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Abstract
In this paper, we consider the martingale Hardy spaces defined with the help of the
mixed L−→p -norm. Five mixed martingale Hardy spaces will be investigated: Hs−→p , H

S−→p ,
HM−→p ,P−→p , andQ−→p . Several results are proved for these spaces, like atomic decomposi-
tions, Doob’s inequality, boundedness, martingale inequalities, and the generalization
of the well-known Burkholder–Davis–Gundy inequality.
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1 Introduction

The mixed Lebesgue spaces were introduced in 1961 by Benedek and Panzone
[2]. They considered the Descartes product (�,F ,P) of the probability spaces
(�i ,F i ,Pi ), where � = ∏d

i=1 �i , F is generated by
∏d

i=1 F i and P is generated by
∏d

i=1 Pi . The mixed L−→p -norm of the measurable function f is defined as a number
obtained after taking successively the L p1 -norm of f in the variable x1, the L p2 -norm
of f in the variable x2, . . ., the L pd -norm of f in the variable xd . Some basic proper-
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ties of the spaces L−→p were proved in [2], such as the well-known Hölder’s inequality
or the duality theorem for L−→p -norm (see Lemma 2). The boundedness of operators
on mixed-norm spaces has been studied for instance by Fernandez [29] and Stefanov
and Torres [36]. Using the mixed Lebesgue spaces, Lizorkin [32] considered Fourier
integrals and estimations for convolutions. Torres and Ward [38] gave the wavelet
characterization of the space L−→p (Rn). For more about mixed-norm spaces, the papers
[1,8,9,18,20,21,24,25,35,36] are referred.

Since 1970, the theory of Hardy spaces has been developed very quickly (see, e.g.,
Fefferman and Stein [11], Stein [37], Grafakos [17]). Parallel, a similar theory was
evolved formartingale Hardy spaces (see, e.g., Garsia [12], Long [33] andWeisz [40]).
Recently several papers were published about the generalization of Hardy spaces.
For example, (anisotropic) Hardy spaces with variable exponents were considered in
Nakai and Sawano [34], Yan et al. [43], Jiao et al. [28], Liu et al. [30,31]. Moreover,
Musielak–Orlicz–Hardy spaces were studied in Yang et al. [44]. These results were
also investigated for martingale Hardy spaces in Jiao et al. [26,27] and Xie et al.
[42]. The mixed-norm classical Hardy spaces were intensively studied by Huang et
al. [22,23] and Huang and Yang [24]. In this paper, we will develop a similar theory
for mixed-norm martingale Hardy spaces.

The classical martingale Hardy spaces (Hs
p, H

S
p , H

M
p , Pp,Qp) have a long history

and the results of this topic can bewell applied in the Fourier analysis. In the celebrated
work of Burkholder and Gundy [6], it was proved that the L p norms of the maximal
function and the quadratic variation, that is, the spaces HM

p and HS
p , are equivalent for

1 < p < ∞. In the sameyear,Davis [10] extended this result for p = 1. In the classical
case, Herz [19] andWeisz [40] gave one of the most powerful techniques in the theory
of martingale Hardy spaces, the so-called atomic decomposition. Some boundedness
results, duality theorems, martingale inequalities, and interpolation results can be
provedwith the help of atomic decomposition. Details for themartingale Hardy spaces
can be found in Burkholder [4,5], Burkholder and Gundy [6], Garsia [12], Long [33],
or Weisz [39,40]. For the application of martingale Hardy spaces in Fourier analysis,
see Gát [13,14], Goginava [15,16] or Weisz [40,41].

In this paper, we will introduce five mixed martingale Hardy spaces: Hs−→p , H
S−→p ,

HM−→p , P−→p andQ−→p . In Sect. 3, Doob’s inequality will be proved, that is, we will show
that

∥
∥
∥
∥sup
n∈N

|En f |
∥
∥
∥
∥−→p

≤ C ‖ f ‖−→p

for all f ∈ L−→p , where 1 <
−→p < ∞. In Sect. 4, we give the atomic decomposition

for the five mixed martingale Hardy spaces. Using the atomic decompositions and
Doob’s inequality, the boundedness of general σ -subadditive operators from Hs−→p to

L−→p , from P−→p to L−→p and from Q−→p to L−→p can be proved (see Theorems 7 and 8).
With the help of these general boundedness theorems, several martingale inequali-
ties will be proved in Sect. 5 (see Corollary 21). We will show, that if the stochastic
basis (Fn) is regular, then the five martingale Hardy spaces are equivalent. As a con-
sequence of Doob’s inequality, the well-known Burkholder–Davis–Gundy inequality
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can be shown.Moreover, if the stochastic basis is regular, then the so-calledmartingale
transform is bounded on L−→p .

We denote by C a positive constant, which can vary from line to line, and denote
by Cp a constant depending only on p. The symbol A ∼ B means that there exist
constants α, β > 0 such that αA ≤ B ≤ βA.

We would like to thank the referee for reading the paper carefully and for his/her
useful comments and suggestions.

2 Backgrounds

2.1 Mixed Lebesgue Spaces

Wewill start with the definition of the mixed Lebesgue spaces. To this end, let 1 ≤ d ∈
N and (�i ,F i ,Pi ) be probability spaces for i = 1, . . . , d, and −→p := (p1, . . . , pd)
with 0 < pi ≤ ∞. Consider the product space (�,F ,P), where � = ∏d

i=1 �i ,
F is generated by

∏d
i=1 F i and P is generated by

∏d
i=1 Pi . A measurable function

f : � → R belongs to the mixed L−→p space if

‖ f ‖−→p := ‖ f ‖(p1,...,pd ) :=
∥
∥
∥. . . ‖ f ‖L p1 (dx1) . . .

∥
∥
∥
L pd (dxd )

=
(∫

�d

. . .

(∫

�1

| f (x1, . . . , xd)|p1 dx1

)p2/p1
. . . dxd

)1/pd

< ∞

with the usual modification if p j = ∞ for some j ∈ {1, . . . , d}. If for some 0 < p ≤
∞,−→p = (p, . . . , p), thenweget back the classical Lebesgue space, that is, in this case,
L−→p = L p. Throughout the paper, 0 <

−→p ≤ ∞ will mean that the coordinates of −→p
satisfy the previous condition, e.g., for all i = 1, . . . , d, 0 < pi ≤ ∞. The conjugate
exponent vector of −→p will be denoted by (

−→p )′, that is, if (
−→p )′ = (

p′
1, . . . , p

′
d

)
, then

1/pi + 1/p′
i = 1 (i = 1, . . . , d). For α > 0, −→p /α := (p1/α, . . . , pd/α). Benedek

and Panzone [2] proved some basic properties for the mixed Lebesgue space.

Lemma 1 If 1 ≤ −→p ≤ ∞, then for all f ∈ L−→p and g ∈ L(
−→p )′ , f g ∈ L1 and

‖ f g‖1 =
∫

�d

. . .

∫

�1

| f (x)g(x)| dP(x) ≤ ‖ f ‖−→p ‖g‖(
−→p )′ .

