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Abstract
In this paper, we study the properties of a certain class of Borel measures on R

n that
arise in the integral representation of Herglotz–Nevanlinna functions. In particular,
we find that restrictions to certain hyperplanes are of a surprisingly simple form and
show that the supports of suchmeasures cannot lie within particular geometric regions,
e.g., strips with positive slope. Corresponding results are derived for measures on the
unit poly-torus with vanishing mixed Fourier coefficients. These measures are closely
related to functions mapping the unit polydisk analytically into the right half-plane.

Keywords Analytic functions · Nevanlinna measures · Poly-torus · Measure with
vanishing mixed Fourier coefficients · Poly-upper half-plane
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1 Introduction

When considering functions in one complex variable, those which map a complex
half-plane or the unit disk into a half-plane play a special role. They are very well
studied and appear inmany areas of applications, e.g., in extension theory of symmetric
operators [7,15] or when describing passive system via their impulse response [27].
In particular, they are characterized via integral representations and there is a very
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intimate connection between the function and its representing measure, see e.g., the
classical article [13].

Generalizations of these classes to several complex variables have been considered,
e.g., in [14] for the unit polydisk, in [25] for the poly-upper half-plane and other
tubular domains, and have been investigated by several authors, cf. comments below.
It also has to be mentioned that these functions in several complex variables appear in
applications as well, but are not yet utilized so much, due to the lack of understanding
on the theoretical side, see e.g., [12,20]. There the investigations are often restricted
to two-component composite media, which requires functions in one variable only.

In the current text, we consider both functions that map the poly-upper half-plane
C

+n or the unit polydisk D
n analytically into a half-plane. It is known that these

functions can be characterized via integral representations of the form

f (
⇀
z) = L(

⇀
z) +

∫
D

Kn(
⇀
z,

⇀
t)dμ(

⇀
t).

Here L denotes a linear term and Kn a kernel function, both depending on the domain,
while D is the distinguished boundary of the domain andμ is a positive Borel measure
on D, cf. Theorem 2.2 and [14, Theorem 1]. In the case of one variable, i.e., n = 1,
all (reasonable) measures appear, whereas for several variables, not all measures are
admissible. For functions mapping into the upper half-plane, the reason for that lies
in the fact that the imaginary part of the kernel Kn is then not non-negative, but may
change sign. However, it can be decomposed as

Im[Kn] = Pn + Rn, (1.1)

where Pn denotes the respective Poisson kernel, which is positive, and Rn denotes the
remainder. It can then be shown that those measures which do appear as representing
measures are exactly those which annihilate the remainder, i.e.,

∫
D

Rn(
⇀
z,

⇀
t)dμ(

⇀
t) = 0 (1.2)

for all z, cf. Theorem 2.2 and [14, Theorem 1]. The drawback of these particular
descriptions of the measures is that they are not so easy to check, which also makes it
hard to construct examples. In the case of the unit polydisk, these representations and
measures are discussed, e.g., in [2,11,14,23,24]. In particular, examples of extremal
measures are given in [19]. For the poly-upper half-plane there are fewer results, e.g.,
[2,6,26] and, more recent, [24], as well as [16,17,21].

We also want to mention that a subclass of these functions, namely the Herglotz–
Agler functions, are characterized via operator representations and the so-called μ-
resolvents, cf. [3,4,8]. However, these results do not imply the integral representation
mentioned above and cannot be used for our current purpose. Moreover, there are
many works on similar functions defined on the ball, see e.g., [18] and, recently, [1].
However, these results are not used here, since the ball and the polydisk (and, hence,
also the poly-upper half-plane) are not biholomorphically equivalent.
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In the present paper, we study the classes of representing measures such that con-
dition (1.2) is satisfied in the two cases considered. Particular focus lies on geometric
properties of the support. However, contrary to many other texts concerning measures
on the unit polydisk, we do not investigate the polydisk directly, but work, instead,
first in the poly-upper half-plane and then translate the obtained results back to case
of the polydisk.

In the poly-upper half-plane, holomorphic functions with non-negative imaginary
part are called Herglotz–Nevanlinna functions, cf. Definition 2.1, while their repre-
senting measures are called Nevanlinna measures, cf. Definition 3.1.

First, we show that hyperplanes inRn which are orthogonal to some coordinate axis
play a special role for such measures. Namely, if the hyperplane is not a zero-set of the
measure, then the restriction of themeasure to that hyperplane has to be a constantmul-
tiple of the (n −1)-dimensional Lebesgue measure, cf. Theorem 3.4. In particular, the
measure can be decomposed into one part supported on a coordinate-orthogonal hyper-
plane and the remaining part such that also the corresponding Herglotz–Nevanlinna
function decomposes into two Herglotz–Nevanlinna functions, cf. Corollary 3.5. For
other sets this procedure is not necessarily possible, since not every set can appear
as the support of a Nevanlinna measure. We give several examples and discuss the
situation for affine subspaces in detail. Moreover, we show that the support of a Nevan-
linna measure cannot be confined within, roughly speaking, strips with positive slope,
cf. Theorem 3.17. Applications of rational transformations yield even more results.
In particular, we show that the support of a Nevanlinna measure cannot, for every
coordinate, leave out a coordinate-orthogonal strip, cf. Theorem 3.25.

