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Abstract
We prove that if an ALE Ricci-flat manifold (M, g) is linearly stable and integrable,
it is dynamically stable under Ricci flow, i.e. any Ricci flow starting close to g exists
for all time and converges modulo diffeomorphism to an ALE Ricci-flat metric close
to g. By adapting Tian’s approach in the closed case, we show that integrability holds
for ALE Calabi–Yau manifolds which implies that they are dynamically stable.

1 Introduction

Consider a complete Riemannian manifold (Mn, g) without boundary endowed with
a Ricci-flat metric g. As such, it is a fixed point of the Ricci flow and therefore, it is a
natural problem to study the stability of such a metric with respect to the Ricci flow.
Whether the manifold is compact or noncompact makes an essential difference in the
analysis. In both cases, if (Mn, g) is Ricci-flat, the linearized operator is the so-called
Lichnerowicz operator acting on symmetric 2-tensors. Nonetheless, the L2 approach
differs drastically in the noncompact case. Indeed, even in the simplest situation, that
is the flat case, the spectrum of the Lichnerowicz operator is not discrete anymore and
0 belongs to the essential spectrum. In this paper, we consider Ricci-flat metrics on
noncompact manifolds that are asymptotically locally Euclidean (ALE for short), i.e.
that are asymptotic to a flat cone over a space form S

n−1/� where � is a finite group
of SO(n) acting freely on R

n \ {0}.
If (Mn, g0) is an ALE Ricci-flat metric, we assume furthermore that it is linearly

stable, i.e. the Lichnerowicz operator is nonpositive in the L2 sense and that the set of
ALE Ricci-flat metrics close to g0 is integrable, i.e. has a manifold structure of finite
dimension: see Sect. 2.1.
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2830 A. Deruelle, K. Kröncke

The strategy we adopt is given by Koch and Lamm [18] that studied the stability of
the Euclidean space along the Ricci flow in the L∞ sense. The quasi-linear evolution
equation to consider here is

∂t g = −2Ricg + LV (g,g0)(g), ‖g(0) − g0‖L∞(g0) small, (1)

where (Mn, g0) is a fixed background ALE Ricci-flat metric and LV (g,g0)(g) is the
so-calledDeTurck’s term. Equation (1) is called theRicci–DeTurck flow: its advantage
over theRicci flow equation is to be a strictly parabolic equation instead of a degenerate
one. Koch and Lamm managed to rewrite (1) in a clever way to get optimal results
regarding the regularity of the initial condition: see Sect. 3.

Our main theorem is then:

Theorem 1.1 Let (Mn, g0) be an ALE Ricci-flat space. Assume it is linearly stable and
integrable. Then for every ε > 0, there exists a δ > 0 such that the following holds: for
any metric g ∈ BL2∩L∞(g0, δ), there is a complete Ricci–DeTurck flow (Mn, g(t))t≥0
starting from g converging to an ALE Ricci-flat metric g∞ ∈ BL2∩L∞(g0, ε).

Moreover, the L∞ norm of (g(t) − g0)t≥0 is decaying sharply at infinity:

‖g(t) − g0‖L∞(M\Bg0 (x0,
√
t)) ≤ C(n, g0, ε)

supt≥0 ‖g(t) − g0‖L2(M)

t
n
4

, t > 0.

As far asweknow, this theorem is the first stability result for nonflat and noncompact
Ricci-flat manifolds under Ricci flow.

Schnürer et al. [29] have proved the stability of the Euclidean space for an L2∩ L∞
perturbation as well. The decay obtained in Theorem 1.1 sharpens their result. Indeed,
the proof shows that if (Mn, g0) is isometric to (Rn, eucl) then the L∞ decay holds
on the whole manifold. This L∞ decay on Euclidean space was also recently shown
in [2] by a different approach.

Remark 1.2 It is an open question whether the decay in time obtained in Theorem 1.1
holds on the whole manifold with an exponent α less than or equal to n/4.

One of themain difficulties in proving Theorem 1.1 is to establish a uniform-in-time
L2 bound on the difference of the metrics g(t) − g0(t) for nonnegative time t and a
suitable family of Ricci-flat reference metrics g0(t) . To prove such a bound in case
the background metric g0 is flat, [2,29] use a direct integration by parts. In our setting,
this approach does not work for mainly two reasons: the kernel of the Lichnerowicz
operator might be nontrivial and the curvature terms from the linearized operator
cannot be treated as error terms. Therefore, the strategy is to work orthogonally to
the kernel of the Lichnerowicz operator in order to apply a delicate notion of strict
positivity for the Lichnerowicz operator that enables us to absorb the curvature terms.
This leads us in turn to a very delicate choice of a reference metric g0(t) which makes
the analysis trickier: see Sect. 3.3.

Now, from the physicist point of view, the question of stability of ALE Ricci-
flat metrics is of great importance when applied to hyperkähler or Calabi–Yau ALE
metrics: Hyperkähler ALE metrics (also called gravitational instantons) are of great
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Stability of ALE Ricci-Flat Manifolds Under Ricci Flow 2831

importance in theoretical physics: see for instance [1,10] and the references therein. In
this context, the Ricci flow serves as a first-order approximation of the renormalization
group flow and admits deep connections with it, see [11].

In the hyperkähler or Calabi–Yau case, the Lichnerowicz operator is always a non-
negative operator because of the special algebraic structure of the curvature tensor
shared by these metrics. It turns out that they are also integrable: see Theorem 2.18
based on the fundamental results of Tian [33] in the closed case. In particular, it gives
us plenty of examples to which one can apply Theorem 1.1.

Another source of motivation comes from the question of continuing the Ricci flow
after it reached a finite time singularity on a 4-dimensional closed Riemannian man-
ifold: the works of Bamler and Zhang [7] and Simon [32] show that the singularities
that can eventually show up for Ricci flows with bounded scalar curvature are orb-
ifold singularities and thus modelled over ALERicci-flat metrics. A strong connection
between the appearance of such singularities and the stability of their blow-up limits
is expected. However, there is no classification available for such metrics in dimension
4 at the moment, except Kronheimer’s classification for hyperkähler metrics [22].

Finally, we would like to discuss some related results especially regarding the
stability of closed Ricci-flat metrics. There have been basically two approaches. On
one hand, Sesum [30] has proved the stability of integrable Ricci-flat metrics on closed
manifolds: in this case, the convergence rate is exponential since the spectrum of the
Lichnerowicz operator is discrete. On the other hand, Haslhofer–Müller [16] and the
second author [21] have proved Lojasiewicz inequalities for Perelman’s entropies
which are monotone under the Ricci flow and whose critical points are exactly Ricci-
flat metrics and Ricci solitons, respectively. The analysis in the proof of Theorem 1.1
differs substantially from these two previous approaches as these tools and features
are not available in our setting.

The paper is organized as follows. Section 2.1 recalls the basic definitions of ALE
spaces together with the notions of linear stability and integrability of a Ricci-flat
metric. Sect. 2.2 gives a detailed description of the space of gauged ALE Ricci-flat
metrics: see Theorem 2.7 and Theorem 2.11. Sect. 2.3 investigates the integrability of
Kähler Ricci-flat metrics: this is the content of Theorem 2.18. Section 3 is devoted to
the proof of the first part of Theorem 1.1. Sect. 3.1 discusses the structure of the Ricci–
DeTurck flow. Section 3.2 establishes pointwise and integral short-time estimates. The
core of the proof of Theorem 1.1 is contained in Sect. 3.3: a priori uniform-in-time
L2 estimates are proved with the help of a suitable notion of strict positivity for the
Lichnerowicz operator developed for Schrödinger operators by Devyver [14]. The
infinite time existence and the convergence aspects of Theorem 1.1 are then proved
in Sect. 3.4. Finally, Sect. 4 proves the last part of Theorem 1.1: the decay in time is
verified with the help of a Nash–Moser iteration.

2 ALE Spaces

2.1 Analysis on ALE Spaces

We start by recalling a couple of definitions.
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2832 A. Deruelle, K. Kröncke

Definition 2.1 A complete Riemannianmanifold (Mn, g0) is said to be asymptotically
locally Euclidean (ALE) with one end of order τ > 0 if there exists a compact set
K ⊂ M , a radius R and a diffeomorphism such that : φ : M \ K → (Rn \ BR)/�,
where � is a finite group of SO(n) acting freely on R

n \ {0}, such that

|∇eucl,k(φ∗g0 − geucl)|eucl = O(r−τ−k) ∀k ≥ 0

holds on (Rn \ BR)/�.

The linearized operator we will focus on is the so-called Lichnerowicz operator
whose definition is recalled below:

Definition 2.2 Let (M, g) be a Riemannian manifold. Then the operator Lg :
C∞(S2T ∗M) → C∞(S2T ∗M), defined by

Lg(h) := 	gh + 2Rm(g) ∗ h − Ric(g) ◦ h − h ◦ Ric(g),

(Rm(g) ∗ h)i j := Rm(g)ikl j hmng
kmgln,

(h ◦ k)i j := hikkl j g
kl , k ∈ S2T ∗M,

is called the Lichnerowicz Laplacian acting on the space of symmetric 2-tensors
S2T ∗M .

In this paper, we consider the following notion of stability:

Definition 2.3 Let (Mn, g0) be a complete ALE Ricci-flat manifold. (Mn, g0) is said
to be linearly stable if the (essential) L2 spectrum of the Lichnerowicz operator Lg0 :=
	g0 + 2Rm(g0)∗ is in (−∞, 0].

Equivalently, this amounts to say that σL2(−Lg0) ⊂ [0,+∞). By a theorem due to
Carron [12], kerL2 Lg0 has finite dimension. Denote by �c the L2 projection on the
kernel kerL2 Lg0 and �s the projection orthogonal to �c so that h = �ch + �sh for
any h ∈ L2(S2T ∗M).

Let (M, g0) be anALERicci-flat manifold andUg0 the set of ALERicci-flat metrics
with respect to the gauge g0, that is:

Ug0 := {
g | g ALE metric on M s.t. Ric(g) = 0 and LV (g,g0)(g) = 0

}
, (2)

g0(V (g, g0), .) := divgg0 − 1

2
∇gtrgg0, (3)

endowed with the L2 ∩ L∞ topology coming from g0.

Definition 2.4 (Mn, g0) is said to be integrable if Ug0 has a smooth structure in a
neighbourhood of g0. In other words, (Mn, g0) is integrable if the map

�g0 : g ∈ Ug0 → �c(g − g0) ∈ kerL2(Lg0),

is a local diffeomorphism at g0.
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Stability of ALE Ricci-Flat Manifolds Under Ricci Flow 2833

If (M, g0) is ALE and Ricci-flat, it is a consequence of [8, Theorem 1.1] that it is
already ALE of order n − 1. Moreover, if n = 4 or (M, g0) is Kähler, it is ALE of
order n. This is due to the presence of Kato inequalities, [8, Corollary 4.10] for the
curvature tensor. We will show in Theorem 2.7 that by elliptic regularity, all g ∈ Ug0
are ALE of order n − 1 with respect to the same coordinates as g0.

In order to do analysis of partial differential equations on ALE manifolds, one has
to work with weighted function spaces which we will define in the following. Fix
a point x ∈ M and define a function ρ : M → R by ρ(y) = √

1 + d(x, y)2. For
p ∈ [1,∞) and δ ∈ R, we define the spaces L p

δ (M) as the closure of C∞
0 (M) with

respect to the norm

‖u‖L p
δ

=
(∫

M
|ρ−δu|pρ−ndμ

)1/p

,

and the weighted Sobolev spaces Wk,p
δ (M) as the closure of C∞

0 (M) under

‖u‖
Wk,p

δ

=
k∑

l=0

∥∥∥∇lu
∥∥∥
L p

δ−l

.

The weighted Hölder spaces are defined as the set of maps u ∈ Ck,α
loc (M), α ∈ (0, 1)

such that the following quantity

‖u‖Ck,α
δ

=
k∑

l=0

sup
x∈M

ρ−δ+l(x)|∇lu(x)|

+ sup
x,y∈M

0<d(x,y)<inj(M)

min
{
ρ−δ+k+α(x), ρ−δ+k+α(y)

} |τ y
x ∇ku(x) − ∇ku(y)|

|x − y|α

is finite. Here τ
y
x denotes the parallel transport from x to y along the shortest geodesic

joining x and y. All these spaces are Banach spaces, the spaces Hk
δ (M) := Wk,2

δ (M)

are Hilbert spaces and their definition does not depend on the choice of the base point
defining the weight function ρ. All these definitions extend to Riemannian vector
bundles with a metric connection in an obvious manner.

In the literature, there are different notational conventions for weighted spaces. We
follow the convention of [9]. The Laplacian 	g is a bounded map 	g : W p,k

δ (M) →
W p,k−2

δ−2 (M) and there exists a discrete set D ⊂ R such that this operator is Fredholm
for δ ∈ R \ D. This is shown in [9] in the asymptotically flat case and the proof in
the ALE case is the same up to minor changes. We call the values δ ∈ D exceptional
and the values δ ∈ R \ D nonexceptional. If δ ∈ (2 − n, 0), the operator is even an
isomorphism [27, p. 151]. The Fredholm properties also hold for elliptic operators of
arbitrary order acting on vector bundles supposed that the coefficients behave suitable
at infinity [24, Theorem 6.1]. The isomorphism properties also hold with the same
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2834 A. Deruelle, K. Kröncke

range of δ for connection Laplacians on arbitrary tensor bundles. We will use these
facts frequently in this paper.

