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Abstract
The regularity of solutions to the Dirichlet problem for the quaternionic Monge–
Ampère equation is discussed. We prove that the solution to the Dirichlet problem is
Hölder continuous under some conditions on the boundary values and the quaternionic
Monge–Ampère density from L p(�) for p > 2. As a step towards the proof, we
provide a refined version of stability for the weak solutions to this equation.
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1 Introduction

The theory of quaternionic plurisubharmonic functions inHn was initiated by Alesker
in [1]. He points out there that actually the definition of quaternionic plurisubharmonic
function was suggested by Henkin. In particular, the quaternionic Monge–Ampère
operator was defined in [1] for continuous functions. In the case of smooth functions,
this is the Moore determinant, cf. [17], of the quaternionic Hessian. This will be
explained in details in Preliminaries. In [2], the Dirichlet problem for this operator was
solved for the right-hand side continuous up to the boundary and a continuous boundary
data. It involved themethods based on the approach of Bedford and Taylor [6,7]. Later,
the theory was further generalized to the case of hypercomplex manifolds by Alesker
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Regularity of Solutions to the Quaternionic Monge–Ampère Equation 2853

and Verbitsky, cf. [4], and resulted in posting the, still unsolved, quaternionic Calabi
Conjecture on HKT-manifolds, cf. [5]. Recently, the Bedford and Taylor theory was
adopted to the quaternionic setting by Wan and Wang in [23]. This was achieved
by introducing the formal operators d0, d1 in H

n being analogues, in many ways,
of to ∂ , ∂ from C

n . This approach was continued in [22,24] and allowed to obtain
many results known from the plurisubharmonic setting, most notably the comparison
principle which is the main tool of the pluripotential theory.

OnHn , one naturally defines differential operators ∂ and ∂J appearing for example
in the quaternionic Dolbeault complex on any hypercomplex manifold, cf. [21]. For
this reason, the second-named author studied in [20] the relation between d0, d1 and
∂ , ∂J showing that they agree and thus the theory developed by Alesker is compatible
with the one introduced in [23]. Another result of [20] is the solvability of the Dirichlet
problem for densities from L p for any p > 2 and a continuous boundary condition.
Furthermore, this bound on the exponent was shown to be optimal and thus constitutes
the analogue of first author’s result on the complex Monge–Ampère equation, cf.
[14,16]. In the meantime, Zhu has shown in [25] that when the initial data, i.e. a
density and the boundary condition are smooth the solution is smooth as well. The
methods of that paper are based on the classical paper by Caffarelli et al. [8].

Let us also mention that an alternative direction of generalizing the pluripotential
theory was developed by Harvey and Lawson in [12,13] for calibrated manifolds. In
the case of Hn , their approach agrees with the one described above, cf. [3].

In this note, we show Hölder regularity for the weak solutions obtained in [20].
This is the content of Theorem 3 below, stating that when the boundary condition is in
C1,1(∂�) and the quaternionic Monge–Ampère density is bounded near the boundary
then the solution is α−Hölder continuous and a bound on α is provided. The method
of the proof is based on the one presented in [11] for the complex Monge–Ampère
equation and further developed in [18] for the complex Hessian equation. It requires
the refined version of a stability estimate, cf. Proposition 4 in [20], which we prove in
Sect. 3. The proof of the regularity theorem is presented in Sect. 4. All the necessary
facts from quaternionic pluripotential theory are presented in the section below.

2 Preliminaries

We treat Hn = {(q0, . . . , qn−1) | qi ∈ H} as a right H module, where H = {x0 +
x1i + x2j + x3k | xi ∈ R} and i2 = j2 = k2 = ijk = −1. We often use the following
identifications

H
n � (z2i + jz2i+1)

n−1
i=0 �−→ (z j )

2n−1
j=0 ∈ C

2n

H
n � (x4i + x4i+1i + x4i+2j + x4i+3k)

n−1
i=0 �−→ (x j )

4n−1
j=0 ∈ R

4n .

