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Abstract
In this paper, we prove local existence of a Ricci de Turck flow starting at a space
with incomplete edge singularities and flowing for a short time within a class of
incomplete edge manifolds. We derive regularity properties for the corresponding
family ofRiemannianmetrics and discuss boundedness of theRicci curvature along the
flow.ForRiemannianmetrics that are sufficiently close to aflat incomplete edgemetric,
we prove long-time existence of the Ricci de Turck flow. Under certain conditions,
our results yield existence of Ricci flow on spaces with incomplete edge singularities.
The proof works by a careful analysis of the Lichnerowicz Laplacian and the Ricci de
Turck flow equation.
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1 Introduction and Statement of theMain Result

Geometric flows have attracted considerable interest and have been in the focus of
extensive research in recent years, among all most notably the Ricci flow which pro-
vided the decisive tool in the proof of Thurston’s geometrization and the Poincare
conjectures. In the present discussion, we are interested in the Ricci flow g(t) of an
incomplete manifold (M, g0)with an incomplete edge singular Riemannian metric g0
satisfying the Ricci flow equation

∂t g(t) = −2Ric(g(t)), g(0) = g0. (1.1)

Such singular Ricci flows, which stay in a class of singular spaces, have been con-
sidered on Kähler manifolds in connection to a recent resolution of the Calabi–Yau
conjecture for Kähler edge spaces by Jeffres et al. [26]. That paper arose in connection
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to the recent resolution of the Tian–Yau–Donaldson conjecture by Chen et al. [11–13]
and Tian [41]. We also refer the reader to the survey by Rubinstein [39] on the back-
ground of the two conjectures. In relation to very interesting developments, Chen and
Wang [10], Wang [43], Liu and Zhang [32] study existence and various properties of
the conical Kähler Ricci flow.

In two dimensions, Ricci flow reduces to the Yamabe flow and has been studied by
Mazzeo et al. [35] and Yin [44]. Yamabe flow of singular edge manifolds in general
dimension has been studied by the author in a joint work with Bahuaud in [4]. In
the subsequent paper [5], we study the long time behaviour of Yamabe flow of edge
manifolds and solve the Yamabe problem for incomplete edge metrics with a nega-
tive Yamabe invariant. Yamabe problem using elliptic methods has been studied by
Akutagawa and Botvinnik [1] in case of isolated conical singularities, as well as by
Akutagawa et al. [2] on edge manifolds.

In the singular setting, Ricci flow need not be unique and alternatively to our
treatment, Giesen-Topping [18,19] obtained a solution to the Ricci flow on surfaces
starting at a singular metric that becomes instantaneously complete. Moreover, Simon
[40] studied Ricci flow in dimension two and three, where the singularity is smoothed
out for positive times.

The setting of singular edge manifolds of dimension higher than two, which are not
necessarily Kähler, is complicated since the Ricci flow equation does not reduce to a
scalar equation and one is forced to study an equation of tensors. The present paper
provides a first step into this direction and establishes short-time existence of Ricci de
Turck flow starting at and preserving a class of incomplete edge metrics. We point out
that our analysis in particular applies to the setting of isolated conical singularities.

We now proceed with an introduction into basic geometry of incomplete edge
spaces, definition of Hölder spaces on incomplete edge spaces, outline the basic argu-
ment for short-time existence of the Ricci de Turck flow and formulation of the main
results.

1.1 Incomplete Edge Singularities

Definition 1.1 Consider an open interior M of a compact manifold M with boundary
∂ M . Let U = (0, 1)x × ∂ M be a tubular neighborhood of the boundary in M with
the radial function x : U → (0, 1). Assume ∂ M is the total space of a fibration φ :
∂ M → B with the base B and fibre F being compact smooth manifolds, dim F ≥ 1.
Consider a smooth Riemannian metric gB on the base manifold B and a symmetric
2-tensor gF on ∂ M which restricts to a fixed1 Riemannian metric on the fibres. We
write gF for the Riemannian metrics on fibres as well. An incomplete edge metric g
on M is defined here to be a smooth Riemannian metric such that g = g + h with
|h|g = O(x) and

1 In fact, the condition that gF restricts to a fixed metric on fibres is not necessary and is imposed here
for simplicity. Either one only assumes that the metrics on the fibres are isospectral with respect to the
tangential operator of the Lichnerowicz Laplacian, or more generally one has to deal with a heat kernel that
is only partially polyhomogeneous, see Remark 3.3 below.

123



Ricci de Turck Flow on Singular Manifolds 3353

B

F

M

Fig. 1 Incomplete edge as a cone bundle over B

g |U= dx2 + x2gF + φ∗gB .

The singular neighborhood U of such an incomplete edge space M is illustrated
in Fig. 1. If dim B = 0, the “edge” reduces to a finite collection of isolated conical
singularities.

We call such an edge metric admissible if the fibration φ : (∂ M, gF + φ∗gB) →
(B, gB) is a Riemannian submersion. More precisely, we may split the tangent bundle
Tp∂ M into vertical and horizontal subspaces T V

p ∂ M ⊕T H
p ∂ M as follows. The vertical

subspace T V
p ∂ M is the tangent space to the fibre of φ through p, and the horizontal

subspace T H
p ∂ M is the annihilator of the subbundle T V

p ∂ M�gF ⊂ T ∗∂ M (� denotes
contraction). Then, φ is a Riemannian submersion if gF restricted to T H

p ∂ M vanishes.
Any level set ({x} × ∂ M, x2gF + φ∗gB) is then a Riemannian submersion as well.

Other conditions on the metric g will be added below and are related to the assump-
tion of in a certain sense bounded curvature as well as the spectral analysis of the
associated Laplace Beltrami and the Lichnerowicz Laplace operators.

1.2 Geometry of Incomplete Edge Spaces

Choose local coordinates in the singular neighborhood U as follows. Consider local
coordinates (y) on B, lifted to ∂ M with respect to φ, and then extended radially to
U . Let coordinates (z) restrict to local coordinates on fibres F . This defines local
coordinates (x, y, z) in the neighborhood U .

Consider the Lie algebra of edge vector fields Ve, which by definition are smooth
over M and at the boundary ∂ M tangent to the fibres of the fibration. In local coordi-
nates, Ve is locally generated by (we write b := dim B and f := dim F)
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{
x

∂

∂x
, x∂y =

(
x

∂

∂ y1
, . . . , x

∂

∂ yb

)
, ∂z =

(
∂

∂z1
, . . . ,

∂

∂z f

)}
,

with coefficients in the linear combinations of the derivatives being by definition
smooth on M . The vector bundle eT M over M is defined by requiring that the edge
vector fields Ve form a spanning set of sections Ve = C∞(M, eT M). The dual vector
bundle of eT M is denoted by eT ∗M and is generated locally by the following one-
forms

{
dx

x
,

dy1
x

, . . . ,
dyb

x
, dz1, . . . , dz f

}
. (1.2)

These differential one-forms, though singular in the usual sense, are smooth as
sections of eT ∗M . We extend the radial function x : U → (0, 1) smoothly to
x ∈ C∞(M, [0,∞)) such that x−1({0}) = ∂ M and dx � ∂ M 	= 0. We define
the vector bundle ieT M by asking2 xC∞(M, ieT M) = C∞(M, eT M). Its dual, the
vector bundle ieT ∗M , is related to eT ∗M by 3 C∞(M, ieT ∗M) = xC∞(M, eT ∗M),
and is spanned locally by

{
dx, dy1, . . . , dyb, xdz1, . . . , xdz f

}
. (1.3)

Construction of these vector bundles does not require a choice of a Riemannian metric
on M . Rather the vector bundles ieT ∗M and ieT ∗M allow us to express the structure
of the complete edge metric x−2g and the incomplete edge metric g, as well as the
corresponding curvatures in a convenient way.

The complete edgemetric x−2g can be viewed as a smooth section of the symmetric
2-tensors on eT ∗M , which we write as x−2g ∈ Sym2(eT ∗M). Therefore, we refer to
eT M and eT ∗M as the complete tangent and cotangent bundles, respectively.

The incomplete edge metric g can be viewed as a smooth section of the symmetric
2-tensors on ieT ∗M , which we write as g ∈ Sym2(ieT ∗M). Therefore, we refer to
ieT M and ieT ∗M as the incomplete tangent and cotangent bundles, respectively. We
adopt such a convention of incomplete Riemannian edge metrics viewed as sections
of Sym2(ieT ∗M) from now whenever we don’t say otherwise. Note also that the
generators of ieT M and ieT ∗M are of bounded length with respect to the Riemannian
metric g and its inverse, respectively.

The Riemannian curvature (0, 4) tensor R(g) acting on X1, X2, X3, X4 ∈
C∞(M, ieT M) is generically R(g)[X1, X2, X3, X4] ∈ x−2C∞(M) ≡ {x−2 · u |
u ∈ C∞(M)}. We say in short that R(g) acting on ieT M is generically of order
O(x−2) as x → 0. Similarly, the Ricci curvature tensor Ric(g) acting on ieT M , as
well as the scalar curvature scal(g), are generically of order O(x−2) as x → 0. How-
ever, there are geometrically interesting situations, where the Ricci curvature tensor
on ieT M is bounded up to x = 0.

First of all, there is of course the example of a flat cone over S
f . A second less

trivial example is the case of a codimension two singularity, where the normal bundle

2 We write x C∞(M, ieT M) := {x · u | u ∈ C∞(M, ieT M)}.
3 We write x C∞(M, eT ∗M) := {x · u | u ∈ C∞(M, eT ∗M)}.
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N B of B inside T M is a fibre bundle over B with the fibre being a two-dimensional
disc D

2. The involution on D
2 defines a global action σ on the normal bundle N B,

which may now be viewed as a branched covering of itself. Any σ -invariant smooth
metric on N B descends to a singular edge metric on N B/σ and extends smoothly
to M . This defines an orbifold metric with incomplete edge singularity and bounded
geometry. In a more general setting, any singularity covered by a smooth branched
covering space admits a singular metric of bounded Ricci curvature.

The previous paragraph provides two explicit examples of spaces, which have
bounded Ricci curvature despite having isolated conical or edge singularities. In both
cases, the singularity arises as an orbifold singularity. Another class of examples for
singular spaces with bounded Ricci curvature has been provided byHein and Sun [24],
who constructed the first examples of compact Ricci flat manifolds with non-orbifold
isolated conical singularities.

Another quite explicit example is the case of a knot S
1 embedded into S

3 or any
other orientable 3-manifold. The normal bundle of S

1 may be equipped with an edge
metric of any given angle. The fibres of the normal bundle are flat two-dimensional
cones and the resulting metric, smoothly extended away from the singularity, is of
bounded geometry.

Let us point out the assumption of a bounded geometry is obviously satisfied in the
geometric setting of g|U being a higher-order perturbation of a Ricci-flat incomplete
edge metric.

1.3 Hölder Spaces on Singular Manifolds

Definition 1.2 The Hölder space Cα
ie(M × [0, T ]), α ∈ (0, 1), consists of functions

u(p, t) that are continuous on M × [0, T ] with finite α-th Hölder norm4

‖u‖α := ‖u‖∞ + sup

( |u(p, t) − u(p′, t ′)|
dM (p, p′)α + |t − t ′| α

2

)
< ∞, (1.4)

where the distance function dM (p, p′) between any two points p, p′ ∈ M is defined
with respect to the incomplete edge metric g, and in terms of the local coordinates
(x, y, z) in the singular neighborhood U given equivalently by

dM ((x, y, z), (x ′, y′, z′)) =
(
|x − x ′|2 + (x + x ′)2|z − z′|2 + |y − y′|2

) 1
2
.

The supremum is taken over all (p, p′, t) ∈ M2×[0, T ].We also introduce the Hölder
space of time-independent functions (and suppress [0, T ] in the notation)

Cα
ie(M) := {u ∈ Cα

ie(M × [0, T ]) | u(·, t) is independent of t ∈ [0, T ]}. (1.5)

We wish to explain in what way the Hölder space Cα
ie introduced above, may be

defined locally. Consider any finite cover {Ui }i∈I of M by open coordinate charts and

4 Finiteness of the Hölder norm ‖u‖α in particular implies that u is continuous on the closure M up to the

edge singularity, and the supremum may be taken over (p, p′, t) ∈ M
2 × [0, T ].
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a partition of unity {φ j } j∈J subordinate to that cover. We can define a Hölder norm
by

‖u‖φ
α :=

∑
j∈J

‖φ j u‖α. (1.6)

Such a norm is equivalent to our originalHölder norm, since for any tuple (p, p′) ∈ M2

with distance dM (p, p′) > δ bounded away from zero, the quotient in the second sum-
mand of the formula (1.4) is bounded by 2δ−1‖u‖∞. Consequently, we may assume
without loss of generality that the tuples (p, p′) ∈ M2 are always taken from within
the same coordinate patch of a given atlas.

We also need a notion of Hölder spaces with values in the vector bundle S =
Sym2(ieT ∗M) of symmetric 2-tensors. with a fibrewise inner product gS , induced by
the Riemannian metric g.

Definition 1.3 Denote by h a fibrewise inner product on S = Sym2(ieT ∗M) induced
by the Riemannian metric g. The Hölder space Cα

ie(M × [0, T ], S) consists of all
sectionsω of S which are continuous on M×[0, T ], such that for any local orthonormal
frame {s j } of S, the scalar functions gS(ω, s j ) are Cα

ie(M × [0, T ]).
The α-th Hölder norm ofω is defined using a partition of unity {φ j } j∈J subordinate

to a cover of local trivializations of S, with a local orthonormal frame {s jk} over
supp(φ j ) for each j ∈ J . We put

‖ω‖(φ,s)
α :=

∑
j∈J

∑
k

‖gS(φ jω, s jk)‖α. (1.7)

As before in (1.6), norms corresponding to different choices of ({φ j }, {s jk}) are
equivalent and we may drop the upper index (φ, s) from notation. The supremum
norm ‖ω‖∞ is defined similarly.

We now define the weighted and higher-order Hölder spaces.

Definition 1.4 (i) The weighted Hölder space for γ ∈ R is

xγ Cα
ie(M × [0, T ], S) := { xγ ω | ω ∈ Cα

ie(M × [0, T ], S) },
with Hölder norm ‖xγ ω‖α,γ := ‖ω‖α.

(ii) The hybrid weighted Hölder space for γ ∈ R is

Cα
ie,γ (M × [0, T ], S) := xγ Cα

ie(M × [0, T ], S) ∩ xγ+αC0ie(M × [0, T ], S)

with Hölder norm ‖ω‖′
α,γ := ‖x−γ ω‖α + ‖x−γ−αω‖∞.

(iii) LetCk(M ×[0, T ], S) denote the space of S-sections that are k-times continuously
differentiable in the open interior M of M . We identify the local expressions
{x∂x , x∂y, ∂z} over U with their smooth extensions to vector fields over M . Then
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the weighted Hölder spaces of order k ∈ N are defined for any weight γ ∈ R as
subspaces of

Ck,α
ie (M × [0, T ], S)γ

= {
ω ∈ Cα

ie,γ ∩ Ck | {Ve
j ◦ (x2∂t )

	
}
ω ∈ Cα

ie,γ for any j + 2	 ≤ k
}
,

Ck,α
ie (M × [0, T ], S)b

γ

= {
u ∈ Cα

ie ∩ Ck | {Ve
j ◦ (x2∂t )

	
}

u ∈ xγ Cα
ie for any j + 2	 ≤ k,

if there is at least one (x∂x ) or ∂zderivative included in Ve
j ◦ (x2∂t )

	,

otherwise Ve
j ◦ (x2∂t )

	u = (x∂y)
j ◦ (x2∂t )

	u ∈ xmin{γ, j+2	}Cα
ie

}
,

(iv) In case of γ = 0 we just write Ck,α
ie = Ck,α

ie (M × [0, T ], S)b
0.

(v) The weighted Hölder spaces of time-independent functions are given by5

Ck,α
ie (M, S)γ := {

u ∈ Ck,α
ie (M × [0, T ], S)γ | u(·, t) is independent of t ∈ [0, T ]},

Ck,α
ie (M, S)b

γ := {
u ∈ Ck,α

ie (M × [0, T ], S)b
γ | u(·, t) is independent of t ∈ [0, T ]}.

To define the Hölder norms for Ck,α
ie (M ×[0, T ], S)γ and Ck,α

ie (M ×[0, T ], S)b
γ , we

consider as before any finite cover {Ui }i∈I of M by open coordinate charts, which we
may assume to trivialize S by appropriate refinement, and a partition of unity {φ j } j∈J

subordinate to that cover. By a small abuse of notation we now identify Ve with a finite
set of generating edge vector fields, when applied to sections with compact support
in U ; and write Ve for any local orthonormal frame of vector fields, when applied
to sections with compact support in a coordinate chart with distance bounded from
below away from the edge singularity. We may now introduce D := {Ve

j ◦ (x2∂t )
	 |

j + 2	 ≤ k} and can now write the Hölder norms on the higher order Hölder spaces
as follows

‖ω‖k+α,γ =
∑
j∈J

∑
X∈D

‖X(φ jω)‖′
α,γ + ‖ω‖′

α,γ , on Ck,α
ie (M × [0, T ], S)γ ,

‖ω‖k+α,γ =
∑
j∈J

∑
X∈D

‖X(φ jω)‖α,γ + ‖ω‖α, on Ck,α
ie (M × [0, T ], S)b

γ ,
(1.8)

where in the second definition we replace ‖X(φ jω)‖′
α,γ by ‖X(φ jω)‖′

α,min{γ, j+2	} if
X = (x∂y)

j ◦ (x2∂t )
	. Any different choice of coordinate charts and the subordinate

partition of unity, as well as different choices of generating vector fields Ve define
equivalent Hölder norms.