2.2 The Space of Gauged ALE Ricci-Flat Metrics

Fix an ALE Ricci-flat manifold (M, g0). Let M be the space of smooth metrics on
the manifold M . For g ∈ M, let V = V (g, g0) be the vector field defined intrin-
sically by (3) and locally given by gi j (�(g)ki j − �(g0)ki j ) where �(g)ki j denotes the
Christoffel symbols associated to the Riemannian metric g. We call a metric g gauged,
if V (g, g0) = 0. Let

F = {
g ∈ M | −2Ric(g) + LV (g,g0)g = 0

}
(4)

be the set of stationary points of the Ricci–DeTurck flow. In local coordinates, Eq. (4)
can also be written as

0 = gab∇g0,2
ab gi j − gkl gip(g0)

pqRm(g0) jklq − gkl g jp(g0)
pqRm(g0)iklq

+gabg pq
(
1

2
∇g0
i gpa∇g0

j gqb + ∇g0
a g jp∇g0

q gib

)

−gabg pq
(
∇g0
a g jp∇g0

b giq − ∇g0
j gpa∇g0

b giq − ∇g0
i gpa∇g0

b g jq

)
,

see [31, Lemma 2.1]. By defining h = g− g0, this equation can be again rewritten as

0 =gab∇g0,2
ab hi j + habg

ka(g0)
lbgip(g0)

pqRm(g0) jklq

+ habg
ka(g0)

lbg jp(g0)
pqRm(g0)iklq

+ gabg pq
(
1

2
∇g0
i h pa∇g0

j hqb + ∇g0
a h jp∇g0

q hib

)

− gabg pq
(
∇g0
a h jp∇g0

b hiq − ∇g0
j h pa∇g0

b hiq − ∇g0
i h pa∇g0

b h jq

)
,

(5)

where we used that g0 is Ricci-flat. The linearization of this equation at g0 is given by

d

dt
|t=0(−2Ricg0+th + LV (g0+th,g0)(g0 + th)) = Lg0h.

A proof of this fact can be found for instance in [5, Chapter 3].
We recall the well-known fact that the L2-kernel of the Lichnerowicz operator

consists of transverse traceless tensors:

Lemma 2.5 Let (Mn, g) be an ALE Ricci-flat manifold and h ∈ kerL2(Lg0). Then
trg0h = 0 and divg0h = 0.

Proof Straightforward calculations show that trg0 ◦Lg0 = 	g0 ◦ trg0 and divg0 ◦Lg0 =
	g0 ◦ divg0 . Therefore, trg0h ∈ kerL2(	g0) and divg0h ∈ kerL2(	g0) which implies
the statement of the lemma. ��
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The next proposition ensures that ALE steady Ricci solitons are Ricci-flat:

Proposition 2.6 Let (Mn, g, X) be a steady Ricci soliton, i.e. Ric(g) = LX (g) for
some vector field X on M. Then lim+∞ |X |g = 0 implies X = 0. In particular, any
steady soliton in the sense of (4) that is ALE with lim+∞ V (g, g0) = 0 is Ricci-flat.

Proof By the contracted Bianchi identity, one has

1

2
∇gRg = divgRic(g) = divgLX (g) = 1

2
∇gtrg(LX (g)) + 	g X + Ric(g)(X)

= 1

2
∇gRg + 	g X + Ric(g)(X).

Therefore, 	g X + Ric(g)(X) = 0. In particular,

	g|X |2g + X · |X |2g = 2|∇g X |2g + 2 < ∇g
X X , X >g −2Ric(g)(X , X) = 2|∇g X |2g,

which establishes that |X |2g is a subsolution of 	X := 	g + X ·. The use of the
maximum principle then implies the result in case lim+∞ |X | = 0. ��
Theorem 2.7 Let (Mn, g0) be an ALE Ricci-flat manifold with order τ > 0. Let g ∈ F
be in a sufficiently small neighbourhood of g0 with respect to the L2 ∩ L∞-topology.
Then g is anALERicci-flatmanifold of order n−1with respect to the same coordinates
as g0.

Remark 2.8 (i) If n = 4 or g0 is Kähler, it seems likely that g ∈ F is ALE of order
n with respect to the same coordinates as g0. However, we don’t need this decay
for further considerations.

(ii) A priori, Proposition 2.7 does not assume any integral or pointwise decay on the
difference tensor g−g0 or on the curvature tensor of g. The assumptions on g can
be even weakened as follows: If ‖g − g0‖L p(g0) ≤ K < ∞ for some p ∈ [2,∞)

and ‖g − g0‖L∞(g0) < ε = ε(g0, p, K ), then the conclusions of Theorem 2.7
hold.

Proof of Theorem 2.7 The first step consists in applying a Moser iteration to the norm
of the difference of the two metrics: |h|g0 := |g − g0|g0 . Indeed, recall that h satisfies
(5) which can also be written as

g−1 ∗ ∇g0,2h + 2Rm(g0) ∗ h = ∇g0h ∗ ∇g0h,

g−1 ∗ ∇g0,2hi j := gkl∇g0,2
kl hi j .

In particular,

g−1 ∗ ∇g0,2|h|2g0 = 2g−1(∇g0h,∇g0h) − 4〈Rm(g0) ∗ h, h〉g0 + 〈∇g0h ∗ ∇g0h, h〉g0 ,
g−1(∇g0h,∇g0h) := gi j∇g0

i hkl∇g0
j hkl .
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Therefore, as ‖h‖L∞(g0) ≤ ε where ε > 0 is a sufficiently small constant depending
on n and g0, we get

g−1 ∗ ∇g0,2|h|2g0 ≥2|∇g0h|2g0 + 2(g−1 − g−1
0 )(∇g0h,∇g0h)

− c(n)|Rm(g0)|g0 |h|2g0 − c(n)|h|g0 |∇g0h|2g0
≥ − c(n)|Rm(g0)|g0 |h|2g0 .

As |Rm(g0)| ∈ Ln/2(M) and h ∈ L2(S2T ∗M), Lemma 4.6 and Proposition 4.8 of
[8] tell us that |h|2 = O(r−τ ) at infinity for any positive τ < n − 2, i.e. h = O(r−τ )

for any τ < n/2 − 1. Here, r denotes the distance function on M centred at some
arbitrary point x ∈ M .

The next step is to show that ∇g0h = O(r−τ−1) for τ < n/2 − 1. Assume p ≥ 2.
We first proceed with a chain of inequalities as follows:

‖h‖
W 2,p

−τ (g0)
≤ C

(∥∥g−1 ∗ ∇g0,2h
∥∥
L p

−τ−2(g0)
+ ‖h‖L p

−τ (g0)

)

≤ C
(∥∥|∇g0h|2∥∥L p

−τ−2(g0)
+ ‖h‖L p

−τ (g0)

)

≤ C
(∥∥∇g0,2h

∥∥
L p

−τ−2(g0)
+ ∥∥∇g0h

∥∥
L p

−τ−1(g0)

)
‖h‖L∞(g0) + C ‖h‖L p

−τ (g0)
.

Here, the first inequality follows from elliptic regularity for weighted Sobolev spaces,
see [25, Theorem 4.21]. The second inequality uses Eq. (5) and the third inequality
follows from an interpolation inequality for weighted spaces, see Lemma 2.9 below.
This implies

‖h‖C1,α
−τ (g0)

≤ C ‖h‖
W 2,p

−τ (g0)
≤ C ‖h‖L p

−τ (g0)
≤ C ‖h‖L∞−τ−ε (g0)

< ∞

for all p ∈ (n,∞) and τ + ε < n
2 − 1 provided that the L∞-norm is small enough.

Here, the first inequality follows from weighted Sobolev embedding, see [27, Remark
6.9]. The second inequality follows from the above and the third inequality follows
from the weighted Hölder inequality (see e.g. [27, Lemma 6.7]) applied to h and the
weight function itself. Consequently,

∇g0h = O(r−1−τ ).

In the following wewill further improve the decay order and show that h = O(r−n+1).
As a consequence of elliptic regularity for weighted Hölder spaces ([25, Theorem
4.21]), we will furthermore get ∇g0,kh = O(r−n+1−k) for any k ∈ N. To prove these
statements we adapt the strategy in [8, pp. 325–327].

As Rm(g0) = O(r−n−1), h = O(r−τ ) and ∇g0h = O(r−τ−1) for some fixed τ

slightly smaller than n
2 − 1, Eq. (5) implies that 	g0h = O(r−2τ−2). Thus, 	g0h =

O(r−μ) for some μ slightly smaller than n.
Let ϕ : M \ BR(x) → (Rn \ BR)/� be coordinates at infinity with respect to which

g0 is ALE of order n − 1. Let furthermore � : Rn \ BR → (Rn \ BR)/� be the
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projection map. From now on, we consider the objects on M as objects onRn \ BR by
identifying them with the pullbacks under the map � ◦ ϕ−1. To avoid any confusion,
we denote the pullback of	g0 by	. The operator	0 denotes the Euclidean Laplacian
on Rn \ BR .

Let r0 = |z| be the euclidean norm as a function on R
n \ BR . Then we have, for

any β ∈ R,

	r−β
0 = 	0r

−β
0 + (	 − 	0)r

−β
0 = β(β − n + 2)r−β−2

0 + O(r−β−n−1
0 ).

Let u = hi j for any i, j . For any constant A > 0, we have

	(A · r−β
0 ± u) = (A · β(β − n + 2) + O(r−n+1

0 ) + O(r−μ+β+2
0 ))r−β−2

0 .

If we choose β > 0 so that β + 2 < μ < n, we can choose A so large that

	(A · r−β
0 ± u) < 0, A · r−β

0 ± u > 0 if r0 = R.

The strong maximum principle then implies that u = O(r−β
0 ) and we also get 	u =

O(r−β−2
0 ). By elliptic regularity, u ∈ W 2,p

−β (Rn \ BR) for all p ∈ [1,∞). We now

claim that we can (5) to prove 	0u ∈ L p
−2β−2(R

n \ BR). To do so, we first compute

gab∇g0,2
ab hi j =	0hi j + (gab − gab0 )∇g0,2

ab hi j + (gab0 − δab)∇g0,2
ab hi j

+ δab(�(g0) ∗ �(g0) ∗ h + ∂�(g0) ∗ h + �(g0) ∗ ∇g0h).

Here ∂ denotes the coordinate derivative on Rn . We rewrite (5) schematically as

gab∇g0,2
ab h = Rm(g0) ∗ h + ∇g0h ∗ ∇g0h.

A combination of these two formulas combined with standard estimates yields

‖	0u‖L p
−2β−2

≤C

(
‖h‖L∞−β

∥∥∥∇g0,2h
∥∥∥
L p

−β−2

+ ‖g0 − δ‖L∞−β

∥∥∥∇g0,2h
∥∥∥
L p

−β−2

+ ‖Rm(g0)‖L∞−β−2
‖h‖L p

β
+ ∥∥∇g0h

∥∥2
L2p

−β−1

+ ‖�(g0) ∗ �(g0)‖L∞−β−2
‖h‖L p

−β
+ ‖∂�(g0)‖L∞−β−2

‖h‖L p
−β

+‖�(g0)‖L∞−β−1

∥∥∇g0h
∥∥
L p

−β−1

)

and the right-hand side is finite because g0 − δ = O(r−n+1), �(g0) = O(r−n),
∂�(g0) = O(r−n−1), Rm(g0) = O(r−n−1) and β < n − 2. This proves the claim.

Recall that a weight parameter δ ∈ R is called exceptional if k /∈ Z \
{−1,−2, . . . , 3 − n}. Now for all nonexceptional values−γ , [9, Theorem1.7] implies
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that the Euclidean Laplacian is an isomorphism as a map

	0 : W ′2,p
−γ (Rn \ {0}) → L ′p

−γ−2(R
n \ {0}).

Thus for all nonexceptional values −γ satisfying γ < 2β < 2(n − 2), there exists
a function v

γ

i j ∈ W 2,p
−γ (Rn \ BR) such that 	0v

γ

i j = 	0hi j . By the expansion of
harmonic functions on R

n , we have

hi j − v
γ

i j = Ai jr
−n+2
0 + O(r−n+1

0 ), ∂i h jk − ∂iv
γ

jk = (2 − n)|z|−n A jk zi + O(r−n
0 ).

Here, z = (z1, . . . , zn) denotes the coordinates on R
n so that |z| = r0. Sobolev

embedding implies v
γ

i j ∈ C1,α
1−n(R

n \ BR). Therefore,

hi j = Ai jr
−n+2
0 + O(r−n+1

0 ), ∂i h jk = (2 − n)|z|−n A jk zi + O(r−n
0 ). (6)

We now can use Proposition 2.6 to improve this decay rate slightly by getting rid of the
Ai j . In fact, the proposition implies that the equations Ric(g) = 0 and V (g, g0) = 0
hold individually. Therefore,

0 = gi j (�(g)ki j − �(g0)
k
i j ) =1

2
gi j gkl(∂i g jl + ∂ j gil − ∂l gi j )

− 1

2
gi j (g0)

kl(∂i (g0) jl + ∂ j (g0)il − ∂l(g0)i j )

=1

2
δi jδkl(∂i h jl + ∂ j hil − ∂l hi j )

+ 1

2
(gi j − δi j )δkl(∂i h jl + ∂ j hil − ∂l hi j )

+ 1

2
gi j (gkl − δkl)(∂i h jl + ∂ j hil − ∂l hi j )

+ 1

2
gi j (gkl − (g0)

kl)(∂i (g0) jl + ∂ j (g0)il − ∂l(g0)i j )

=1

2
δi jδkl(∂i h jl + ∂ j hil − ∂l hi j )

+ O(r−n+2
0 ) · O(r−n+2

0 ) + O(r−n+2
0 ) · O(r−n+1

0 )

=
(
Az − 1

2
tr(A)z

)k

(2 − n)|z|−n + O(r−n
0 ),

(7)

which implies that Ai j = 0 and thus, h = O(r−n+1). As hi j = v
γ

i j + O(r−n+1
0 )

with v
γ

i j ∈ W 2,p
−γ (Rn \ BR) and an harmonic remainder term, Sobolev embedding

and elliptic regularity imply that hi j ∈ C1,α
1−n(R

n \ BR), so that ∇g0h = O(r−n).
Elliptic regularity for weighted Hölder spaces ([25, Theorem 4.21] again) implies that
∇g0,kh = O(r−n+1−k) for all k ∈ N. ��
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Lemma 2.9 Let p ∈ [2,∞), τ ∈ R and a fixed ALEmetric be given. Let h be a section
in a Riemannian vector bundle with connection. If h ∈ L∞ with ∇h ∈ W 1,p

τ+1, we have
|∇h|2 ∈ L p

τ and the weighted interpolation inequality

∥∥∥|∇h|2
∥∥∥
L p

τ

≤ C

(∥∥∥∇2h
∥∥∥
L p

τ

+ ‖∇h‖L p
τ+1

)
‖h‖L∞ .