We also treat Hn as a hypercomplex manifold with the complex structures I , J , K
induced by the right multiplication by i, j, k, respectively (see [20] for details).

A function f in a domain � ⊂ H
n is called quaternionic plurisubharmonic, qpsh

for short, if it is upper-semi-continuous and subharmonic when restricted to any slice
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2854 S. Kołodziej, M. Sroka

of � by a right quaternionic line. The set of qpsh functions in � will be denoted by
QPSH(�). These functionswere introduced and studied in [1]. For a smooth function
f and the differential operators

∂ f

∂q̄k
= ∂ f

∂x4k
+ i

∂ f

∂x4k+1
+ j

∂ f

∂x4k+2
+ k

∂ f

∂x4k+3

∂ f

∂ql
= ∂ f̄

∂q̄l
= ∂ f

∂x4l
− ∂ f

∂x4l+1
i − ∂ f

∂x4l+2
j − ∂ f

∂x4l+3
k

being qpsh is equivalent to the fact that the matrix
[

∂2 f
∂q̄k∂ql

]
k,l

is non-negative which

means that pk
∂2 f

∂q̄k∂ql
rl ≥ 0 for all p, r ∈ H

n . More details and references for the
quaternionic linear algebra may be found in [1].

It is well known, cf. [1], that there is no determinant function defined on the set
of all quaternionic matrices having all the properties of determinants of real or com-
plex matrices. This causes the problem since it is tempting to define the quaternionic

Monge–Ampère operator of f as a determinant of
[

∂2 f
∂q̄k∂ql

]
k,l
. One may for instance

consider the so-called Deieudonné or Study determinants but these are, among other
disadvantages, always non-negative. Luckily, the matrix we obtain is hyperhermitian
in the sense

[
∂2 f

∂ q̄k∂ql

]T

k,l
=

[
∂2 f

∂ q̄k∂ql

]

k,l
.

For such matrices Moore, cf. [17], has defined the notion of a determinant, we
denote it by detM , which reflects enough properties of the determinant function. The
original definition of quaternionic Monge–Ampère operator for smooth f was just

detM
[

∂2 f
∂q̄k∂ql

]
k,l
, cf. [1]. It was extended to continuous f by a measure theoretic

construction performed originally in the complex case in [6].
In [23] pluripotential theory was adopted to the quaternionic setting using methods

from [6,7] and two formal operators d0, d1. As it was shown in [20] after a suitable
choice in [23] they coincide with ∂ , the (1, 0) part with respect to the complex structure
I of an exterior differential d in Hn , and the differential operator ∂J defined by

∂J = J−1 ◦ ∂ ◦ J .

This operatorswere studied in the context of the quaternionicMonge–Ampère equation
for example in [5]. Because the operators ∂ , ∂J are standard we use them in what
follows.

Coming back to the content of [23], for a locally bounded u ∈ QPSH(�) a closed
positive current ∂∂J u was defined. This uses the notion of positivity, introduced by
Alesker and Verbitsky in [4,5], for the forms α in H

n of a type (2k, 0) with respect
to I such that J (α) = α. For us it is sufficient to know that

∑n−1
i=0 dz2i ∧ dz2i+1

(corresponding to
∑

dzi ∧dzi from the complex setting) and �n = dz0 ∧dz1 ∧· · ·∧
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Regularity of Solutions to the Quaternionic Monge–Ampère Equation 2855

dz2n−2 ∧ dz2n−1 are positive forms. The quaternionic Monge–Ampère operator for
locally bounded functions is then defined by (∂∂J u)n which is a Borel measure in �.
This definition actually gives a multiple of the operator defined by Alesker since, as
checked for example in [4],

(∂∂J u)n = n!
4n

detM

[
∂2u

∂qk∂ql

]

k,l

�n .

This also explains the convention to integrate (2n, 0) forms with respect to I in H
n ,

namely for α ∈ �
2n,0
I (�) we define

∫
�

α := ∫
�

f dL4n if α = f �n . The details
concerning this approach can be found in [22–24].