For sections ω compactly supported away from ∂ M , the Hölder norms above are
equivalent to the classical parabolic Hölder norms introduced by Ladyzhenskaya,
Solonnikov and Ural’tseva [30].

5 Regularity under differentiation by ∂t becomes irrelevant in this case.
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The vector bundle S decomposes into a direct sum of sub-bundles

S = S0 ⊕ S1, (1.9)

where the sub-bundle S0 = Sym2
0(

ieT ∗M) is the space of trace-free (with respect to
the fixed metric g) symmetric 2-tensors, and S1 is the space of pure trace (with respect
to the fixed metric g) symmetric 2-tensors. The sub bundle S1 is trivial real vector
bundle over M of rank 1. Definition 1.4 extends verbatim to sections of S0 and S1.
Since the sub-bundle S1 is a trivial rank one real vector bundle, its sections correspond
to scalar functions. Hence, we may omit S1 from the notation and simply write e.g.

Ck,α
ie (M × [0, T ])γ := Ck,α

ie (M × [0, T ], S1)
b
γ ,

Ck,α
ie (M)γ := Ck,α

ie (M, S1)
b
γ .

(1.10)

The Hölder spaces Ck,α
ie (M × [0, T ])b

γ and Ck,α
ie (M × [0, T ], S)γ are similar but

not the same. They are adapted to the mapping properties of the heat operators for
the Laplace Beltrami operator 
 and the Lichnerowicz Laplacian 
L with the former
satisfying stochastic completeness. We will address the analytic reason for using such
spaces in Remark 4.2.

Moreover, we refer the reader to the Appendix 11 for a detailed comparison of
the various Hölder spaces on singular incomplete edge manifolds that appear in the
literature, foremost the spaces in [4,26].

We conclude the subsection with a definition of a Hölder regular geometry.

Definition 1.5 Let α ∈ (0, 1), k ∈ N0 and γ > 0. An admissible edge space (M, g)

is (α, γ, k)-Hölder regular if the following two conditions are satisfied

(i) For the curvature (0, 4) tensor R(g) acting on any sections X1, X2, X3, X4 ∈
C∞(M, ieT M)

R(g)[X1, X2, X3, X4] ∈ x−2Ck,α
ie (M).

(ii) scal(g) ∈ x−2+γ Ck,α
ie (M) and the trace-free part of Ric(g) is Ck,α

ie (M, S0)−2+γ .

1.4 Existence of the Singular Ricci Flow

Given a compact smooth Riemannian manifold (M, g0), the Ricci flow of g0 is by
definition a family g(t), t ∈ [0, T ] of Riemannian metrics on M , satisfying the Ricci
flow equation

∂t g(t) = −2Ric(g(t)), g(0) = g0. (1.11)

Ricci flow is not a parabolic equation due to its diffeomorphism invariance. Therefore,
existence of solutions does not follow directly from the classical parabolic theory. This
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problem is resolved using the so-called de Turck trick [16]. The de Turck trick leads
to an equivalent Ricci de Turck flow g(t), which is given by the following equation.

∂t g(t) = −2Ric(g(t)) + LW (t)g(t), g(0) = g0, (1.12)

where W (t) is the de Turck vector field defined in terms of the Christoffel symbols
for the metrics g(t) and a reference metric g̃6

W (t)k = g(t)i j
(
�k

i j (g(t)) − �k
i j (g̃)

)
. (1.13)

The de Turck vector field W (t) yields a one parameter family of diffeomorphisms
φ(t) and the pullback φ(t)∗g(t) solves the Ricci flow (1.11). Ricci de Turck flow is a
parabolic equation and existence of its solution can be easily obtained by the following
argument. The equation (1.12) is linearized by writing g(t) = v(t) + g0, which leads
to a non-linear parabolic equation for v(t)

(∂t + 
L)v(t) = −2Ric(g0) + O2(v(t)), v(0) = 0, (1.14)

where 
L is the Lichnerowicz Laplacian on symmetric two-tensors and O2(v(t)) is
a sum of terms which are at least quadratic in v(t) and its first- and second-order
derivatives. Clearly, the solution v(t) is a fixed point of the following map

� : C2,α(M × [0, T ]) −→ C2,α(M × [0, T ]),
u �→

∫ t

0
e−(t−̃t) 
L

(−2Ric(g0) + O2(u(̃t))
)

dt̃,
(1.15)

where e−t 
L is the heat operator of the Lichnerowicz Laplacian 
L and Ck,α are
the usual parabolic Hölder spaces with α ∈ (0, 1) and k ∈ N0. Classical Schauder
estimates of Ladyzhenskaya et al. [30] essentially prove the mapping property of the
heat operator (acting with a convolution in time)

e−t 
L : C0,α(M × [0, T ]) −→ C2,α(M × [0, T ]),
u �→

∫ t

0
e−(t−̃t) 
L u(̃t)dt̃,

(1.16)

and imply that� is bounded, since O2(u(̃t)) ∈ C0,α for u ∈ C2,α . A simple argument
shows that for μ > 0 sufficiently small, � is a contraction on

Zμ,T := {u ∈ C2,α(M × [0, T ]) | ‖u‖2,α ≤ μ}, (1.17)

mapping Zμ,T to itself for μ, T > 0 sufficiently small. Consequently, by the Banach
fixed-point theorem there exists a fixed point v(t) of�, which is a solution to the Ricci
de Turck flow by construction.

6 The reference metric g̃ is often taken as the initial metric g̃ = g0.
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While on smooth compact manifolds, Ricci flow continues to be a focal point of
intensive research, on singular spaces even existence of Ricci flow is an open problem.
If the manifold (M .g) is singular, the argument outlined above may break down. The
major difficulty hereby is whether some analogue of parabolic Schauder estimates as
derived in [30] can be established in the singular setting. The purpose of the present
work is to study the Ricci de Turck flow on a singular edge manifolds. We derive
parabolic Schauder estimates in this setting and prove short time existence of Ricci de
Turck flow.

Our first main result establishes short time existence of Ricci de Turck flow starting
at an admissible incomplete edge metric of Hölder regular geometry and flowing
through the space of singular metrics, which preserves the admissible edge structure
and Hölder regular geometry. The result holds under an additional assumption of
tangential stability, which is a spectral condition imposed upon the Lichnerowicz
Laplace operator introduced below inDefinition 2.1 and discussed in detail in Theorem
2.2. Let us point out that [29, Theorem 1.4] provides an extensive list of explicit
examples, where tangential stability is satisfied.

Theorem 1.6 Consider an incomplete edge manifold (M, g) with an admissible edge
metric and Hölder-regular geometry, satisfying the assumption of tangential stability.
Then, for short-time g may be evolved under the Ricci de Turck flow into a family
of Riemannian metrics g(t) within the space of admissible edge metrics of Hölder
regular geometry for some finite time T > 0.

We will also address the relation between the Ricci de Turck and the Ricci flow,
which is intricate in terms of regularity.

Our second main result concerns Ricci flow starting at metrics that are in a certain
sense higher order small perturbations of flat incomplete edge metrics. In that case,
we actually obtain long time existence.

Theorem 1.7 Consider an incomplete edge manifold (M, h) of Hölder regular geome-
try with an admissible flat edge metric, satisfying the assumption of tangential stability.
If g0 is a higher order sufficiently small perturbation of h, then a Ricci de Turck flow
g(t) of admissible incomplete edge metrics of Hölder regular geometry, starting at g0,
exists for all time and stays in a small ε-neighborhood of h, uniformly in t ≥ 0.

In a joint paper with Kröncke [29], we discuss stability of the Ricci de Turck flow
for small perturbations of Ricci flat (not necessarily flat) singular metrics, assuming
certain integrability conditions outside of the scope of the present paper.

In fact, Ricci flow through singular metrics has been studied by various authors
in dimension two, e.g. by Mazzeo et al. [35], our work jointly with Bahuaud in [4].
Somewhat different from the approach taken here, is the work by Giesen and Topping
on instantaneously complete Ricci flow in [18,19]. Another alternative approach has
been taken by Miles Simon in [40], where Ricci flow smoothens out any Lipschitz
singularity instantly.

The idea of the proof for both Theorems 1.6 and 1.7 is, exactly as in the compact
smooth case, to linearize theRicci deTurck flowand applyBanach fixed-point theorem
in appropriate Hölder spaces. This requires mapping properties of the heat operator for
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the Lichnerowicz Laplacian. The bulk of the paper is, therefore, devoted to deriving
these mapping properties in the singular setting.

This paper is organized as follows. We begin with the analysis of the Lichnerowicz
Laplace operator in Sect. 2 and construct a solution to its heat equation as a polyho-
mogeneous conormal distribution on a blown up heat space. In Sect. 4 we establish
various mapping properties of the heat operator for the Lichnerowicz and the Laplace
Beltrami operators. We employ these mapping properties to establish existence of a
solution to the Ricci de Turck flow in Sect. 5 and show in Sect. 6 that this flow is
indeed a flow of admissible incomplete edge metrics. Then, Sect. 7 explains how to
pass from the Ricci de Turck solution to the corresponding solution of the Ricci flow,
along with a change in regularity. In Sect. 8 we discuss Hölder regularity of the Ricci
de Turck flow for positive times, an aspect which will be crucial in subsequent maxi-
mum principle arguments. We conclude this paper with a long time existence result in
Sect. 9 for Ricci flow of metrics that are sufficiently small perturbations of flat edge
metrics.

2 Lichnerowicz Laplacian on 2-Tensors of an Exact Cone

In this section, we study the rough and the Lichnerowicz Laplace operators acting on
symmetric 2-tensors over an exact cone C(F) := (0, 1) × F with an exact conical
metric g = dx2 ⊕ x2gF . We provide explicit formulae and formulate assumptions
that are necessary for the subsequent analytic arguments.

Consider for the moment any Riemannian manifold (M, g) of dimension m. We
will specify M to be an exact cone C(F) right after the general definition. Let L denote
any vector bundle associated to T ∗M , for instance the bundle S of symmetric trace-
free 2-tensors Sym2

0(T
∗M). Let ∇ denote the induced Levi-Civita connection acting

on smooth compactly supported sections as

∇ : C∞
0 (M, L) → C∞

0 (M, L ⊗ T ∗M),

∇2 : C∞
0 (M, L) → C∞

0 (M, L ⊗ T ∗M ⊗ T ∗M).

The rough Laplacian 
, acting on smooth compactly supported sections of L , is then
defined as follows. Consider the pointwise inner product on fibres of L , induced by
the Riemannian metric g on M . Let {ei }m

i=1 denote a local orthonormal frame of T M ,
where m is the dimension of M . The rough Laplacian is given by


 := −
m∑

i=1

∇2
ei ei

≡ −tr(∇2). (2.1)

The Lichnerowicz Laplacian on symmetric covariant 2-tensors is defined in terms of
the rough Laplacian 
 and additional curvature terms by


L := 
 + 2(Ric − Riem), (2.2)
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where for any symmetric covariant 2-tensor ω on any Riemannian manifold (M, g),
with the corresponding curvature tensorRiem(g) and theRicci curvature tensorRic(g),
we have

(Ricω)i j :=
(
Ric(g)ik gk	ω	 j + Ric(g) jk gk	ω	i

)
/2,

(Riemω)i j := Riem(g)ik j	 gks g	tωst .

(2.3)

Let us now specify the action of 
L in case of an exact cone. Let M = C(F) :=
(0, 1) × F be an exact cone with an exact conical metric g = dx2 ⊕ x2gF . Let
L = Sym2(ieT ∗C(F)) be the bundle of symmetric covariant 2-tensors on the cone.
We may decompose

C∞
0 (C(F), L) ≡ C∞

0 (C(F),Sym2(ieT ∗C(F))) = C∞
0 (C(F))g ⊕ C∞

0 (C(F), S0)

into the pure trace and the trace-free parts with respect to the Riemannian edge metric
g. This decomposition is preserved under the Lichnerowicz Laplacian. By a minor
abuse of notation, 
L shall refer to the Lichnerowicz Laplacian on the trace-free part,
while 
′

L denotes its action on the pure trace component. 
′
L is given by the action

of the Laplace Beltrami operator with ( f = dim F)


′
L(u · g) =

(
−∂2x u − f

x
∂x u + 1

x2
�′

Lu

)
· g, (2.4)

where �′
L is the Laplace Beltrami operator of (F, gF ). The action of 
L on the

trace-free component has been computed by Delay [15, Lemma 4.2] and Guillarmou,
Moroianu and Schlenker [21, 7.4]. Let {zα} denote local coordinates on F . We write
for any symmetric trace-free 2-tensor ω ∈ C∞

0 (C(F), S0)

ωxx := ω(∂x , ∂x ), ωxα := ω(∂x , x−1∂zα ), ωαβ := ω(x−1∂zα , x−1∂zβ );
ω′

xα := ω(∂x , ∂zα ) = x ωxα, ω′
αβ := ω(∂zα , ∂zβ ) = x2ωαβ.

For simplicity of notation, we denote the scalar function ωxx by η, the (1, 0)-tensor
(ω′

xα)α by ξ ′, and the symmetric 2-tensor (ω′
αβ)αβ on the cross-section of the cone by

κ ′. Clearly, our convention is to use greek letters for components corresponding to the
cross-section F . Operators and quantities referring to the cross-section (F, gF ) of the
cone C(F) are denoted with an additional index F . Then we obtain as in [15, Lemma
4.2] and [21, 7.4]
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(
Lω)xx =
(

−∂2x − f

x
∂x + 1

x2

(

F

L + 2 f + 2
))

η − 4

x3
δFξ ′,

(
Lω)′xα =
(

−∂2x − f − 2

x
∂x + 1

x2

(

F

L + f + 2
))

ξ ′
α − 2

x
∂zαη + 2

x3
δFκ ′

α,

(
Lω)′αβ =
(

−∂2x − f − 4

x
∂x + 1

x2

(

F

L − 4
))

κ ′
αβ − 2 η gF

αβ

+ 2

x2
(trgF κ ′)gF

αβ − 2

x
δ∗

Fξ ′
αβ,

where 
F
L acting on h refers to the Lichnerowicz Laplacian acting on symmetric

2-forms over F and moreover, we have introduced the following notation


F
L η := 
Fη ≡ �′

Lη, δFξ ′ := gαβ
F (∇F

β ξ ′)α,


F
L ξ ′

α := (∇∗
F∇Fξ ′)α + gγβ

F RicF
βαξ ′

γ , δFκ ′
α := gγβ

F (∇F
β κ ′)αγ ,

(δ∗
Fξ ′)αβ := (∇F

α ξ ′)β + (∇F
β ξ ′)α.

The formulae become more transparent if we switch to the action on (ωxx , ωxα, ωαβ).
We denote the (1, 0)-tensor (ωxα)α by ξ , and the symmetric 2-tensor (ωαβ)αβ on the
cross-section of the cone by κ . Clearly, ξ ′ = xξ and κ ′ = x2κ . The action of the
Lichnerowicz Laplacian with respect to that rescaling is now given by

(
Lω)xx =
(

−∂2x − f

x
∂x + 1

x2

(

F

L + 2 f + 2
))

η − 4

x2
δN ξ,

(
Lω)xα =
(

−∂2x − f

x
∂x + 1

x2

(

F

L + 4
))

ξα − 2

x2
∂zαη + 2

x2
δFκα,

(
Lω)αβ =
(

−∂2x − f

x
∂x + 1

x2

(

F

L + 2 − 2 f
))

καβ − 2

x2
η gF

αβ

+ 2

x2
(trgF κ)gF

αβ − 2

x2
δ∗

Fξαβ,

Identifying any trace-free ω with the vector of its (ωxx , ωxα, ωαβ) components,

C∞
0 (C(F), S0) → C∞

0 ((0, 1), C∞(F) × �1(F) × Sym2(T ∗F)),

ω �→ (ωxx , ωxα, ωαβ),
(2.5)

where �1(F) denotes differential 1-forms on F , we arrive at the following expression
for the action of the Lichnerowicz Laplacian on ω ≡ (ωxx , ωxα, ωαβ)


Lω =
(

−∂2x − f

x
∂x + 1

x2
�L

)
ω, (2.6)
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where the action of �L is given by

�L =
⎛
⎝
F

L + 2 f + 2 −4δF 0
−2∂z 
F

L + 4 2δF

−2gF −2δ∗
F 
F

L + 2 − 2 f + 2gF trgF

⎞
⎠ . (2.7)

We may now introduce the assumption of tangential stability.

Definition 2.1 We call an admissible edge manifold (M, g) tangentially stable with
lower bounds u0, u1 > 0, if min(Spec�L) = u0 and min(Spec�′

L\{0}) = u1.

In the follow-up jointworkwithKröncke [29, Theorem1.3]we characterize tangen-
tial stability explicitly in terms of the spectrum of the Einstein and the Hodge Laplace
operators on the cross-section (F, gF ). We state the result here for completeness.