Lemma 2 If 1 ≤ −→p ≤ ∞ and f ∈ L−→p , then

‖ f ‖−→p = sup
‖g‖(

−→p )′≤1

∣
∣
∣
∣

∫

�

f g dP

∣
∣
∣
∣ .
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2.2 Martingale Hardy Spaces

Suppose that the σ -algebra F i
n ⊂ F i (n ∈ N, i = 1, . . . , d), (F i

n)n∈N is increasing

and F i = σ
(∪n∈NF i

n

)
. Let Fn = σ

(∏d
i=1 F i

n

)
. The expectation and conditional

expectation operators relative to Fn are denoted by E and En , respectively. An inte-
grable sequence f = ( fn)n∈N is said to be a martingale if

(i) ( fn)n∈N is adapted, that is for all n ∈ N, fn is Fn-measurable;
(ii) En fm = fn in case n ≤ m.

For n ∈ N, the martingale difference is defined by dn f := fn − fn−1, where f =
( fn)n∈N is a martingale and f0 := f−1 := 0. If for all n ∈ N, fn ∈ L−→p , then f is
called an L−→p -martingale. Moreover, if

‖ f ‖−→p := sup
n∈N

‖ fn‖−→p < ∞,

then f is called an L−→p -bounded martingale and it will be denoted by f ∈ L−→p . The
map ν : � → N ∪ {∞} is called a stopping time relative to (Fn) if for all n ∈ N,
{ν = n} ∈ Fn .

For a martingale f = ( fn) and a stopping time ν, the stopped martingale is defined
by

f ν
n =

n∑

m=0

dm f χ{ν≥m}.

Let us define the maximal function, the quadratic variation and the conditional
quadratic variation of the martingale f relative to (�,F ,P, (Fn)n∈N) by

Mm ( f ) := sup
n≤m

| fn| , M ( f ) := sup
n∈N

| fn|

Sm ( f ) :=
(

m∑

n=0

|dn f |2
)1/2

, S ( f ) :=
( ∞∑

n=0

|dn f |2
)1/2

sm ( f ) :=
(

m∑

n=0

En−1 |dn f |2
)1/2

, s ( f ) :=
( ∞∑

n=0

En−1 |dn f |2
)1/2

.

The set of the sequences (λn)n∈N of non-decreasing, non-negative, and adapted func-
tions with λ∞ := limn→∞ λn is denoted by	.With the help of the previous operators,
the mixed martingale Hardy spaces can be defined as follows:

HM−→p :=
{

f = ( fn)n∈N : ‖ f ‖HM−→p
:= ‖M( f )‖−→p < ∞

}

;

HS−→p :=
{

f = ( fn)n∈N : ‖ f ‖HS−→p
:= ‖S( f )‖−→p < ∞

}

;
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Hs−→p :=
{
f = ( fn)n∈N : ‖ f ‖Hs−→p

:= ‖s( f )‖−→p < ∞
}

;
Q−→p :=

{
f = ( fn)n∈N : ∃ (λn)n∈N ∈ 	, such that Sn ( f ) ≤ λn−1, λ∞ ∈ L−→p

}
,

‖ f ‖Q−→p := inf
(λn)∈	

‖λ∞‖−→p ;

P−→p :=
{
f = ( fn)n∈N : ∃ (λn)n∈N ∈ 	, such that | fn| ≤ λn−1, λ∞ ∈ L−→p

}
,

‖ f ‖P−→p := inf
(λn)∈	

‖λ∞‖−→p .

3 Doob’s Inequality

In this section, we will prove that the maximal operator M is bounded on the space
L−→p for 1 <

−→p < ∞. If 1 <
−→p < ∞ and the martingale ( fn)n∈N ∈ L−→p , then there

is a function g ∈ L−→p such that for all n ∈ N, fn = Eng. For k ∈ {1, . . . , d} and
m ∈ N, let us denote

F∞,...,∞,m,∞,...,∞ := σ
(
F1 × · · · × Fk−1 × Fk

m × Fk+1 × · · · × Fd
)

,

where m stands in the kth position. The conditional expectation operator relative to
F∞,...,∞,m,∞,...,∞ is denoted by E∞,...,∞,m,∞,...,∞. We need the following maximal
operators: for an integrable function f , let

Mk f := sup
m∈N

∣
∣E∞,...,∞,m,∞,...,∞ f

∣
∣ , M̃ f := Md ◦ Md−1 ◦ . . . ◦ M1 f .

It is clear that

M f ≤ M̃ f .

For 0 < p < ∞ and w > 0, the weighted space L p(w) consists of all functions f ,
for which

‖ f ‖L p(w) :=
(∫

�

| f |p wdP

)1/p

< ∞.

We need the following lemma.

Lemma 3 Let ϕ be a positive function. Then for all r > 1, M is bounded from Lr (Mϕ)

to Lr (ϕ), that is for all f ∈ Lr (Mϕ), we have

∫

�

|M f |r ϕdP ≤ Cr

∫

�

| f |r Mϕ dP. (1)

Proof It is easy to see that the operator M is bounded from L∞(Mϕ) to L∞(ϕ).
We will prove that M is bounded from L1(Mϕ) to L1,∞(ϕ) as well, where L1,∞(ϕ)
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denotes the weak-L1(ϕ) space. From this, it follows by interpolation (see, e.g., [3])
that for all r > 1, the operator M is bounded from Lr (Mϕ) to Lr (ϕ), in oder words,
(1) holds. Let � > 0 arbitrary and let

ν� := inf {n ∈ N : | fn| > �} .

Since
{
ν� < ∞} = {M f > �}, we get that

‖M f ‖L1,∞(ϕ) := �

∫

{M f >�}
ϕ dP = �

∑

k∈N

∫

{ν�=k}
ϕ dP ≤

∑

k∈N

∫

{ν�=k}
| fk | ϕ dP

=
∑

k∈N

∫

{ν�=k}
Ek | f | ϕ dP =

∑

k∈N

∫

{ν�=k}
| f |Ekϕ dP

≤
∑

k∈N

∫

{ν�=k}
| f | Mϕ dP ≤

∫

�

| f | Mϕ dP = ‖ f ‖L1(Mϕ) ,

which finishes the proof. ��
Now we prove that Md is bounded on L−→p .

Theorem 1 For all 1 <
−→p < ∞, Md is bounded on L−→p , that is for all f ∈ L−→p ,

‖Md f ‖−→p ≤ C‖ f ‖−→p .

Proof We will prove the theorem by induction in d. If d = 1, then the function f has
only 1 variable and the theorem holds (see, e.g., Weisz [40]). Suppose that the theorem
is true for some fixed d ∈ N and for all 1 <

−→p = (p1, . . . , pd) < ∞ and f ∈ L−→p .
For a function f with d variables and for the vector (p1, . . . , pk), let us denote

T(p1,...,pk ) f (xk+1, . . . , xd) := ‖ f (·, . . . , ·, xk+1, . . . , xd)‖(p1,...,pk )

=
(∫

�k

· · ·
(∫

�1

| f (x1, . . . , xd)|p1 dx1
)p2/p1

· · · dxk
)1/pk

.

Using this notation, the condition of the induction can be written in the form

∫

�d

[
T(p1,...,pd−1)(Md f )

]pd (xd) dxd ≤ C
∫

�d

[
T(p1,...,pd−1)( f )

]pd (xd) dxd .