For the rest of the paper, we denote by� a fixed quaternionic strictly pseudoconvex
domain i.e. a C2−smoothly bounded domain such that there exists ρ ∈ QPSH(U )∩
C2(U ), � ⊂⊂ U , � = {ρ < 0}, dρ �= 0 on ∂� and (∂∂Jρ)n ≥ �n on U . We will
also use the notion of quaternionic capacity, which we denote by cap, introduced in
[24]. For a compact set, K it is given by

cap(K ,�) = sup

{∫

K
(∂∂J u)n | u ∈ QPSH(�), 0 ≤ u ≤ 1

}
,

while for a Borel set E

cap(E,�) = sup{cap(K ) | K is compact in �},

see [24] for details. Let 0 ≤ α ≤ 1, we denote by Lipα(�) the space of α-Hölder
continues functions i.e. f ∈ Lipα(�) if f ∈ C0(�) and

‖ f ‖Lipα(�)= sup
�

f + sup
p,q∈�, p �=q

‖ f (p) − f (q) ‖
‖ p − q ‖α

< +∞.

In the next two sectionswe performmany estimates.We use the notationC(·, •, . . .)

for a constant depending only on the quantities ·, •, . . . . In particular C’s depending
on the same set of variables may vary from line to line.

3 Stability of Solutions to the Quaternionic Monge–Ampère Equation

In this section, we prove a version of the stability estimate for the quaternionicMonge–
Ampère equation. In [20] it was proven that the uniform norm of the difference of
solutions is under control of the uniform norm of the difference of boundary data and
the Lq norm of the difference of Monge–Ampère densities when they belong to Lq

for q > 2, cf. Proposition 4 in [20]. Our goal here is to prove that the uniform norm
of the difference of solutions is under control of the L p norm of that difference for
appropriate p, cf. Theorem 1 below.

For the purposes of this section we set the following convention. Whenever u ∈
QPSH(�) is locally bounded then writing ‖ (∂∂J u)n ‖p automatically implies that
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we assume the Borel measure (∂∂J u)n has a density with respect to the Lebesgue
measure L4n and this density is in L p(�). We will need the following comparison of
quaternionic capacity and Lebesgue measure. Its proof uses first author’s C0 estimate
for the complex Monge–Ampère equation which in turn uses the comparison of the
complex capacity and the Lebesgue measure, cf. [15,16].

Lemma 1 ([20]) For a fixed p ∈ (1, 2) there exists a constant C(p, R) such that for
any � ⊂ B(0, R) and any Borel set E ⊂ �

L4n(E) ≤ C(p, R)capp(E,�).

Remark In the given reference this lemma is shown for compact sets but then the
inequality follows easily for any Borel set with the same constant.

Another technical result which we need is the lemma below. It was used implicitly
back in [14], since then it turned out to be very useful while performing pluripotential
estimates. Its form below is a combination of Lemma 1.5 in [11] and Lemma 2.4 in
[9]. In [19] it was attributed to De Giorgi.

Lemma 2 (De Giorgi) Suppose that a non-increasing, right continuous function f :
[0,∞) → [0,∞] such that lim

x→∞ f (x) = 0 satisfies

(∗) t f (t + s) ≤ B f (s)1+α

for any s ≥ 0, t ∈ [0, 1] and some α, B > 0. There exists s∞, depending on α, B and
s0 such that f (s0) ≤ 1

2B , satisfying f (s) = 0 for any s ≥ s∞. In fact one can choose

s∞ to be equal s0 + 2B f (s0)α

1−2−α . If in addition (∗) holds for all s, t ≥ 0 then one can take

even s∞ = 2B f (0)α

1−2−α .

Now, we show the main technical fact needed for the proof of Theorem 1. The
reasoning we perform in the rest of the section is based on the one presented in [11].

