− G · √

Q

∥∥∥∥
2

L2(�∪γ,ψ)

=
∥∥∥∥ f√

Q
− h√

Q
+ h√

Q
− G · √

Q

∥∥∥∥
2

L2(�∪γ,ψ)

≤ 2

∥∥∥∥ f√
Q

− h√
Q

∥∥∥∥
2

L2(�∪γ,ψ)

+ 2

∥∥∥∥ h√
Q

− G · √
Q

∥∥∥∥
2

L2(�∪γ,ψ)

≤ 2‖ f − h‖2L2(�∪γ,ϕ)
+ 2M · max

�∪γ

|Q| · max
�∪γ

∣∣∣∣ h

Q
− G

∣∣∣∣
2

≤ 2
∫

�

| f (z) − P1(z)|2 e−ϕ(z)dλz + 2
∫

γ∩(� j )
c
| f − P2 · Q|2 e−ϕds

+ 2
∫

γ∩(� j \�)

| f − h|2 e−ϕds + ε

16

≤ 2
∫

γ∩� j

| f − χP1 − (1 − χ)P2 · Q|2 e−ϕds + 5ε

16
by (4.9), (4.10)

≤ 4
∫

γ∩� j

| f − P1|2 χ2e−ϕds + 4
∫

γ∩� j

| f − P2 · Q|2 (1 − χ)2e−ϕds + 5ε

16

≤ 8
∫

γ∩� j

| f |2e−ϕds + 8
∫

γ∩� j

|P1|2 e−ϕds + 9ε

16
by (4.10)

≤ 13ε

16
by (4.11).

Subcase B: If γ (t1) �= p. We may choose j sufficiently large so that γ (ti ) ∈ (� j )
c ∩

γ, 1 ≤ i ≤ N and the formula (4.11) also holds. Then the following proof is similar
to subcase A.

Finally we consider: Case 3: ν(ϕ) ≥ 2. There exist finitely many points z j ∈ �,
γ (t j ) ∈ γ so that ν(ϕ) ≥ 2 at those points. We may find a polynomial Q1 with zeros
at those points, subharmonic function ψ satisfying ϕ = ψ + 2 log |Q1| and ν(ψ) < 2
on � ∪ γ . Let f ∈ O(�) ∪ L2(� ∪ γ, ϕ),

f

Q1
∈ O(�) ∩ L2(� ∪ γ,ψ).

Then by Case 1 or 2, f
Q1

can be approximated by a polynomial P in L2(� ∪ γ,ψ).

Thus f can be approximated by the polynomial P · Q1 in L2(� ∪ γ, ϕ). �
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5 Proof of Theorem 1.4

The classical Carleman approximation theorem applies to continuous function f on
R. Let ε(x) > 0 be a continuous function.

Theorem 5.1 ( [3]) There exists an entire function F so that |F(x) − f (x)| < ε(x)

on R.

This theorem is equivalent to the following corollary

Corollary 5.2 Let f be a continuous function on R. For any {εn}∞n=−∞ with εn > 0,
there exists an entire function F so that for each n,

|F(x) − f (x)| < εn, ∀x ∈ [n, n + 1].
It was pointed out by Alexander [1] that Carleman’s proof actually gives

Theorem 5.3 ( [1,3]) If γ : R → C, γ is a locally rectifiable curve and properly
embedded, then for each continuous function f on γ and continuous function ε > 0,
there exists an entire function F so that |F − f | < ε on γ .

We prove below Theorem 1.4 which is a weighted L2- version of this generalization
for Lipschitz graphs.

Let � be the graph of a locally Lipschitz function over the real axis in C. We may
assume � = {(t, φ(t))} with φ : R → R a locally Lipschitz continuous function. For
each [n, n + 1], �n := {(t, φ(t))| n ≤ t ≤ n + 1} is a Lipschitz graph.
Proof of Theorem 1.4 Case 1: ν(ϕ) < 1 on �. Let f ∈ L2(�, ϕ). By Theorem 3.4,
there exists a continuous function gn on Jn := {(t, φ(t))| n − 1 ≤ t ≤ n + 2} so that

∫
Jn

| f − gn|2e−ϕds <
1

40
min{εn−1, εn, εn+1} ≤ 1

40
εn .

Choose a partition of unity {χn}n∈Z of � so that χn ≥ 0 on �, χn = 0 outside of Jn

and
∑

n χn = 1 on �. Let g = ∑
n χngn . Then g is continuous on � and for each n,

∫
�n

| f − g|2e−ϕds

=
∫

�n

|χn−1( f − gn−1) + χn( f − gn) + χn+1( f − gn+1)|2e−ϕds

≤ 2
∫

�n

|χn−1( f − gn−1) + χn( f − gn)|2e−ϕds + 2
∫

�n

|χn+1( f − gn+1)|2e−ϕds

≤ 4
∫

�n

|χn−1( f − gn−1)|2e−ϕds + 4
∫

�n

|χn( f − gn)|2e−ϕds

+2
∫

�n

|χn+1( f − gn+1)|2e−ϕds

≤ 1

4
εn .