We will show that if 1 < pd+1 < ∞, then for all f ∈ L(p1,...,pd+1),

∫

�d+1

[
T(p1,...,pd )(Md+1 f )

]pd+1 (xd+1) dxd+1

≤ C
∫

�d+1

[
T(p1,...,pd )( f )

]pd+1 (xd+1) dxd+1,
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where f has d + 1 variable and the maximal operator Md+1 is taken in the variable
xd+1. If p1 = ∞, then

| f (x1, . . . , xd , xd+1)| ≤ sup
x1∈�1

| f (x1, . . . , xd , xd+1)| = T∞ f (x2, . . . , xd , xd+1).

Hence Md+1 f (x1, . . . , xd , xd+1) ≤ Md+1(T∞ f )(x2, . . . , xd , xd+1), and therefore

T∞(Md+1 f )(x2, . . . , xd , xd+1) = sup
x1∈�1

Md+1 f (x1, . . . , xd , xd+1)

≤ Md+1(T∞ f )(x2, . . . , xd , xd+1).

So we get that

∫

�d+1

[
T(p2,...,pd )(T∞(Md+1 f ))

]pd+1 (xd+1) dxd+1

≤
∫

�d+1

[
T(p2,...,pd )(Md+1(T∞ f ))

]pd+1 (xd+1) dxd+1. (2)

Here the functionMd+1(T∞ f ) has d variables: x2, . . . , xd+1 and themaximal operator
is taken over the dth variable, that is over xd+1. Therefore by induction, we have that
(2) can be estimated by

C
∫

�d+1

[
T(p2,...,pd )(T∞ f )

]pd+1 (xd+1) dxd+1,

which means that

‖Md+1 f ‖(∞,p2,...,pd ,pd+1) ≤ C‖ f ‖(∞,p2,...,pd ,pd+1), (3)

so the theorem holds for p1 = ∞. Now let choose a number r for which 1 < r <

min{p2, . . . , pd , pd+1}. It will be shown that

‖Md+1 f ‖(r ,p2,...,pd ,pd+1) ≤ C‖ f ‖(r ,p2,...,pd ,pd+1).

It is easy to see that

‖Md+1 f ‖(r ,p2,...,pd+1) = ∥
∥[Tr (Md+1 f )]r

∥
∥1/r(

p2
r ,...,

pd+1
r

) .

Let −→q := ( p2
r , . . . ,

pd+1
r

)
. Then, the vector −→q has d coordinates and 1 <

−→q < ∞.
Using Lemma 2,

∥
∥[Tr (Md+1 f )]r

∥
∥−→q
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= sup
ϕ∈L(

−→q )′
‖ϕ‖(

−→q )′≤1

∣
∣
∣
∣

∫

�d+1

· · ·
∫

�2

[
Tr (Md+1 f )

]r
(x2, . . . , xd+1)

ϕ(x2, . . . , xd+1) dx2 · · · dxd+1

∣
∣
∣
∣ .

We can suppose that ϕ > 0. Then

∫

�d+1

· · ·
∫

�2

[
Tr (Md+1 f )

]r
(x2, . . . , xd+1) ϕ(x2, . . . , xd+1) dx2 · · · dxd+1

=
∫

�1

(∫

�d

· · ·
∫

�2

(∫

�d+1

|Md+1 f |r (x1, . . . , xd+1) ϕ(x2, . . . , xd+1) dxd+1

)

dx2 · · · dxd) dx1. (4)

Since 1 < r < ∞, applying Lemma 3 for the variable xd+1, we have that for all fixed
x1, . . . , xd ,

∫

�d+1

|Md+1 f |r (x1, . . . , xd+1) ϕ(x2, . . . , xd+1) dxd+1

≤ C
∫

�d+1

| f (x1, . . . , xd+1)|r Md+1ϕ(x2, . . . , xd+1) dxd+1

Hence (4) can be estimated by

C
∫

�d+1

· · ·
∫

�2

(∫

�1

| f (x1, . . . , xd+1)|r dx1
)

Md+1ϕ(x2, . . . , xd+1) dx2 · · · dxd+1

= C
∫

�d+1

· · ·
∫

�2

[Tr ( f )]r (x2, . . . , xd+1) Md+1ϕ(x2, . . . , xd+1) dx2 · · · dxd+1

≤ C
∥
∥[Tr ( f )]

r
∥
∥−→q ‖Md+1ϕ‖(

−→q )′ . (5)

Here Md+1ϕ is a function with d variables, the vector (
−→q )′ has d coordinates such

that 1 < (
−→q )′ < ∞ and the maximal operator is taken in the dth coordinate, that is

over the variable xd+1. So, by induction, we get that

‖Md+1ϕ‖(
−→q )′ ≤ C ‖ϕ‖(

−→q )′ ≤ C .

Therefore, we can estimate (5) by

C
∥
∥[Tr ( f )]

r∥∥−→q

= C

⎛

⎜
⎝

∫

�d+1

· · ·
⎛

⎝
∫

�2

(∫

�1

| f (x1, x2, . . . , xd+1)|r dx1
)p2/r

dx2

⎞

⎠

p3/r ·r/p2
· · · dxd+1

⎞

⎟
⎠

r/pd+1

= ‖ f ‖r(r ,p2,··· ,pd+1)
.
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Consequently,
‖Md+1 f ‖(r ,p2,··· ,pd+1) ≤ C‖ f ‖(r ,p1,··· ,pd+1). (6)

Combining the results (3) and (6), we get by interpolation that for all 1 < p1 < ∞

‖Md+1 f ‖(p1,p2,··· ,pd+1) ≤ C‖ f ‖(p1,p1,··· ,pd+1).

Using induction, the proof is complete. ��
Remark 1 Using the proof of the previous theorem, Theorem 1 can be generalized for−→p -s, for which its first k coordinates are ∞, but the others are strongly between 1 and
∞, that is, for −→p -s, with

−→p = (∞,∞, . . . ,∞, pk+1, . . . , pd), 1 < pk+1, . . . , pd < ∞ (7)

for some k ∈ {1, . . . , d}.
Now, we can generalize the well-known Doob’s inequality. Using the previous

theorem, we get that the maximal operator M is bounded on L−→p in case 1 <
−→p < ∞.

Theorem 2 If 1 <
−→p < ∞ or −→p satisfies (7), then the maximal operator M is

bounded on L−→p , that is, for all f ∈ L−→p ,

‖M f ‖−→p ≤ C ‖ f ‖−→p .

Proof It is clear that M f ≤ M̃ f = Md ◦ · · · ◦ M1 f , therefore by Theorem 1 and
Remark 1,

‖M f ‖−→p ≤ ‖Md ◦ Md−1 ◦ . . . ◦ M1 f ‖−→p ≤ C ‖Md−1 ◦ . . . ◦ M1 f ‖−→p
≤ C ‖Md−2 ◦ . . . ◦ M1 f ‖−→p ≤ · · · ≤ C ‖ f ‖−→p

and the proof is complete. ��
A weighted version of Doob’s inequality can be found in Chen et al. [7]. The

following corollary is well known for classical Hardy spaces with −→p = (p, . . . , p).