Proposition 1 Fix c0 > 0 and p > 2. Let u, v ∈ QPSH(�) ∩ L∞
loc(�) be such that

lim inf
q→q0

(u − v)(q) ≥ 0 for any q0 ∈ ∂�,

‖ (∂∂J u)n ‖L p(�) ≤ c0.

For 0 < α <
p−2
np there exists a constant C(c0, α, diam(�)), depending on c0, α and

the diameter of �, such that for any ε > 0

sup(v − u) ≤ ε + C(c0, α, diam(�)) (cap({u − v < −ε},�))α .

Proof Define

Uε(s) = {u − v < −ε − s} and bε(s) = (cap(Uε(s),�))
1
n

for s ≥ 0 and ε > 0. Firstly, note that for all t, s ≥ 0, ε > 0 and w ∈ QPSH(�)

such that 0 ≤ w ≤ 1 one obtains from inclusions of sets, super-additivity and the
comparison principle, cf. Theorem 1.2 in [24],
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Regularity of Solutions to the Quaternionic Monge–Ampère Equation 2857

tn
∫

Uε (s+t)
(∂∂Jw)n

=
∫

Uε (s+t)
(∂∂J (tw − t − s − ε))n =

∫

{u<v−s−t−ε}
(∂∂J (tw − t − s − ε))n

≤
∫

{u<v−s+tw−t−ε}
(∂∂J (tw − t − s − ε))n

≤
∫

{u<v−s+tw−t−ε}
(∂∂J (v + tw − t − s − ε))n

≤
∫

{u<v−s+tw−t−ε}
(∂∂J u)n ≤

∫

{u<v−s−ε}
(∂∂J u)n =

∫

Uε (s)
(∂∂J u)n .

From the Hölder inequality we obtain

∫

Uε (s)
(∂∂J u)n ≤ ‖ (∂∂J u)n ‖L p(�)

(
L4n(Uε(s))

) 1
p′

≤ C(q ′, diam(�))c0 (cap(Uε(s),�))
q′
p′

= C(c0, α, diam(�))(bε(s))
n(1+nα)

where q ′ ∈ (1, 2) depends only on p′ which is the conjugate of p and we choose it so
that q ′

p′ = 1 + nα. Since 1 + nα < 2
p′ this is always possible. Taking the supremum

over all w and n’th root of both sides gives

tbε(s + t) ≤ C(c0, α, diam(�))(bε(s))
1+nα

for any s, t ≥ 0 and ε > 0. One easily checks, as in [19], that the function bε satisfies
all the assumptions of Lemma 2. This gives

cap({u − v < −ε − 2C(c0, α, diam(�))

1 − 2−nα
bε(0)

nα},�) = 0.

From the comparison of volume and capacity (see Lemma 1) it follows that v − u ≤
ε+C(c0, α, diam(�))bε(0)nα almost everywhere in�. Sinceu and v are subharmonic
we obtain that this holds in �, i.e.

sup
�

(v − u) ≤ ε + C(c0, α, diam(�))(cap(Uε(0),�))α.

��
We are ready to prove the announced stability of weak solutions.

Theorem 1 Fix c0 > 0 and p > 2. Let u, v ∈ QPSH(�) ∩ L∞
loc(�) be such that

lim inf
q→q0

(u − v)(q) ≥ 0 for any q0 ∈ ∂�,
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‖ (∂∂J u)n ‖L p(�) ≤ c0.

For any r ≥ 1 and 0 < γ < r

r+np′+ p′np
p−2

:= γr there exists a constant

C(c0, γ, diam(�)), depending only on c0, γ and the diameter of �, such that

sup
�

(v − u) ≤ C(c0, γ, diam(�)) ‖ (v − u)+ ‖γ

Lr (�) .

Proof First of all, we may assume that ‖ (v − u)+ ‖Lr (�) �= 0 because otherwise the
inequality holds with any constant C(c0, γ, diam(�)). Arguing as in the beginning
of the proof of Proposition 1 we obtain for any ε > 0

cap({u − v < −2ε},�) ≤ ε−n
∫

{u−v<−ε}
(∂∂J u)n .