Proof By density, we may assume that h is compactly supported. To avoid differen-
tiability issues at 0, we introduce the quantity |h|δ = (〈h, h〉 + δ)1/2. Recall that ρ is
the weight function on the manifold. Then we compute

∫

M
|∇h|2pραdμ ≤

∫

M
〈∇h,∇h〉|∇h|2p−2

δ ραdμ

= −
∫

M
〈h,	h〉|∇h|2p−2

δ ραdμ +
∫

M
〈h,∇h〉(∇|∇h|2p−2

δ )ραdμ

+
∫

M
〈h,∇h〉|∇h|2p−2

δ ∇ρ · ρα−1dμ

≤
∫

M
|h||∇2h||∇h|2p−2

δ ραdμ+C
∫

M
|h||∇h|2|∇2h||∇h|2p−4

δ ραdμ

+ C
∫

M
|h||∇h||∇h|2p−2

δ ρα−1dμ,

where we used that |∇ρ| is bounded in the last step. By letting δ → 0, we obtain

∫

M
|∇h|2pραsμ ≤ C

∫

M
|h||∇2h||∇h|2p−2ραdμ + C

∫

M
|h||∇h|2p−1ρα−1dμ.

By the Young inequality,

|h||∇2h||∇h|2p−2 ≤ ε|∇h|2p + C(ε)|h|p|∇2h|p,
|h||∇h|ρ−1|∇h|2p−2 ≤ ε|∇h|2p + C(ε)|h|p|∇h|pρ−p.

Therefore,

∫

M
|∇h|2pραdμ ≤ 2Cε

∫

M
|∇h|2pραdμ + C · C(ε)

∫

M
|h|p|∇2h|pραdμ

+ C · C(ε)

∫

M
|h|p|∇h|pρα−pdμ.

Let us choose ε < 1
2C . Then we obtain, by subtracting the first term on the right-hand

side and by dividing by a constant

∫

M
|∇h|2pραdμ ≤ C

∫

M
|h|p|∇2h|pραdμ + C

∫

M
|h|p|∇h|pρα−pdμ.
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2840 A. Deruelle, K. Kröncke

Taking the p-th root yields, with a new constant C :

(∫

M
|∇h|2pραdμ

) 1
p ≤ C

(∫

M
|h|p|∇2h|pραdμ

) 1
p + C

(∫

M
|h|p|∇h|pρα−pdμ

) 1
p

≤ C ‖h‖L∞

{(∫

M
|h|p|∇2h|pραdμ

) 1
p

+
(∫

M
|h|p|∇h|pρα−pdμ

) 1
p
}

.

Inserting α = −τ p − n yields the desired inequality. ��
Remark 2.10 The proof of the above theorem also applies to h ∈ kerL2(Lg0) with the
only difference that the first equality in (7) is replaced by the formula 0 = divg0h −
1
2∇g0 trg0h but which admits the same asymptotic expansion. This formula in turn
holds because h is a TT-tensor due to Proposition 2.5. Therefore we can conclude that
h = O∞(r−n+1) if h ∈ kerL2(Lg0).

Theorem 2.11 Let (M, g0) be an ALE Ricci-flat metric and F as above. Then there
exists an L2 ∩ L∞-neighbourhood U of g0 in the space of metrics and a finite-
dimensional real-analytic submanifold Z ⊂ U with Tg0Z = kerL2(Lg0) such that
U ∩F is an analytic subset ofZ . In particular if g0 is integrable, we have U ∩F = Z .

Proof Let � : g �→ −2Ric(g) + LV (g,g0)(g) and BL2∩L∞(g0, ε) be the ε-ball with
respect to the L2 ∩ L∞-norm induced by g0 and centred at g0. By Theorem 2.7, we
can choose ε > 0 be so small that any g ∈ F ∩ BL2∩L∞(g0, ε) satisfies the condition
g − g0 = O∞(r−n+1) so that ‖g − g0‖Hk

δ
< ∞ for any k ∈ N and δ > −n + 1.

Suppose now in addition that k > n/2 + 2 and δ ≤ −n/2 and let V be a Hk
δ -

neighbourhood of g0 with V ⊂ BL2∩L∞(g0, ε1). Then the map �, considered as a
map� : Hk

δ (S2T ∗M) ⊃ V → Hk−2
δ−2 (S2T ∗M) is a real-analytic map between Hilbert

manifolds. If δ is nonexceptional, the differential d�g0 = Lg0 : Hk
δ (S2T ∗M) →

Hk−2
δ−2 (S2T ∗M) is Fredholm. By [20, Lemma 13.6], there exists (possibly after passing

to a smaller neighbourhood) a finite-dimensional real-analytic submanifold W ⊂ V
with g0 ∈ W and Tg0W = kerHk

δ
(Lg0) such that V ∩ �−1(0) ⊂ W is a real-analytic

subset.
By the proof of Theorem 2.7, we can choose an L2 ∩ L∞-neighbourhood Ug0 ⊂

BL2∩L∞(g0, ε) of g0 so small that Ug0 ∩ F ⊂ V (provided that V is small enough).
Then the set Z = Ug0 ∩ W fulfils the desired properties because Tg0Z = Tg0W =
kerHk

δ
(Lg0) = kerL2(Lg0) due to the asymptotics of elements in kerL2(Lg0) shown in

Proposition 2.7 and Remark 2.10. ��
Proposition 2.12 Let (Mn, g0) be an ALE Ricci-flat manifold and let k > n/2+1 and
δ ∈ (−n + 1,−n/2] nonexceptional. Then there exists a Hk

δ -neighbourhood Uk
δ of g0

in the space of metrics such that the set

Gk
δ :=

{
g ∈ Uk

δ | gi j (�(g)li j − �(g0)
l
i j ) = 0

}
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is a smooth manifold. Moreover, for any g ∈ Uk
δ , there exists a unique diffeomorphism

ϕ which is Hk+1
δ+1 -close to the identity such that ϕ∗g ∈ Gk

δ .

Proof Let U be a Hk
δ -neighbourhood of g0 in the space of metrics such that the map

V : Hk
δ (S2T ∗M) ⊃ U → Hk−1

δ−1 (T M), given by V (g)l = V (g, g0)l = gi j (�(g)li j −
�(g0)li j ) is well-defined. Linearization at g0 yields the map F : Hk

δ (S2T ∗M) →
Hk−1

δ−1 (T M), defined by F(h) = (divg0h)� − 1
2∇g0 trg0h. To prove the theorem, it

suffices to prove that F is surjective and that the decomposition

Hk
δ (S2T ∗M) = ker F ⊕ L (g0)(H

k+1
δ+1 (T M))

holds (here, LX (g0) denotes the Lie-Derivative of g0 along X ). In fact, a calculation
shows that F ◦L (g0) = 	g0 +Ric(g0)(·) = 	g0 since g0 is Ricci-flat. Since the map
	g0 : Hk+1

δ+1 (�1M) → Hk−1
δ−1 (�1M) is an isomorphism, it follows that F is surjective

and ker F ∩ L (g0)(H
k+1
δ+1 (T M)) = {0}. To show that

Hk
δ (S2T ∗M) ⊂ kerL2(F) ⊕ L (g0)(H

k+1
δ+1 (T M)),

let h ∈ Hk
δ (S2T ∗M) and X ∈ Hk+1

δ+1 (T M) the unique solution of F(h) = 	g0X =
F(LX (g0)). Then h = (h − LX (g0)) + LX (g0) is the desired decomposition. By
surjectivity of F , Gk

δ is a manifold. The second assertion follows because the map

� : Gk
δ × Hk+1

δ+1 (Diff(M)) → Mk
δ =: M ∩ Hk

δ (S2T ∗M), (g, ϕ) �→ ϕ∗g,

is a local diffeomorphism around g0 due to the implicit function theorem and the above
decomposition. ��
Remark 2.13 The construction in Proposition 2.12 is similar to the slice provided
by Ebin’s slice theorem [15] in the compact case. The set F is similar to the local
premoduli space of Einstein metrics defined in [20, Definition 2.8]. In contrast to
the compact case, the elements in F close to g0 can all be homothetic. In fact, this
holds for the Eguchi–Hanson metric, see [28]. More generally, any four-dimensional
ALEhyperkählermanifold (M, g) admits a three-dimensional subspace of homothetic
metrics in F : see [34, p. 52–53].

2.3 ALE Ricci-Flat Kähler Spaces

Lemma 2.14 (∂∂̄-Lemma for ALE manifolds) Let (M, g, J ) be an ALE Kähler man-
ifold, δ + 2 ≤ −n/2 + 2 nonexceptional, k ≥ 1 and α ∈ Hk

δ (�p,qM). Suppose
that

• α = ∂β for some β ∈ Hk+1
δ+1 (�p−1,qM) and ∂̄α = 0 or

• α = ∂̄β for some β ∈ Hk+1
δ+1 (�p,q−1M) and ∂α = 0.

Then there exists a form γ ∈ Hk+2
δ+2 (�p−1,q−1M) such that α = ∂∂̄γ . Moreover, we

can choose γ to satisfy the estimate ‖γ ‖Hk+2
δ+2

≤ C · ‖α‖Hk
δ
for some C > 0.
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2842 A. Deruelle, K. Kröncke

Proof This follows along the lines of Lemma 5.50 in [4], except that we have to replace
the standard Sobolev spaces byweighted ones to capture theALE condition. Let d = ∂

or d = ∂̄ and 	 = 	∂ = 	∂̄ . Consider 	 as an operator 	 : Hk+2
δ+2 (�∗M) →

Hk
δ (�∗M). Because of the assumption on δ, it is Fredholm and we have the L2-

orthogonal decomposition

Hk
δ (�∗M) = kerL2(	) ⊕ 	(Hk+2

δ+2 (�∗M))

for δ ∈ [−n+1,−n/2) [17, Theorem8.4.1].Moreover, Fredholmproperties of elliptic
operators on ALE manifolds (see e.g. [27, Sect. 10]) imply that 	 is a Fredholm map
of index zero on these spaces. Thus, we can define the Green’s operator G which is
zero on kerL2(	) and the inverse of	 on kerL2(	)⊥. This defines a continuous linear
operator G : Hk

δ (�∗M) → Hk+2
δ+2 (�∗M). By Hodge theory and because d + d∗ :

Hk+1
δ+1 (�∗M) → Hk

δ (�∗M) is also Fredholm,

d(Hk+1
δ+1 (�∗M)) ⊕ d∗(Hk+1

δ+1 (�∗M)) = 	(Hk+2
δ+2 (�∗M)).

and it is straightforward to see that G is self-adjoint and commutes with d and d∗. As
in Ballmann’s book, one shows that γ = −G∂∗∂̄∗Gα does the job in both cases. The
estimate on γ follows from construction. For α ∈ Hk

δ (�p,qM) with δ ≤ −n + 1, we
get γ ∈ Hk+2

δ′+2(�
p,qM) for any δ′ > −n + 1. But as in [17, Theorem 8.4.4], the fact

that α = ∂∂̄γ allows us to deduce γ ∈ Hk+2
δ+2 (�p,qM). ��

Let (M, g, J ) be a Kähler manifold. An infinitesimal complex deformation is an
endomorphism I : T M → T M that anticommutes with J and satisfies ∂̄ I = 0 and
∂̄∗ I = 0. By the relation I J+J I = 0, I can be viewed as a section of�0,1M⊗T 1,0M .

Theorem 2.15 Let (Mn, g, J ) be an ALE Kähler manifold with a holomorphic volume
form, k > n/2 + 1, δ ≤ −n/2 nonexceptional and I ∈ Hk

δ (�0,1M ⊗ T 1,0M) such
that ∂̄ I = 0 and ∂̄∗ I = 0. Then there exists a smooth family of complex structures
J (t) with J (0) = J such that J (t) − J ∈ Hk

δ (T ∗M ⊗ T M) and J ′(0) = I .

Proof The proof follows along the lines of Tian’s proof by the power series approach
[33]: We write J (t) = J (1− I (t))(1+ I (t))−1, where I (t) ∈ Hk

δ (�0,1M ⊗ T 1,0M)

and I (t) has to solve the equation

∂̄ I (t) + 1

2
[I (t), I (t)] = 0,

where [., .] denotes the Frölicher–Nijenhuis bracket. If wewrite I (t) as a formal power
series I (t) = ∑

k≥1 Ik t
k , the coefficients have to solve the equation

∂̄ IN + 1

2

N−1∑

k=1

[Ik, IN−k] = 0,
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inductively for all N ≥ 2. As �n,0M is trivial, there is a natural identification of
the bundles �0,1M ⊗ T 1,0M = �n−1,1M by using the holomorphic volume form
and we now think of the Ik as being (n − 1, 1)-forms. Initially, we have chosen
I1 ∈ Hk

δ (�0,1M ⊗ T 1,0M), given by I = 2I1 J . By the multiplication property of
weighted Sobolev spaces [13, p. 538], [I1, I1] ∈ Hk−1

δ−1 (�n−1,2M). Using ∂ I1 = 0 and
∂̄∗ I1 = 0, one can now show that ∂̄[I1, I1] = 0 and [I1, I1] is ∂-exact. The ∂∂̄-lemma
now implies the existence of a ψ ∈ Hk+1

δ+1 (�n−2,1M) such that

∂∂̄ψ = −1

2
[I1, I1],

and so, I2 = ∂ψ ∈ Hk
δ (�n−1,1M) does the job. Inductively, we get a solution of the

equation

∂∂̄ψ = 1

2

N−1∑

k=1

[Ik, IN−k],

by the ∂∂̄-lemma since the right-hand side is ∂̄-closed and ∂-exact (which in turn is true
because ∂ Ik = 0 for 1 ≤ k ≤ N−1). Nowwe can choose IN = ∂ψ ∈ Hk

δ (�n−1,1M).
Let us prove the convergence of the above series: Let D1 be the constant in the

estimate of the ∂∂̄-lemma and D2 be the constant such that

‖[φ,ψ]‖Hk−1
δ−1

≤ D2 ‖φ‖Hk
δ

‖ψ‖Hk
δ

.