Corollary 1 If 1 <
−→p < ∞, or −→p satisfies (7), then HM−→p is equivalent to L−→p .

Theorem 3 Theorem 2 is not true for all 1 <
−→p ≤ ∞.

Proof We prove the theorem for two dimensions and for the exponent −→p := (p,∞),
where 1 < p < ∞. The proof is similar for higher dimensions. Let us define the
following sequence of functions

fn(x, y) :=
n∑

k=1

2k/pχ[2−k ,2−k+1)2(x, y) ((x, y) ∈ [0, 1) × [0, 1)).
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Then for an arbitrary fixed y ∈ [2−k, 2−k+1) (k = 1, . . . , n),

∫

[0,1)
| fn(x, y)|p dx = 2k

1

2k
= 1

and for all fixed y /∈ [2−n, 1), the previous integral is 0. From this follows that for all
n ∈ N,

‖ fn‖(p,∞) = sup
y∈[0,1)

(∫

[0,1)
| f (x, y)|p dx

)1/p

= 1.

At the same time, for x ∈ [2−k, 2−k+1) (k = 1, . . . , n) and y ∈ [0, 2−n),

M fn(x, y) ≥ 1
∣
∣[0, 2−k+1)2

∣
∣

∫

[0,2−k+1)2
| fn(u, v)| dudv ≥ 1

2−2k+2 2k/p 2−2k = 2k/p

4
.

Hence we get that for all y ∈ [0, 2−n),

∫

[0,1)
|M fn(x, y)|p dx ≥

n∑

k=1

∫

[2−k ,2−k+1)

|M fn(x, y)|p dx

≥
n∑

k=1

2k

4
2−k = n

4
→ ∞ (n → ∞)

and therefore

‖M fn‖(p,∞) → ∞ (n → ∞) ,

which means, that M is not bounded on L(p,∞). ��
Remark 2 This counterexample proves also that M2 is not bounded on L(p,∞). More-
over, the counterexample shows also that the classical Hardy–Littlewood maximal
operator considered in Huang et al. [22] is not bounded on L(p,∞) (cf. Lemma 3.5 in
[22] and Lemma 4.8 in [35]).

4 Atomic Decomposition

First of all, we need the definition of the atoms. For −→p , a measurable function a is
called an (s,−→p )-atom (or (S,−→p )-atom or (M,−→p )-atom) if there exists a stopping time
τ such that

(i) Ena = 0 for all n ≤ τ ,
(ii)

∥
∥s(a)χ{τ<∞}

∥
∥∞ ≤ ∥

∥χ{τ<∞}
∥
∥−1−→p

(or
∥
∥S(a)χ{τ<∞}

∥
∥∞ ≤ ∥

∥χ{τ<∞}
∥
∥−1−→p , or

∥
∥M(a)χ{τ<∞}

∥
∥∞ ≤ ∥

∥χ{τ<∞}
∥
∥−1−→p ,

respectively).
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Now we can give the atomic decomposition of the space Hs−→p .

Theorem 4 Let 0 <
−→p < ∞. A martingale f = ( fn)n∈N ∈ Hs−→p if and only if there

exists a sequence (ak)k∈Z of (s,−→p )-atoms and a sequence (μk)k∈Z of real numbers
such that

fn =
∑

k∈Z
μkEna

k a. e. (n ∈ N) (8)

and

‖ f ‖Hs−→p
∼ inf

∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

, (9)

where 0 < t ≤ 1 and the infimum is taken over all decompositions of the form (8).

Proof Let f ∈ Hs−→p and let us define the following stopping times:

τk := inf
{
n ∈ N : sn+1( f ) > 2k

}
.

Obviously fn can be written in the form

fn =
∑

k∈Z

(
f τk+1
n − f τk

n

)
.

Let

μk := 3 · 2k ∥∥χ{τk<∞}
∥
∥−→p , and akn := f τk+1

n − f τk
n

μk
. (10)

If μk = 0, then let akn = 0. If n ≤ τk , then akn = 0 and naturally

fn =
∑

k∈Z
μka

k
n .

Moreover, (akn) is L2-bounded (see [40]), therefore there exists ak ∈ L2 such that
Enak = akn . Because of s ( f τk ) = sτk ( f ) ≤ 2k , we have that

s
(
ak
)

≤ s ( f τk+1) + s ( f τk )

μk
≤ ∥
∥χ{τk<∞}

∥
∥−1−→p ,

thus ak is an (s,−→p )-atom.
Since s2( f − f τk ) = s2( f )−s2 ( f τk ), thus s( f − f τk ) ≤ s( f ) and s ( f τk ) ≤ s( f ).

Using that limk→∞ s ( f − f τk ) = limk→∞ s ( f τk ) = 0 almost everywhere, by the
dominated convergence theorem (see, e.g., [2]) we get that

∥
∥
∥
∥
∥
f −

m∑

k=−l

μka
k

∥
∥
∥
∥
∥
Hs−→p

≤ ∥
∥ f − f τm+1

∥
∥
Hs−→p

+ ∥
∥ f τ−l

∥
∥
Hs−→p

→ 0 (l,m → ∞) ,
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this means that f = ∑
k∈Z μkak in the Hs−→p -norm.

Denote Ok := {τk < ∞} = {
s( f ) > 2k

}
. Then for all k ∈ Z, Ok+1 ⊂ Ok .

Moreover, for all x ∈ � and for all 0 < t ≤ 1,

∑

k∈Z

(
3 · 2kχOk (x)

)t ≤ C

(
∑

k∈Z
3 · 2kχOk\Ok+1 (x)

)t

.

Since the sets Ok \ Ok+1 are disjoint, we have

∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

=
∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
3 · 2kχ{τk<∞}

)t
)1/t

∥
∥
∥
∥
∥
∥−→p

≤ C

∥
∥
∥
∥
∥

∑

k∈Z
3 · 2kχOk\Ok+1

∥
∥
∥
∥
∥−→p

≤ C

∥
∥
∥
∥
∥

∑

k∈Z
s( f )χOk\Ok+1

∥
∥
∥
∥
∥−→p

= C ‖s( f )‖−→p .

Conversely, if f has a decomposition of the form (8), then

s( f ) ≤
∑

k∈Z
μks(a

k) ≤
∑

k∈Z
μk

χ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

,

and so for all 0 < t ≤ 1,

‖ f ‖Hs−→p
≤
∥
∥
∥
∥
∥

∑

k∈Z
μk

χ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

∥
∥
∥
∥
∥−→p

≤
∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

,

which proves the theorem. ��
For the classical martingale Hardy space Hs

p, this result is due to the second author
(see [40]). For the spaces Q−→p and P−→p , we can give similar decompositions.

Theorem 5 Let 0 <
−→p < ∞. A martingale f = ( fn)n∈N ∈ P−→p (or ∈ Q−→p ) if and

only if there exists a sequence (ak)k∈Z of (M,
−→p )-atoms (or (S,

−→p )-atoms) and a
sequence (μk)k∈Z of real numbers such that (8) holds and

‖ f ‖P−→p

(
or ‖ f ‖Q−→p

)
∼ inf

∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

,

where 0 < t ≤ 1 and the infimum is taken over all decompositions of the form (8).
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Proof Let f ∈ P−→p and (λn)n∈N be a sequence such that | fn| ≤ λn−1 and λ∞ =
supn λn ∈ L−→p . Let the stopping time τk be defined by

τk := inf
{
n ∈ N : λn > 2k

}

and μk and akn be given by (10). Then again fn = ∑
k∈Z μkakn and we can prove as

before that
∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

≤ C ‖ f ‖P−→p .