Theorem 2.2 Let (F, gF ) be a compact Einstein manifold of dimension f ≥ 3 with
the Einstein constant ( f − 1). We write 
E for its Einstein operator, and denote
the Laplace Beltrami operator by 
. Then, tangential stability holds if and only if
Spec(
E |T T ) > 0 and Spec(
) \ {0} ∩ ( f , 2( f + 1)] = ∅.

We also identify in [29, Theorem 1.4] an extensive list of explicit examples, where
tangential stability is satisfied. This includes e.g. certain simple Lie groups and rank-1
symmetric spaces of compact type. The actual statement in [29] also identifies the
cases where tangential stability fails. Moreover [29] shows that the only example
where (F, gF ) is weakly tangentially stable in the sense of Definition 9.1, but not
tangentially stable is the case of a sphere.

3 Heat Operator of the Lichnerowicz Laplacian

We consider the Lichnerowicz Laplacian 
L , acting on trace-free symmetric two-
tensors on an admissible incomplete edge manifold (M, g). In this subsection, we
consider the homogeneous or the inhomogeneous heat equations

(∂t + 
L) ωhom(t, p) = 0, ωhom(0, p) = ω0(p),

(∂t + 
L) ωinhom(t, p) = v(t, p), ωinhom(0, p) = 0,
(3.1)

and obtain their fundamental solutions, following the heat kernel construction of [34].
The solutions are given in terms of an integral convolution operator acting on com-
pactly supported sections such that

ωhom(t, p) = (
e−t
L ω0

)
(t, p) :=

∫
M

(
e−t 
L (p, p̃) , ω0( p̃)

)
g dvolg( p̃),

ωinhom(t, p) = (
e−t
L v

)
(t, p) :=

∫ t

0

∫
M

(
e−(t−̃t) 
L (p, p̃) , v(̃t, p̃)

)
g
dvolg( p̃)dt̃ .

(3.2)

In both cases we denote the fundamental solution by e−t
L , which acts by time con-
volution on time-dependent sections.
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Under the additional assumption 
L ≥ 0 on smooth compactly supported sections
of S0, the fundamental solution e−t
L can be identified with the heat operator of the
Friedrichs self-adjoint extension of theLichnerowiczLaplacian. Thiswill be explained
below inTheorem3.5 and is crucial later on for the argument on the long-time existence
of the Ricci flow starting at small perturbations of flat metrics.

3.1 Heat Kernel of a Model Operator

Before we proceed with an asymptotic analysis of the fundamental solution for the
Lichnerowicz Laplacian 
L on an admissible edge manifold (M, g), we consider a
model operator which already comprises all the central properties of 
L . Let us write
R+ := (0,∞). Consider for any μ ≥ 0 the model operator

	μ := − d2

ds2
− f

s

d

ds
+ 1

s2

(
μ2 −

(
f − 1

2

)2
)

: C∞
0 (R+) → C∞

0 (R+), (3.3)

acting on compactly supported smooth test functions C∞
0 (R+). This operator is sym-

metric with respect to the inner product of L2(R+, s f ds). It can be conveniently
studied under the unitary rescaling transformation � : L2(R+, s f ds) → L2(R+, ds)
with �(u) = s f /2u. Then

� ◦ 	μ ◦ �−1 = − d2

ds2
+ 1

s2

(
μ2 − 1

4

)
=: Lμ, (3.4)

is a symmetric operator in L2(R+, ds). Consider the maximal and minimal domains
for Lμ acting on C∞

0 (R+)

Dmax(Lμ) := {
ω ∈ L2(R+) | Lμω ∈ L2(R+)

}
,

Dmin(Lμ) := {
ω ∈ Dmax(Lμ) | ∃(ωn) ⊂ C∞

0 (R+) :
ωn

L2−→ ω, Lμωn
L2−→ Lμω

}
,

(3.5)

where Lμω ∈ L2(R+) on ω ∈ L2(R+) is understood in the distributional sense. The
maximal (minimal) domain of 	μ is defined similarly and the domains are related by
the unitary transformation �

Dmax(	μ) = �−1Dmax(Lμ), Dmin(	μ) = �−1Dmin(Lμ).

By explicit computations, see for example [42, Proposition 2.10], any ω ∈ Dmax(Lμ)

admits an asymptotic expansion

ω = c+
μ (ω) x

1
2 + c−

μ (ω) x
1
2 log(x) + ω̃, if μ = 0,

ω = c+
μ (ω) xμ+ 1

2 + c−
μ (ω) x−μ+ 1

2 + ω̃, if μ ∈ (0, 1),

ω = ω̃, if μ ≥ 1,

(3.6)
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with coefficients c±
μ (ω) ∈ C and ω̃ ∈ Dmin(Lμ). Hence, any ω ∈ Dmax(	μ) =

�−1Dmax(Lμ) admits an asymptotic expansion

ω = c+
μ (ω) x− ( f −1)

2 + c−
μ (ω) x− ( f −1)

2 log(x) + ω̃, if μ = 0,

ω = c+
μ (ω) xμ− ( f −1)

2 + c−
μ (ω) x−μ− ( f −1)

2 + ω̃, if μ ∈ (0, 1),

ω = ω̃, if μ ≥ 1,

(3.7)

with coefficients c±
μ (ω) ∈ C and ω̃ ∈ Dmin(	μ). We set c±

μ (ω) = 0 for μ ≥ 1. For
any ω, v ∈ Dmax(	μ) we compute using integration by parts

〈Lμ�ω, �v〉L2(R+,ds) − 〈�ω, Lμ�v〉L2(R+,ds)

= 〈	μω, v〉L2(R+,s f ds) − 〈ω, 	μv〉L2(R+,s f ds) = cμ

(
c+
μ (ω)c−

μ (v) − c−
μ (ω)c+

μ (v)
)

.

(3.8)

where cμ = −1 forμ = 0 and cμ = 2μ otherwise. From this formula it becomes clear
that boundary conditions need to be imposed on the coefficients c±

μ (ω) to obtain a self-
adjoint extension of 	μ and Lμ In case μ ≥ 1, 	μ and Lμ are essentially self-adjoint,
since no boundary terms appear after integration by parts in (3.8).

Existence of a self-adjoint extension of Lμ and 	μ with the same lower bound as
Lμ and 	μ, respectively, both acting on C∞

0 (R+), is due to Friedrichs and Stone, see
Riesz and Nagy [38, Theorem on p. 330], who introduced the so-called Friedrichs
self-adjoint extension. Providing the functional analytic construction of the Friedrichs
extension is out of scope of the present discussion. However the Friedrichs extension
LF

μ of Lμ, as well as the Friedrichs extension 	Fμ of 	μ can be explicitly characterized
as follows

D(
LF

μ

) = {
ω ∈ Dmax(Lμ) | c−

μ (ω) = 0
}
,

D(
	Fμ

) = {
ω ∈ Dmax(	μ) | c−

μ (ω) = 0
}
.

(3.9)

Both extensions are related by the unitary transformation

LF
μ = � ◦ 	Fμ ◦ �−1, D(

	Fμ
) = �−1D(

LF
μ

)
.

The heat kernel Hμ of the Friedrichs extension LF
μ is well-known and [31, Proposition

2.3.9] provided its explicit expression in terms of the modified Bessel function Iμ of
first kind

Hμ(t, s, s̃) = 1

2t
(s̃s)1/2 Iμ

(
s̃s

2t

)
e− s2+̃s2

4t . (3.10)
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Hence, the heat kernel e−t	μ of 	Fμ is given by (s̃s)− f /2Hμ(t, s, s̃), so that we obtain

e−t	μ(s, s̃) = 1

2t
(s̃s)(1− f )/2 Iμ

(
s̃s

2t

)
e− s2+̃s2

4t . (3.11)

3.2 Microlocal Construction of a Fundamental Solution

The Lichnerowicz Laplacian writes in local coordinates (x, y, z) in the singular neigh-
borhood U , which is locally a fibration of cones C(F) over B, as a sum of the
Lichnerowicz Laplacian 
C

L on the cone C(F) and the Lichnerowicz Laplacian in
y ∈ R

b, plus higher order terms.

The fundamental solution e−t
L will be a distribution on M2
h = R

+ × M
2
, taking

values in S0 � S0, which is a vector bundle over M
2
with the fibre S0,p × So,q for

any (p, q) ∈ M
2
. Consider the local coordinates near the corner in M2

h given by
(t, (x, y, z), (̃x, ỹ, z̃)), where (x, y, z) and (̃x, ỹ, z̃) are two copies of coordinates
on M near the boundary. The kernel e−t
L (t, (x, y, z), (̃x, ỹ, z̃)) has non-uniform
behaviour at the submanifolds

A = {(t, (x, y, z), (̃x, ỹ, z̃)) ∈ M2
h | t = 0, x = x̃ = 0, y = ỹ},

D = {(t, p, p̃) ∈ M2
h | t = 0, p = p̃},

which requires an appropriate blowupof the heat space M2
h , such that the corresponding

heat kernel lifts to a polyhomogeneous distribution in the sense of the following
definition, which we cite from [34] and [37].

Definition 3.1 LetW be a manifold with corners and {(Hi , ρi )}N
i=1 an enumeration of

its (embedded) boundaries with the corresponding defining functions. For any multi-
index J = (b1, . . . , bN ) ∈ C

N we write ρ J := ρ
b1
1 . . . ρ

bN
N . Denote by Vb(W) the

smooth vector fields on W lying tangent to all boundary faces.

(i) A distributionω onW is said to be conormal, ifω is a restriction of a distribution
across the boundary faces of W, ω ∈ ρ J L∞(W) for some J ∈ C

N and
V1 . . . V	ω ∈ ρ J L∞(W) for all Vj ∈ Vb(W) and for every 	 ≥ 0.

(ii) An index set Ei = {(γ, p)} ⊂ C × N0 satisfies the following hypotheses:

(a) Re(γ ) accumulates only at +∞,
(b) for each γ there exists Pγ ∈ N0, such that (γ, p) ∈ Ei for all p ≤ Pγ ,
(c) if (γ, p) ∈ Ei , then (γ + j, p′) ∈ Ei for all j ∈ N0 and 0 ≤ p′ ≤ p.

(iii) An index family E = (E1, . . . , EN ) is an N -tuple of index sets.
(iv) Finally, we define the notion of polyhomogeneous conormal distributions iter-

atively in the dimension of W. We say that a conormal distribution ω is
polyhomogeneous on W with index family E , we write ω ∈ AE

phg(W), if
ω is conormal and if in addition, near each Hi ,

ω ∼
∑

(γ,p)∈Ei

aγ,pρ
γ

i (log ρi )
p, as ρi → 0,
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Fig. 2 The heat-space M2
h

with coefficients aγ,p conormal on Hi , polyhomogeneous with index E j at any
intersection Hi ∩Hj of hypersurfaces. In the first iteration step, where dimW =
1 and each boundary hypersurface Hi is given by a point, the coefficients aγ,p

are complex numbers.

Blowing up submanifolds A and D is a geometric procedure of introducing polar
coordinates on M2

h , around the submanifolds together with the minimal differential
structurewhich turns polar coordinates into smooth functions on theblowup.Adetailed
account on the blowup procedure is given e.g. in [20,37]. Here, we only give a basic
idea and refer the reader to these references for an explicit account.

First, we blow up parabolically (i.e. we treat
√

t as a smooth variable) the submani-
fold A. This defines [M2

h , A] as the disjoint union of M2
h\A with the interior spherical

normal bundle of A in M2
h , equipped with the minimal differential structure such that

smooth functions in the interior of M2
h and polar coordinates on M2

h around A are
smooth. The interior spherical normal bundle of A defines a new boundary hypersur-
face − the front face ff in addition to the previous boundary faces {x = 0}, {̃x = 0}
and {t = 0}, which lift to rf (the right face), lf (the left face) and tf (the temporal face),
respectively.

The actual heat-space M2
h is obtained by a second parabolic blowup of [M2

h , A]
along the diagonal D, lifted to a submanifold of [M2

h , A]. We proceed as before by
cutting out the lift of D and replacing it with its spherical normal bundle, which
introduces a new boundary face − the temporal diagonal td. The heat-space M2

h

comes with the blowdown map β : M2
h → R

+ × M
2
, which is a diffeomorphism

from the interior ofM2
h onto (0,∞)× M2. The heat spaceM2

h and the lift of a curve
starting at the corner of M2

h is illustrated in Fig. 2. The base point of the lifted curve
at the front face indicates the angle under which the curve approaches the corner of
(0,∞) × M2 before the lift.

We now describe projective coordinates in a neighborhood of the front face ff in
M2

h , which are used often as a convenient replacement for the polar coordinates. The
drawback it that projective coordinates are not globally defined over the entire front
face. Near the top corner of the front face ff, projective coordinates are given by
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Fig. 3 The heat-space M2
h

ρ = √
t, ξ = x

ρ
, ξ̃ = x̃

ρ
, u = y − ỹ

ρ
, z, ỹ, z̃. (3.12)

With respect to these coordinates, ρ, ξ, ξ̃ are in fact the defining functions of the
boundary faces ff, rf and lf, respectively. For the bottom right corner of the front face,
projective coordinates are given by

τ = t

x̃2
, s = x

x̃
, u = y − ỹ

x̃
, z, x̃, ỹ, z̃, (3.13)

where in these coordinates τ, s, x̃ are the defining functions of tf, rf and ff, respectively.
For the bottom left corner of the front face, projective coordinates are obtained by
interchanging the roles of x and x̃ . We illustrate some of these projective coordinates
in the Fig. 3.

Projective coordinates onM2
h near temporal diagonal are given by

η =
√

t

x̃
, S = (x − x̃)√

t
, U = y − ỹ√

t
, Z = x̃(z − z̃)√

t
, x̃, ỹ, z̃. (3.14)

In these coordinates, tf is defined as the limit |(S, U , Z)| → ∞, ff and td are defined
by x̃, η, respectively. The blow-down map β : M2

h → M2
h is in local coordinates

simply the coordinate change back to (t, (x, y, z), (̃x, ỹ, z̃)).
The fundamental solution e−t
L of the Lichnerowicz Laplacian 
L is constructed

exactly as in [34].To indicate the basic idea, consider the lift β∗(x2
L) of x2
L to
the heat-spaceM2

h . This amounts to writing the differential operator e.g. in projective
coordinates (3.13). The restriction of β∗(x2
L) to the front face does not differentiate
in ỹ ∈ B, which can be viewed as a parameter7 and is given for each fixed ỹ by the
so-called normal operator

N (x2
L)ỹ := β∗(x2
L) � ff = s2
(

C

L ,̃y + 
R
b

L ,̃y

)
, (3.15)

7 In fact ff is a fibration over B and we consider the restriction of β∗(x2
L ) to the fibres of ff.
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where
C
L is theLichnerowiczLaplacianon themodel coneC(F) acting in the variables

(s, z) and defined with respect to the metric ds2 + s2gF . The other summand 
R
b

L ,̃y

is the Lichnerowicz Laplacian acting in the variable u ∈ R
b ∼= Tỹ B, defined with

respect to the metric gB(ỹ) on Tỹ B.

The heat kernel of 
R
b

L ,̃y acting on u ∈ R
b is constructed in the classical way. The

heat kernel of 
C
L on the model cone is obtained as follows. 
C

L is computed in (2.6)
and reduces over λ-eigenspaces Eλ = 〈φλ〉 of the tangential operator �L to a scalar
multiplication operator, acting on uφλ with u ∈ C∞

0 (0, 1) by


C
L (uφλ) =

(
−∂2s − f

s
∂s + λ

s2

)
u · φλ =: (	μu)φλ, (3.16)

with μ2 = λ + ( f − 1)2/4 ≥ 0. Consequently, the heat kernel of 
C
L is given by the

following sum

e−t
C
L (s, z, s̃, z̃) =

∑
μ(λ)

e−t	μ(λ) (s, s̃) φλ(z) ⊗ φλ(̃z). (3.17)

From the explicit expression (3.11), we obtain its asymptotics as s → 0 8

e−t
C
L (s, z, s̃, z̃) ∼

∑
λ∈Spec�L

aλ,k(t, s̃, z, z̃) s μ(λ)− ( f −1)
2 +2k

∼
∑

λ∈Spec�L

∞∑
k=0

aλ,k(t, s̃, z, z̃) s

√
λ+

(
f −1
2

)2− ( f −1)
2 +2k

(3.18)

Due to the direct sum decomposition in (3.15), the heat equation at the front face
admits a fundamental solution N (e−t
L )ỹ obtained exactly as in [34, (3.10)] as a

direct sum of the heat kernel for 
C
L and the heat kernel of 
R

b

L ,̃y

N (e−t
L )(τ, s, z, z̃, u)ỹ := e−τ 
C
L (s, z, s̃ = 1, z̃) e−τ 
Rb

L ,̃y (u, ũ = 0). (3.19)

To construct the fundamental solution, the normal operator N (e−t
L )ỹ is extended
off the front face and corrected iteratively, which involves composition of Schwartz
kernels on M2

h . Following the heat kernel construction in [34] verbatim, we arrive at
the following result.