(5.1)
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By using Theorem 5.3 on the continuous function g of�, we can find an entire function
F so that for each n

|F − g|2 <
εn

4
∫
�n

e−ϕds
on �n .

Thus

∫
�n

|g − F |2e−ϕds <
εn

4
.

Hence we have

∫
�n

| f − F |2e−ϕds

≤ 2
∫

�n

| f − g|2e−ϕds + 2
∫

�n

|g − F |2e−ϕds

< εn .

Now we consider: Case 2: ν(ϕ) ≥ 1. We may list the points {�(t j )} j with
ν(ϕ)(�(t j )) ≥ 1, where �(t j ) = (t j , φ(t j )). Then there exists an entire func-
tion Q which vanishes at each �(t j ) to exact order [ν(ϕ)(�(t j ))]. We may define√

Q to be continuous on �, without loss of generality we may set Q(z) = ∏
j
(z −

�(t j ))
[ν(ϕ)(�(t j ))]ep j (z), where p j (z) are entire functions. Then there exists a subhar-

monic function ψ such that ϕ = ψ + log |Q| with ν(ψ) < 1 on �. Let f ∈ L2(�, ϕ).
Then f√

Q
∈ L2(�,ψ). By Case 1, there exists an entire function F so that for each n

∫
�n

∣∣∣∣ f√
Q

− F

∣∣∣∣
2

e−ψds =
∫

�n

| f − F · √
Q|2e−ϕds <

εn

4
. (5.2)

Thus it suffices to find an entire function H vanishing at �(t j ) to order [ν(ϕ)(�(t j ))]
so that for each n

∫
�n

∣∣∣√Q − H
∣∣∣2 e−ϕds =

∫
�n

∣∣∣∣1 − H√
Q

∣∣∣∣
2

e−ψds <
εn

4 max
�(t)∈�n

|F(�(t))|2 . (5.3)

We look for H for convenience as

H(z) = Q(z) · H̃(z) =
∞∏
j=1

(z − �(t j ))
[ν(ϕ)(�(t j ))]ep j (z) · H̃(z).
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The estimate (5.3) is then equivalent to find an entire function H̃ so that

∫
�n

∣∣∣∣1 − Q · H̃√
Q

∣∣∣∣
2

e−ψds <
εn

4 max
�(t)∈�n

|F(�(t))|2 , ∀ n. (5.4)

Let δ j > 0. Set g(z) = 1√
Q(z)

except on arcs � j of � with length 2δ j and center at

�(t j ). We can make g continuous and |√Q · g| ≤ 1 on such arcs of length 2δ j . Then

∫
�n

∣∣∣1 − √
Q · g

∣∣∣2 e−ψds ≤ 4
∑

�(t j )∈Jn

∫
� j

e−ψds.

Since
⋃

�(t j )∈Jn

� j is a measurable set and e−ψ ∈ L1
loc, we may choose δ j sufficiently

small in order to

∑
�(t j )∈Jn

∫
� j

e−ψds <
εn

32 max
�(t)∈�n

|F(�(t))|2 .

Since g is continuous on �, by the classical Carleman approximation theorem there
exists an entire function A satisfying for each n

|g − A|2 ≤ εn

8 max
�(t)∈�n

|Q(�(t))| · max
�(t)∈�n

|F(�(t))|2 · ∫
�n

e−ψds
, ∀�(t) ∈ �n .

Then by Cauchy-Schwarz and the previous estimate, for each n,

∫
�n

|√Q|2|g − A|2e−ψds

=
∫

�n

|√Q|2|g − A|2e−ψds

≤
(∫

�n

|√Q|4|g − A|2e−ψds

) 1
2 ·

(∫
�n

|g − A|2e−ψds

) 1
2

≤ max
�(t)∈�n

|Q(�(t))| ·
∫

�n

|g − A|2e−ψds

≤ εn

8 max
�(t)∈�n

|F(�(t))|2 .
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By taking H̃ = A, we get (5.4) and then (5.3). Hence there exist entire functions
F, Q, A so that for each n

∫
�n

| f − F · Q · A|2e−ϕds

≤ 2
∫

�n

| f − F
√

Q|2e−ϕds + 2
∫

�n

|F√
Q − F · Q · A|2e−ϕds

≤ εn

2
+ εn

2= εn .

�

6 Rectifiable Non-Lipschitz Arcs

Here we construct a rectifiable non-Lipschitz arc γ and a subharmonic function ϕ in a
neighborhood of γ so that the conclusion of Theorem 1.1 does not hold. To find such
an arc, we first look at the vertical arcs γa = {(a, i t), |t | ≤ a}. Let 0 < α < 1, z0 = 0.
We then notice that

|γa | = 2a ∼ a,

and

∫
γa

ds

|z − z0|α =
∫ a

−a

1(√
a2 + t2

)α dt .

Since

2√
2
α a1−α ≤

∫ a

−a

1(√
a2 + t2

)α dt ≤ 2a1−α

we get that
∫
γa

ds
|z−z0|α ∼ a1−α uniformly in α.