Conversely, assume that for some μk and akn , the martingale ( fn) can be written in
the form (8). For n ∈ N, let us define

λn :=
∑

k∈Z
μkχ{τk≤n}

∥
∥
∥M

(
ak
)∥
∥
∥∞ .

It is clear, that (λn) is a non-negative adapted sequence and for all n ∈ N, | fn| ≤ λn−1.
Therefore, for all 0 < t ≤ 1,

‖ f ‖P−→p ≤ ‖λ∞‖−→p ≤
∥
∥
∥
∥
∥

∑

k∈Z

μkχ{τk<∞}
‖χ{τk<∞}‖−→p

∥
∥
∥
∥
∥−→p

≤
∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}

‖χ{τk<∞}‖−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

.

The case of Q−→p is similar. ��
The stochastic basis (Fn) is said to be regular, if there exists R > 0 such that for

all non-negative martingales ( fn),

fn ≤ R fn−1. (11)

If the stochastic basis is regular, then atomic decomposition can also be proved for the
remainder two martingale Hardy spaces, HM−→p and HS−→p .

Theorem 6 Let 0 <
−→p < ∞ and the stochastic basis (Fn) be regular. A martingale

f = ( fn)n∈N ∈ HM−→p (or ∈ HS−→p ) if and only if there exists a sequence (ak)k∈Z of

(M,
−→p )-atoms (or (S,

−→p )-atoms) and a sequence (μk)k∈Z of real numbers such that
(8) holds and

‖ f ‖HM−→p

(

or ‖ f ‖HS−→p

)

∼ inf

∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

,

where 0 < t < min{p1, . . . , pd , 1} and the infimum is taken over all decompositions
of the form (8).
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Proof We will prove the theorem only for HM−→p . The case of H
S−→p is similar. Suppose

that f ∈ HM−→p and for k ∈ Z, let us define the stopping times

�k := inf{n ∈ N : | fn| > 2k}.

Moreover, let

Ik, j := {�k = j} ∈ F j ( j ∈ N)

and

I k, j :=
{

E j−1χIk, j ≥ 1

R

}

∈ F j−1 ( j ∈ N).

Then (11) implies that Ik, j ⊂ I k, j . Moreover, for I ∈ F j−1, we get that

P(I ∩ I k, j ) =
∫

I∩I k, j
1 dP ≤ R

∫

I
E j−1χIk, j dP = R P(I ∩ Ik, j ).

In other words

∫

I k, j
χI dP ≤ R

∫

Ik, j
χI dP

for all I ∈ F j−1. By a usual density argument, we obtain

∫

I k, j
h dP ≤ R

∫

Ik, j
h dP (12)

for all non-negative F j−1-measurable function h.
Let us define a new family of stopping times by

τk(x) := inf{n ∈ N : x ∈ I k,n+1} (x ∈ �, k ∈ Z) .

Then τk is non-decreasing and using Lemma 4,

‖χ{τk<∞}‖−→p ≤ C ‖χ{�k<∞}‖−→p = ‖χM f >2k‖−→p ≤ 2−k ‖M f ‖−→p → 0 (k → ∞) ,

which means that limk→∞ P({τk < ∞}) = 0. Hence limk→∞ τk = ∞ almost every-
where and therefore

lim
k→∞ f τk

n = fn a.e. (n ∈ N) .
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Let μk and akn be defined again as in (10). Then a
k = (akn) is an (M,

−→p )-atom. Since
{τk < ∞} = ∪ j∈N I k, j , we have

∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

≤

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∑

k∈Z

⎛

⎝
∑

j∈N

μkχI k, j

‖χ{τk<∞}‖−→p

⎞

⎠

t⎤

⎦

1/t
∥
∥
∥
∥
∥
∥
∥−→p

≤
∥
∥
∥
∥
∥
∥

∑

k∈Z

∑

j∈N

(
3 · 2k

)t
χI k, j

∥
∥
∥
∥
∥
∥

1/t

−→p /t

,

where 0 < t < min{p1, . . . , pd , 1}. By Lemma 2 there exists a non-negative g ∈
L(

−→p /t)′ with ‖g‖(
−→p /t)′ ≤ 1, such that

∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥

t

−→p
=
∫

�

∑

k∈Z

∑

j∈N

(
3 · 2k

)t
χI k, j

g dP

=
∑

k∈Z

∑

j∈N

(
3 · 2k

)t
∫

I k, j
E j−1g dP.

By (12),

∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥

t

−→p
≤ R

∑

k∈Z

∑

j∈N

(
3 · 2k

)t
∫

Ik, j
E j−1g dP

≤ R
∫

�

∑

k∈Z

∑

j∈N

(
3 · 2k

)t
χIk, j M(g) dP.

Since (
−→p /t)′ > 1 and M is bounded on L(

−→p /t)′ , we conclude

∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥

t

−→p
≤ R

∥
∥
∥
∥
∥
∥

∑

k∈Z

∑

j∈N

(
3 · 2k

)t
χIk, j

∥
∥
∥
∥
∥
∥−→p /t

‖M(g)‖(
−→p /t)′

≤ CR

∥
∥
∥
∥
∥

∑

k∈Z

(
3 · 2kχ{�k<∞}

)t
∥
∥
∥
∥
∥−→p /t

‖g‖(
−→p /t)′

= CR

∥
∥
∥
∥
∥
∥

[
∑

k∈Z

(
3 · 2kχ{M f >2k }

)t
]1/t

∥
∥
∥
∥
∥
∥

t

−→p
,
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where we have used that {�k < ∞} = {M f > 2k}. So we have that
∥
∥
∥
∥
∥
∥

(
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t)1/t
∥
∥
∥
∥
∥
∥−→p

≤ CR

∥
∥
∥
∥
∥
∥

[
∑

k∈Z

(
3 · 2kχ{M f >2k }

)t
]1/t

∥
∥
∥
∥
∥
∥−→p

,

where the right-hand side can be estimated by ‖ f ‖HM−→p
, similarly as in the proof of

Theorem 4.
Conversely, if f has a decomposition of the form (8), then

‖ f ‖HM−→p
≤
∥
∥
∥
∥
∥

∑

k∈Z
μk

χ{τk<∞}
‖χ{τk<∞}‖−→p

∥
∥
∥
∥
∥−→p

≤
∥
∥
∥
∥
∥
∥

[
∑

k∈Z

(

μk
χ{τk<∞}

‖χ{τk<∞}‖−→p

)t]1/t
∥
∥
∥
∥
∥
∥−→p

can be proved similarly as in Theorem 4. ��
Lemma 4 Let 0 <

−→p < ∞ and the stochastic basis (Fn) be regular. If �k and τk are
the stopping times defined in the proof of Theorem 6, then

‖χ{τk<∞}‖−→p ≤ C ‖χ{�k<∞}‖−→p .