Theorem 3.2 Let (M, g) be an incomplete edge manifold of dimension m with an
admissible edge metric g. Then the Lichnerowicz Laplacian 
L acting on symmetric
trace-free 2-tensors admits a fundamental solution e−t
L to its heat equation, such
that the lift β∗e−t
L is a polyhomogeneous function on M2

h taking values in S0 � S0
with S0 = Sym2

0(
ieT ∗M) and the index sets (−m + N0, 0) at ff, (−m + N0, 0) at td,

8 By symmetry the same asymptotics holds as s̃ → 0.
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vanishing to infinite order at tf. The index set at rf and lf is given explicitly by E + N0
where

E =
⎧⎨
⎩μ =

√
λ +

(
f − 1

2

)2

−
(

f − 1

2

)
| λ ∈ Spec(�L)

⎫⎬
⎭ . (3.20)

For convenience of the reader, let us note that e.g. in projective coordinates (3.13)
and (3.14) the index sets at the boundary faces ff, rf as well as td, indicate the following
asymptotic expansions

β∗e−t
L ∼
∞∑
j=0

a j (τ, s, z, z̃, u, ỹ) x̃−m+ j , as x̃ → 0,

β∗e−t
L ∼
∞∑
j=0

b j (S, U , Z , x̃, ỹ, z̃) η−m+ j , as η → 0,

β∗e−t
L ∼
∑

λ∈Spec�L

∞∑
j=0

cλ, j (τ, s̃, z, z̃) s

√
λ+

(
f −1
2

)2− ( f −1)
2 + j

, as s → 0.

(3.21)

While we do not repeat the heat kernel construction of [34] here, let us indicate some
fundamental reasons for the asymptotics at the various boundary faces. The negative
leading order (−m) of asymptotics of the fundamental solution at the front face (as
x̃ → 0) is a consequence of the fact that the heat kernel H on an the model edge
C(F) × R

b with metric dx2 + x2gF + dy2 is homogeneous of order (−m) with
(r > 0)

H(r2t, r x, z, r x̃, z̃, r(y − ỹ)) = r−m H(t, x, z, x̃, z, (y − ỹ)).

The negative leading order (−m) of asymptotics of the fundamental solution at the
temporal diagonal (as η → 0) is due to the initial conditions at t = 0 of the homoge-
neous heat equation in (3.1). Finally, the expansion at rf comes from the asymptotics
(3.18).

Remark 3.3 In the case of the 2-tensor gF on ∂ M restricting to a smooth variable
family of Riemannian metrics on fibres F , that is not necessarily isospectral with
respect to the tangential operator �L , the arguments and the main statements of this
work continue to hold. However, the statement of Theorem 3.2 has to be adapted in
that case: the fundamental solution e−t
L still admits a polyhomogeneous expansion
at the front face ff and the temporal diagonal td of same order as before, however has
a rather complicated behaviour at lf and rf.

Similar result in [34] constructs the heat kernel of the Laplace Beltrami operator
on (M, g) as a polyhomogeneous function onM2

h with an index set E ′ + N0 at rf and
lf, defined similarly in terms of the spectrum of �′

L .
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Remark 3.4 Tangential stability introduced in Definition 2.1 is in fact equivalent to
asking for a lower bound of E and E ′. More precisely, the minimal elements μ0 ∈ E
and μ1 ∈ E ′\{0} are given by

μ0 :=
√

u0 +
(

f − 1

2

)2

−
(

f − 1

2

)
, μ1 :=

√
u1 +

(
f − 1

2

)2

−
(

f − 1

2

)
.

(3.22)

Clearly, μ0 = min(E + N0) = min Erf , however, in general μ1 need not be equal to
the minimum of the index set E ′

rf\{0} = (E ′ + N0)\{0}. In fact, μ1 = min E ′
rf\{0}

without any restrictions only if μ1 ∈ (0, 1]. Otherwise, μ1 is the minimal element of
the index set E ′

rf of the heat kernel for the Laplace Beltrami operator at rf and lf, if
the edge is a sufficiently higher order perturbation of a trivial fibration of exact cones.
To make this precise, recall the notation of Definition 1.1. Assume that ∂ M ∼= F × B
and the fibration φ : (∂ M, gF ⊕ gB) → (B, gB) is the obvious projection onto the
second factor. Assume that in the tubular neighborhood U ∼= C(F) × B of the edge
singularity, the edge metric is given by g = g + h with

g |U= dx2 ⊕ x2gF ⊕ gB, (3.23)

and h a symmetric 2-tensor such that |h|g = O(x N ) as x → 0 for some N ∈ N. Let
us write NN := {0}∪ {q ∈ N | q ≥ N }. Then E ′

rf = E ′ +NN , since |h|g = O(x N ) as
x → 0. Consequently, μ1 = min E ′

rf\{0} if |h|g = O(x N ) as x → 0 with N ≥ μ1.

We conclude the section with an observation that assuming non-negativity of the
Lichnerowicz Laplacian
L acting on symmetric trace-free 2-tensors, the fundamental
solution inTheorem3.2 is the heat operator corresponding to theFriedrichs self-adjoint
extension of 
L .

Theorem 3.5 Assume that (M, g) is tangentially stable and 
L acting on C∞
0 (M, S0)

is non-negative. Then the Friedrichs self-adjoint extension of 
L is non-negative as
well and the fundamental solution e−t
L is the corresponding heat operator.

Proof Consider the maximal and minimal domains for 
L acting on C∞
0 (M, S0)

Dmax(
L) := {
ω ∈ L2(M, S0) | 
Lω ∈ L2(M, S0)

}
,

Dmin(
L) := {
ω ∈ Dmax(
L) | ∃(ωn) ⊂ C∞

0 (M, S0) :
ωn

L2−→ ω, 
Lωn
L2−→ 
Lω

}
.

(3.24)

Exactly as worked out in the joint work of the author with Mazzeo [34, Lemma 2.2],
see also (3.7) for the explicit model cone case, any ω ∈ Dmax(
L) admits a weak
asymptotic expansion

ω =
∑

μ(λ)∈E∩[0,1)
c+
λ (ω)xμ(λ)− ( f −1)

2 +
∑

μ(λ)∈E∩[0,1)
c−
λ (ω)x−μ(λ)− ( f −1)

2 + ω̃,

(3.25)
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where x ∈ (0, 1), E is the index set defined in (3.20), ω̃ ∈ Dmin(
L) and the
coefficients c±

λ are of negative regularity, i.e. there is an expansion of the pair-
ing

∫
Bω(x, y, z)φ(y)dy for any test function φ ∈ C∞(B). The expansion above

is simpler than the one in [34, Lemma 2.2] due tangential stability, so that each
μ(λ) ∈ E ∩ [0, 1) ≡ E ∩ [μ0, 1) is positive.

Assuming that 
L acting on C∞
0 (M, S0) is non-negative, symmetric and densely

defined, there exists its Friedrichs self-adjoint extension 
F
L with the same lower

bound, which is due to Friedrichs and Stone, see Riesz and Nagy [38, Theorem on p.
330]. The domain of 
F

L has been identified in [34, Proposition 2.5] by specifying
coefficients c±

λ (ω) as follows (see (3.9) for the explicit model cone case)

D(
F
L ) = {

ω ∈ Dmax(
L) | c−
λ (ω) = 0, for μ(λ) ∈ E ∩ [0, 1)}. (3.26)

Using the asymptotic description of the Schwartz kernel for e−t
L , one finds that
the fundamental solution maps into D(
F

L ) for any fixed t > 0. Now, a verbatim
repetition of the arguments for [34, Proposition 3.4] proves the statement. ��

We remark that by following the argument of Gell-Redmann and Swoboda [17,
Proposition 13] one may deduce that 
L is essentially self-adjoint if u0 > dim F
from the mapping properties of the fundamental solution. This can be intuitively
expected, since the condition u0 > dim F translates to μ0 > 1 in view of (3.22), and
the operators 	μ are in the limit point case at x = 0 for μ ≥ μ0 > 1.

4 Mapping Properties of the Lichnerowicz Heat Operator

We continue under the assumption of tangential stability introduced in Definition 2.1
and study 
L acting on trace-free symmetric 2-tensors ω ∈ C∞

0 (M × [0, T ], S0) =
Sym2

0(
ieT ∗M). We denote its fundamental solution (also referred to as the heat oper-

ator) by H . We also fix any δ > 0. Our main result in this section is the following
theorem.

Theorem 4.1 Consider an edge manifold (M, g) with an admissible edge metric g
satisfying tangential stability as in Definition 2.1. Consider the index set at the right
and left face as in Theorem 3.2, with the minimal element μ0 > 0. Fix any γ ∈
(1−dim F, μ0) and any Hölder exponent α = 1/N ∈ (0, μ0−γ )∩(0, 1), for N ∈ N

sufficiently large. Recall the notation S0 = Sym2
0(

ieT ∗M). Then the Lichnerowicz
heat operator defines a bounded mapping between weighted Hölder spaces (for any
ε ∈ (0, 1])

H : Ck,α
ie (M × [0, T ], S0)−2+γ → Ck+2,α

ie (M × [0, T ], S0)γ ,

H : Ck+1,α
ie (M × [0, T ], S0)−2+γ+ε → t

ε
2 Ck+2,α

ie (M × [0, T ], S0)γ ,
(4.1)

where t
ε
2 Ck+2,α

ie,γ = {
ω | ∃ u ∈ Ck+2,α

ie,γ : ω(t, p) = t
ε
2 u(t, p)

}
.
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Proof The statement is proved using the microlocal properties of the heat kernel lifted
to the blowup space M2

h , where ρ∗ shall denote a defining function of the boundary
face ∗ inM2

h .
We mimic a similar statement in [4] which is proved using stochastic completeness

for the heat kernel of theLaplaceBeltrami operator.We consider here theLichnerowicz
Laplacian and are not aware of any equivalent of stochastic completeness on tensors.
This requires to some extent different analytic arguments. We do not write out the
argument for the second statement, which follows by similar estimates, since better
x-weight and higher regularity of the starting space yield additional (ρtdρff)ε ≤ C

√
t
ε
.

When performing the estimates we will use Corollary 10.2 and pretend notationally
that F and B are one-dimensional. The estimates in the general case are performed
verbatim. Moreover, we will always denote uniform positive constants appearing in
our estimates by C > 0, even though they might differ from estimate to estimate.
We only use derivatives in space, since due to the heat equation, differentiation of the
heat kernel in time can be replaced by the Lichnerowicz Laplacian. Finally, we will
assume without loss of generality that k = 0. General k ∈ N affects estimates near td,
where we may pass derivatives of the heat kernel to derivatives of the section using
integration by parts.

Let X denote the operator acting on symmetric 2-tensors by multiplication with
the radial function x : U → [0, 1), extended smoothly to M such that x � M\U ≥ 1.
Then, the first mapping in (4.1) with k = 0, is bounded if and only if

X−γ ◦ e−t
L ◦ X−2+γ : Cα
ie(M × [0, T ], S0)0 → C2,αie (M × [0, T ], S0)0. (4.2)

Consider any v ∈ Cα
ie(M × [0, T ], S0)0. Then, in view of the Definition 1.4, the map

in (4.2) is bounded if and only if for ω := X−γ ◦ e−t
L ◦ X−2+γ v the supremum and
the Hölder norms

‖X−αω‖∞, ‖X−α Ve ω‖∞, ‖X−α Ve
2 ω‖∞, ‖ω‖α, ‖Ve ω‖α, ‖Ve

2 ω‖α,

are bounded by the norm of v, up to a constant that depends only on
L . HereVe refers
to differentiation given by edge vector fields. It suffices to bound ‖X−α Ve

2 ω‖∞ and
‖Ve

2 ω‖α , since the other norms with only first order or no differentiation at all, are
estimated along the same lines.

Set G := X−γ ◦ Ve
2 e−t
L ◦ X−2+γ . Then, by definition ‖Ve

2 ω‖α is bounded
if and only if in addition to the supremum norms, for any local coordinate patch U ,
which is also a trivializing neighborhood of S0, we have an estimate of the form

sup
U×[0,T ]

∥∥Gv(p, t) − Gv(p′, t ′)
∥∥

dM (p, p′)α + |t − t ′| α
2

≤ C‖v‖′
α,0, (4.3)

for some uniform constant C > 0, where we have refined the atlas of M , such that any
coordinate patch U is a trivializing neighborhood of S0 and the tuples (p, p′) ∈ M2

lie inside the same coordinate patch U . Note that (4.3) holds if the following two
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estimates hold
∥∥Gv(p, t) − Gv(p′, t)

∥∥ ≤ C‖v‖′
α,0 dM (p, p′)α,∥∥Gv(p, t) − Gv(p, t ′)

∥∥ ≤ C‖v‖′
α,0 |t − t ′| α

2 .
(4.4)

The proof is now structured as follows. In Sect. 4.1 we prove the first estimate of (4.4),
the so-called Hölder estimate in space. In Sect. 4.2 we prove the second estimate
of (4.4), the so-called Hölder estimate in time. In Sect. 4.3 we estimate the supre-
mum norm ‖X−α Ve

2 ω‖∞. At various steps in the estimates we are motivated by the
corresponding estimates in [30]. ��

4.1 Hölder Differences in Space

We can always arrange for either x � U ≥ 1/2 or U ⊂ U being of the form U ∼=
(0, 1) × Y with Y ⊂ ∂ M and S0 � U ∼= (0, 1) × SY . We model our estimates after a
similar analysis in [4] and begin by introducing a notation

U+ := { p̃ ∈ U | dM (p, p̃) ≤ dM (p, p′)},
U− := { p̃ ∈ U | dM (p, p̃) ≥ dM (p, p′)}.

Given a coordinate patchU with x � U ≥ 1/2, which trivializes S0 by assumption, we
extend the restriction v(p) of the section v to the fibre over p ∈ U to a constant function
over U . Otherwise U ⊂ U is the form U ∼= (0, 1) × Y and S0 � U ∼= (0, 1) × SY and
for p = (x, y, z) ∈ U we extend the restriction v(x, y, z) ∈ Sp to all of U constantly
only in the (y, z) ∈ Y direction. We may now write

Gv(p, t) − Gv(p′, t)

=
∫ t

0

∫
U+

(G(t − t̃, p, p̃) − G(t − t̃, p′, p̃))(v(̃t, p̃) − v(̃t, p)) dt̃ dvolg( p̃)

+
∫ t

0

∫
U−

(G(t − t̃, p, p̃) − G(t − t̃, p′, p̃))(v(̃t, p̃) − v(̃t, p)) dt̃ dvolg( p̃)

+
∫ t

0

∫
U

(G(t − t̃, p, p̃) − G(t − t̃, p′, p̃)) v(̃t, p) dt̃ dvolg( p̃)

+
∫ t

0

∫
M\U

(G(t − t̃, p, p̃) − G(t − t̃, p′, p̃)) v(̃t, p̃) dt̃ dvolg( p̃)

=: L1 + L2 + L3 + L4.

Note that the endomorphism G(·, p̃) can be applied to the vector v(̃t, p) only for p̃
and p lying in the same coordinate patch U with the corresponding local trivialization
of the vector bundle S0. This explains why we have separated out the integral L4.

Remark 4.2 At this point, we would like to explain the reason for the definition of
spaces (1.4) with different weights assigned to the Hölder and the supremum norms.
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Recall that v ∈ Cα
ie,0 = Cα

ie ∩ xαC0ie. The terms L1 and L2 contain differences of v,
and hence using Hölder regularity v ∈ Cα

ie one obtains an improvement by ρα
ff in the

estimates of the integrands at the front face. However, in the terms L3 we do not have
differences of v and hence Hölder regularity of v does not play a role in the estimates.
Rather, we use v ∈ xαC0ie and the xα-weight still provides an improvement by ρα

ff in
the estimates of the integrand at the front face.

The second-term L2 is now estimated exactly as the term I3 in [4, §3.1]. In fact the
estimates here are even easier using Corollary 10.2 and better front face behaviour.

We rewrite the first term L1 as follows

L1 =
∫ t

0

∫
U+

G(t − t̃, p, p̃)(v(̃t, p̃) − v(̃t, p)) dt̃ dvolg( p̃)

−
∫ t

0

∫
U+

G(t − t̃, p′, p̃)(v(̃t, p̃) − v(̃t, p′)) dt̃ dvolg( p̃)

−
∫ t

0

∫
U+

G(t − t̃, p′, p̃)(v(̃t, p′) − v(̃t, p)) dt̃ dvolg( p̃)

=: L11 + L12 + L13.

Both L11 and L12 are estimated precisely as the term I1 in [4, §3.1]. The third summand
L13 is estimated as the term I4 in [4, §3.1].

It remains to estimate the terms L3 and L4 from above. We begin with the easier
term L4. Recall that for estimating the Hölder norm, we may assume without loss
of generality that the two fixed points p = (x, y, z) and p′ = (x ′, y′, z′) lie in the
coordinate neighborhoodU . Since the estimates away from the singular neighborhood
U are classical, we may also assume that U ⊂ U . Then we may write

L4 = |x − x ′|
∫ t

0

∫
M\U

∂ξ G(t − t̃, ξ, y, z, p̃) v(̃t, p̃) dt̃ dvolg( p̃)

+ |y − y′|
∫ t

0

∫
M\U

∂γ G(t − t̃, x ′, γ, z, p̃) v(̃t, p̃) dt̃ dvolg( p̃)

+ |z − z′|
∫ t

0

∫
M\U

∂ζ G(t − t̃, x ′, y′, ζ, p̃) v(̃t, p̃) dt̃ dvolg( p̃).

where (ξ, γ, ζ ) is a point on the straight connecting line between (x, y, z) and
(x ′, y′, z′). Assume that p̃ = (̃x, ỹ, z̃) ∈ U\U . Then by construction, the distance
dB(Y , ỹ) between Y and ỹ is uniformly bounded from below for any Y ∈ (y, y′, γ ).
Consequently, we find for the integrands in the various coordinate systems (3.12),
(3.13) and (3.14) that for some uniform positive constant C > 0 we have

ρ−1
ff = |u|dB(Y , ỹ)−1 ≤ C |u|, (ρffρtd)−1 = |U |dB(Y , ỹ)−1 ≤ C |U |.