The structure of the paper is as follows. In the first part of this text, in Sects. 2 and
3, we completely focus on the situation in the poly-upper half-plane. In Sect. 2, we
review the integral representation theorem that lays the groundwork for our investi-
gations. In Sect. 3, we formally introduce the class of Nevanlinna measures on C

+n

and present the main results of this paper, namely a detailed description of the form of
these measures along coordinate-parallel affine subspaces of Rn as well as an inves-
tigation of the geometric properties of the support of such measures. The poly-torus
will be discussed in Sect. 4, where we investigate how the properties established for
Nevanlinna measures in Sect. 3 relate back to measures on the unit poly-torus with
vanishing mixed Fourier coefficients.

2 Prerequisites

We begin by recalling the following class of functions related to the poly-upper half-
plane C+n := {

z ∈ C
n
∣∣∀ j = 1, 2, . . . , n : Im[z j ] > 0

}
.

Definition 2.1 A function q : C+n → C is called a Herglotz–Nevanlinna function if
it is holomorphic and has non-negative imaginary part.

Our main tool in the study of Herglotz–Nevanlinna functions is the following char-
acterization theorem [17, Theorems 4.1 and 5.1].
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Theorem 2.2 A function q : C+n → C is a Herglotz–Nevanlinna function if and only
if q can be written as

q(
⇀
z) = a +

n∑
�=1

b�z� + 1

πn

∫
Rn

Kn(
⇀
z,

⇀
t)dμ(

⇀
t), (2.1)

where a ∈ R,
⇀

b ∈ [0,∞)n, the kernel Kn is defined for
⇀
z ∈ C

+n and
⇀
t ∈ R

n as

Kn(
⇀
z,

⇀
t) := i

(
2

(2i)n

n∏
�=1

(
1

t� − z�

− 1

t� + i

)
− 1

(2i)n

n∏
�=1

(
1

t� − i
− 1

t� + i

))

(2.2)
and μ is a positive Borel measure on R

n satisfying the growth condition

∫
Rn

n∏
�=1

1

1 + t2�
dμ(

⇀
t) < ∞ (2.3)

and the Nevanlinna condition

∫
Rn

1

(t�1 − z�1)
2(t�2 − z�2)

2

n∏
j=1

j �=�1,�2

(
1

t j − z j
− 1

t j − z j

)
dμ(

⇀
t) = 0 (2.4)

for all
⇀
z ∈ C

+n and all indices �1, �2 ∈ {1, 2, . . . , n} with �1 < �2. Furthermore, for
a given function q, the triple of representing parameters (a,

⇀

b, μ) is unique.

Remark 2.3 The Nevanlinna condition (2.4) is, here, taken as one of the alternatives
presented in [17, Theorem 5.1] and is equivalent to the requirement that the measure
annihilates the remainder term in (1.1).

In the case n = 1, the above theorem reduces to the classical result attributed to
Nevanlinna [9,22]. The case n = 2 was treated in [16, Theorem 3.1] and an integral
representation of the same form, but not as an “if and only if”-characterization with
the accompanying conditions, appears also in [26, Sect. 17.4].

One consequence of Theorem 2.2, that will be of use several times later, is described
by the corollary below, cf. [17, Corollary 4.6], where the symbol ∧−→ denotes a non-
tangential limit.

Corollary 2.4 Let n ≥ 1, let q be a Herglotz–Nevanlinna function, let p ∈ R and let
j ∈ {1, 2, . . . , n}. Then there exists a non-negative number c j (p) such that

lim
z j

∧−→ p
(p − z j ) q(

⇀
z) = c j (p). (2.5)

In particular, the above limit is independent of the entries of the vector
⇀
z at the non- j-th

positions.
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3 Properties of NevanlinnaMeasures

Let us now formally introduce the class of measures we are going to study.

Definition 3.1 A positive Borel measure μ on Rn is called a Nevanlinna measure if it
satisfies both the growth condition (2.3) and the Nevanlinna condition (2.4).

Remark 3.2 Note that a Nevanlinna measure is the representing measure of a whole
family of Herglotz–Nevanlinna functions, as the linear part of representation (2.1)
differs between different functions with the same representing measure.

In the case n = 1, the class of Nevanlinna measures is merely the class of all
positive Borel measure on R satisfying the growth condition

∫
R
(1 + t2)−1dμ(t) <

∞. In higher dimensions, the appearance of the Nevanlinna condition (2.4), which
conveniently reduces to an empty condition when n = 1, makes these measures much
more interesting and involved.