Proof It is enough to prove that for some 0 < ε < min{1, p1, . . . , pd}, the inequality

‖χ{τk<∞}‖−→p /ε ≤ C ‖χ{�k<∞}‖−→p /ε

holds. Notice that

‖χ{τk<∞}‖−→p /ε ≤
∥
∥
∥
∥
∥
∥

∑

j∈N
χI k, j

∥
∥
∥
∥
∥
∥−→p /ε

and ‖χ{�k<∞}‖−→p /ε =
∥
∥
∥
∥
∥
∥

∑

j∈N
χIk, j

∥
∥
∥
∥
∥
∥−→p /ε

.

By Lemma 2, there exists a non-negative function g with ‖g‖(
−→p /ε)′ ≤ 1, such that

‖χ{τk<∞}‖−→p /ε ≤
∫

�

∑

j∈N
χI k, j

g dP.

Using (12), we obtain

‖χ{τk<∞}‖−→p /ε =
∑

j∈N

∫

I k, j
E j−1g dP

≤ R
∑

j∈N

∫

Ik, j
E j−1g dP

≤ R
∫

�

∑

j∈N
χIk, j M(g) dP.
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Lemma 1 implies

‖χ{τk<∞}‖−→p /ε ≤ R

∥
∥
∥
∥
∥
∥

∑

j∈N
χIk, j

∥
∥
∥
∥
∥
∥−→p /ε

‖M(g)‖−→p /ε

≤ CR ‖χ{�k<∞}‖−→p /ε,

where we have used that (
−→p /ε)′ > 1 and therefore M is bounded on L(

−→p /ε)′ . The
proof is complete. ��

Corollary 2 If the stochastic basis (Fn) is regular, then

H S−→p = Q−→p and HM−→p = P−→p
(
0 <

−→p < ∞)

with equivalent quasi-norms.

5 Martingale Inequalities

We will prove the analogous version of the classical martingale inequalities (see, e.g.,
Weisz [40]) for the five mixed martingale Hardy spaces. To this end, we need the
following boundedness results.

Let X be a martingale space, Y be a measurable function space. Then, the operator
U : X → Y is called σ -sublinear operator, if for any α ∈ C,

∣
∣
∣
∣
∣
U

( ∞∑

k=1

fk

)∣
∣
∣
∣
∣
≤

∞∑

k=1

|U ( fk)| and |U (α f )| = |α||U ( f )|.

The σ -algebra generated by the stopping time τ is denoted by

Fτ = {F ∈ F : F ∩ {τ ≤ n} ∈ Fn, n ≥ 1}.

Fτ is a sub-σ -algebra of F . Then, the conditional expectation with respect to Fτ is
denoted by Eτ .

Theorem 7 Let 0 <
−→p < ∞ and suppose that the σ -sublinear operator T : Hs

r →
Lr is bounded, where −→p = (p1, . . . , pd) and r > pi (i = 1, . . . , d). If for all
(s,−→p )-atom a

(Ta)χA = T (aχA) (A ∈ Fτ ) , (13)

where τ is the stopping time associated with the (s,−→p )-atom a, then for all f ∈ Hs−→p ,

‖T f ‖−→p ≤ C ‖ f ‖Hs−→p
.
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Proof By the σ -sublinearity of T and the atomic decomposition of Hs−→p given in
Theorem 4, we have

|T f | ≤
∑

k∈Z
3 · 2k ∥∥χ{τk<∞}

∥
∥−→p

∣
∣
∣T (ak)

∣
∣
∣ ,

If we choose 0 < t < min {p1, . . . , pd , 1} ≤ 1, then

‖T f ‖−→p ≤
∥
∥
∥
∥
∥
∥

[
∑

k∈Z

(
3 · 2k ∥∥χ{τk<∞}

∥
∥−→p

∣
∣
∣T (ak)

∣
∣
∣
)t
]1/t

∥
∥
∥
∥
∥
∥−→p

=
∥
∥
∥
∥
∥

∑

k∈Z

(
3 · 2k

)t ∥
∥χ{τk<∞}

∥
∥t−→p

∣
∣
∣T (ak)

∣
∣
∣
t
∥
∥
∥
∥
∥

1/t

−→p /t

.

By Lemma 2, there exists a function g ∈ L(
−→p /t)′ with ‖g‖(

−→p /t)′ ≤ 1, such that

‖T f ‖t−→p ≤
∫

�

∑

k∈Z

(
3 · 2k

)t ∥
∥χ{τk<∞}

∥
∥t−→p

∣
∣
∣T (ak)

∣
∣
∣
t
g dP.

Since {τk < ∞} ∈ Fτk , using the fact that ak = akχ{τk<∞} and Eq. (13), we have
T
(
akχ{τk<∞}

) = T
(
ak
)
χ{τk<∞}. Since t < r , the previous expression can be esti-

mated by Hölder’s inequality

‖T f ‖t−→p ≤
∑

k∈Z

(
3 · 2k

)t ∥
∥χ{τk<∞}

∥
∥t−→p

∫

�

χ{τk<∞}Eτk

(∣
∣
∣T (ak)

∣
∣
∣
t
g

)

dP

≤ C
∑

k∈Z

(
3 · 2k

)t ∥
∥χ{τk<∞}

∥
∥t−→p

∫

�

χ{τk<∞}

[
Eτk

(∣
∣
∣T (ak)

∣
∣
∣
r)]t/r [

Eτk

(
|g|(r/t)′

)]1/(r/t)′
dP. (14)

Here, by the boundedness of T and by the fact that ak is an (s,−→p )-atom, we get

∫

A
|T (ak)|r dP =

∫

�

|T (akχA)|r dP ≤
∫

�

|s(akχA)|r dP

≤
∫

A
|s(ak)|r dP ≤ ‖χ{τk<∞}‖−r−→p P(A),

where A ∈ Fτk . This implies that

[
Eτk

(∣
∣
∣T (ak)

∣
∣
∣
r)]t/r ≤ ∥

∥χ{τk<∞}
∥
∥−t−→p .
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Hence, (14) can be estimated by

‖T f ‖t−→p ≤ C
∫ ∑

k∈Z

(
3 · 2k

)t
χ{τk<∞}

[
Eτk

(
|g|(r/t)′

)]1/(r/t)′
dP

≤ C
∫ ∑

k∈Z

(
3 · 2k

)t
χ{τk<∞}

[
M
(
|g|(r/t)′

)]1/(r/t)′
dP

≤ C

∥
∥
∥
∥
∥

∑

k∈Z

(
3 · 2k

)t
χ{τk<∞}

∥
∥
∥
∥
∥−→p /t

∥
∥
∥
∥

[
M
(
|g|(r/t)′

)]1/(r/t)′
∥
∥
∥
∥

(
−→p /t)′

.