Since on the set {u − v < −ε} the function
((

v−u
ε

)
+
) r

p′ is bigger than 1, due to

Hölder’s inequality we may further estimate

ε−n
∫

{u−v<−ε}
(∂∂J u)n

≤ ε
−n− r

p′
∫

�

(v − u)

r
p′
+ (∂∂J u)n

≤ ε
−n− r

p′ ‖ (∂∂J u)n ‖L p(�)

((∫

�

((v − u)+)r
) 1

r
) r

p′

≤ ε
−n− r

p′ ‖ (∂∂J u)n ‖L p(�) ‖ (v − u)+ ‖
r
p′
Lr (�)

≤ ε
−n− r

p′ c0 ‖ (v − u)+ ‖
r
p′
Lr (�) .

Applying Proposition 1 we get

sup
�

(v − u) ≤ 2ε + C(c0, α, diam(�)) (cap({u − v < −2ε},�))α

≤ 2ε + C(c0, α, diam(�))ε
−αn− rα

p′ cα
0 ‖ (v − u)+ ‖

rα
p′
Lr (�)

for any 0 < α <
p−2
np . Putting ε =‖ (v − u)+ ‖γ

Lr (�) gives

sup
�

(v − u) ≤ 2 ‖ (v − u)+ ‖γ
Lr (�)

+C(c0, α, diam(�))cα0 ‖ (v − u)+ ‖γα(−n− r
p′ )+ rα

p′
Lr (�)

.
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Choosing α such that γ = r

r+np′+ p′
α

(which is always possible since when α varies in
(
0, p−2

np

)
the quantity r

r+np′+ p′
α

varies in (0, γr )) results in

sup
�

(v − u) ≤ C(c0, γ, diam(�)) ‖ (v − u)+ ‖γ

Lr (�)

because γα(−n − r
p′ ) + rα

p′ = γ
(
−αn − αr

p′ + rα
γ p′

)
= γ

(
− αn − αr

p′ + α
p′

(
r +

np′ + p′
α

))
= γ . ��

4 Hölder Continuity of Weak Solutions

In this section, we proceed to proving regularity of solutions to the Dirichlet problem
for the quaternionic Monge–Ampère equation under the conditions on the boundary
data and the density. This is the content of Theorem 3. For that goal we first consider a
more general situation in Theorem 2 below and then check that under the assumptions
of Theorem 3 one can apply Theorem 2.

Theorem 2 Let � ⊂ H
n be a quaternionic strictly pseudoconvex domain. Suppose

p > 2, f ∈ L p(�) is a non-negative function, φ ∈ C(∂�) and u is the solution to
the Dirichlet problem

⎧⎪⎨
⎪⎩

u ∈ QPSH(�) ∩ C(�)

(∂∂J u)n = f �n

u|∂� = φ

such that 
u(�) is finite. If there exists 0 < ν < 1 and b ∈ Lipν(�) such that b ≤ u
in � and b = φ on ∂� then u ∈ Lipα(�) for any 0 ≤ α < min{ν, 2γ1}.
Remark Let us just emphasize that in the whole section we denote by 
u, for a
locally bounded u, the distributional Laplacian. Since qpsh functions are in particular
subharmonic for them 
u is a positive distribution thus a measure and so it makes
sense to write 
u(�).

We introduce the notation needed for the proof of this theorem. This approach is
similar to the one presented in [18]. For a fixed number δ > 0 and a subharmonic u
we consider

�δ = {q ∈ � | dist(q,�) > δ}
uδ(q) = sup

‖p‖≤δ

u(q + p), for q ∈ �δ

ûδ(q) = 1

L4n(B(0, 1))δ4n

∫

‖q−p‖≤δ

u(p)dL4n(p), for q ∈ �δ.
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The lemma below is a composition of Lemmas 4.2 and 4.3 in [11]. As was noted by
Nguyen in [18] proofs given originally in [11] for plurisubharmonic functions used
only subharmonicity.