Let bn ∈ [0, 1], n = 1, 2, 3, · · · , be a decreasing sequence which tends to 0. We

will fix bn later. We remark that by setting ϕ(z) =
∞∑

n=1
αn log

∣∣∣ z−bn
2

∣∣∣, where αn = 1
n3

a rapidly then ϕ is subharmonic on �(0, 2 − b1): ϕ is the limit of the decreasing

sequence {ϕk} of subharmonic functions, ϕk =
k∑

n=1
αn log

∣∣∣ z−bn
2

∣∣∣. Now let’s build a

rectifiable non-Lipschitz arc γ such that

(1) |γ | < ∞;
(2)

∫
γn
e−ϕds = ∞.
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Here γn is a curve with endpoints (bn+1, 0) and (bn, 0) and γ consists of the union of
the γn and the origin. Define cn so that

c
1

1−αn+1
n = 1

n2

αn+1

1 − αn+1
= 1

n2
(
(n + 1)3 − 1

) .

We define {bn} by the following conditions:

bn − bn+1 = c
1

1−αn+1
n = 1

n2
(
(n + 1)3 − 1

)

add the requirement that bn → 0. Then we have that

bn =
∞∑

k≥n

(bk − bk+1) =
∞∑

k≥n

1

k2
(
(k + 1)3 − 1

) .

Now define bk
n ∈ [bn+1, bn] satisfying

bk
n = bn+1 +

(cn

k

) 1
1−αn+1

= bn+1 + 1

n2
(
(n + 1)3 − 1

)
(
1

k

) 1
1−αn+1

(6.1)

Then bk
n → bn+1 as k → ∞ and b1n = bn . Finally, we define γn = (∪∞

k=1γ
k
n

)∪Tn ∪Sn ,
where

γ k
n =: {bk

n + iy, 0 ≤ y ≤ bk
n − bn+1},

Tn = ∪∞
�=0{yx −bn+1, b2�+2

n ≤ x ≤ b2�+1
n } and Sn = ∪∞

�≥1{y = 0, b2�+1
n ≤ x ≤ b2�n }

which connect the γ k
n making γn an arc. Then |γ k

n | = (bk
n − bn+1), |Tn| <

√
2(bn −

bn+1) = √
2(b1n − bn+1) and |Sn| < bn − bn+1. Then, we have

|γ | =
∞∑

n=1

|γn|

=
∞∑

n=1

∞∑
k=1

|γ k
n | +

∞∑
n=1

|Tn| +
∞∑

n=1

|Sn|

≤
∞∑

n=1

∞∑
k=1

(bk
n − bn+1) +

∞∑
n=1

(
√
2 + 1)(b1n − bn+1)

=
∞∑

n=1

∞∑
k=1

1

n2
(
(n + 1)3 − 1

)
(
1

k

) 1
1−αn+1 + (

√
2 + 1)

∞∑
n=1

1

n2
(
(n + 1)3 − 1

)
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Since

∞∑
k=1

(
1

k

) 1
1−αn+1 ∼

∫ ∞

1

(
1

x

) (n+1)3

(n+1)3−1
dx = (n + 1)3 − 1

we know that

|γ | ≤ C
∞∑

n=1

1

n2 + (
√
2 + 1)

∞∑
n=1

1

n2
(
(n + 1)3 − 1

) < ∞. (6.2)

Thus γ is a rectifiable non-Lipschitz arc.
On the other hand, we have

∫
γn

e−ϕds ≥
∞∑

k=1

∫
γ k

n

e−ϕds

≥
∞∑

k=1

∫
γ k

n

1

|z − bn+1|αn+1
ds

∼
∞∑

k=1

(bk
n − bn+1)

1−αn+1

∼
∞∑

k=1

cn

k
by (6.1)

∼
∫ ∞

1

cn

x
dx

= ∞,∀n. (6.3)

Now we will prove that polynomials are not dense in L2(γ, ϕ). By contradiction, for
each f ∈ L2(γ, ϕ), if there exists a sequence of polynomials PN so that

∫
γ

| f − PN |e−ϕds → 0, if N → ∞,

then by (6.3) we have PN (bn) = 0 for any n if N is sufficiently large. Since bn → 0 by
uniqueness property of holomorphic functionwe know PN ≡ 0. Thus

∫
γ

| f |2e−ϕds =
0. That is f = 0 a.e. on γ . Thus L2(γ, ϕ) = {0}. On the other hand f (z) := e

ϕ
2 =√

�

∣∣∣ z−bn
2

∣∣∣αn ∈ L2(γ, ϕ). This is a contradiction.

Remark 6.1 In this example, there are no non-zero polynomials in L2(γ, ϕ) and poly-
nomials are not dense in L2(γ, ϕ). The key to this example is that Theorem 2.12
does not hold for rectifiable non-Lipschitz arcs. However, we don’t know if there
exists a rectifiable non-Lipschitz arc γ and a subharmonic function ϕ so that all the
polynomials are in L2(γ, ϕ) but not dense in it.
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