Since the heat kernel is bounded as |u| and |U | tend to infinity, we conclude that
each integrand above vanishes to infinite order at the front and temporal diagonal
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faces. Consequently, L4 may be bounded in terms of the supremum norm of v and
dM (p, p′) up to some uniform constant. If p̃ /∈ U , then the heat kernels in the integrals
above are supported away from the front and temporal diagonal faces in M2

h , so that
the estimates are classical in the same spirit as before.

It remains to estimate L3 which occupies the remainder of the subsection. It is here
that we need to use Corollary 10.2. Note that while the previous estimates employed
Hölder regularity of v, estimation of L3 uses only the xαC0ie bound of v ≡ xαω ∈
Cα
ie(M × [0, T ], S0)0 ⊂ xαC0ie. Hence we consider an operator G ′ := G ◦ Xα of the

following asymptotics

β∗G ′ = ρ−m−2+α
ff ρ−m−2

td ρ
μ0−γ
rf ρ

−2+μ0+γ+α
lf ρ∞

tf G, (4.5)

where G is a bounded polyhomogeneous distribution on M2
h . The notation ρ∞

tf indi-
cates that the kernel β∗G ′ is vanishing to infinite order at the temporal face tf and
hence the equation (4.5) holds with ρ∞

tf replaced by ρK
tf for any K ∈ N. We obtain

from Corollary 10.2 for α = 1/N with N sufficiently large

|L3| dM ((x, y, z), (x ′, y′, z′))−α

≤
∥∥∥∥
∫ t

0

∫
U

ξ
N−1

N ∂ξ G ′(t − t̃, ξ, y, z, x̃, ỹ, z̃) ω(̃t, x, y, z) dt̃ dvolg (̃x, ỹ, z̃)

∥∥∥∥
+

∥∥∥∥
∫ t

0

∫
U

‖γ − ỹ‖ N−1
N ∂γ G ′(t − t̃, x ′, γ, z, x̃, ỹ, z̃) ω(̃t, x, y, z) dt̃ dvolg (̃x, ỹ, z̃)

∥∥∥∥
+

∥∥∥∥
∫ t

0

∫
U

x ′− 1
N ∂ζ G ′(t − t̃, x ′, y′, ζ, x̃, ỹ, z̃) ω(̃t, x, y, z) dt̃ dvolg (̃x, ỹ, z̃)

∥∥∥∥
=: I1 + I2 + I3,

We assume x < x ′ without loss of generality, otherwise just rename the variables.
In view of the heat kernel asymptotics established in Theorem 3.2 and in view of
the particular fact that the heat kernel is exponentially vanishing for ‖γ−ỹ‖

ρff
going to

infinity, we find

β∗(ξ
N−1

N ∂ξ G ′) = ρ−m−2
ff ρ−m−3

td ρ
μ0−γ−α
rf ρ

−2+μ0+γ+α
lf ρ∞

tf G1,

β∗(‖γ − ỹ‖ N−1
N ∂γ G ′) = ρ−m−2

ff ρ−m−3
td ρ

μ0−γ
rf ρ

−2+μ0+γ+α
lf ρ∞

tf G2,

β∗(x ′− 1
N ∂ζ G ′) = ρ−m−2

ff ρ−m−3
td ρ

μ0−γ−α
rf ρ

−2+μ0+γ+α
lf ρ∞

tf G3,

(4.6)

where the kernels G1, G2 and G3 are uniformly bounded at all boundary faces of the
heat space blowup M2

h . We proceed with estimates of I1, I2 and I3 by assuming that
the heat kernel is compactly supported near the corresponding corners of the front face
in M2

h . In order to deal with each integral in a uniform notation, we write X := ξ ,
when dealing with I1 and X := x ′ otherwise. We write Y := y when dealing with I1,
Y := γ when dealing with I2 and Y := y′ when dealing with I3. Similarly, we write
Z := ζ when dealing with I3 and Z := z otherwise.
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For the purpose of brevity, we omit the estimates at the top corner of ff and just point
out that the estimates are parallel to those near the lower right corner with same front
face behaviour. We write out the optimal estimates which yield additional weights.

4.1.1 Estimates Near the Lower Left Corner of the Front Face

Let us assume that the heat kernel H is compactly supported near the lower left corner
of the front face. Its asymptotic behaviour is appropriately described in the following
projective coordinates

τ = t − t̃

X2 , s = x̃

X
, u = Y − ỹ

X
, X , Y , Z , z̃, (4.7)

where in these coordinates τ, s, x are the defining functions of tf, lf and ff respectively.
The coordinates are valid whenever (τ, s) are bounded as (t − t̃, x, x̃) approach zero.
For the transformation rule of the volume form we compute

β∗(dt̃ dvolg(̃x, ỹ, z̃)) = h · Xm+2s f dτ ds du dz̃,

where h is a bounded distribution on M2
h . Hence, using (4.6) we arrive after cancel-

lations at the estimates ( j = 1, 2, 3)

I j ≤ ‖ω‖∞
∫

s−2+ f +μ0+γ+αh G j dτ ds du dz̃ ≤ C ‖ω‖∞

for some uniform constant C > 0. Summing up, we conclude

|I1 + I2 + I3| ≤ C‖ω‖∞. (4.8)

4.1.2 Estimates Near the Lower Right Corner of the Front Face

Let us assume that the heat kernel H is compactly supported near the lower right
corner of the front face. Its asymptotic behaviour is appropriately described in the
following projective coordinates

τ = t − t̃

x̃2
, s = X

x̃
, u = Y − ỹ

x̃
, Z , x̃, Y , z̃,

where in these coordinates τ, s, x̃ are the defining functions of tf, rf and ff, respectively.
The coordinates are valid whenever (τ, s) are bounded as (t − t̃, x, x̃) approach zero.
For the transformation rule of the volume form we compute

β∗(dt̃ dvolg(̃x, ỹ, z̃)) = h · x̃m+1dτ dx̃ du dz̃,
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where h is a bounded distribution on M2
h . Hence, we obtain using (4.6) and α <

(μ0 − γ ) after cancellations ( j = 1, 2, 3)

I j ≤ ‖ω‖∞
∫

sμ0−γ−α x̃−1h G j dτ dx̃ du dz̃

≤ ‖ω‖∞ Xμ0−γ−α

∫
x̃−1−(μ0−γ−α) G j dτ dx̃ du dz̃

≤ C ‖ω‖∞ Xμ0−γ−α

∫ ∞

X
x̃−1−(μ0−γ−α) dx̃ ≤ C ‖ω‖∞,

for some uniform constant C > 0. Summing up, we conclude

|I1 + I2 + I3| ≤ C ‖ω‖α (4.9)

4.1.3 Estimates Where the Diagonal Meets the Front Face

We assume that the heat kernel H is compactly supported near the intersection of
the temporal diagonal td and the front face. Its asymptotic behaviour is conveniently
described using the following projective coordinates

η2 = t − t̃

x2
, S = (x − x̃)√

t − t̃
, U = y − ỹ√

t − t̃
, Z = x(z − z̃)√

t − t̃
, x, ỹ, z̃. (4.10)

In these coordinates, tf is the face in the limit |(S, U , Z)| → ∞, ff and td are defined
by x, η, respectively. For the transformation rule of the volume form we compute

β∗(dt̃ dvolg(̃x, ỹ, z̃)) = h · xm+2ηm+1dη d S dU d Z ,

where h is a bounded distribution on M2
h . Consequently, using Theorem 3.2 ( j =

1, 2, 3)

I j ≤
∫

η−2G j (x, η, S, U , Z , ỹ, z̃) ω(̃t, x, y, z) dη d S dU d Z ,

where G j is uniformly bounded at the boundary faces of M2
h . Since the heat kernel

is integrated against a constant ω(x, y, z), the singularity in η can be cancelled using
integration by parts near td, as in the estimate of I4 in [4, §3.1]. This leads to an
estimate

|I1 + I2 + I3| ≤ C‖ω‖∞.

4.2 Hölder Differences in Time

Consider in the previously set notation v ∈ Cα
ie(M × [0, T ], S0)0 and the integral

operator G. For any two fixed time points t and t ′ (we shall assume t ≥ t ′ without loss
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of generality), as well as any fixed space point p ∈ M we will establish the following
estimate

∥∥Gv(p, t) − Gv(p, t ′)
∥∥ ≤ C‖v‖′

α,0|t − t ′| α
2 , (4.11)

for some uniform constant C > 0. We model our estimates after a similar analysis in
[4]. We write

Gv(p, t) − Gv(p, t ′)

=
∫ t

0

∫
M

G(t − t̃, p, p̃)(v(̃t, p̃) − v(̃t, p)) dt̃ dvolg( p̃)

−
∫ t ′

0

∫
M

G(t ′ − t̃, p, p̃)(v(̃t, p̃) − v(̃t, p)) dt̃ dvolg( p̃)

+
∫ t

0

∫
M

G(t − t̃, p, p̃) v(̃t, p) dt̃ dvolg( p̃)

−
∫ t ′

0

∫
M

G(t ′ − t̃, p, p̃) v(̃t, p) dt̃ dvolg( p̃).

Let us first assume t ≥ 2t ′. Then t, t ′ ≤ 2|t − t ′| and we may estimate the first
two integrals exactly as J ′

1 and J ′
2 in [4]. For the last two integrals we note that the

estimates at the boundary faces of M2
h yield additional powers of (

√
t)α and (

√
t ′)α .

Using the fact that t, t ′ ≤ 2|t − t ′|, we obtain the estimate (4.11) as well. Let us now
assume t ′ ≤ t < 2t ′. Note that then (2t ′ − t) is smaller than t and t ′. We introduce the
following notation

T+ := [2t ′ − t, t], T ′+ := [2t ′ − t, t ′], T− := [0, 2t ′ − t].

We can now decompose the integrals above accordingly and obtain

Gv(p, t) − Gv(p, t ′)

=
∫

T−

∫
M

(G(t − t̃, p, p̃) − G(t ′ − t̃, p, p̃))(v(̃t, p̃) − v(̃t, p)) dt̃ dvolg( p̃)

+
∫

T+

∫
M

G(t − t̃, p, p̃)(v(̃t, p̃) − v(̃t, p)) dt̃ dvolg( p̃)

−
∫

T ′+

∫
M

G(t ′ − t̃, p, p̃)(v(̃t, p̃) − v(̃t, p)) dt̃ dvolg( p̃)

+
∫

T−

∫
M

(G(t − t̃, p, p̃) − G(t ′ − t̃, p, p̃)) v(̃t, p) dt̃ dvolg( p̃)

+
∫

T+

∫
M

G(t − t̃, p, p̃) v(̃t, p) dt̃ dvolg( p̃)

123



Ricci de Turck Flow on Singular Manifolds 3381

−
∫

T ′+

∫
M

G(t ′ − t̃, p, p̃) v(̃t, p) dt̃ dvolg( p̃)

=: K1 + K2 + K3 + K4 + K5 + K6.

Note that as in Remark 4.2, with v ∈ Cα
ie,0 = Cα

ie ∩ xαC0ie, we use the Hölder
regularity v ∈ Cα

ie in the estimates of K1, K2, K3, and use an additional xα-weight in
v ∈ xαC0ie in the estimates of K4, K5, K6.

The first-term K1 is estimated exactly as the terms J3 in [4, §3.2]. The second-term
K2 is estimated exactly as the term J1 in [4, §3.2]. The third-term K3 is estimated
exactly as the term J2 in [4, §3.2]. It remains to estimate the other terms K4, K5, K6.
Note that for K4 and some θ ∈ (t ′, t) we obtain with α = 1/N as in Lemma 10.1

K4 = |t − t ′| α
2

∫ 2t ′−t

0

∫
M

(θ − t̃)1−
α
2 ∂τ (G)(θ − t̃, p, p̃) v(̃t, p) dt̃ dvolg( p̃).

We proceed in the notation of the previous subsection. The estimates use only the
xαC0ie bound of v ≡ xαω ∈ Cα

ie(M × [0, T ], S)0 ⊂ xαC0ie. For the purpose of brevity,
we omit the estimates at the top corner of ff and just point out that the estimates are
parallel to those near the lower right corner with same front face behaviour.

4.2.1 Estimates Near the Lower Left Corner of the Front Face

Note that near the left lower corner of the front face, x2 ≥ (θ − t̃). Consequently,
x−2 ≤ (θ − t̃)−1 and in particular for any δ > 0 we find

∫
x2−δdτ =

∫
x−δdt̃ ≤

∫
(θ − t̃)−

δ
2 dt̃ . (4.12)

We compute after cancellations using (4.5)

|K4| ≤ C |t − t ′| α
2 ‖ω‖∞

∫
G4 dτ ds du dz̃ ≤ C |t − t ′| α

2 ‖ω‖∞,

|K5| ≤ C‖ω‖∞
∫

xα G5 dτ ds du dz̃ ≤ C‖ω‖∞
∫ t

2t ′−t
(θ − t̃)−1+ α

2 dt̃,

|K6| ≤ C‖ω‖∞
∫

xα G6 dτ ds du dz̃ ≤ C‖ω‖∞
∫ t ′

2t ′−t
(θ − t̃)−1+ α

2 dt̃,

where all kernels G j are bounded at the boundary faces of the heat space M2
h . From

there we conclude using (10.4)

|K4| + |K5| + |K6| ≤ C |t − t ′| α
2 ‖ω‖∞.
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4.2.2 Estimates Near the Lower Right Corner of the Front Face

We compute after cancellations

|K4| ≤ C |t − t ′| α
2 ‖ω‖∞

∫
x̃−1sμ0−γ G4 dτ dx̃ du dz̃

|K5| ≤ C‖ω‖∞
∫

x̃−1+αsμ0−γ G5 dτ dx̃ du dz̃

|K6| ≤ C‖ω‖∞
∫

x̃−1+αsμ0−γ G6 dτ dx̃ du dz̃,

where all kernels G j are bounded at the boundary faces of the heat spaceM2
h . Observe

that near the lower right corner we may estimate

∫ ∣∣∣̃x−1−(μ0−1)sμ0−1G j

∣∣∣ dx̃ ≤ const.

Consequently, we obtain as in (4.12)

|K4| ≤ C |t − t ′| α
2 ‖ω‖∞,

|K5| ≤ C‖ω‖∞
∫ t

2t ′−t
(θ − t̃)−1+ α

2 dt̃,

|K6| ≤ C‖ω‖∞
∫ t ′

2t ′−t
(θ − t̃)−1+ α

2 dt̃ .

From there we conclude using (10.4)

|K4| + |K5| + |K6| ≤ C |t − t ′| α
2 ‖ω‖∞.

4.2.3 Estimates Where the Diagonal Meets the Front Face

We compute after cancellations

|K4| ≤ C |t − t ′| α
2

∫
η−1−αG4(x, η, S, U , Z , ỹ, z̃) ω(̃t, x, y, z) dη d S dU d Z ,

|K5| ≤ C
∫

xα η−1G5(x, η, S, U , Z , ỹ, z̃) ω(̃t, x, y, z) dη d S dU d Z ,

|K6| ≤ C
∫

xα η−1G6(x, η, S, U , Z , ỹ, z̃) ω(̃t, x, y, z) dη d S dU d Z .

where all kernels G j are bounded at the boundary faces of the heat space M2
h . Since

the heat kernel is integrated against a constant ω(x, y, z), the singularity in η can be
cancelled using integration by parts near td, as in the estimate of I4 in [4, §3.1]. This
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leads to an estimate

|K4| ≤ C |t − t ′| α
2 ‖ω‖∞

∫
η−αG ′

4(x, η, S, U , Z , ỹ, z̃) dη d S dU d Z ,

|K5| ≤ C‖ω‖∞
∫

xα G ′
5(x, η, S, U , Z , ỹ, z̃) dη d S dU d Z ,

|K6| ≤ C‖ω‖∞
∫

xα G ′
6(x, η, S, U , Z , ỹ, z̃) dη d S dU d Z ,

where all kernels G ′
j are still bounded at the boundary faces of the heat space M2

h .
The estimates now follow along the lines of the estimates of J1, J2 and J3 in [4, §3.2]
near td.

4.3 Estimates of the Supremum

Consider as before ω ∈ C0ie(M ×[0, T ], S0). In this subsection we estimate the supre-
mum norm of the following integral

J :=
∫ t

0

∫
M

G ′(t − t̃, p, p̃)ω(̃t, p̃) dt̃ dvolg( p̃),

where G ′ = X−γ ◦Ve
2 e−t
L ◦ X−2+γ+α . As before, we assume that the kernel G ′ is

compactly supported near the various corners of the front face in the heat space blowup
M2

h , where for convenience we write out the corresponding projective coordinates
once again. The estimates are classical away from the front face and hence we may
assume that p = (x, y, z) ∈ U . Moreover, as before it suffices to integrate over the
singular neighborhood U with p̃ = (ω, ỹ, z̃), replacing the integration region M in
the integral J by U .