Then one can easily show by induction that

‖IN‖Hk
δ

≤ C(N ) ·
[
1

2
D1 · D2

]N−1

(‖I1‖Hk
δ
)N

for N ≥ 1, where C(N ) is the sequence defined by C(1) = 1 and C(N ) =∑N−1
i=1 C(i) · C(N − i) for N > 1. By defining D := 2/(D1 · D2) and s =

1
2D1 · D2 · ‖I1‖Hk

δ
· t , we get

‖I (t)‖Hk
δ

≤
∞∑

i=1

‖Ii‖Hk
δ
t i ≤ D ·

∞∑

i=1

C(i) · si = D ·
(
1

2
−
√
1

4
− s

)

,

if s < 1/4 which shows that the series converges. Thus I (t) ∈ Hk
δ (�n−1,1M) and

J (t) − J = −2J I (t)(1 + I (t))−1 ∈ Hk
δ (�n−1,1M) ∼= Hk

δ (�0,1M ⊗ T 1,0M). ��
The proof of the above theorem provides an analytic immersion � : Hk

δ (�0,1M ⊗
T 1,0M) ∩ kerL2(	) ⊃ U → Hk

δ (T ∗M ⊗ T M) whose image is a smooth manifold
of complex structures which we denote by J k

δ and whose tangent map at J is just the
injection.
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Proposition 2.16 Let (M, g0, J0) be an ALE Calabi–Yau manifold, δ < 2− n nonex-
ceptional and J k

δ be as above. Then there exists a Hk
δ -neighbourhood U of J and a

smooth map � : J k
δ ∩ U → Mk

δ which associates to each J ∈ J k
δ ∩ U sufficiently

close to J0 a metric g(J ) which is Hk
δ -close to g0 and Kähler with respect to J .

Moreover, we can choose the map � such that

d�J0(I )(X ,Y ) = 1

2
(g0(I X , J0Y ) + g0(J0X , IY )).

Proof We adapt the strategy of Kodaira and Spencer [19, Sect. 6]. Let Jt be a fam-
ily in J k

δ and define Jt -hermitian forms ωt by �
1,1
t ω0(X ,Y ) = 1

2 (ω0(X ,Y ) +
ω0(Jt X , JtY )). Let ∂t , ∂̄t the associated Dolbeaut operators and ∂∗

t , ∂̄∗
t their formal

adjoints with respect to the metric gt (X ,Y ) := ωt (X , JtY ). We now define a forth-
order linear differential operator Et : Hk

δ (�
p,q
t M) → Hk−4

δ−4 (�
p,q
t M) by

Et = ∂t ∂̄t ∂̄
∗
t ∂∗

t + ∂̄∗
t ∂∗

t ∂t ∂̄t + ∂̄∗
t ∂t∂

∗
t ∂̄t + ∂∗

t ∂̄t ∂̄
∗
t ∂t + ∂̄∗

t ∂̄t + ∂∗
t ∂t .

It is straightforward to see that Et is formally self-adjoint and strongly elliptic. More-
over, α ∈ kerHk

δ
(Et ) if and only if ∂tα = 0, ∂̄tα = 0 and ∂̄∗

t ∂∗
t α = 0, i.e. dα = 0 and

∂̄∗
t ∂∗

t α = 0 hold simultaneously. If δ is nonexceptional, Et is Fredholm which allows
us to define for each t its Greens operator Gt : Hk−4

δ−4 (�
p,q
t M) → Hk

δ (�
p,q
t M). As

in [19, Proposition 7], one now shows that

kerL2(d) ∩ Hk
δ (�

p,q
t M) = ∂t ∂̄t (H

k+2
δ+2 (�

p−1,q−1
t M)) ⊕ kerL2(Et ) ∩ Hk

δ (�
p,q
t M)

is an L2(gt ) orthogonal decomposition. The dimension of kerL2(Et ) ∩ Hk
δ (�

1,1
t M)

is constant for small t which implies that Gt depends smoothly on t . The proof of this
fact is exactly as in [19, Proposition 8].

Now observe that Etωt ∈ Hk−4
δ−4 (�

1,1
t M) if ωt and Jt are Hk

δ -close to ω0 and J0,
respectively. This allows us to define

ω̃t := ωt − Gt Etωt + ∂t ∂̄t ut = (1 − Gt Et )�
1,1
t ω0 + ∂t ∂̄t ut ,

where ut ∈ Hk+2
δ+2 (M) is a smooth family of functions such that u0 = 0 which will be

defined later. Clearly,

ω̄t := ωt − Gt Etωt ∈ ker Et .

As ω̄t is Hk
δ -close to ω0, ∇gt ω̄t ∈ Hk−1

δ−1 (gt ), since ω0 is g0-parallel. Therefore,
∇gt ω̄t = O(r−α−1) and ∇gt ,2ω̄t = O(r−α−2) for any α < −δ. Thus, if we choose
the nonexceptional value δ so that δ < −n + 2, integration by parts implies that

‖∂t ω̄t‖2L2(gt )
+ ∥∥∂̄t ω̄t

∥∥2
L2(gt )

≤ (Et ω̄t , ω̄t )L2(gt ) = 0.
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Therefore, ω̄t and hence also ω̃t is closed. Differentiating at t = 0 yields

ω̃′
0 = (1 − G0E0)ω

′
0 − G0(E

′
0ω0) + ∂0∂̄0u

′
0 = ω′

0 − G0(E
′
0ω0) + ∂0∂̄0u

′
0.

Because dω̃t = 0, we have dω̃′
0 = 0 and since J ′

0 is an infinitesimal complex defor-
mation, E0ω

′
0 = 0 and dω′

0 = 0 which implies that

G0(E
′
0ω0) ∈ kerL2(E0)

⊥ ∩ kerL2(d) ∩ Hk
δ (�

1,1
0 M) = ∂0∂̄0(H

k+2
δ+2 (M)).

Let now v ∈ Hk+2
δ+2 (M) so that ∂0∂̄0v = G0(E ′

0ω0). Then define ut ∈ Hk+2
δ+2 (M) by

ut := tv.

By this choice, ω̃′
0 = ω′

0 and the assertion for d�J0(J
′
0) = g̃′

0 follows immediately.
Finally, g̃t (X ,Y ) := ω̃t (X , JtY ) is a Riemannian metric for t small enough and it is
Kähler with respect to Jt . ��
Remark 2.17 Let Jt is a smooth family of complex structures inJ k

δ ∩U and gt = �(Jt ).
Then the construction in the proof above shows that I = J ′

0 and h = g′
0 are related by

h(J X ,Y ) = −1

2
(g(X , IY ) + g(I X ,Y )).

Before we state the next theorem, recall the notation Gk
δ we used in Proposition 2.12.

Theorem 2.18 Let (Mn, g0, J0) be anALECalabi–Yaumanifold and δ ∈ (1−n, 2−n)

nonexceptional. Then for any h ∈ kerL2(Lg0), there exists a smooth family g(t) of
Ricci-flatmetrics inGk

δ with g(0) = g0 and g′
0 = h.Eachmetric g(t) isALEandKähler

with respect to some complex structure J (t) which is Hk
δ -close to J0. In particular, g0

is integrable.

Proof We proceed similarly as in [3, Chapter 12], except the fact that we use weighted
Sobolev spaces. Given a complex structure J close to J0 and a J -(1, 1)-form ω which
is Hk

δ -close toω0, we seek a Ricci-flat metric in the cohomology class [ω] ∈ H1,1
J (M).

As the first Chern class vanishes, there exists a function fω ∈ Hk
δ (M) such that i∂∂̄ fω

is the Ricci form of ω. If ω̄ ∈ [ω] and ω̄ − ω ∈ Hk
δ (�

1,1
J M), the ∂∂̄-lemma implies

that there is a u ∈ Hk+2
δ+2 (M) such that ω̄ = ω + i · ∂∂̄u. Ricci-flatness of ω̄ is now

equivalent to the condition

fω = log
(ω + i∂∂̄u)n

ωn
=: Cal(ω, u).

Let J k
δ be as above and 	J the Dolbeaut Laplacian of J and the metric g(J ). Then

all the (L2
δ )-cohomologies H1,1

J ,δ(M) = kerL2
δ
(	J ) ∩ L2

δ (�
1,1M) are isomorphic for

J ∈ J k
δ if we chooseJ k

δ is small enough:We haveH2
δ (M) = H2,0

J ,δ(M)⊕H1,1
J ,δ(M)⊕
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2846 A. Deruelle, K. Kröncke

H0,2
J ,δ(M). The left-hand side is independent of J and the metric g(J ) is provided by

Proposition 2.16. The spaces on the right-hand side are kernels of J -dependent elliptic
operators whose dimension depends upper-semicontinuously on J . However the sum
of the dimensions is constant and so the dimensions must be constant as well.

Thus, there is a natural projection prJ : kerL2(	J0) → kerL2(	J ) which is an
isomorphism. We now want to apply the implicit function theorem to the map

G : J k
δ × H1,1

J0,δ
(M) × Hk+2

δ+2 (M) → Hk
δ (M)

(J , κ, u) �→ Cal(ω(J ) + prJ (κ), u) − fω(J )+prJ (κ),

where ω(J )(X ,Y ) := g(J )(J X ,Y ) and g(J ) is the metric constructed in Propo-
sition 2.16. We have G(J0, 0, 0) = 0 and the differential restricted to the third
component is just given by 	 : Hk+2

δ+2 (M) → Hk
δ (M) (cf. [3, p. 328]), which is

an isomorphism. Therefore we find a map � such that G(J , κ,�(J , κ)) = 0.
Let now h ∈ kerL2(Lg0) and let h = hH + hA its decomposition into a J0-

hermitian and a J0-anti-hermitian part. We want to show that h is tangent to a family
of Ricci-flat metrics. We have seen in Theorem 2.7 together with Remark 2.10 that
h ∈ Hk

δ (S2T ∗M) for all δ > 1 − n and we can define I ∈ Hk
δ (T ∗M ⊗ T M) and

κ ∈ Hk
δ (�

1,1
J0

)(M) by

g(X , IY ) = −hA(X , J0Y ), κ(X ,Y ) = hH (J0X ,Y ). (8)

It is easily seen that I is a symmetric endomorphism satisfying I J0 + J0 I = 0 and
thus can be viewed as I ∈ Hk

δ (�0,1M ⊗ T 1,0M). Moreover, because hA is a T T -

tensor, ∂̄ I = 0 and ∂̄∗ I = 0. In addition κ ∈ H1,1
J0

(M). The proof of this facts is
as in [20]. Let J (t) = �(t · I ) be a family of complex structures tangent to I and
ω̃(t) = �̃(J (t)) be the associated family of Kähler forms. We consider the family
ω(t) = ω̃(t) + prJ (t)(t · κ) + i∂∂̄�(J (t), t · κ) and the associated family of Ricci-
flat metrics g̃(t)(X ,Y ) = ω(t)(X , J (t)Y ). It is straightforward that g̃′(0) = h. By
Proposition 2.12, there exist diffeomorphisms ϕt with ϕ0 = id such that g(t) =
ϕ∗
t g̃(t) ∈ Gk

δ . We obtain g′(0) = h + LX g0 for some X ∈ Hk+1
δ+1 (T M). Since h is a

TT-tensor due to Lemma 2.5, h ∈ Tg0Gk
δ . On the other hand, g′(0) ∈ Tg0Gk

δ as well
which implies that g′(0) = h due to the decomposition in Proposition 2.12.

By Theorem 2.11, the set of stationary solutions of the Ricci–DeTurck flow F
close to g0 is an analytic set contained in a finite-dimensional manifold Z with
Tg0Z = kerL2(Lg0). The above construction provides a smoothmap� : kerL2(Lg0) ⊃
U → F ⊂ Z whose tangent map is the identity. Therefore, there exists a L2 ∩ L∞-
neighbourhood U of g0 in the space of metrics such that F ∩ U = Z ∩ U . ��

Let h ∈ C∞(S2T ∗M) and hH , hA its hermitian and anti-hermitian part, respec-
tively. The hermitian and anti-hermitian part are preserved by Lg0 . Let I = I (hA) and
κ = κ(hH ) be defined as in (8). Then we have the relations I (L(hA)) = 	C (I (hA))

and κ(L(hH )) = 	H (κ(hH )), where 	C and 	H are the complex Laplacian and the
Hodge Laplacian acting onC∞(�0,1M⊗T 1,0M) andC∞(�

1,1
J0

M), respectively. For
details see [20] and [3, Chap. 12]. As a consequence, we get
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Theorem 2.19 (Koiso) If (M, g0, J0) is anALERicci-flatKählermanifold, it is linearly
stable.

3 Ricci Flow

Our main result of this section is the following

Theorem 3.1 Let (Mn, g0) be an ALE Ricci-flat manifold. Assume it is linearly sta-
ble and integrable. Then for every ε > 0, there exists a δ > 0 such that the
following holds: For any metric g ∈ BL2∩L∞(g0, δ), there is a complete Ricci–
DeTurck flow (Mn, g(t))t≥0 starting from g converging to an ALE Ricci-flat metric
g∞ ∈ BL2∩L∞(g0, ε).