Lemma 3 Let u be a subharmonic function in �. For a fixed 0 < α < 1 the following
are equivalent

(i) there exists δ0, A > 0 such that for any 0 < δ ≤ δ0

uδ − u ≤ Aδα in �δ

(ii) there exists δ1, B > 0 such that for any 0 < δ < δ1

ûδ − u ≤ Aδα in �δ.

Moreover, there exists a constant c, depending only on the dimension n, such that for
all δ > 0 sufficiently small

∫

�δ

(
ûδ(q) − u(q)

)
dL4n(q) ≤ c
u(�)δ2.

Lemma 4 Let u and b be as in Theorem 2. There exists a constant cn such that for all
0 < δ and q ∈ ∂�δ

uδ(q) ≤ u(q) + cnδ
ν.

Proof Denote by h the harmonic extension of b|∂� to �. By the Proposition 2.4 in
[18] we know that h ∈ Lipν(�). Fix q ∈ ∂�δ and take p, p0 ∈ H

n such that
‖ p ‖=‖ p0 ‖= δ, uδ(q) = u(p + q) and q + p0 ∈ ∂�. Since b ≤ u ≤ h in �, with
equalities on ∂�, we obtain the following string of inequalities

uδ(q) − u(q) = u(p + q) − u(q) ≤ h(p + q) − u(q) ≤ h(p + q) − b(q)

= h(p + q) − h(q) + h(q) − b(q) ≤‖ h ‖Lipν (�) δν + h(q)

−h(q + p0) + b(q + p0) − b(q) ≤
(
2 ‖ h ‖Lipν (�)

+ ‖ b ‖Lipν (�)

)
δν.

��
Proof of Theorem 2 Fix 0 < γ < γ1 and consider the function

ũδ(q) =
{
max{ûδ(q), u(q) + cnδν}, for q ∈ �δ

u(q) + cnδν, for q ∈ � \ �δ,

which by Lemma 4, is qpsh in �, as ûδ ≤ uδ (cf. Proposition 2.1(4) in [22]); and
continuous in �. Applying Theorem 1 for u + cnδν , ũδ and r = 1 we obtain

sup
�

(ũδ − u − cnδ
ν) ≤ C

(‖ f ‖p, γ, diam(�)
) ‖ (ũδ − u − cnδ

ν)+ ‖γ

L1(�)
.
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Regularity of Solutions to the Quaternionic Monge–Ampère Equation 2861

From the construction of ũδ it follows that the last inequality is equivalent to

sup
�δ

(ûδ − u − cnδ
ν) ≤ C

(‖ f ‖p, γ, diam(�)
) ‖ (ûδ − u − cnδ

ν)+ ‖γ

L1(�δ)
.

Estimating further, by Lemma 3 and the trivial estimate (ûδ − u − cnδν)+ ≤ ûδ − u,
we obtain for sufficiently small δ > 0

sup
�δ

(ûδ − u − cnδ
ν) ≤ cγC

(‖ f ‖p, γ, diam(�)
)
(
u(�))γ δ2γ .

This results in

sup
�δ

(ûδ − u) ≤ C(‖ f ‖p, γ, diam(�),
u(�), c, cn)δ
min{ν,2γ }

for all δ sufficiently small. Since the constant C is independent of δ we obtain, again
due to Lemma 3, that u ∈ Lipmin{ν,2γ }(�). Since γ was arbitrary in (0, γ1) this gives
our claim. ��
Theorem 3 Let � ⊂ H

n be a quaternionic strictly pseudoconvex domain. Suppose
p > 2, f ∈ L p(�) is a non-negative function bounded in a neighborhood of ∂� and
φ ∈ C1,1(∂�). Then the Dirichlet problem

⎧⎪⎨
⎪⎩

u ∈ QPSH(�) ∩ C(�)

(∂∂J u)n = f �n

u|∂� = φ

is solvable and the unique solution is in Lipα(�) for any 0 ≤ α ≤ 2γ1.