4.3.1 Estimates Near the Lower Left Corner of the Front Face

Assume that the integral kernel G ′ is compactly supported near the lower left corner
of the front face. We employ as before the following projective coordinates

τ = t − t̃

x2
, s = x̃

x
, u = y − ỹ

x
, x, y, z, z̃.

where in these coordinates τ, s, x are the defining functions of tf, lf and ff, respectively.
For the transformation rule of the volume form we compute

β∗(dt̃ dvolg(̃x, ỹ, z̃)) = h · xm+2s f dτ ds du dz̃,

where h is a bounded distribution onM2
h . Hence, using (4.6) we arrive for anyω ∈ Cα

ie
after cancellations at the estimates

|J | ≤ ‖ω‖∞
∫

xαG ′′(s, τ, u, x, y, z, z̃)dτ ds du dz̃ ≤ C xα ‖ω‖∞,
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for some uniform constant C > 0 and bounded function G ′′ on M2
h .

4.3.2 Estimates Near the Lower Right Corner of the Front Face

Assume that the heat kernel H is compactly supported near the lower right corner of
the front face. We employ as before the following projective coordinates

τ = t − t̃

x̃2
, s = x

x̃
, u = y − ỹ

x̃
, x̃, y, z, z̃.

where in these coordinates τ, s, x are the defining functions of tf, rf and ff, respectively.
For the transformation rule of the volume form we compute

β∗(dt̃ dvolg(̃x, ỹ, z̃)) = h · x̃m+1dτ dx̃ du dz̃,

where h is a bounded distribution on M2
h . Hence, using (4.6) and the fact that x ≤ x̃

near the lower right corner,we arrive for anyω ∈ Cα
ie after cancellations at the estimates

|J | ≤ ‖ω‖∞
∫

x̃−1+αsμ0−γ G ′′(s, τ, u, x̃, y, z, z̃) dτ dx̃ du dz̃

≤ C ‖ω‖∞ xμ0−γ

∫ ∞

x
x̃−1−(μ0−γ )+αdx̃ ≤ C xα ‖ω‖∞,

for some uniform constant C > 0 and bounded function G ′′ on M2
h . Note that we

used α < (μ0 − γ ) in the estimate above.

4.3.3 Estimates Near the Top Corner of the Front Face

Assume that the heat kernel H is compactly supported near the top corner of the front
face. We employ as before the following projective coordinates

ρ =
√

t − t̃, ξ = x

ρ
, ξ̃ = x̃

ρ
, u = y − ỹ

ρ
, y, z, z̃,

where in these coordinates, ρ, ξ, ξ̃ are the defining functions of the boundary faces ff,
rf and lf respectively. For the transformation rule of the volume form we compute

β∗(dt̃ dvolg(̃x, ỹ, z̃)) = h · ρm+1ξ̃ f dρ d ξ̃ du dz̃,

where h is a bounded distribution on M2
h . Hence, using (4.6) and the fact that x ≤ ρ

near the lower right corner,we arrive for anyω ∈ Cα
ie after cancellations at the estimates

|J | ≤ ‖ω‖∞
∫

ρ−1+αξμ0−γ G ′′(ρ, ξ, ξ̃ , u, y, z, z̃) dρ d ξ̃ du dz̃

≤ C ‖ω‖∞ xμ0−γ

∫ ∞

x
ρ−1−(μ0−γ )+α dρ ≤ C xα ‖ω‖∞,
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for some uniform constant C > 0 and bounded function G ′′ on M2
h . Note that we

used α < (μ0 − γ ) in the estimate above.

4.3.4 Estimates Where the Diagonal Meets the Front Face

Assume that the heat kernel H is compactly supported where the temporal diagonal
meets the front face. Before we begin with the estimate, let us rewrite J in following
way

J =
∫ t

0

∫
U

G ′(t − t̃, x, y, z, x̃, ỹ, z̃)(ω(̃t, x̃, ỹ, z̃) − ω(t, x, y, z))dt̃ dvolg(̃x, ỹ, z̃)

+
∫ t

0

∫
U

G ′(t − t̃, x, y, z, x̃, ỹ, z̃)ω(t, x, y, z)dt̃ dvolg(̃x, ỹ, z̃) =: J1 + J2.

We employ as before the following projective coordinates

η2 = t − t̃

x2
, S = (x − x̃)√

t − t̃
, U = y − ỹ√

t − t̃
, Z = x(z − z̃)√

t − t̃
, x, y, z.

where in these coordinates tf is the face in the limit |(S, U , Z)| → ∞, ff and td
are defined by x, η, respectively. For the transformation rule of the volume form we
compute

β∗(dt̃ dvolg(̃x, ỹ, z̃)) = h · xm+2ηm+1dη d S dU d Z ,

where h is a bounded distribution on M2
h . Note that in these coordinates

dM ((x, y, z), (̃x, ỹ, z̃)) = xη

√
|S|2 + |U |2 + (2 − ηS)|Z |2.

Hence, using (4.6) we arrive for any ω ∈ Cα
ie after cancellations at the estimates

|J1| ≤ ‖ω‖α

∫
x2αη−1+αG ′′(x, y, z, η, S, U , Z) dη d S dU d Z ≤ C x2α ‖ω‖α,

for some uniform constant C > 0 and bounded function G ′′ on M2
h . Estimating

similarly for J2 leads to a singular η−1 behaviour at td, due to derivatives of the form
η−1∂S, η

−1∂U and η−1∂Z . Due to the fact that J2 is comprised of the heat kernel
integrated against ω(t, x, y, z) which does not depend on (S, U , Z), we obtain after
integrating by parts for some bounded function G ′′ onM2

h (assume e.g. X = η−2∂2Z )

|J2| ≤
∫

xα G ′′ ω(t, x, y, z) ∂zh(x − xηS, y − xηU , z − ηZ) dη d S dU d Z |
≤ C xα ‖ω‖∞.

��
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We conclude the section with stating the mapping properties for the Laplace Bel-
trami operator
 acting on smooth functions over M .We identify
with its Friedrichs
self-adjoint extension. Under stronger assumptions other than admissibility of the edge
metric, mapping properties of the heat operator have been established in our joint work
with Bahuaud [4, Theorem 3.2]. Here, following the arguments of the previous The-
orem 4.1 one easily proves the following result.

Theorem 4.3 Consider an edge manifold (M, g) with an admissible edge metric g
satisfying tangential stability as in Definition 2.1. Consider the index set at the right
and left face of the heat kernel lifted to M2

h, with the minimal element μ1 > 0. Fix
any γ ∈ (1 − dim F, μ1). Then for α ∈ (0, 1) ∩ (0, μ1 − γ ) the heat operator e−t


for the Friedrichs self-adjoint extension of the Laplace Beltrami operator 
 defines a
bounded mapping

e−t
 : x−2+γ Ck,α
ie (M × [0, T ]) → Ck+2,α

ie (M × [0, T ])γ ,

e−t
 : x−2+γ+ε Ck+1,α
ie (M × [0, T ]) → t

ε
2 Ck+2,α

ie (M × [0, T ])γ .

Theproof proceed along the lines ofTheorem4.1.Wepoint out that due to stochastic
completeness of the Laplace Beltrami heat operator, one can completely avoid terms
of the form L3, compare [4] for the estimate of the Hölder differences. This allows
us to use Ck,α

ie (M × [0, T ])γ spaces of scalar functions which are defined without
requiring better x-weight for the supremum norm, in contrast to the Hölder space of
sections of S0.

Another crucial difference to Theorem 4.1 is that the higher order asymptotics of
solutions in the target space Ck+2,α

ie (M ×[0, T ])γ arises only after differentiation. The
reason is the a(t, y)ρ0

rf leading order term in the asymptotics of the heat kernel e−t
 at
the right face, which is independent of (x, z) and hence vanishes under differentiation
by (x∂x ) and ∂z , but not under (x∂y) and x2∂t . This explains the peculiar definition of
the Hölder space Ck+2,α

ie (M × [0, T ])γ for scalar functions, which distinguishes the
weights depending on the derivatives applied. Apart from that, the estimates follow
along the lines of the corresponding argument for the Lichnerowicz Laplacian.

5 Short-Time Existence of the Ricci de Turck Flow

We proceed with the explicit analysis of the Ricci flow of an admissible (α, γ, k)-
Hölder regular incomplete edge metric g, satisfying tangential stability introduced
in Definition 2.1. A particular consequence of the diffeomorphism invariance of the
Ricci tensor is the well-known fact that the Ricci flow is not a parabolic system. This
analytic difficulty is overcome using the standard de Turck trick with the background
metric chosen as the initial incomplete edge metric g ∈ Sym2(ieT ∗M).

Writing the flow metric as (g + v) with v ∈ Sym2(ieT ∗M) and v(0) = 0, we
can follow the linearization of the Ricci de Turck flow as e.g. in Bahuaud [3, 4.2] and
obtain a quasilinear parabolic system for v ∈ Sym2(ieT ∗M), where all indices refer to
the metric and curvature terms as tensors on ieT ∗M . Let Ric(g) and R(g) denote the
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Ricci and Riemannian (4, 0) curvature tensors, respectively. Then the Ricci de Turck
flow can be written as

(∂t + 
L)vi j = (T1v)i j + (T2v)i j + (T3v)i j ,

(T1v)i j = ((g + v)kl − gkl)(∇k∇lv)i j ,

(T3v)i j = (g + v)−1 ∗ (g + v)−1 ∗ ∇v ∗ ∇v,

(T2v)i j = −2Ric(g)i j + Q((g + v)kl(g + v)i pg pq R(g) jkql)

+ Q((g + v)kl(g + v) j pg pq R(g)ikql),

(5.1)

where Q(∗) is obtainedby taking a linear formal expansionof (∗) inv andpicking those
terms that are at least quadratic in v. Moreover, 
L and ∇ denote the Lichnerowicz
Laplacian and the Levi Civita covariant derivative, respectively, both defined with
respect to the initial metric g and acting on Sym2(ieT ∗M).

We decompose v = ug ⊕ ω into pure trace and trace-free parts with respect to the
initial metric g. The Lichnerowicz Laplacian 
L respects the decomposition since
trg(
Lv) = 
(trg(v)) and 
(ug) = (
u)g, where 
 on the right-hand side of the
latter equation is the Laplace Beltrami operator of g acting on functions.

We also note the following useful expansion as in [3, (4.1)]

(g + v)ab ≡ ((1 + u)g + ω)ab = gab

(1 + u)
− gal gbm

(1 + u)2
ωml

+ ((1 + u)g + ω)bl gam g pq

(1 + u)2
ωlpωmq .

Plugging this expansion into T1(v) we find

T1(v) =
( −u

(1 + u)

u − gal gbm

(1 + u)2
ωml∂a∂bu

+ ((1 + u)g + ω)bl gam g pq

(1 + u)2
ωlpωmq∂a∂bu

)
g

+ −u

(1 + u)

ω − gal gbm

(1 + u)2
ωml∇a∇bω

+ ((1 + u)g + ω)bl gam g pq

(1 + u)2
ωlpωmq∇a∇bω

Let us study the singular structure of T1(v). Note that if the lower index a refers to the
radial coordinate x or to the edge coordinates y, then ∇a acts on S0 = Sym2

0(
ieT ∗M)

as a combination of derivatives x−1 Ve and x−1 times a smooth function on M , smooth
up to the boundary. If the lower index a refers to tangential coordinates z, then∇a acts
on S0 as a combination of derivatives Ve and smooth functions on M . On the other
hand, any upper index a referring to the radial coordinate x or the edge coordinates y,
contributes no singular x factor due to the structure of the inverse metric g−1, while
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an upper index a referring to the tangential coordinates z contributes a factor x−1.
Counting the factors, we conclude

T1(v) =
( −u

(1 + u)

u + 1

x2
O1(ω)O1(Ve

2 u)

)
g

+ −u

(1 + u)

Lω + 1

x2
O2(ω,Ve ω,Ve

2 ω),

where O1(∗) and O2(∗) refers to any at least linear and at least quadratic combination
of the term (∗) in the brackets, respectively. In each of the summandswe do not indicate
notationally further factors which include just bounded combinations of smooth (up to
the boundary) functions, u and ω, with at most edge V2

e derivatives. Counting singular
x−1-factors as before we obtain

T2(v) = −2Ric(g) + 1

x2
O1(ω)O1(u) + 1

x2
O2(ω),

T3(v) = 1

x2
O2(Ve u) + 1

x2
O1(ω,Ve ω)O1(Ve u) + 1

x2
O2(ω,Ve ω).

where in case of T2(v) we used the fact that components of the Riemannian curvature
(4, 0) tensor of an edgemetric of Hölder regular geometry are O(x−2) as x → 0, when
acting on ieT M . We point out that T2(v) does not admit terms of the form x−2O2(u)

due to cancellations.
We decompose the Ricci curvature into the trace free component scal(g)

m g and the
trace-free part of the Ricci curvature tensor Ric′(g). Summarizing our analysis from
above we now obtain under the direct sum decomposition into pure trace and trace
free components (with respect to the initial edge metric g) the following structure of
the Ricci de Turck flow

(∂t + 
 ⊕ 
L) (u ⊕ ω)

=
((

− u

1 + u

u + 1

x2
O1(ω)O1(Ve

2 u) + scal(g)

m

)

⊕
(

− u

(1 + u)

Lω − 2Ric′(g)

))
+ 1

x2
O2(ω,Ve ω,Ve

2 ω)

+ 1

x2
O1(ω,Ve ω)O1(u,Ve u) + 1

x2
O2(Ve u) =: F(u, ω).

(5.2)

To set up a fixed point argument for that non-linear equation, we follow the outline
of [4, Theorem 4.1] and introduce the following Banach space for any γ0, γ1 > 0 and
α ∈ (0, 1)

Hγ0,γ1 := Ck+2,α
ie (M × [0, T ])γ1 ⊕ Ck+2,α

ie (M × [0, T ], S0)γ0 . (5.3)
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We can always choose γ0, γ1, α > 0 sufficiently small such that the following
algebraic relations are satisfied

(i) γ0 ∈ (0, μ0), γ0 ≤ 2γ1, γ0 < γ,

(ii) γ1 ∈ (0, μ1), γ1 ≤ γ0, γ1 < γ,

if dim B > 0, then γ0 ≤ 2min{1, γ1}, γ1 ≤ 2,

(iii) α ∈ (0, (μ0 − γ0)) ∩ (0, (μ1 − γ1)).

(5.4)

Theorem 5.1 Consider an admissible (α, γ, k + 1)-Hölder regular edge manifold
(M, g) with an edge singularity at B, satisfying tangential stability introduced in
Definition 2.1 with minimal elements μ0, μ1 > 0 of the index sets at the right and left
faces. Then the Riemannian metric g may be evolved under the Ricci de Turck flow
as9 g(t) = (1 + u) ⊕ ω within the Banach space Hγ0,γ1 on some finite time interval
[0, T ], where γ0, γ1, α > 0 are sufficiently small and satisfy (5.4).

Proof Consider first the linearization of the Ricci de Turck flow in (5.2). Consider
(u, ω) ∈ Hγ0,γ1 . Then, in view of the Definition 1.4, the regularity of the individual
terms in the expression for F(u, ω) is as follows (according to the ordering of terms
in the expression (5.2))

F(u, ω) ∈
(

x−2+min{2,γ1}Ck,α
ie + x−2+γ0+min{2,γ1}Ck,α

ie + x−2+γ Ck+1,α
ie

)

⊕
(

x−2+γ0Ck,α
ie + x−2+γ Ck+1,α

ie

)
+ x−2+2γ0Ck,α

ie

+ x−2+γ0Ck,α
ie + x−2+2min{1,γ1}Ck,α

ie .

(5.5)

In case of dim B = 0, there are no x∂y derivatives and we may replace min{2, γ1} and
min{1, γ1} by γ1 in (5.5). Using the algebraic relations (5.4) we conclude that

F
(
Hγ0,γ1

) ⊆
(

x−2+γ1Ck,α
ie (M × [0, T ])

)
⊕ Ck,α

ie (M × [0, T ], S0)−2+γ0 .

Using the mapping properties of Theorems 4.1 and 4.3, we find

� := (
e−t
 ⊕ e−t
L

) ◦ F : Hγ0,γ1 → Hγ0,γ1 .

Solution to the Ricci de Turck flow is by construction a fixed point of �. To prove
existence of such a fixed point, we restrict � to a subset of Hγ0,γ1 and define

Zμ := {(u, ω) ∈ Hγ0,γ1 | ‖(u, ω)‖Hγ0,γ1
≤ μ}, μ > 0.

The terms in the linearization (5.2) are either quadratic in (u, ω) or constant given
by the summands scal(g) and Ric′(g) depending only on the initial metric. Using the
secondmapping properties in Theorems 4.1 and 4.3, the Hγ0,γ1 norm of e−t
scal(g)⊕
9 The decomposition g(t) = (1 + u) ⊕ ω into pure trace and trace-free components is with respect to
g(0) = g.