3.1 An Expansion of the Ricci Flow

Let us fix an ALE Ricci-flat manifold (Mn, g0) once and for all. Recall the definition
of the Ricci flow

{
∂t g = −2Ric(g(t)) on M × (0,+∞),

g(0) = g0 + h,

where h is a symmetric 2-tensor on M (denoted by h ∈ S2T ∗M) such that g(0) is a
metric. The Ricci–DeTurck flow is given by

{
∂t g = −2Ric(g(t)) + LV (g(t),g0)(g(t)) on M × (0,+∞),

g(0) = g0 + h,

where V (g(t), g0) is a vector field defined locally byV k = g(t)i j (�(g(t))ki j−�(g0)ki j )
and globally by

g0(V (g(t), g0), .) := −divg(t)g0 + 1

2
∇g(t)trg(t)g0. (9)

Following [31, Lemma 2.1], the Ricci–DeTurck flow can be written in coordinates as

∂t gi j = gab∇g0,2
ab gi j − gkl gipRm(g0) jklp − gkl g jpRm(g0)iklp

+gabg pq
(
1

2
∇g0
i gpa∇g0

j gqb + ∇g0
a g jp∇g0

q gib

)

−gabg pq
(
∇g0
a g jp∇g0

b giq − ∇g0
j gpa∇g0

b giq − ∇g0
i gpa∇g0

b g jq

)
.

For our purposes, we calculate a different expansion: Let ḡ and g two Riemannian
metrics on a given manifold and h := g − ḡ. Then a careful computation shows that
in local coordinates,
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2848 A. Deruelle, K. Kröncke

2(Ric(g)i j − Ric(ḡ)i j ) = −(Lḡh)i j + ḡuv(∇ ḡ,2
iu h jv + ∇ ḡ,2

ju hiv − ∇ ḡ,2
i j huv)

+ (guv − ḡuv)(∇ ḡ,2
ui h jv + ∇ ḡ,2

u j hiv − ∇ ḡ,2
uv hi j − ∇ ḡ,2

i j huv)

+ guvgpq
(

∇ ḡ
u h pi∇ ḡ

v hq j − ∇ ḡ
phui∇ ḡ

v hq j + 1

2
∇ ḡ
i hup∇ ḡ

j hvq

)

+ guv

(
−∇ ḡ

u hvp + 1

2
∇ ḡ

phuv

)
gpq(∇ ḡ

i hq j + ∇ ḡ
j hqi − ∇ ḡ

q hi j ),

where guv, ḡuv are the inverse matrices of guv, ḡuv , respectively. For a calculation,
see for instance [5, p. 15]. Furthermore, if a background metric g0 is fixed and if
V = V (g, g0) is defined as above, then we have the expansion

V (g, g0)
k − V (ḡ, g0)

k =1

2
ḡi j ḡkl(∇ ḡ

i h jl + ∇ ḡ
j hil − ∇ ḡ

l hi j )

− h pq ḡ
pi ḡq j (�(ḡ)ki j − �(g0)

k
i j )

+ 1

2
ḡi j (gkl − ḡkl)(∇ ḡ

i h jl + ∇ ḡ
j hil − ∇ ḡ

l hi j )

+ 1

2
ḡkl(gi j − ḡi j )(∇ ḡ

i h jl + ∇ ḡ
j hil − ∇ ḡ

l hi j )

+ 1

2
(gi j − ḡi j )(gkl − ḡkl)(∇ ḡ

i h jl + ∇ ḡ
j hil − ∇ ḡ

l hi j )

− h pq(g
pi − ḡ pi )ḡq j (�(ḡ)ki j − �(g0)

k
i j ).

Thus for V = V (g, g0) and V̄ = V (ḡ, g0), we have

LV gi j − LV̄ ḡi j = LV ḡi j + LV hi j − LV̄ ḡi j

= ∇ ḡ
i V j + ∇ ḡ

j Vi + V k∇ ḡ
k hi j + ∇ ḡ

i V
khk j + ∇ ḡ

j V
khik − LV̄ ḡi j .

Now if ḡ is a Ricci-flat metric that additionally satisfies V̄ = 0, we can write the
Ricci–DeTurck flow as an evolution of the difference h(t) := g(t) − ḡ for which we
get

∂t h = ∂t g = −2Ric(g) + 2Ricḡ + LV (g,g0)g − LV (ḡ,g0)ḡ

= Lḡh − L〈h,�(ḡ)−�(g0)〉ḡ + F ∗ ∇ ḡh ∗ ∇ ḡh + ∇ ḡ(G ∗ h ∗ ∇ ḡh),
(10)

where 〈h, �(ḡ) − �(g0)〉k = h pq ḡ pi ḡq j (�(ḡ)ki j − �(g0)ki j ) and ∗ denotes a linear
combination of tensor products and contractions with respect to the metric ḡ. The
tensors F and G depend on g−1 and �(g0).

3.2 Short-Time Estimates and an Extension Criterion

In this subsection we recall the short-time estimates of Ck-norms and an extension
criterion for the Ricci–DeTurck flow. In addition, we prove some new Shi-type esti-
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mates for L2-type Sobolev norms. For the sake of simplicity, all covariant derivatives
and norms in this subsection are taken with respect to g0.

Lemma 3.2 (A priori short-time Ck-estimates) Let (M, g0) be a complete Ricci-flat
manifold of bounded curvature. Then there exist constants ε > 0 and τ ≥ 1 such that
if g(0) is a metric satisfying

‖g(0) − g0‖L∞ < ε,

there exists a Ricci–DeTurck flow (g(t))t∈[0,τ ] with initial metric g(0) which satisfies
the estimates

∥∥∥∇k(g(t) − g0)
∥∥∥
L∞ < C(k, τ )t−k/2 ‖g(0) − g0‖L∞ , ∀k ∈ N0, t ∈ (0, τ ].

Moreover, (g(t))t∈[0,τ ) is the unique Ricci–DeTurck flow starting at g(0) which satis-
fies

‖g(t) − g0‖L∞ < C(0, τ ) ‖g(0) − g0‖L∞ .

In particular, this implies the following: if (g(t))t∈[0,∞) is a Ricci–DeTurck flow and
such that it is in BL∞(g0, ε) for all time, then there exist constants such that

∥∥∥∇k(g(t) − g0)
∥∥∥
L∞ < C(k)ε, ∀k ∈ N, t ∈ [1,∞).

Proof The same statement is given in [6, Proposition 2.8] for the case of negative
Einstein metrics. The proof is standard and translates easily to the present situation.
For more details, see e.g. [5, Sect. 3.7]. ��

Lemma 3.3 (A priori short-time L2-estimate) Let (M, g0) be an ALE Ricci-flat man-
ifold. Then there exists an ε = ε(n, g0) > 0 with the following property: Suppose
that (g(t))t∈[0,Tmax ) is a Ricci–DeTurck flow such that h(t) = g(t) − g0 satisfies
‖h(t)‖L∞ < ε for all t ∈ [0, Tmax ) and ‖h(0)‖L2 < ∞. Then ‖h(t)‖L2 < ∞ for all
t ∈ (0, Tmax ) and there exists a constant C = C(n, g0) such that

‖h(t)‖L2 ≤ eCt · ‖h(0)‖L2 , ∀t ∈ (0, Tmax ).

Proof By (10), we can rewrite the Ricci–DeTurck flow with gauge g0 in the schematic
form

∂t h = 	h + Rm ∗ h + F ∗ ∇h ∗ ∇h + ∇(G ∗ h ∗ ∇h). (11)

For each R > 0, let ηR : [0,∞) be a function such that ηR(r) = 1 for r ≤ R,
ηR(r) = 0 for r ≥ 2R and |∇ηR | ≤ 2/R. For x ∈ M , let φR,x (y) = ηR(d(x, y)).
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ThenφR,x ≡ 1 on BR(x),φR,x ≡ 0 onM\B2R(x) and |∇φR,x | ≤ 2/R. For notational
convenience, we write φ = φR,x in the following. By (11), we obtain

∂t

∫

M
|h|2φ2dμ ≤2

∫

M
〈	h, φ2h〉dμ + C‖Rm‖L∞

∫

M
|h|2φ2dμ

+ C‖h‖L∞
∫

M
|∇h|2φ2dμ +

∫

M
〈∇(G ∗ h ∗ ∇h), h〉φ2dμ

≤ − 2
∫

M
|∇h|2φ2dμ + C

∫

M
|∇h||h||∇φ|φdμ

+ C(g0)
∫

M
|h|2φ2dμ + C‖h‖L∞

∫

M
|∇h|2φ2dμ

≤(−2 + Cε + Cδ)

∫

M
|∇h|2φ2dμ + C(g0)

∫

M
|h|2φ2dμ

+ C

δ

∫

M
|h|2|∇φ|2dμ

≤
(
C(g0) + 2C

δR2

)∫

B2R(x)
|h|2dμ

for an appropriate choice of δ. Define

A(t, R) = sup
x∈M

∫

M
|h(t)|2φ2

R,xdμ.

As (M, g0) is ALE, there exists a constant N = N (n) such that each ball on M of
radius 2R can be covered by N balls of radius R. Thus, by integration in time,

∫

M
|h(t)|2φ2

R,xdμ ≤
∫

M
|h(0)|2φ2

R,xdμ +
(
C(g0) + 2C

δR2

)∫ t

0

∫

B2R(x)
|h(s)|2dμ ds

≤
∫

M
|h(0)|2φ2

R,xdμ + N

(
C(g0) + 2C

δR2

)∫ t

0
A(s, R)ds.

Consequently,

A(t, R) ≤ A(0, R) + N

(
C(g0) + 2C

δR2

)∫ t

0
A(s, R)ds

and by the Gronwall inequality,

A(t, R) ≤ A(0, R) · exp
(
N

(
C(g0) + 2C

δR2

)
t

)
.

The assertion follows from letting R → ∞. ��
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Lemma 3.4 (A priori short-time Hk-estimates) Let (M, g0) be an ALE Ricci-flat man-
ifold. Then there exists an ε = ε(n, g0) > 0 with the following property: Suppose that
(g(t))t∈[0,Tmax ) is a Ricci–DeTurck flow such that h(t) = g(t) − g0 satisfies

‖h(t)‖L∞ < ε, ∀t ∈ [0, Tmax ).

Then for each T ∈ (0, Tmax ) and k ∈ N there exist constants Ck = Ck(n, g0, T ) such
that if ‖h(t)‖L2 ≤ K for all t ∈ [0, T ], we get

‖∇kh(t)‖L2 ≤ Ck · t−k/2 · K , ∀t ∈ (0, T ].

In particular, if (g(t))t∈[0,Tmax ) is aRicci flow satisfying ‖h(t)‖L∞ < ε and ‖h(t)‖L2 <

K as long as t ∈ [0, Tmax ), then there exist constants Ck = Ck(n, g0) such that

‖∇kh(t)‖L2 ≤ Ck · K , ∀k ∈ N ∀t ∈ [1, Tmax ).

Proof The proof follows from a delicate argument involving a sequence of cutoff
functions. By differentiating (11), we get

∂t∇kh =∇k	h + ∇k(Rm ∗ h) + ∇k(F ∗ ∇h ∗ ∇h) + ∇k+1(G ∗ h ∗ ∇h)

=	∇kh +
k∑

l=0

∇l Rm ∗ ∇k−l h +
∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∇l1F ∗ ∇l2+1h ∗ ∇l3+1h

+ ∇

⎛

⎜⎜
⎝

∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∇l1G ∗ ∇l2h ∗ ∇l3+1h

⎞

⎟⎟
⎠ .

Let φ be a cutoff function as in the proof of Lemma 3.3. Then

∂t

∫

M
|∇kh|2φ2dμ ≤2

∫

M
〈	∇kh,∇kh〉φ2dμ

+ C
k∑

l=0

‖∇l Rm‖L∞
∫

M
|∇k−l h||∇l h|φ2dμ

+
∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∫

M
〈∇l1F ∗ ∇l2+1h ∗ ∇l3+1h,∇kh〉φ2dμ

+
∫

M

〈

∇

⎛

⎜⎜
⎝

∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∇l1G ∗ ∇l2h ∗ ∇l3+1h

⎞

⎟⎟
⎠ ,∇kh

〉

φ2dμ.
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Let us consider each of these terms separately. Then we get

2
∫

M
〈	∇kh,∇kh〉φ2 dμ ≤ −2

∫

M
|∇k+1h|2φ2 dμ + 2

∫

M
|∇k+1h||∇kh||∇φ|φ dμ

≤ (−2 + δ)

∫

M
|∇k+1h|2φ2 dμ + 1

δ

∫

M
|∇kh|2|∇φ|2 dμ

and

C
k∑

l=0

‖∇l Rm‖L∞
∫

M
|∇k−l h||∇kh|φ2 dμ ≤ C

k∑

l=0

∫

M
|∇l h|2φ2 dμ.

In the estimates of the higher order terms, we use the property ‖∇kh‖L∞ ≤ Ckt−k/2ε,
which follows from Lemma 3.2. It also implies ‖∇k F‖L∞ ≤ C · t−k/2 and
‖∇kG‖L∞ ≤ C · t−k/2 for t ∈ (0, T ] and k ∈ N.

∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∫

M
〈∇l1F ∗ ∇l2+1h ∗ ∇l3+1h,∇kh〉φ2 dμ

≤ C
∑

0≤l≤i≤k

∫

M
|∇k−i F ||∇l+1h||∇ i−l+1h||∇kh|φ2 dμ

≤ C · t
∑

0≤l≤i≤k

∫

M
|∇k−i F ||∇l+1h||∇ i−l+1h|φ2 dμ + Ct−1

∫

M
|∇kh|2φ2 dμ

≤ Cε

k∑

l=0

t−k+l
∫

M
|∇l+1h|2φ2 dμ + Ct−1

∫

M
|∇kh|2φ2 dμ

≤ C · ε

∫

M
|∇k+1h|2φ2dμ + C

k∑

l=1

t−k+l−1
∫

M
|∇l h|2φ2 dμ.