Proof The continuous solution u exists and is unique as was shown in [20]. We need
to check the assumptions of Theorem 2. For that goal, we construct a function b as in
Theorem 2 having in addition the properties that it is subharmonic and the Laplacian
of it has finite total mass. This will of course imply that the Laplacian of u has finite
total mass since b and u, both subharmonic, will agree on ∂� and b ≤ u in �. Take h
to be the solution to the Dirichlet problem

⎧⎪⎨
⎪⎩

h ∈ QPSH(�) ∩ C(�)

(∂∂J h)n = 0

h|∂� = φ.

By the comparison principle, cf. Theorem 1.2 in [24], it is above any v ∈ QPSH(�)∩
C(�) such that v|∂� = φ.

We will show that h is Lipschitz in � and its Laplacian has finite total mass in �.
SupposeU is a neighborhood of� such thatφ is extendable to a function φ̂ ∈ C1,1(U ).
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That is always possible due to Lemmas 6.37 and 6.38 in [10]. Consider a defining
function ρ of � in the neighborhood of U i.e.

ρ ∈ QPSH(U ) ∩ C2(U ),

� = {ρ < 0}, ρ|∂� = 0, dρ �= 0 on ∂�,

(∂∂Jρ)n ≥ �n on �.

We take A big enough such that Aρ + φ̂ and Aρ − φ̂ are in QPSH(U ). Note that
Aρ + φ̂ ≤ h in � from the definition of h. This shows that the Laplacian of h has a
finite total mass in � since Aρ + φ̂ has this property and that the function ĥ defined
by

ĥ(q) =
{
h(q), for q ∈ �

Aρ(q) + φ̂(q), for q ∈ U \ �

belongs to QPSH(U ) ∩ C0(U ), cf. Proposition 2.1(4) in [22]. Take ε > 0 such that
�(ε) = {q ∈ H

n | dist(q,�) < ε} ⊂⊂ U . For any p ∈ ∂� and q such that ‖ q ‖< ε

we have

ĥ(p + q) ≤ φ̂(p) + max{‖ Aρ ± φ̂ ‖C1(U )} ‖ q ‖= φ(p)

+max{‖ Aρ ± φ̂ ‖C1(U )} ‖ q ‖

due to the mean value theorem and because ĥ = h ≤ φ̂− Aρ in� (as the subharmonic
function h − φ̂ + Aρ attains its maximum (equal zero) on the boundary of �). Thus
for C = max{‖ Aρ ± φ̂ ‖C1(U )}, every p ∈ ∂� and ‖ q ‖< ε we have

ĥ(p + q) − C ‖ q ‖≤ φ(p).

From the properties of h it means that for any ‖ q ‖< ε

ĥ(r + q) − C ‖ q ‖≤ h(r) for all r ∈ �.

For r ∈ � and ‖ q ‖≤ ε such that r + q ∈ � we thus obtain

ĥ(r + q) − h(r) = h(r + q) − h(r) ≤ C ‖ q ‖,
ĥ(r + q − q) − h(r + q) = h(r) − h(r + q) ≤ C ‖ −q ‖,

what results in

‖ h(r + q) − h(r) ‖≤ C ‖ q ‖ for r ∈ � and ‖ q ‖< ε such that r + q ∈ �.

This shows that h is locally Lipschitz continuous in � and consequently Lipschitz
continuous.
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By the assumptions for someM > 0we have f ≤ M away from a compact K ⊂ �.
Let u be the continuous solution to our Dirichlet problem. Take B big enough for the
function Bρ + h to be below u in a neighborhood of K and such that Bn > M . Then
by supper-additivity

(∂∂J (Bρ + h))n ≥ (∂∂J Bρ)n ≥ f �n

at least in�\K . The comparison principle, cf. [24], implies that Bρ +h ≤ u in�\K
since the inequality holds on the boundary of this set.

We define b = Bρ + h. It is Lipschitz continuous and its Laplacian has finite total
mass in � since h has these properties. ��
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