123



3390 B. Vertman

e−t
LRic′(g) can be made smaller than μ/2 if T > 0 is sufficiently small. Since the
other terms in F(u, ω) are quadratic in (u, ω), we find that � maps Zμ to itself for
T > 0 and μ > 0 sufficiently small. Moreover, for μ > 0 sufficiently small, �

satisfies the contraction mapping property

‖�(u, ω) − �(u′, ω′)‖Hγ0,γ1
≤ q‖(u, ω) − (u′, ω′)‖Hγ0,γ1

with some positive q < 1 for all (u, ω) and (u′, ω′) ∈ Zμ. Hence, repeating the
argument of [4, Theorem 4.1] verbatim, the fixed point exists in Zμ ⊂ Hγ0,γ1 . ��

6 Singular Edge Structure of the Ricci de Turck Flow

In this section,we explain inwhat sense the evolvedRicci de Turckmetric g(t) remains
an admissible incomplete edgemetric. Recall g(t) = (1+u)g+ω, where g is the initial
admissible edge metric, u ∈ Ck+2,α

ie (M ×[0, T ])γ1 and ω ∈ Ck+2,α
ie (M ×[0, T ], S0)γ0

is a higher order trace-free (with respect to g) term. Consider first how the conformal
transformation of g into (1 + u)g affects the incomplete edge structure of the metric.
The argument is worked out in [5] as well.

Choose local coordinates (x, y, z) near the singularity as before. Due to the fact that
an element of Cα

ie must be independent of z at x = 0, wemaywrite u0(y) := u(0, y, z).

Since u ∈ Ck+2,α
ie,γ1

we may apply the mean value theorem and find as in Corollary 10.2
that x−γ1(u(x, y, z) − u0(y)) = ξ−γ1(ξ∂ξ )u(ξ, y, z) with ξ ∈ (0, x), and hence is
bounded up to the edge singularity. Consequently, we obtain a partial asymptotic
expansion of u as x → 0

u(x, y, z) = u0(y) + O(xγ1).

Now, we substitute x̃ = (1 + u0)
1
2 x . For small u0 this defines a new boundary

defining function, which varies along the edge. Consider the leading order term g of
g, which is given by g |U= dx2 + x2gF + φ∗gB over the singular neighborhood U .
We compute

(1 + u)(dx2 + φ∗gB + x2gF )

= (1 + u0)dx2 + φ∗((1 + u0)g
B) + (1 + u0)x2gF + O(xγ1)

= dx̃2 + φ∗((1 + u0)g
B) + x̃2gF + O(xγ1).

(6.1)

The key point here is that up to a conformal transformation of the base metric on B,
the leading term of the metric has the same rigid edge structure in the new choice
of a boundary defining function x̃ . The trace-free term ω is of higher order O(xγ0)

as x → 0. Consequently, up to a change of a boundary defining function and up to
higher order terms, g(t) is again an admissible edge metric in the sense of Definition
1.1, extended to allow for the metric along the edge to be only Hölder regular and not
necessarily smooth, and to include higher order terms h with |h|g = o(1) as x → 0
that are only Hölder regular but not necessarily smooth.
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7 Passing from the Ricci de Turck to the Ricci Flow

The solution g(t) of the Ricci de Turck flow is related to the actual Ricci flow by a
diffeomorphism, a meanwhile classical trick of de Turck which we nowmake explicit,
cf. [14]. We employ the Einstein notational convention for summation of indices and
define the time-dependent de Turck vector field W (t), given in a choice of local
coordinates by the following expression

W (t) j := g pq(t)
(
�

j
pq(g(t)) − �

j
pq(g)

)
,

where �
j
pq(g(t)) and �

j
pq(g) denote the Christoffel symbols of the Ricci de Turck

flow metric g(t) and the initial admissible edge metric g, respectively. The Christof-
fel symbols are not coordinate invariant and are given in the fixed choice of local
coordinates by

�
j
pq(g) = 1

2
g jm (

∂pgmq + ∂q gmp − ∂m gpq
)
,

with �
j
pq(g) obviously defined by the same expression with g replaced by g(t). From

the expressions above it is clear that the de Turck vector field W (t) is a linear combi-
nation of vector fields x−1 Ve with x−1+γ Ck+1,α

ie regular coefficients; where

γ = min{γ0, γ1}, if dim B = 0,

γ = min{γ0, γ1, 1}, if dim B > 0,
(7.1)

due to possible ∂y derivatives.
The de Turck vector field defines the corresponding one-parameter family of dif-

feomorphisms φ(t) : M → M , with x−1+γ Ck+1,α
ie regular components with respect

to the local coordinates (x, y, z) near the edge. However, a priori we do not have a
uniform existence time for φ(t) the closer we get to the singularity. This is due to the
fact that the ∂x component of the de Turck vector field need not be inward pointing at
x = 0, unless we require that γ > 1. In view of (7.1), γ > 1 can only be satisfied in
case of conical singularities dim B = 0.

Assuming for the moment that φ(t) exists for a short-time uniformly up to the edge
singularity, we obtain a solution g′(t) to the Ricci flow by setting g′(t) := φ(t)∗g(t) =
g(dφ[·], dφ[·]). Due to additional derivatives, we conclude

g′ ∈ x−2+γ Ck,α
ie (M × [0, T ],Sym2(ieT ∗M)). (7.2)

This proves the following short time existence statement.

Theorem 7.1 Consider an admissible (α, γ, k + 1)-Hölder regular edge manifold
(M, g), satisfying tangential stability with minimal elements (μ0, μ1). Assume that
the de Turck vector field is inward pointing at x = 0. This is true e.g. if dim B = 0
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and the minimal elements μ0, μ1 > 1, so that we may choose γ0, γ1 > 1 subject to
the algebraic relations (5.4) and consequently γ = min{γ0, γ1} > 1.

Then, the Riemannian metric g may be evolved under the Ricci flow with

g′(t) ∈ x−2+γ Ck,α
ie (M × [0, T ], S) (7.3)

on some finite time interval t ∈ [0, T ]. If μ0, μ1 > 2 so that we may choose γ0, γ1 ≥ 2,
then g′ ∈ Ck,α

ie acts boundedly on x−1 Ve vector fields and is in that sense an edge
metric.

8 Evolution of the Riemannian Curvature Tensor Along the Flow

In this section, we prove that the Riemannian curvature tensor of the Ricci flowmetric
g′(t) is bounded along the flow for t ∈ (0, T ] when starting at an admissible Hölder
regular edge manifold (M, g) with bounded Riemannian curvature. More precisely,
we prove the following theorem.

Theorem 8.1 Consider an admissible (α, γ, k + 1)-Hölder regular edge manifold
(M, g) satisfying tangential stability. Consider the Ricci de Turck flow solution
g(t) = (1 + u)g + ω, where ω trace-free with respect to g and

(u, ω) ∈ Hγ0,γ1 = Ck+2,α
ie (M × [0, T ])γ1 ⊕ Ck+2,α

ie (M × [0, T ], S0)γ0 ,

subject to the algebraic relations (5.4), where in particular γ ≥ max{γ0, γ1}. Then
g(t) is (α, γ , k)-Hölder regular for each fixed t ∈ [0, T ] with γ = min{γ0, γ1} ≤ γ .

Proof We need to check regularity of the various curvatures in the sense of Defini-
tion 1.5. We will only write out the argument for the Riemannian curvature tensor. The
argument for the Ricci curvature tensor is similar. Recall the following transformation
rule for the Riemannian curvature tensor under conformal transformations

R(e2φg) = e2φ
(

R(g) −
[

g ∧
(

∇∂φ − ∂φ · ∂φ + 1

2
‖∇φ‖2g

)])
, (8.1)

where ∧ refers here to the KulkarniNomizu product. Setting e2φ := (1 + u), we
conclude from u ∈ Ck+2,α

ie (M × [0, T ])γ1 that the components of R((1 + u)g) −
(1 + u)R(g) acting on x−1 Ve vector fields are in x−2+γ1Ck,α

ie . Now, consider the

full solution g(t) = (1 + u)g + ω with the higher order term ω ∈ Ck+2,α
ie (M ×

[0, T ], S0)γ0 . Then, R((1 + u)g + ω) − R((1 + u)g) is an intricate combination of
u and ω, involving their second-order x−2 Ve

2 derivatives and hence its components
are in x−2+min{γ0,γ1}Ck,α

ie . ��
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9 Small Perturbation of Flat EdgeMetrics

Let (M, h) be an admissible incomplete edge manifold. Assume that h is flat10, which
is equivalent to Ricci flatness in dimension three and is true in case of flat orbifolds.
Long-time existence and stability of Ricci flow for small perturbations of Ricci flat
metrics that arenot flat, requires an integrability condition andother intricate geometric
arguments. This has been the focus of the joint work with Kröncke [29].

In the flat setting, we redefine the Hölder spaces in Definition 1.4 by replacing all
edge derivatives Ve by ∇Ve , where ∇ is the covariant derivative on S induced by the
Levi Civita connection. We also relax the condition of tangential stability.

Definition 9.1 We say that an admissible edge manifold (M, h) is weakly tangentially
stable with bound u if

Spec�L ≥ 0, Spec�′
L ≥ 0,

u := min
{
Spec�L\{0},Spec�′

L\{0} }
.

(9.1)

In a joint follow-up work with Kröncke [29, Theorem 1.7] weak tangential stability
has been explicitly characterized in terms of the spectral data on the cross-section as
follows.

Theorem 9.2 Let (F, gF ) be a compact Einstein manifold of dimension f ≥ 3 with
the Einstein constant ( f − 1). We write 
E for its Einstein operator, and denote the
Laplace Beltrami operator by 
. Then, weak tangential stability holds if and only if
Spec(
E |T T ) ≥ 0 and Spec(
) \ {0} ∩ ( f , 2( f + 1)) = ∅.

The basic examples of spaces that areweakly tangentially stable but not tangentially
stable are spaces with cross-sections S

f and RP
f , or quotients of these. We refer to

our work [29] for further details.
Under the assumption of weak tangential stability with bound u we define

μ :=
√

u +
(

f − 1

2

)2

−
(

f − 1

2

)
. (9.2)

Note that herewe do not treat the pure-trace and the trace-free components S = S0⊕S1
separately with different weights. We also set for any γ > 0 and a fixed integer k ∈ N0

Hγ = Ck+2,α
ie (M × [0,∞), S)b

γ .

Theorem 9.3 Let (M, h) be an admissible flat incomplete edge manifold, which is
weakly tangentially stable with bound u. Consider any γ ∈ (0, μ), where μ is defined

10 Note that a flat edge metric h is automatically Hölder regular with any (α, k, γ ).
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by (9.2). Then for any α ∈ (0, μ − γ ) ∩ (0, 1) the fundamental solution e−t
L admits
the following mapping property

e−t
L : x−2+γ Ck,α
ie (M × [0,∞), S)b → Ck+2,α

ie (M × [0,∞), S)b
γ = Hγ ,

e−t
L : Ck+2,α
ie (M, S)b

γ ⊂ Hγ → Ck+2,α
ie (M × [0,∞), S)b

γ = Hγ ,
(9.3)

where the first operator involves convolution in time, while the second operator acts
without convolution in time.

Proof Since (M, h) is flat, �L is the rough Laplacian on (F, gF ) and ker�L consists
of elements that are parallel along F and hence vanish under application of ∇∂z . This
corresponds precisely to the scalar case, where 
L reduces to the Laplace Beltrami
operator and �L is the Laplace Beltrami operator of (F, gF ). In that case, ker�L

also consists of constant functions that vanish under the application of ∂z . Hence the
first statement can be obtained along the lines of the estimates for the scalar Laplace
Beltrami operator in Theorem 4.3.

For the second statement, note that without convolution in time, a missing dt inte-
gration leads to two orders less at ff and td in the estimates of Theorems 4.1 and 4.3.
This is, however, offset by the fact that the heat operator acts on Ck+2,α

ie (M, S)b
γ instead

of the more singular space x−2+γ Ck,α
ie (M × [0,∞), S)b. Thus, we may deduce the

second statement again as in Theorem 4.3. ��
Proposition 9.4 Assume that 
L acting on C∞

0 (M, S) is non-negative and denote its
Friedrichs self-adjoint extension by 
L again. Then, 
L is discrete, non-negative and

∀ k ∈ N0 : ker
L ⊂ Ck+2,α
ie (M, S)b

γ ⊂ Hγ . (9.4)

Proof By Theorem 3.5, the heat operator e−t
L coincides with the fundamental solu-
tion constructed in Theorem 3.2. One can easily check from themicrolocal description
that the Schwartz kernel of e−t
L is square-integrable on M×M for fixed t > 0.Hence
e−t
L is Hilbert Schmidt and due to the semi-group property in fact trace-class. Con-
sequently, the Friedrichs extension 
L admits discrete spectrum. Its non-negativity
follows from non-negativity of 
L on C∞

0 (M, S).
For fixed t > 0 we may employ the heat kernel asymptotics to conclude that

e−t
L maps L2(M, S) to Cα
ie(M, S). Since e−t
L � ker
L ≡ Id11 , we conclude that

ker
L ⊂ Cα
ie(M, S) and iteratively, using (9.3) and e−t
L � ker
L ≡ Id find that

ker
L ⊂ Ck+2,α
ie (M, S)b

γ ⊂ Hγ . (9.5)

��
Theorem 9.5 Let (M, h) be an admissible flat incomplete edge manifold, which is
weakly tangentially stable with bound u. Consider any γ ∈ (0, μ), where μ is defined

11 Indeed, 
L is discrete and hence the heat operator acts as identity on the kernel of 
L .
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by (9.2), and α ∈ (0, μ − γ ) ∩ (0, 1). Assume that 
L acting on C∞
0 (M, S) is non-

negative and denote its Friedrichs extension by 
L again. Consider the orthogonal
decomposition

L2(M, S) = ker
L ⊕ (ker
L)⊥ ,

v = v= ⊕ v⊥.
(9.6)

Then, for λ0 > 0 being the first non-zero eigenvalue of 
L there exists C > 0 such
that

∀ v ∈ Ck+2,α
ie (M, S)b

γ : ‖e−t
L v⊥‖k+α,γ ≤ Ce−tλ0‖v⊥‖k+α,γ . (9.7)

Proof The proof is an adaptation of the corresponding argument in the follow-up work
jointly with Kröncke [29]. For any v ∈ Ck+2,α

ie (M, S)b
γ ⊂ L2(M, S), we conclude by

Proposition 9.4

v=, v⊥ ∈ Ck+2,α
ie (M, S)b

γ ⊂ Hγ . (9.8)

Hence e−t
L v⊥ ≡ e−t
⊥
L v⊥ ∈ Hγ by the mapping properties (9.3), and it makes

sense to estimate its norm. Denote the set of eigenvalues and eigentensors of the
Friedrichs extension 
L by {λ, vλ}. Assume the eigenvalues {λ} are ordered in the
ascending order and λ0 denotes the first non-zero eigenvalue. By discreteness of the
spectrum, the heat kernel can be written in terms of eigenvalues and eigentensors for
any (p, q) ∈ M × M by

e−t
L (p, q) =
∑
λ≥0

e−tλvλ(p) ⊗ vλ(q),

e−t
⊥
L (p, q) =

∑
λ≥λ0

e−tλvλ(p) ⊗ vλ(q).
(9.9)

Consider any D ∈ {Id,∇Ve}. The notation (D1 ◦ D2)e−t
L indicates that the operator
D is applied once in the first spacial variable of e−t
L and once in the second spacial
variable. By Theorem 3.2, the lifted kernel β∗(D1 ◦ D2)e−t
L is bounded at the left
and right face of the heat space M2

h . Consequently, for a fixed t0 > 0, the pointwise
trace trp(D1 ◦ D2)e−t0
L (p, p) is bounded uniformly in p ∈ M . By Proposition 9.4,

same holds for e−t0
⊥
L and hence there exists C ′(t0) > 0 such that (we denote the

pointwise norm on fibres of S by ‖ · ‖)

C ′(t0) ≥ trp(D1 ◦ D2)e
−t0
⊥

L (p, p) =
∑
λ≥λ0

e−tλ‖Dvλ(p)‖2

= e−t0λ0
∑
λ≥λ0

e−t(λ−λ0)‖Dvλ(p)‖2 =: e−t0λ0 · K (t0, p).
(9.10)
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Note that each (λ−λ0) in the sum above is non-negative. Hence each e−t(λ−λ0) as well
as K (t, p) are monotonically decreasing as t → ∞ by construction. Consequently,
for any t ≥ t0 and any p ∈ M , we conclude

K (t, p) ≤ C ′(t0)et0λ1 =: C(t0). (9.11)

Hence we can estimate for any t ≥ t0 and p ∈ M

trp(D1 ◦ D2)e
−t
⊥

L (p, p) = e−tλ0 · K (t, p) ≤ C(t0)e
−tλ0 . (9.12)

We conclude with the following intermediate estimate

‖De−t
⊥
L (p, q)‖ =

∑
λ≥λ0

e−tλ‖Dvλ(p)‖ · ‖vλ(q)‖

≤
∑
λ≥λ0

e−tλ

2
‖Dvλ(p)‖2 +

∑
λ≥λ0

e−tλ

2
‖vλ(q)‖2 ≤ C(t0)e

−tλ0 .