For the last term, we first perform integration by parts:

∫

M

〈

∇

⎛

⎜⎜
⎝

∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∇l1G ∗ ∇l2h ∗ ∇l3+1h

⎞

⎟⎟
⎠ ,∇kh

〉

φ2 dμ

≤ −
∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∫

M
〈∇l1G ∗ ∇l2h ∗ ∇l3+1h,∇k+1h〉φ2 dμ

+ C
∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∫

M
|∇l1G||∇l2h||∇l3+1h||∇kh||∇φ|φ dμ
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The first of these terms is estimated by

−
∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∫

M
〈∇l1G ∗ ∇l2h ∗ ∇l3+1h,∇k+1h〉φ2 dμ

= −
∫

M
〈G ∗ h ∗ ∇k+1h,∇k+1h〉φ2 dμ

−
k∑

l=1

∑

0≤l1,l2≤k
l1+l2=k−l+1

∫

M
〈∇l1G ∗ ∇l2h ∗ ∇l3+1h,∇k+1h〉φ2 dμ

≤ (C ‖h‖L∞ + δ)

∫

M
|∇k+1h|2φ2 dμ

+ C

δ

k∑

l=1

∑

0≤l1,l2≤k
l1+l2=k−l+1

∫

M
|∇l1G|2|∇l2h|2|∇l h|2φ2 dμ,

where we used the Peter–Paul inequality ab ≤ δa2 + 1
4δ b

2. For the second of these
terms, we estimate

C
∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∫

M
|∇l1G||∇l2h||∇l3+1h||∇kh||∇φ|φ dμ

= C
∫

M
|G||h||∇k+1h||∇kh||∇φ|φ dμ

+ C
k∑

l=1

∑

0≤l1,l2≤k
l1+l2=k−l+1

∫

M
|∇l1G||∇l2h||∇l h||∇kh||∇φ|φ dμ

≤ C ‖h‖L∞
∫

M
|∇k+1h|2φ2 dμ + C

∫

M
|∇kh|2|∇φ|2 dμ

+ C
k∑

l=1

∑

0≤l1,l2≤k
l1+l2=k−l+1

∫

M
|∇l1G|2|∇l2h|2|∇l h|2φ2 dμ,

where we again used the Peter–Paul inequality. Summing up, we get

∫

M

〈

∇

⎛

⎜⎜
⎝

∑

0≤l1,l2,l3≤k
l1+l2+l3=k

∇l1G ∗ ∇l2h ∗ ∇l3+1h

⎞

⎟⎟
⎠ ,∇kh

〉

φ2 dμ

≤ (δ + C ‖h‖L∞)

∫

M
|∇k+1h|2φ2 dμ + C

∫

M
|∇kh|2|∇φ|2 dμ

123



2854 A. Deruelle, K. Kröncke

+ C
k∑

l=1

∑

0≤l1,l2≤k
l1+l2=k−l+1

∫

M
|∇l1G|2|∇l2h|2|∇l h|2φ2 dμ

≤ (δ + Cε)

∫

M
|∇k+1h|2φ2dμ + C

∫

M
|∇kh|2|∇φ|2 dμ

+ C

δ

k∑

l=1

t−k+l−1
∫

M
|∇l h|2φ2 dμ.

Assuming that ε, δ > 0 are small enough, we therefore get

∂t

∫

M
|∇kh|2φ2 dμ ≤ −

∫

M
|∇k+1h|2φ2dμ + Ck

∫

M
|∇kh|2|∇φ|2 dμ

+ C̃k

∫

M
|h|2φ2 dμ + Ck

k∑

l=1

t−k+l−1
∫

M
|∇l h|2φ2 dμ.

In the following, let x ∈ M and φl : M → [0, 1], 0 ≤ l ≤ k a sequence of cutoff
functions with the following properties:

φl ≡ 1 on B(x, (k + 1 − l)R),

φl ≡ 0 on M \ B(x, (k + 2 − l)R),

|∇φl | ≤ 2/R.

Obviously, we get φl ≤ φl−1 for 1 ≤ l ≤ k and, if R ≥ 2, |∇φl | ≤ φl−1 for 1 ≤ l ≤ k.
We now define a function Fk : [0, T ] → R as

Fk(t) =
k∑

l=0

Al · t l
∫

M
|∇l h|2φ2

l dμ,

where Al are some positive constants we will choose later. Then we can compute

∂t Fk =
k∑

l=1

l · Al t
l−1

∫

M
|∇l h|2φ2

l dμ +
k∑

l=0

Al t
l∂t

∫

M
|∇l h|2φ2

l dμ

≤
k∑

l=1

l · Al t
l−1

∫

M
|∇l h|2φ2

l dμ −
k∑

l=0

Al t
l
∫

M
|∇l+1h|2φ2

l dμ

+
k∑

l=0

C̃l Al t
l
∫

M
|h|2φ2

l dμ

+
k∑

l=0

Cl · Al t
l
∫

M
|∇l h|2|∇φl |2 dμ +

k∑

l=0

Cl Al

l∑

i=1

t i−1
∫

M
|∇ i h|2φ2

l dμ
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≤
k∑

l=1

[

l Al − Al−1 + Cl Al t +
k∑

i=l

Ci Ai

]

· t l−1
∫

M
|∇l h|2φ2

l−1 dμ

+ C0 · A0

∫

M
|h|2||∇φ0|2 dμ +

k∑

l=0

C̃l Al t
l
∫

M
|h|2φ2

0 dμ.

Note that we used the properties φl ≤ φl−1 and |∇φl | ≤ φl−1 in the above estimate.
Now if we choose Ak, Ak−1, . . . A0 inductively such that

Al−1 ≥ l Al + CAlt +
k∑

i=l

Ci Ai

for all t ∈ [0, T ], then

∂t Fk ≤ C(g0, k, T )

∫

M
|h|2φ2

0 dμ ≤ C(g0, k, T )

∫

M
|h|2 dμ,

so that we get Fk(t) ≤ C(g0, k, T ) · supt∈[0,T ]
∫
M |h|2 dμ for all t ∈ [0, T ]. The result

now follows from letting R → ∞. ��
We conclude this section with some very general result due to [29] giving a criteria

for ensuring infinite time existence.

Theorem 3.5 (Criteria for infinite time existence) Let (Mn, g0) be a complete Rie-
mannian manifold such that ‖Rm(g0)‖L∞ =: k0 < +∞. Then there exists a positive
constant δ̃ = δ̃(n, k0) such that the following holds. Let 0 < β < δ ≤ δ̃. Then every
metric g(0) β-close to g0 has a δ-maximal solution g(t)t∈[0,T (g(0))) with T (g(0)) pos-
itive and ‖g(t)− g0‖L∞ < δ for all t ∈ [0, T (g(0))). The solution is δ-maximal in the
following sense. Either T (g(0)) = +∞ and ‖g(t) − g0‖L∞ < δ for any nonnegative
time t or we can extend (g(t))t to a solution on Mn × [0, T (g(0)) + τ), for some
positive τ = τ(n, k0) and ‖g(T (g(0))) − g0‖L∞ = δ.

3.3 A Local Decomposition of the Space of Metrics

In order to prove convergence of a Ricci–DeTurck flow g(t) to a Ricci-flat metric g∞,
we have to construct a family g0(t) of Ricci-flat reference metrics. For the proof of the
main theorem, it is necessary to construct g0(t) in such away that ∂t g0 = o((g−g0)2).
This section is devoted to this construction. For this purpose, let F again be given by

F = {
g ∈ M | −2Ric(g) + LV (g,g0)g = 0

}
.

If g0 satisfies the integrability condition, then there exists an L2 ∩ L∞-neighbourhood
U of g0 in the space of metrics such that

F̃ := U ∩ F (12)
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is a manifold and for all g ∈ F̃ , the equations Ric(g) = 0 and LV (g,g0)g = 0 hold
individually by Proposition 2.6. Linearization of these two conditions shows that the
tangent space TgF̃ is given by the kernel of the map

Lg,g0h = Lgh − L〈h,�(g)−�(g0)〉g,

where 〈h, �(g)−�(g0)〉k = gikgl j hkl(�(g)ki j −�(g0)ki j ) and Lg is the Lichnerowicz
Laplacian of g.

The next lemma ensures that the kernels ker L∗
g,g0 all have the same dimension

when g is an ALE Ricci-flat metric sufficiently close to g0:

Lemma 3.6 Let (Mn, g0) be a linearly stable ALE Ricci-flat manifold which is inte-
grable. Furthermore, let F̃ be as in (12). Then there exists an L2∩L∞-neighbourhood
U of g0 in the space of metrics such that dim kerL2 L∗

g,g0 = dim kerL2 Lg0 for all

g ∈ F̃ .

Proof First, we claim that elements in the kernel of Lg,g0 have decay rate −(n − 1).
This follows along the lines of the proof of Theorem 2.7 and we are able to establish
(6) if h ∈ kerL2 Lg,g0 . To improve the decay, we use the special algebraic structure
of the operator Lg,g0 by considering the divergence and the trace with respect to g of
Lg,g0h:

0 = divg(Lg,g0h)

= 	g(divgh) − ∇g(divg(〈h, �(g) − �(g0)〉)) − 	g(〈h, �(g) − �(g0)〉),
0 = 	gtrgh − 2divg(〈h, �(g) − �(g0)〉),

which implies the following relation:

	g

(
divgh − ∇gtrgh

2
− 〈h, �(g) − �(g0)〉

)
= 0.

Since the vector field divgh − ∇g trgh
2 − 〈h, �(g) − �(g0)〉 goes to 0 at infinity, the

maximum principle ensures that

divgh − ∇gtrgh

2
− 〈h, �(g) − �(g0)〉 = 0.

An asymptotic expansion of this equation analogous to (7) shows that h = O(r−(n−1)).

In particular, the previous claim implies that

kerL2(Lg,g0) = kerL2
δ
(Lg,g0) = kerHk

δ
(Lg,g0),

where δ ∈ (−n + 1,−n/2] is a nonexceptional weight and k can be any natural
number.

Now, Lg0 = Lg0,g0 is Fredholm as a map from Hk
δ (S2T ∗M) to Hk−2

δ−2 (S2T ∗M)

with Fredholm index 0. The same holds for Lg with g ∈ F in a sufficiently small
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neighbourhood of g0. Observe that Lg,g0 − Lg is a bounded operator as a map from
Hk

δ (S2T ∗M) to Hk−2
δ−2 (S2T ∗M), with arbitrarily small norm operator. Therefore, by

the openness of the set of Fredholm operators with respect to the operator norm, Lg,g0
has the same index as Lg0,g0 , which is 0. Therefore we get

0 = dim(kerL2(Lg,g0)) − dim(kerL2(L∗
g,g0))

= indHk
δ
(Lg0,g0)

= indHk
δ
(Lg,g0)

= dim(kerHk
δ
(Lg,g0)) − dim(kerHk

δ
(L∗

g,g0)).

��
Now we claim that if U is small enough, every metric g ∈ U can be decomposed

uniquely as g = ḡ+ h where ḡ ∈ F̃ and h ∈ Lḡ,g0(C
∞
0 (S2T ∗M)) (where the closure

is taken with respect to L2 ∩ L∞). Indeed, this follows from the implicit function
theorem applied to the map

� : F̃ × Lg0(C
∞
0 (S2T ∗M)) → M

(ḡ, h) → ḡ + h −
m∑

i=1

(h, ei (ḡ))L2ei (ḡ),

where {e1(ḡ), . . . em(ḡ)} is an L2(ḡ) orthonormal basis of kerL2(L ∗̄
g,g0

) which can be
chosen to depend smoothly on ḡ by Lemma 3.6.

Let now (g(t))t∈[0,T ) be a Ricci–DeTurck flow in U and (g0(t))t∈[0,T ) ∈ F̃ be the
family of Ricci-flat metrics such that

g(t) − g0(t) ∈ Lg0(t),g0(C
∞
0 (S2T ∗M)).

Writingh(t) = g(t)−g0 andh0(t) = g0(t)−g0,we see thath(t)−h0(t) = g(t)−g0(t)
admits the expansion

∂t h − Lg0(t),g0(h − h0)

= R[h − h0]
= F ∗ ∇(h − h0) ∗ ∇(h − h0) + ∇(G ∗ (h − h0) ∗ ∇(h − h0)),

where the connection is now with respect to g0(t).
Before stating the next lemma, we need to recall the Hardy inequality for Rieman-

nian manifolds with nonnegative Ricci curvature and positive asymptotic volume ratio
due to Minerbe [26, Theorem 2.23]:

Theorem 3.7 (Minerbe)Let (Mn, g)beaRiemannianmanifoldwith nonnegativeRicci
curvature and Euclidean volume growth, i.e.

AVR(g) := lim
r→+∞

Volg Bg(x, r)

rn
> 0,
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for some (and hence all) x ∈ M. Then

∫

M
r−2
x |φ|2dμg ≤ C(n,AVR(g))

∫

M
|∇gφ|2dμg ∀φ ∈ C∞

0 (M),

where rx (y) = d(x, y).

The next lemma controls the time derivative of h0 in the Ck topology in terms of
the L2 norm of the gradient of h − h0.

Lemma 3.8 Let U be an L2 ∩ L∞-neighbourhood of g0 such that the above decompo-
sition holds. Let (g(t))t∈[0,T ) be a Ricci–DeTurck flow in U and let g0(t), h(t), h0(t)
be defined as above for t ∈ [0, T ). Then we have the following estimate that holds for
t ∈ (0, T ):

‖∂t h0‖Ck (g0(t)) ≤ C(k)
∥∥∥∇g0(t)(h − h0)

∥∥∥
2

L2(g0(t))
.