Since −→p < r , therefore (
−→p /t)′/(r/t)′ > 1, so by the boundedness of M (see Theo-

rem 2), we obtain that

∥
∥
∥
∥

[
M
(
|g|(r/t)′

)]1/(r/t)′
∥
∥
∥
∥
(
−→p /t)′

=
∥
∥
∥M

(
|g|(r/t)′

)∥
∥
∥
1/(r/t)′

(
−→p /t)′/(r/t)′

≤ C
∥
∥
∥|g|(r/t)′

∥
∥
∥
1/(r/t)′

(
−→p /t)′/(r/t)′

= C ‖g‖(
−→p /t)′ ≤ C .

By (9), we have

‖T f ‖−→p ≤ C

∥
∥
∥
∥
∥
∥

∑

k∈Z
(3 · 2)t χ{τk<∞}

∥
∥
∥
∥
∥
∥

1/t

−→p /t

= C

∥
∥
∥
∥
∥
∥
∥

⎡

⎣
∑

k∈Z

(
μkχ{τk<∞}∥
∥χ{τk<∞}

∥
∥−→p

)t
⎤

⎦

1/t
∥
∥
∥
∥
∥
∥
∥−→p

≤ C ‖ f ‖Hs−→p

and we get that T is bounded from Hs−→p to L−→p . ��

The following theorem can be proved similarly.

Theorem 8 Let0 <
−→p < ∞and suppose that theσ -sublinear operator T : Qr → Lr

(resp. T : Pr → Lr ) is bounded, where −→p = (p1, . . . , pd) and r > pi (i =
1, . . . , d). If all (S,

−→p )-atoms (resp. (M,
−→p )-atoms) a satisfy (13), then for all f ∈

Q−→p (resp. f ∈ P−→p ),

‖T f ‖−→p ≤ C ‖ f ‖Q−→p

(
resp. ‖ f ‖P−→p

)
.

It is easy to see that for all (s,−→p )-atoms a, (S,
−→p )-atoms a or (M,

−→p )-atoms a
and A ∈ Fτ , s(aχA) = s(a)χA, S(aχA) = S(a)χA and M(aχA) = M(a)χA. This
means that the operators s, S and M satisfy condition (13).

Let f ∈ Hs−→p . The σ -sublinear operator M is bounded from Hs
2 to L2 (see, e.g.,

Weisz [40]), that is ‖M f ‖2 ≤ C ‖ f ‖Hs
2
. So we can apply Theorem 7 with the choice

r = 2 and −→p := (p1, . . . , pd), where pi < 2 and we get that

‖ f ‖HM−→p
= ‖M( f )‖−→p ≤ C ‖ f ‖Hs−→p

(
0 <

−→p < 2
)
. (15)
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The operator S is also bounded from Hs
2 to L2 (see [40]), hence using Theorem 7,

we obtain
‖ f ‖HS−→p

≤ C ‖ f ‖Hs−→p

(
0 <

−→p < 2
)
. (16)

From the definition of the Hardy spaces, it follows immediately that

‖ f ‖HM−→p
≤ ‖ f ‖P−→p , ‖ f ‖HS−→p

≤ ‖ f ‖Q−→p
(
0 <

−→p < ∞)
. (17)

By the Burkholder–Gundy and Doob’s inequality, for all 1 < r < ∞, ‖S( f )‖r ≈
‖M( f )‖r ≈ ‖ f ‖r (see Weisz [40]). Using this, inequality (17) and Theorem 8, we
have

‖ f ‖HS−→p
≤ C ‖ f ‖P−→p and ‖ f ‖HM−→p

≤ C ‖ f ‖Q−→p
(
0 <

−→p < ∞)
. (18)

For f = ( fn)n∈N ∈ Q−→p , there exists a sequence (λn)n∈N for which Sn( f ) ≤ λn−1
andλ∞ ∈ L−→p . Using the inequality | fn | ≤ Mn−1( f )+λn−1 and the second inequality
in (18), we get that

‖ f ‖P−→p ≤ ‖M( f )‖−→p + ‖λ∞‖−→p ≤ ‖ f ‖HM−→p
+ C ‖ f ‖Q−→p ≤ C ‖ f ‖Q−→p . (19)

Similarly, if f = ( fn)n∈N ∈ P−→p , then | fn| ≤ λn−1 with a suitable sequence
(λn)n∈N for which λ∞ ∈ L−→p . Since

Sn( f ) =
(

n∑

k=0

|dk f |2
)1/2

≤ Sn−1( f ) + |dn f | ≤ Sn−1( f ) + 2λn−1,

using the first inequality in (18), we have that

‖ f ‖Q−→p ≤ ‖S( f )‖−→p + 2 ‖λ∞‖−→p = ‖ f ‖HS−→p
+ 2 ‖ f ‖P−→p ≤ C ‖ f ‖P−→p (20)

for all 0 <
−→p < ∞.

From [40] Proposition 2.11 (ii), we get that the operator s is bounded from HM
r to

Lr and from HS
r to Lr if 2 ≤ r < ∞. Again, using Theorem 8, we obtain

‖ f ‖Hs−→p
≤ C ‖ f ‖P−→p and ‖ f ‖Hs−→p

≤ C ‖ f ‖Q−→p
(
0 <

−→p < ∞)
. (21)

The inequalities (15), (16), (17), (18), (19), (20), and (21) are collected in the
following corollary.

Corollary 3 We have the following martingale inequalities:

(i) ‖ f ‖HM−→p
≤ C ‖ f ‖Hs−→p

, ‖ f ‖HS−→p
≤ C ‖ f ‖Hs−→p

(
0 <

−→p < 2
)
.

(ii) ‖ f ‖HM−→p
≤ ‖ f ‖P−→p , ‖ f ‖HS−→p

≤ ‖ f ‖Q−→p
(
0 <

−→p < ∞)
.
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(iii) ‖ f ‖HS−→p
≤ C ‖ f ‖P−→p , ‖ f ‖HM−→p

≤ C ‖ f ‖Q−→p
(
0 <

−→p < ∞)
.

(iv) ‖ f ‖P−→p ≤ C ‖ f ‖Q−→p , ‖ f ‖Q−→p ≤ C ‖ f ‖P−→p
(
0 <

−→p < ∞)
.

(v) ‖ f ‖Hs−→p
≤ C ‖ f ‖P−→p and ‖ f ‖Hs−→p

≤ C ‖ f ‖Q−→p
(
0 <

−→p < ∞)
. (22)

Theorem 9 If the stochastic basis (Fn) is regular, then the five Hardy spaces are
equivalent, that is

H S−→p = Q−→p = P−→p = HM−→p = Hs−→p
(
0 <

−→p < ∞)

with equivalent quasi-norms.

Proof Weknow(see, e.g.,Weisz [40]) that Sn( f ) ≤ R1/2sn( f ) and from this, it follows
that ‖ f ‖HS−→p

≤ C‖ f ‖Hs−→p
. Using the definition ofQ−→p and the fact that sn( f ) ∈ Fn−1,

we get

‖ f ‖Q−→p ≤ C‖s( f )‖−→p = C‖ f ‖Hs−→p
.

By inequalities (22), we obtain that Q−→p = Hs−→p . Since the stochastic basis (Fn) is
regular, the theorem follows from Corollary 2 and from (20). ��

Theorem 10 Suppose that 1 <
−→p < ∞, or

−→p = (1, . . . , 1, pk+1, . . . , pd), 1 < pk+1, . . . , pd < ∞ (23)

for some k ∈ {1, . . . , d}. Then for all non-negative, measurable function sequence
( fn)n∈N,

∥
∥
∥
∥
∥

∑

n∈N
En ( fn)

∥
∥
∥
∥
∥−→p

≤ C

∥
∥
∥
∥
∥

∑

n∈N
fn

∥
∥
∥
∥
∥−→p

.