(9.13)

From there the statement follows for t ≥ t0 for some fixed t0 > 0. By (9.3), the norm
of e−t
L v⊥ is bounded up to a constant by the norm of v⊥ uniformly for t ∈ [0, t0].
Hence the statement follows for all t > 0 after a change of constants. ��
Definition 9.6 Let ε > 0. An incomplete edge metric g on M is said to be an ε-close
higher order perturbation of h in Hγ , if (g − h) ∈ Hγ with the Hölder norm smaller
than or equal to ε.

Note that such a higher order perturbation g of an admissible edge metric h is
automatically admissible as well, by the argument in Sect. 6.

We study Ricci flow of g, and in slight difference to Sect. 5 apply the Ricci de Turck
trick with h as the background metric. This leads to the linearized parabolic equation
as in (5.2) with scal(h) and Ric′(h) being trivially zero for the Ricci flat metric h, and
T3(v) = 0 since h is actually assumed to be flat. Writing v = u ⊕ω,
L and ∇ for the
Lichnerowicz Laplacian and the Levi Civita covariant derivative on S, defined with
respect to h, we obtain

(∂t + 
L) v = − u

1 + u

Lv + x−2O1(∇Vev)O1(v,∇Vev) =: F(v). (9.14)

We seek to find a solution g(t) = (1+ u)h ⊕ ω to that equation with initial condition
g(0) = g. Here, as before (1 + u)h ⊕ ω denotes the decomposition into pure trace
and trace-free components with respect to h. We prove the following theorem.

Theorem 9.7 Consider an admissible flat edge manifold (M, h) with an edge singu-
larity at B, satisfying weak tangential stability with bound u. Assume that 
L acting
on C∞

0 (M, S) is non-negative and denote its Friedrichs self-adjoint extension by 
L

again. Then there exists ε > 0 sufficiently small such that if g is an ε-close higher
order perturbation of h, with

(g − h) ⊥ ker
L ⊂ L2(M, S), (9.15)
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the Riemannian metric g may be evolved under the Ricci de Turck flow as g(t) =
(1+u)⊕ω within the Banach space Hγ for all times, provided the following algebraic
relations are satisfied

γ ∈ (0, μ), and if dim B > 0 then γ ≤ 2, (9.16)

andα ∈ (0, (μ−γ )). Moreover there existsμ(ε) > 0 sufficiently small, withμ(ε) → 0
as ε goes to zero, such that the Hölder norm of (g(t) − h) in Hγ is smaller or equal
to μ(ε), uniformly in time t ∈ [0,∞).

Proof The Ricci de Turck flow g(t) with h as background metric and g(0) = g as
initial condition exists is a fixed point of the following map

� : v := g(t) − h ∈ Hγ �→ e−t
L ∗ F(v) + e−t
L (g − h) ∈ Hγ ,

where 
L is the Friedrichs self adjoint extension of the Lichnerowicz Laplacian on
S, e−t
L is the corresponding heat operator, ∗ refers to the action of the heat operator
with convolution in time, and in e−t
L (g − h) the heat operator is applied without
convolution in time. The fact that � maps Hγ to itself follows from

(g − h) ∈ Hγ , F(v) ∈ x−2+γ Ck,α
ie (M × [0,∞), S)b, (9.17)

for v ∈ Hγ , and the mapping properties (9.3).
Consider the orthogonal decomposition (9.6). We fix any β ∈ (0, λ0). To prove

existence of a fixed point for �, we consider any δ > 0 and restrict � to a subset of
the Banach space Hγ

Zδ := {v ∈ Hγ | ‖v⊥(t)‖k+α,γ ≤ δe−t(λ0−β), ‖v=(t)‖k+α,γ ≤ δ}.

Note that on flat manifolds 
L = ∇∗∇ and hence

ker
L = ker∇ ⊂ L2(M, S). (9.18)

Note that x−2+γ Ck,α
ie (M×[0,∞), S)b ⊂ L2(M, S), sincewe always assume dim F ≥

1. Since in F(v) all terms are quadratic in v and admit at least one component of the
form∇v = ∇v⊥, we conclude for any v ∈ Zδ and some uniform constants C, C ′ > 0

‖F(v(t))‖L2 ≤ C‖F(v(t))‖k+α,−2+γ ≤ CC ′δ2e−t(λ0−β). (9.19)

Consider the discrete set {λ, vλ} of eigenvalues and eigentensors of the Friedrichs
extension 
L . As in (9.9), we may now decompose the heat kernel for any (p, q) ∈
M × M as follows:

e−t
L (p, q) =
∑
λ=0

vλ(p) ⊗ vλ(q) +
∑
λ≥λ0

e−tλvλ(p) ⊗ vλ(q)

=: �(p, q) + e−t
⊥
L (p, q).
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Clearly, � is the orthogonal projection of L2(M, S) onto ker
L , while e−t
⊥
L is

the composition of the heat operator with the orthogonal projection onto (ker
L)⊥.
Hence we find for any v ∈ Hγ (recall, F(v) ∈ L2(M, S))

(
e−t
L ∗ F(v)

)
= = � ∗ F(v),

(
e−t
L ∗ F(v)

)
⊥ = e−t
⊥

L ∗ F(v).

In view of (9.19) we may estimate the action of � for any v ∈ Zδ as follows

‖ (
e−t
L ∗ F(v)

)
= ‖k+α,γ = ≤

∑
λ=0

‖vλ‖k+α,γ

∫ t

0
|(vλ, F(v(t ′)))L2 |dt ′

≤
∑
λ=0

‖vλ‖k+α,γ ‖vλ‖L2

∫ t

0
‖F(v(t ′))‖L2dt ′

≤ C
∫ t

0
δ2e−t ′(λ0−β)dt ′ ≤ C ′δ2,

where C, C ′ > 0 are some uniform constants. To obtain a similar estimate for the
action of e−t
⊥

L , note that by the pointwise estimate (9.13), the Schwartz kernel of
e−t
⊥

L can be written as e−tλ0 times a kernel G of same asymptotics in the heat space
M2

h , which is uniform as t → ∞. Hence we may write
(
e−t
L ∗ F(v)

)
⊥ as follows

∫ t

0

∫
M

e−(t−t ′)λ0e−t ′(λ0−β)G(t − t ′, p, q)
(

et ′(λ0−β)F(v)(t ′, q)
)

dt ′dvolh(q).

We now estimate for any v ∈ Zδ the Hγ -norm and find using (9.19)

‖ (
e−t
L ∗ F(v)

)
⊥ ‖k+α,γ ≤ e−t(λ0−β)‖

∫ t

0

∫
M

G(t − t ′, p, q)×

×
(

et ′(λ0−β)F(v)(t ′, q)
)

dt ′dvolh(q)‖k+α,γ

≤ Cδ2e−t(λ0−β)

for some uniform constant C > 0. Note also that by assumption, (g − h) ⊥ ker
L

with Hγ -norm bounded by ε. Hence, by Theorem 9.7

‖ (
e−t
L (g − h)

)
⊥ ‖k+α,γ = ‖e−t
⊥

L (g − h)‖k+α,γ ≤ Cεe−tλ0 .

Summarizing we have shown that there exists a uniform constant C > 0 such that for
any v ∈ Zδ

‖ (�v)⊥ ‖k+α,γ ≤ C
(
δ2 + ε

)
e−t(λ0−β), ‖ (�v)= ‖k+α,γ ≤ Cδ2. (9.20)
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Taking (ε, δ) sufficiently small (proportionally to each other) ensures that � maps Zδ

to itself. Moreover, since F(v) is quadratic in v, we find that � is a contraction

‖�(v) − �(v′)‖Hγ ≤ q‖v − v′‖Hγ

with some positive q < 1, for all v, v′ ∈ Zδ . Hence a fixed point exists in Zδ ⊂ Hγ .
Note that δ > 0 can be taken smaller the smaller we choose ε > 0.

Note that in contrast to Theorem 5.1, we do not need to restrict to a finite time
interval [0, T ]with T > 0 sufficiently small and set up the fixed point argument in the
Hölder space Hγ for all times. This is due to the fact that all terms in the linearization
of the Ricci de Turck flow (9.14) are at least quadratic and hence � maps Zδ to itself
for δ > 0 sufficiently small without additional restrictions on time. ��

Note that as explained in Sect. 6, the Ricci de Turck flow g(t) is an admissible edge
metric with the same leading term as h up to a conformal transformation of the metric
along the edge singularity and a change of the boundary defining function x .
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10 Appendix: Mean Value Theorem on EdgeManifolds

The subsequent section on mapping properties of the heat kernel for the Lichnerowicz
Laplacian requires an estimate of the corresponding Hölder differences. This will be
somewhat different from similar estimates performed in [4], since the Lichnerowicz
Laplacian on symmetric 2-tensors does not satisfy stochastic completeness. Therefore
we will use some different argument, which is developed in the present section. We
begin with the following consequence of the mean value theorem for Banach-valued
functions of a single variable.

Lemma 10.1 Consider any Banach space B with norm‖·‖and anyη, η′ ∈ R contained
in a compact convex subset K ⊂ R. Assume η ≤ η′. Consider some continuously
differentiable function ω : K → B. Then for and any fixed odd integer N ∈ N, there
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exists a uniform constant C > 0 and some δ ∈ [η, η′] such that

‖ω(η) − ω(η′)‖ ≤ C |η − η′| 1
N

∥∥∥∥δ
N−1

N

(
d

dη
ω

)
(δ)

∥∥∥∥ (10.1)

Proof Define o := η
1
N ∈ R and o′ := η′ 1N ∈ R for any η, η′ ∈ R. By the mean value

theorem in Banach spaces, there exists some δ ∈ [η, η′] (we write ξ := δ
1
N )

‖ω(η) − ω(η′)‖ = ‖ω(oN ) − ω(o′N )‖ ≤ |o − o′|
∥∥∥∥
(

d

do
ω

)
(ξ)

∥∥∥∥
= N |η 1

N − η′ 1N |
∥∥∥∥δ

N−1
N

(
d

dη
ω

)
(δ)

∥∥∥∥ .

(10.2)

One computes using l’Hospital for any N > 1

lim
η→η′

(η
1
N − η′ 1N )

(η − η′) 1
N

= lim
q→1

q
1
N − 1

(q − 1)
1
N

= lim
q→1

(q − 1)1− 1
N

q1− 1
N

= 0. (10.3)

Consequently, for any η, η′ ∈ R contained in a compact convex subset K ⊂ R and
any N > 1 there exists a uniform constant C = C(N , K ) > 0 such that

N |η 1
N − η′ 1N | ≤ C |η − η′| 1

N . (10.4)

Taking Hilbert space norm on both sides of (10.2) proves the statement of the lemma
using the estimate (10.4). ��

As a consequence of the previous lemma we conclude with the following corollary,
where for simplicity we assume that the edge B as well as the fibre F are one-
dimensional. The general case is discussed verbatim.

Corollary 10.2 Consider any continuously differentiable sectionω ∈ �(Sym2
0(

ieT ∗M)).
Consider two copies of local coordinates (x, y, z), (x ′, y′, z′) ∈ U . Consider any
ỹ ∈ B lying in the same (convex) coordinate chart as y and y′. Then there exist
ξ ∈ (0, 1) lying in the line segment between x and x ′; γ lying in the line segment
between y and y′; and ζ ∈ F lying in the line segment connecting z, z′ ∈ F; as well
as a constant C > 0 depending only on the choice of local coordinate charts and the
odd integer N ∈ N, such that

‖ω(x, y − ỹ, z) − ω(x ′, y′ − ỹ, z′)‖
dM ((x, y, z), (x ′, y′, z′)) 1

N

≤ C
(
‖ξ N−1

N ∂ξω(ξ, y, z)‖
+‖γ − ỹ‖ N−1

N ‖∂γ ω(x ′, γ − ỹ, z)‖
+‖x ′− 1

N ∂ζ ω(x ′, y′ − ỹ, ζ )‖
)

.
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Proof We write the difference ω(x, y − ỹ, z) − ω(x ′, y′ − ỹ, z′) as follows

ω(x, y − ỹ, z) − ω(x ′, y′ − ỹ, z′)
= ω(x, y − ỹ, z) − ω(x ′, y − ỹ, z)

+ ω
(
x ′, y − ỹ, z

) − ω
(
x ′, y′ − ỹ, z

)
+ ω(x ′, y′ − ỹ, z) − ω(x ′, y′ − ỹ, z′).

As a direct application of Lemma 10.1 we obtain

‖ω(x, y − ỹ, z) − ω(x ′, y′ − ỹ, z′)‖
≤ C |x − x ′| 1

N ‖ξ N−1
N ∂ξω(ξ, y, z)‖

+ C ‖y − y′‖ 1
N ‖γ − ỹ‖ N−1

N ‖∂γ ω(x ′, γ − ỹ, z)‖
+ C ‖z − z′‖ ‖∂ζ ω(x ′, y′ − ỹ, ζ )‖.

(10.5)

for some uniform constant C > 0. From here the statement of the theorem follows. ��

11 Appendix: Comparison of Various Hölder Spaces

Hölder spaces on spaces with incomplete edge singularities have been an important
tool in studying Kähler-Einstein edge metrics in [26], as well as in the discussion of
the Yamabe flow in [4].

We shall provide a brief overview how the spaces here and in [4,26] are related. Let
us start with the definition of the wedge Hölder spaces (of time-independent scalar
functions) as in [26].

Definition 11.1 The wedge Hölder space C0,αω (M), α ∈ (0, 1), consists of functions
u(p) that are continuous on M with finite α-th Hölder norm

‖u‖α := ‖u‖∞ + sup

( |u(p) − u(p′)|
dM (p, p′)α

)
< ∞, (11.1)

where the distance function dM (p, p′) between any two points p, p′ ∈ M is defined
with respect to the incomplete edge metric g. The higher order wedge Hölder spaces
are defined for any order k ∈ N by

Ck,α
ω (M) := {u ∈ C0,αω (M) ∩ Ck(M) | (x−1 Ve) j u ∈ C0,αω (M) for any j ≤ k}. (11.2)

The weighted wedge Hölder spaces are defined for any weight γ ∈ R by

xγ Ck,α
ω (M) := {xγ u | u ∈ Ck,α

ω (M)}. (11.3)

[26] also introduces the edge Hölder spaces of time-independent scalar functions,
which are defined with respect to a complete edge metric and different derivatives.
More precisely, we have the following.
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Definition 11.2 The edge Hölder space C0,αe (M), α ∈ (0, 1), consists of functions
u(p) that are continuous on M with finite α-th Hölder norm

‖u‖α := ‖u‖∞ + sup

( |u(p) − u(p′)|
DM (p, p′)α

)
< ∞, (11.4)

where the distance function DM (p, p′) between any two points p, p′ ∈ M is defined
with respect to the complete edge metric x−2g. The higher order edge Hölder spaces
are defined for any order k ∈ N by

Ck,α
e (M) := {u ∈ C0,αe (M) ∩ Ck(M) | Ve

j u ∈ C0,αe (M) for any j ≤ k}. (11.5)

The weighted edge Hölder spaces are defined for any weight γ ∈ R by

xγ Ck,α
e (M) := {xγ u | u ∈ Ck,α

e (M)}. (11.6)

As explained in [26, §2.6.3], the wedge and the edge Hölder spaces of Defini-
tions 11.1 and 11.2 are related by Ck,α

ω (M) � Ck,α
e (M). The present work also

featuresHölder spaces of time-independent scalar functions Ck,α
ie (M)γ , that are closely

related to the wedge Hölder spaces of Definition 11.1. Namely, we clearly have
Cα
ie(M)γ ≡ xγ C0,αω (M). That equality does not extend to higher order spaces. however.

In fact for any u ∈ Ck,α
ie (M)0 we find (x−1 Ve)

j u ∈ x− jC0,αω (M). Thus

Ck,α
ie (M)γ =

k⋂
j=0

xγ− jC j,α
ω (M). (11.7)

In the work [4], we have introduced another type of Hölder spaces, built upon Cα
ie(M ×

[0, T ]) by requiring Hölder regularity under iterative differentiation by a subset of
x−1 Ve. More precisely, [4] defines the following.

Definition 11.3 Let 
 denote the Laplace-Beltrami operator of (M, g).

C1+α
ie (M × [0, T ]) = {u ∈ Cα

ie(M × [0, T ]) | x−1Veu ∈ Cα
ie(M × [0, T ])},

C2+α
ie (M × [0, T ]) = {u ∈ Cα

ie(M × [0, T ]) | 
u, x−1Veu, ∂t u ∈ Cα
ie(M × [0, T ])},

C2k+1+α
ie (M × [0, T ]) = {u ∈ C1+α

ie (M × [0, T ]) | 
 j u ∈ C1+α
ie (M × [0, T ]), j ≤ k},

C2(k+1)+α
ie (M × [0, T ]) = {u ∈ C2+α

ie (M × [0, T ]) | 
 j u ∈ C2+α
ie (M × [0, T ]), j ≤ k}.

The restricted set of derivatives that appear in the Definition 11.3 simplified various
heat kernel estimates in [4]. The relation to the Hölder spaces above is as follows.
Extending Definition 11.1 to include Hölder regularity in time, we find

C1+α
ie (M × [0, T ]) ≡ C1,αω (M × [0, T ]),

Ck+α
ie (M × [0, T ]) � Ck,α

ω (M × [0, T ]), k ≥ 2.
(11.8)
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