Proof Let {e1(t), . . . em(t)} be a family of L2(dμg0(t))-orthonormal bases of

kerL2

(
L∗
g0(t),g0

)
. Note that ∂t ei (t) depends linearly on ∂t h0(t). We can write

h(t) − h0(t) = k(t) −
m∑

i=1

(k(t), ei (t))L2 · ei (t)

for some k(t0) ∈ Lg0(t0),g0(C
∞
0 (S2T ∗M)) =: N . Note that by this condition on k(t0),

we have (k(t0), ei (t0))L2 = 0 for all i ∈ {1, . . .m}. Therefore, differentiating at time
t0 yields

h′ = h′
0 + k′ −

m∑

i=1

(k′, ei )L2 · ei −
m∑

i=1

(k, e′
i )L2 · ei −

m∑

i=1

(k ∗ h′
0, ei )L2 · ei

= h′
0 + k′

N −
m∑

i=1

(h − h0, e
′
i )L2 · ei −

m∑

i=1

((h − h0) ∗ h′
0, ei )L2 · ei

=: h′
0 + k′

N + A(h − h0, h
′
0),

where A depends linearly on both entries. Let us split this expression into A = AF̃ +
AN according to the decomposition Tg0(t0)F̃ ⊕ N . If we also split h′ = h ′̃

F + h′
N , we

get

(
h ′̃
F

h′
N

)
=
(
idTg0(t0)F̃ + AF̃ (h − h0, .) 0

AN (h − h0, .) idN̄

)

·
(
h′
0
k′
)

.

By inverting, we conclude that

h′
0 = (idTg0(t0)F̃ + AF̃ (h − h0, .))

−1h ′̃
F .
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Note that the orthogonal projection � : Tg0(t0)F̃ → kerL2

(
L∗
g0(t0),g0

)
is an isomor-

phism. Because ∂t h = Lg0(t),g0(h − h0) + R[h − h0] and by elliptic regularity,

∥∥h′
0(t)

∥∥
Ck (g0(t))

≤ C
∥∥(h′(t))F̃

∥∥
L2(g0(t))

≤ C

∥∥∥∥(R[h − h0])kerL2
(
L∗
g0(t0),g0

)
∥∥∥∥
L2(g0(t))

≤ C
m∑

i=1

|(F ∗ ∇g0(t)(h − h0) ∗ ∇g0(t)(h − h0)

+ ∇g0(t)(G ∗ (h − h0) ∗ ∇g0(t)(h − h0)), ei )L2(g0(t))|
≤ C

∥∥∥∇g0(t)(h − h0)
∥∥∥
2

L2(g0(t))

+
m∑

i=1

|(G ∗ r−1 · (h − h0) ∗ ∇g0(t)(h − h0), r∇g0(t)ei )L2(g0(t))|

≤ C
∥∥∥∇g0(t)(h − h0)

∥∥∥
2

L2(g0(t))
.

We used the Hardy inequality (Theorem 3.7) and the fact that r∇g0(t)ei is bounded
by elliptic regularity in the last step. ��

Before proving Theorem 3.1, we start by recalling a result by Devyver [14, Defini-
tion 6] adapted to our context:

Theorem 3.9 (Strong positivity of Lg0 ) Let (M
n, g0) be an ALE Ricci-flat space that

is linearly stable. Then the restriction of −Lg0 to the orthogonal of kerL2(Lg0) is
strongly positive, i.e. there exists some positive αg0 ∈ (0, 1] such that

αg0(−	g0h, h)L2(g0) ≤ (−Lg0h, h)L2(g0) ∀h ∈ Lg0(C
∞
0 (S2T ∗M)).

Sketch of proof The proof is as in [14] with some minor modifications we point
out here. Write −Lg0 = −	g0 + R+ − R− where R+ and R− correspond to the
positive (resp. nonpositive) eigenvalues of Rm(g0)∗. Let H = −	g0 + R+ and
A : L2(S2T ∗M) → L2(S2T ∗M) be defined by A = H−1/2R−H−1/2. The operator
A is compact [12, Corollary 1.3] Because−Lg0 is nonnegative, all eigenvalues of A lie
in [0, 1]. It can be shown that H1/2 maps kerL2(Lg0) isomorphically to kerL2(1− A).
As A is a compact operator, we get the condition

(Ah, h)L2(g0) ≤ (1 − ε) ‖h‖2L2(g0)
∀h ∈ H1/2(C∞

0 (S2T ∗M) ∩ kerL2(Lg0)
⊥),

for some ε > 0 which in turn is equivalent to

(R−h, h)L2(g0) ≤ (1 − ε)(Hh, h)L2(g0) ∀h ∈ C∞
0 (S2T ∗M) ∩ kerL2(Lg0)

⊥.

��
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Theorem 3.10 Let (Mn, g0) be a linearly stable ALE Ricci-flat manifold which is
integrable. Furthermore, let F̃ be as in (12). Then there exists a constant αg0 > 0
such that

(−Lg,g0h, h)L2(g) ≥ αg0

∥∥∇gh
∥∥2
L2(g)

for all g ∈ F̃ and h ∈ Lg0(t),g0(C
∞
0 (S2T ∗M)) provided that F̃ is chosen small

enough.

Proof By Theorem 3.9, there exists a constant α0 > 0 such that

(−Lg0h, h)L2(g0) ≥ α0
∥∥∇g0h

∥∥
L2(g0)

for any compactly supported h ∈ kerL2(Lg0)
⊥. Now by Taylor expansion, with k =

g − g0

(−Lg,g0h, h)L2(g)

= (−Lg0h, h)L2(g0) −
∫ 1

0

d

dt
(Lg0+tk,g0h, h)L2(g0+tk)dt

≥ α0
∥∥∇g0h

∥∥2
L2(g0)

+
∫ 1

0
[(∇g0,2h ∗ k + ∇g0h ∗ ∇g0k + h ∗ ∇g0,2k) ∗ h

+ Rm ∗ h ∗ h ∗ k] dμg0+tkdt

= α0
∥∥∇g0h

∥∥2
L2(g0)

+
∫ 1

0
[∇g0h ∗ h ∗ ∇g0k + ∇g0h ∗ ∇g0h ∗ k

+ Rm ∗ h ∗ h ∗ k] dμg0+tkdt

≥ α0
∥∥∇g0h

∥∥2
L2(g0)

− C
∥∥∇g0h

∥∥2
L2(g0)

‖k‖L∞(g0)

− C
∥∥∇g0h

∥∥
L2(g0)

∥∥h ∗ ∇g0k
∥∥
L2(g0)

≥ α0
∥∥∇g0h

∥∥2
L2(g0)

− C
∥∥∇g0h

∥∥2
L2(g0)

‖k‖σ
L∞(g0)

for someσ ∈ (0, 1). To justify the last inequality,we use elliptic regularity andSobolev
embedding as in the proof of Theorem 2.7 to obtain

∥∥r∇g0k
∥∥
L∞(g0)

≤ ‖k‖C1,α
0 (g0)

≤ C ‖k‖
W 2,p

0 (g0)

≤ C ‖k‖L p(g0) ≤ C ‖k‖1−σ

L2(g0)
‖k‖σ

L∞(g0) ,

with σ = 1 − 2
p and p > n. This can be combined with the Hardy inequality (3.7) to

obtain

∥∥h ∗ ∇g0k
∥∥
L2(g0)

≤
∥∥∥r−1h

∥∥∥
L2(g0)

∥∥r∇g0k
∥∥
L∞(g0)

≤ C
∥∥∇g0h

∥∥
L2(g0)

‖k‖σ
L∞(g0) ,
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which yields the estimate of the theorem for h ∈ kerL2(Lg0)
⊥, provided that ‖k‖L∞(g0)

is small enough. To pass to h ∈ kerL2(L∗
g,g0)

⊥, we note that an isomorphism between
kerL2(Lg0)

⊥ and kerL2(L∗
g,g0)

⊥ is given by �g : h �→ h −∑
i (h, ei (g))L2(g) · ei (g)

where the tensors ei (g) are an orthonormal basis of kerL2(L∗
g,g0). At first, we have

∇g�g(h) = ∇gh −
∑

i

(h, ei (g))L2(g) · ∇gei (g),

from which we conclude, using integration by parts
∥∥∇g�g(h)

∥∥2
L2(g) = ∥∥∇gh

∥∥2
L2(g) − 2(h, ei )L2(g)(	gei , h)L2(g)

+ (h, ei )
2
L2(g)(	gei , ei )L2(g)

≤ C
∥∥∇gh

∥∥2
L2(g) ≤ C

∥∥∇g0h
∥∥2
L2(g0)

.

(13)

The first inequality here can be proven as follows: Because ei = O(r−n+1) as r → ∞
(cf. Theorem 2.7), we have

(h, ei )L2(g) ≤
∥∥∥r−1h

∥∥∥
L2(g)

‖rei‖L2(g) ≤ C
∥∥∇gh

∥∥
L2(g)

due to the Hardy inequality The same argument also yields

(	gei , h)L2(g) ≤ C
∥∥∇gh

∥∥
L2(g) ,

because 	gei = O(r−n−1) as r → ∞ (cf. Theorem 2.7 again). This justifies the first
inequality from above. For the second inequality, we write

∇gh = ∇g0h + (�(g0) − �(g)) ∗ h,

and (�(g0) − �(g)) = O(r−n), see Theorem 2.7. Again by the Hardy inequality,

∥∥∇gh
∥∥2
L2(g) ≤ C

(∥∥∇g0h
∥∥2
L2(g) + ‖(�(g0) − �(g)) ∗ h‖2L2(g)

)

≤ C

(∥∥∇g0h
∥∥2
L2(g0)

+
∥∥∥r−1h

∥∥∥
2

L2(g0)

)
≤ C

∥∥∇g0h
∥∥2
L2(g0)

.

Here,weuse the smallness of‖g − g0‖L∞(g0) to compare the corresponding L2-norms.
To finish the proof, it remains to show that the inequality

(−Lg,g0�g(h),�g(h))L2(g) ≥ C · (−Lg,g0h, h)L2(g)

holds for some constant C > 0. We compute

(−Lg,g0�g(h),�g(h))L2(g)

= (−Lg,g0h, h)L2(g) +
∑

i

(h, ei )L2(g)(−Lg,g0ei , h)L2(g)
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≥ (−Lg,g0h, h)L2(g) −
∑

i

δ′ ∥∥∇gh
∥∥
L2(g)

∥∥Lg,g0ei
∥∥
Ln/2(g) ‖h‖L2n/n−2(g)

≥ (−Lg,g0h, h)L2(g) − δ
∥∥∇gh

∥∥2
L2(g)

≥ (1 − Cδ)(−Lg,g0h, h)L2(g),

where we also used the Sobolev inequality and elliptic regularity. ��

3.4 Existence for all Time and Convergence

Proposition 3.11 Let (M, g0) be a linearly stable ALE Ricci-flat manifold which satis-
fies the integrability condition. Then there exists an ε > 0 with the following property:
If (g(t))t∈[0,T ] is a Ricci–DeTurck flow and T a time such that ‖g(t) − g0‖L∞ < ε

for all t ∈ [0, T ], then there exists a constant such that the evolution inequality

d

dt
‖h − h0‖2L2(g0(t))

+ C
∥∥∥∇g0(t)(h − h0)

∥∥∥
2

L2(g0(t))
≤ 0

holds.

Proof We know that

∂t h − Lg0(t),g0(h − h0) = R[h − h0],

where

R[h − h0] = F ∗ ∇g0(t)(h − h0) ∗ ∇g0(t)(h − h0)

+∇g0(t)(G ∗ (h − h0) ∗ ∇g0(t)(h − h0)).

Thanks to Theorem 3.10 and Lemma 3.8,

∂t‖h − h0‖2L2(g0(t))

= 2(Lg0(t),g0(h − h0), h − h0)L2(g0(t)) + (R[h − h0], h − h0)L2(g0(t))

+ (h − h0, ∂t h0(t))L2(g0(t)) +
∫

M
(h − h0) ∗ (h − h0) ∗ ∂t h0(t)dμg0(t)

≤ −2αg0

∥∥∥∇g0(t)(h − h0)
∥∥∥
2

L2(g0(t))

+ C ‖(h − h0)‖L∞(g0(t))

∥∥∥∇g0(t)(h − h0)
∥∥∥
2

L2(g0(t))

+ ‖∂t h0‖L2(g0(t)) ‖h − h0‖L2(g0(t))

≤ (−2αg0 + C · ε)

∥∥∥∇g0(t)(h − h0)
∥∥∥
2

L2(g0(t))
,

which proves the desired estimate. ��
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Proof of Theorem 3.1 Let ε > 0 be so small that Proposition 3.11 holds, provided
that ‖h‖L∞(g0) < ε. By Lemma 3.2, we can find δ1 > 0 so small that the above
ε-bound holds as long as h ∈ BL2∩L∞(0, δ1). Now let δ2 > 0 be so small that
h(1) ∈ BL2∩L∞(0, δ1) if h(0) ∈ BL2∩L∞(0, δ2) where δ2 = δ2(ε) will be chosen
below. Suppose that Tmax ≥ 1 is the first time where h(t) leaves BL2∩L∞(0, ε). By
Lemma 3.8, Proposition 3.11 and elliptic regularity,

‖h0(Tmax )‖L2(g0) + ‖h0(Tmax )‖L∞(g0) ≤ C
∫ Tmax

1
‖∂t h0(t)‖L2(g0(t)) dt

≤ C
∫ Tmax

1

∥∥∥∇g0(t)(h(t) − h0(t))
∥∥∥
2

L2(g0(t))
dt

≤ C ‖h(1) − h0(1)‖2L2(g0)
≤ C ‖h(1)‖2L2(g0)

≤ C · (δ1)
2.