Proof From Lemma 2, we know that there exists a function g ∈ L(
−→p )′ with ‖g‖(

−→p )′ ≤
1 such that

∥
∥
∥
∥
∥

∑

n∈N
En ( fn)

∥
∥
∥
∥
∥−→p

=
∫

�

∑

n∈N
En ( fn) g dP.

Since En ( fn) is Fn-measurable, we obtain

∫

�

∑

n∈N
En ( fn) g dP ≤

∑

n∈N

∫

�

fnM(g) dP =
∫

�

∑

n∈N
fnM(g) dP.
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Using Hölder’s inequality and Theorem 2, we have

∥
∥
∥
∥
∥

∑

n∈N
En( fn)

∥
∥
∥
∥
∥−→p

≤ C

∥
∥
∥
∥
∥

∑

n∈N
fn

∥
∥
∥
∥
∥−→p

‖Mg‖(
−→p )′ ≤ C

∥
∥
∥
∥
∥

∑

n∈N
fn

∥
∥
∥
∥
∥−→p

‖g‖(
−→p )′ ≤ C

∥
∥
∥
∥
∥

∑

n∈N
fn

∥
∥
∥
∥
∥−→p

and the proof is complete. ��
As an application of the previous theorem, we get the followingmartingale inequal-

ity.

Corollary 4 If 2 <
−→p < ∞, or −→p /2 satisfies (23), then

‖ f ‖Hs−→p
≤ C ‖ f ‖HS−→p

.

Proof Indeed, using Theorem 10 with the choice fn := |dn f |2, we have
∥
∥
∥
∥
∥
∥

(
∑

n∈N
En−1 |dn f |2

)1/2
∥
∥
∥
∥
∥
∥−→p

=
∥
∥
∥
∥
∥

∑

n∈N
En−1 |dn f |2

∥
∥
∥
∥
∥

1/2

−→p /2

≤ C

∥
∥
∥
∥
∥

∑

n∈N
|dn f |2

∥
∥
∥
∥
∥

1/2

−→p /2

= C ‖S( f )‖−→p ,

which finishes the proof. ��
To prove the Burkholder–Davis–Gundy inequality, we introduce the norm

‖ f ‖G−→p :=
∥
∥
∥
∥
∥

∑

n∈N
|dn f |

∥
∥
∥
∥
∥−→p

.

Lemma 5 Suppose that 1 <
−→p < ∞ or −→p satisfies (23). If f ∈ HS−→p , then there

exists h ∈ G−→p and g ∈ Q−→p such that f = h + g and

‖h‖G−→p ≤ C ‖ f ‖HS−→p
and ‖g‖Q−→p ≤ C ‖ f ‖HS−→p

.

Proof Let f ∈ HS−→p and let (λn) be an adapted, non-decreasing sequence such that
λ0 = 0, Sn f ≤ λn and λ∞ ∈ L−→p . Let us define the functions

hn :=
n∑

k=1

(
dk f χ{λk>2λk−1} − Ek−1

(
dk f χ{λk>2λk−1}

))
,

gn :=
n∑

k=1

(
dk f χ{λk≤2λk−1} − Ek−1

(
dk f χ{λk≤2λk−1}

))
.
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Then fn = hn + gn (n ∈ N). On the set {λk > 2λk−1}, we have λk < 2(λk − λk−1),
henceforth

|dk f |χ{λk>2λk−1} ≤ λkχ{λk>2λk−1} ≤ 2(λk − λk−1)

and so

n∑

k=1

|dkh| ≤ 2λn + 2
n∑

k=1

Ek−1 (λk − λk−1) .

Using Theorem 10, we have that

‖h‖G−→p ≤ 2‖λ∞‖−→p + C

∥
∥
∥
∥
∥

∑

n∈N
(λn+1 − λn)

∥
∥
∥
∥
∥−→p

≤ C ‖λ∞‖−→p .

At the same time,

|dk f |χ{λk≤2λk−1} ≤ λkχ{λk≤2λk−1} ≤ 2λk−1,

which implies that |dkg| ≤ 4λk−1. Then

Sn(g) ≤ Sn−1(g) + |dng| ≤ Sn−1( f ) + Sn−1(h) + 4λn−1

≤ λn−1 + 2λn−1 + 2
n−1∑

k=1

Ek−1(λk − λk−1) + 4λn−1

and therefore

‖g‖Q−→p ≤ C ‖λ∞‖−→p .

Choosing λn := Sn( f ), we get that

‖h‖G−→p ≤ C ‖ f ‖HS−→p
and ‖g‖Q−→p ≤ C ‖ f ‖HS−→p

,

which proves the theorem. ��
A similar lemma can be proved for HM−→p in the same way.

Lemma 6 Suppose that 1 <
−→p < ∞ or −→p satisfies (23). If f ∈ HM−→p , then there

exists h ∈ G−→p and g ∈ P−→p such that f = h + g and

‖h‖G−→p ≤ C ‖ f ‖HM−→p
and ‖g‖P−→p ≤ C ‖ f ‖HM−→p

.

Nowwe are ready to generalize thewell-knownBurkholder–Davis–Gundy inequal-
ity.
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Theorem 11 If 1 <
−→p < ∞ or −→p satisfies (23), then the spaces H S−→p and HM−→p are

equivalent, that is

H S−→p = HM−→p

with equivalent norms.

Proof Let f ∈ HS−→p . By Lemma 5, there exists h ∈ G−→p and g ∈ Q−→p such that
f = h + g and

‖h‖G−→p ≤ C‖ f ‖HS−→p
and ‖g‖Q−→p ≤ C ‖ f ‖HS−→p

.

Then

‖ f ‖HM−→p
≤ ‖h‖HM−→p

+ ‖g‖HM−→p
≤ ‖h‖G−→p + C ‖g‖Q−→p ≤ C ‖ f ‖HS−→p

.

The reverse inequality

‖ f ‖HS−→p
≤ C ‖ f ‖HM−→p

can be proved similarly. ��
For a martingale f , the martingale transform is defined by

(T f )n :=
∞∑

k=1

bk−1 dk f ,

where bk are Fk-measurable and |bk | ≤ 1. The martingale transform is bounded on
L−→p , if 1 <

−→p < ∞.

Theorem 12 If 1 <
−→p < ∞, then for all f ∈ L−→p ,

‖T f ‖−→p ≤ C‖ f ‖−→p .

Proof Because of |bk | ≤ 1, it is clear that S(T f ) ≤ S( f ). By Theorem 11, the spaces
HM−→p and HS−→p are equivalent. Therefore using Theorem 2,

‖T f ‖−→p ≤ ‖T f ‖HM−→p
≤ C‖T f ‖HS−→p

≤ C‖ f ‖HS−→p
≤ C‖ f ‖HM−→p

≤ C‖ f ‖−→p ,

which proves the theorem. ��
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