Furthermore by Proposition 3.11,

‖h(Tmax ) − h0(Tmax )‖L2(g0) ≤ ‖h(1) − h0(1)‖L2(g0) ≤ C · δ1.

Again by Proposition 3.11, Lemma 3.2 and interpolation,

‖h(Tmax ) − h0(Tmax )‖L∞(g0)

≤ C
∥∥∇g0(h(Tmax ) − h0(Tmax ))

∥∥1−α

L∞(g0)
· ‖h(Tmax ) − h0(Tmax )‖α

L2(g0)

≤ C · ε1−α ‖h(1) − h0(1)‖α
L2(g0)

≤ C · ε1−α(δ1)
α,

with α = n
n+2 .

By the triangle inequality,

‖h(Tmax )‖L2(g0) + ‖h(Tmax )‖L∞(g0) ≤ C · (δ1)
2 + C · δ1 + C · ε1−α(δ1)

α ≤ ε/2,

provided that δ1 > 0 was chosen small enough. We now have proven that such a Tmax

can not exist and that h(t) ∈ U for all T > 0.
Moreover, because

∫ ∞

1
‖∂t h0(t)‖L2(g0(t)) dt ≤ C

∫ ∞

1

∥∥∥∇g0(t)(h(t) − h0(t))
∥∥∥
2

L2(g0(t))
dt

≤ C ‖h(1) − h0(1)‖2L2(g0)
< ∞,

and since

∣∣∣∣∂t
∥∥∥∇g0(t)(h(t) − h0(t))

∥∥∥
2

L2(g0(t))

∣∣∣∣ ≤ C ‖h(t) − h0(t)‖2H3(g0)
≤ C
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by Lemma 3.4, we get

lim sup
t→+∞

‖∂t h0(t)‖L2(g0(t)) ≤ lim sup
t→+∞

∥∥∥∇g0(t)(h(t) − h0(t))
∥∥∥
2

L2(g0(t))
= 0,

and h0(t) converges in L2 to some limit h0(∞). Due to elliptic regularity, (h0(t))t≥0
converges to h0(∞) as t goes to +∞ with respect to all Sobolev norms. We are
going to show now that (g(t))t≥0 converges to g0 + h0(∞) =: g∞ as t goes to +∞
with respect to all Wk,p-norms with p > 2. For this purpose, it suffices to show that
(h(t) − h0(t))t≥0 converges to 0 as t goes to +∞ with respect to all these norms. At
first, by the Euclidean Sobolev inequality,

‖h − h0‖
L

2n
n−2 (g0)

≤ C
∥∥∇g0(h − h0)

∥∥
L2(g0)

→ 0, as t → +∞,

which implies that limt→+∞ h − h0 = 0 in L p for all p ∈ (2,∞) by interpolation
and due to smallness in L2 ∩ L∞. Moreover, for j ∈ N arbitrary, by interpolation
inequalities,

∥∥∥∇g0, j (h − h0)
∥∥∥
L p(g0)

≤ C
∥∥∇g0,m(h − h0)

∥∥α

L∞(g0)
‖h − h0‖1−α

L p(g0)
≤ C ‖h − h0‖1−α

L p(g0)
→ 0,

as t → +∞ with α = j p
mp+n and m ∈ N so large that α < 1. Due to Sobolev

embedding, convergence also holds for p = ∞. ��

4 Nash–Moser Iteration at Infinity

In this section, we prove a decay of the L∞ normof the difference between an immortal
solution to the Ricci–DeTurck flow with gauge an ALE Ricci-flat metric g0 and the
metric g0 itself. More precisely, one has the following theorem:

Theorem 4.1 Let (Mn, g0) be a complete Riemannian manifold endowed with a Ricci-
flat metric with quadratic curvature decay at infinity, i.e.

Ric(g0) = 0, |Rm(g0)|g0(x) ≤ C

1 + d2g0(x0, x)
, x ∈ M, AVR(g0) > 0,

for somepositive constantC and somepoint x0 ∈ M.Let (Mn, g(t))t≥0 bean immortal
solution to the Ricci–DeTurck flow with respect to the background metric g0 such that

sup
t≥0

‖g(t) − g0‖L∞(M) ≤ ε
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for some positive universal ε. Then, for any positive time t, and radius r <
√
t ,

sup
P(x0,t,r/2)

|g(t) − g0|2 ≤ C(n, g0, ε)

rn+2

∫

P(x0,t,r)
|g(t) − g0|2g0(y, s)dμg0(y)ds,

P(x0, t, r) := (M \ Bg0(x0, r)) × (t − r2, t].

In particular, if supt≥0 ‖g(t) − g0‖L2(M) ≤ C < +∞, then

‖g(t) − g0‖L∞(M\Bg0 (x0,
√
t)) ≤ C(n, g0, ε)

supt≥0 ‖g(t) − g0‖L2(M)

t
n
4

, t > 0.

Remark 4.2 Notice that P(x0, t, r) is the parabolic neighbourhood of a point at infinity
on the manifold M .

Before starting the proof of this theorem, we remark that by combining Theo-
rems 3.1 and 4.1 leads to Theorem 1.1.

Proof of Theorem 4.1 Recall that (g(t))t≥0 (or similarly h(t) := g(t) − g0) satisfies
the following partial differential equation:

∂t h = g−1 ∗ ∇g0,2h + Rm(g0) ∗ h + g−1 ∗ g−1 ∗ ∇g0h ∗ ∇g0h,

g−1 ∗ ∇g0,2h := gi j∇g0,2
i j h.

In particular,

∂t |h|2g0 ≤ g−1 ∗ ∇g0,2|h|2g0 − 2g−1(∇g0h,∇g0h) + R(g0)|h|2g0 + c(n)|h|g0 |∇g0h|2g0 ,
g−1(∇g0h,∇g0h) := gi j∇g0

i h∇g0
j h, R(g0) := c(n, ε)|Rm(g0)|g0 .

Since ‖h(t)‖L∞(M) ≤ ε for any positive time t :

∂t |h|2g0 ≤ g−1 ∗ ∇g0,2|h|2g0 − |∇g0h|2g0 + R(g0)|h|2g0 ,

if ε ≤ ε(n). Define u := |h|2g0 and multiply the previous differential inequality by
pu p−1 for some real p ≥ 2 to get:

∂t u
p = pu p−1∂t u

≤ pu p−1g−1 ∗ ∇g0,2u − pu p−1|∇g0h|2g0 + pR(g0)u
p

≤ g−1 ∗ ∇g0,2u p − pg−1(∇g0u p−1,∇g0u) − pu p−1|∇g0h|2g0 + pR(g0)u
p.

Take any smooth space-time cutoff functionψ andmultiply the previous differential
inequality by ψ2u p and integrate by parts as follows:

123



2866 A. Deruelle, K. Kröncke

∫ t ′

t−r2

∫

M
ψ2u p

[
−g−1 ∗ ∇g0,2u p + pg−1(∇g0u p−1,∇g0u) + pu p−1|∇g0h|2g0

]
dμg0ds

(14)

≤
∫ t ′

t−r2

∫

M
−ψ2u p∂su

p + pR(g0)ψ
2u2pdμg0ds (15)

for any t ′ ∈ (t − r2, t].
Now, by integrating by parts once and using the pointwise Young inequality:

−
∫

M
ψ2u pg−1 ∗ ∇g0,2u pdμg0

=
∫

M
∇g0
i (gi jψ2u p)∇g0

j u pdμg0

=
∫

M
g−1(∇g0(ψu p),∇g0(ψu p)) − g−1(∇g0ψ,∇g0(ψu p))u pdμg0

+
∫

M
g−1(u p∇g0ψ,ψ∇g0u p)dμg0ds

+
∫

M
divg0(g

−1)(ψ2u p∇g0u p)dμg0ds

≥ 1

2

∫

M
|∇g0(ψu p)|2g0dμg0

−c
∫

M
|∇g0ψ |2g0u2p + pu2p−1ψ |∇g0h|g0ψ |∇g0u|g0dμg0

≥ 1

2

∫

M
|∇g0(ψu p)|2g0dμg0 − c

∫

M
|∇g0ψ |2g0u2pdμg0

− p

2

∫

M

(
ψ2u2p−1|∇g0h|2g0 + cu2p−1ψ2|∇g0u|2g0

)
dμg0 ,

for some universal positive constant c, and where we used the smallness of
‖h(t)‖L∞(M) for all time t . Going back to (14) and (15), one gets by absorbing terms
appropriately:

1

2

∫ t ′

t−r2

∫

M
|∇g0(ψu p)|2g0dμg0ds ≤

∫ t ′

t−r2

∫

M
−ψ2u p∂su

p + pR(g0)ψ
2u2pdμg0ds

+ c
∫ t ′

t−r2

∫

M
|∇g0ψ |2g0u2pdμg0ds.

Finally, by integrating by parts with respect to time:

∫

M
(u2pψ2)(t ′)dμg0 +

∫ t ′

t−r2

∫

M
|∇g0(ψu p)|2g0dμg0 ds

≤ 2
∫ t ′

t−r2

∫

M
pR(g0)ψ

2u2pdμg0 ds
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+ c
∫ t ′

t−r2

∫

M

(
(∂sψ

2) + |∇g0ψ |2g0
)
u2pdμg0 ds.

We need to control the integral involving the potential R(g0). By assumption, on
the quadratic curvature decay at infinity:

‖R(g0)‖L∞(M\Bg0 (x0,r)) ≤ C

1 + r2
, r > 0. (16)

Let τ, σ ∈ (0,+∞) such that τ + σ ≤ r . Define momentarily,

P(x0, t, r , s) := M \ Bg0(x0, r − s) × (t − s2, t], 0 < s2 ≤ r2 < t .

Notice that s1 < s2 implies P(x0, t, r , s1) ⊂ P(x0, t, r , s2).
Now, choose two smooth functions φ : R+ → [0, 1] and η : R+ → [0, 1] such

that

supp(φ) ⊂ [r − (τ + σ),+∞), φ ≡ 1 in [r − τ,+∞),

φ ≡ 0 in [0, r − (τ + σ)], 0 ≤ φ′ ≤ c/σ,

supp(η) ⊂ [t − (τ + σ)2,+∞), η ≡ 1 in [t − τ 2,+∞),

η ≡ 0 in (t − r2, t − (τ + σ)2], 0 ≤ η′ ≤ c/σ 2.

Define ψ(y, s) := φ(dg0(x0, y))η(s), for (y, s) ∈ M × (0,+∞). Then

|∇g0ψ |g0 ≤ c

σ
, |∂sψ | ≤ c

σ 2

for some uniform positive constant c.
In particular, thanks to claim (16) applied to this cutoff function ψ previously

defined, one has:

∫

M
(u2pψ2)(t ′)dμg0 +

∫ t ′

t−r2

∫

M
|∇g0(ψu p)|2g0dμg0 ds

≤ c

(
p

[1 + r − (τ + σ)]2 + 1

σ 2

)(∫

P(x0,t,r ,τ+σ)

u2pdμg0

)
, t ′ ∈ (t − r2, t],

which implies in particular that

sup
t ′∈(t−r2,t]

∫

M
(u2pψ2)(t ′)dμg0

≤ c

(
p

[1 + r − (τ + σ)]2 + 1

σ 2

)(∫

P(x0,t,r ,τ+σ)

u2pdμg0

)
. (17)
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Now, by Hölder inequality, for s ≥ 0,

∫

M
(ψu p)2+

4
n (s)dμg0 ≤

(∫

M
(ψu p)

2n
n−2 (s)dμg0

) n−2
n
(∫

M
(ψu p)2(s)dμg0

) 2
n

.

Therefore, to sum it up, if αn := 1 + 2/n, by using (17) in the third line,

∫

P(x0,t,r ,τ )

(
u2p

)αn
dμg0ds

≤
∫

P(x0,t,r ,0)

(
ψu p)2αn dμg0ds

≤
∫ t

t−r2

(∫

M
(ψu p)

2n
n−2 dμg0

) n−2
n
(∫

M
(ψu p)2dμg0

) 2
n

ds

≤ c(n, g0) sup
s∈(t−r2,t]

(∫

M
(ψu p)2dμg0

) 2
n
∫

M×(t−r2,t]
|∇g0(ψu p)|2g0dμg0

≤ c(n, g0)

(
p

[1 + r − (τ + σ)]2 + 1

σ 2

)αn
(∫

P(x0,t,r ,τ+σ)

u2pdμg0

)αn

.

Define the following sequences:

pi := αi
n, σi := 2−1−i (r/4), τ−1 := 3r/4, τi := 3r/4 −

i∑

j=0

σ j , i ≥ 0.

Then, limi→+∞ τi = r/2 and, for any i ≥ 0,

‖u2‖L pi+1 (P(x0,t,r ,τi ))

≤
(

c(n, g0)

(
pi

1 + [r − τi−1]2 + 1

σ 2
i

)) 1
pi

‖u2‖L pi (P(x0,t,r ,τi−1)),

i.e.

‖u‖2L∞(P(x0,t,r/2)) ≤ �∞
i=0

(

c(n)

(
pi

1 + [r − τi−1]2 + 1

σ 2
i

)) 1
pi

‖u‖2L2(P(x0,t,r ,3r/4))
,

since P(x0, t, r , r/2) = P(x0, t, r/2). It remains to estimate the previous infinite
product:

�∞
i=0

(
pi

1 + [r − τi−1]2 + 1

σ 2
i

) 1
pi

≤ c(n)
1

r2+n
,
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i.e.

sup
P(x0,t,r/2)

u2 ≤ c(n, g0)
1

r2+n

∫

P(x0,t,r ,3r/4)
u2dμg0ds. (18)

To get a bound depending on the L1 norm of u, one can proceed as in [23] (the
so-called Li–Schoen’s trick) by iterating (18) appropriately. ��
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