In particular, in the case n = 2, it was shown that the Nevanlinna condition (2.4)
implies for non-trivial Borel measures that they cannot be finite and that all points
have zero mass, i.e., μ({⇀t0}) = 0 for any point

⇀
t0 ∈ R

2, see [16, Propositions 4.3 and
4.4]. Among others, we will see that corresponding results hold for all n ≥ 2. The
first will be formulated in Proposition 3.3, whereas the second turns out to be a special
case of Theorem 3.4.

3.1 Mass of Affine Subspaces

We start with the following proposition on the measure of the whole space, which
already marks a big difference between dimension 1 and higher dimensions.

Proposition 3.3 A non-trivial Nevanlinna measure cannot be finite.

The proof goes along the same lines as for [16, Proposition 4.3] and is, hence,
omitted here.

For a Nevanlinna measure μ, we are now turning to its restrictions to hyperplanes
inRn , which are orthogonal to some coordinate axis. More precisely, for a given index
j ∈ {1, 2, . . . , n} and a given point p ∈ R, we denote the affine hyperplane

Hj (p) := {⇀t ∈ R
n | t j = p} ⊆ R

n .

A main result of this paper is the following description of the measure μ along such
a hyperplane.

Theorem 3.4 Let n ≥ 2 and let μ be a Nevanlinna measure. Take an index j ∈
{1, 2, . . . , n} and any point p ∈ R. Let μ|Hj (p) denote the restriction of the measure
μ to the hyperplane Hj (p). Then it holds that

μ|Hj (p) = c j (p)πλRn−1, (3.1)

where the constant c j (p) ≥ 0 is given by the limit in (2.5) and λRn−1 denotes the
Lebesgue measure on R

n−1.
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Proof Without loss of generality, we assume that j = 1, i.e., we are considering the
restriction of the measure μ to a hyperplane that lies orthogonal to the first coordinate
axis. Together with this measure, we consider the Herglotz–Nevanlinna function q

whose triple of representing parameters is equal to (0,
⇀

0, μ).
Let σ := μ|H1(p) be viewed as a Borel measure on R

n−1, i.e.,

dσ(t2, . . . , tn) = dμ(p, t2, . . . , tn).

We use the notation μ = μ̃ + σ and, by Theorem 2.2, we have that

q(
⇀
z) = 1

πn

∫
Rn

Kn(
⇀
z,

⇀
t)dμ(

⇀
t)

= 1

πn

∫
Rn

Kn(
⇀
z,

⇀
t)dμ̃(

⇀
t)

+ 1

πn

∫
Rn−1

Kn(
⇀
z, (p, t2, . . . , tn))dσ(t2, . . . , tn). (3.2)

Investigating now the integral with respect to the measure σ , we calculate that

1

πn

∫
Rn−1

Kn(
⇀
z, (p, t2, . . . , tn))dσ(p, t2, . . . , tn)

= i

πn

∫
Rn−1

(
2

(2i)n

(
1

p − z1
− 1

p + i

) n∏
�=2

(
1

t� − z�

− 1

t� + i

)

− 1

(2i)n

(
1

p − i
− 1

p + i

) n∏
�=2

(
1

t� − i
− 1

t� + i

))
dσ(t2, . . . , tn)

= i

πn

∫
Rn−1

(
2

(2i)n−1

z1 + i

2i(p − z1)(p + i)

n∏
�=2

(
1

t� − z�

− 1

t� + i

)

− 1

(2i)n−1

1

1 + p2

n∏
�=2

(
1

t� − i
− 1

t� + i

))
dσ(t2, . . . , tn) = (∗).

The trick now is to add and subtract a term such that the remaining expressions
containing the (t2, . . . , tn)-variables can be seen as the kernel Kn−1, multiplied by a
factor independent of these variables. This leads to

(∗) = i

πn

∫
Rn−1

(
2

(2i)n−1

z1 + i

2i(p − z1)(p + i)

n∏
�=2

(
1

t� − z�

− 1

t� + i

)

− 1

(2i)n−1

z1 + i

2i(p − z1)(p + i)

n∏
�=2

(
1

t� − i
− 1

t� + i

)

+ 1

(2i)n−1

(
z1 + i

2i(p − z1)(p + i)
− 1

1 + p2

)
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·
n∏

�=2

(
1

t� − i
− 1

t� + i

))
dσ(t2, . . . , tn)

= 1

π

(
z1 + i

2i(p − z1)(p + i)
· q1(z2, . . . , zn) + z1 − i

2i(p − z1)(p − i)
· q1(i, . . . , i)

)
,

with the auxiliary function q1 being defined as

q1(z2, . . . , zn) := i

πn−1

∫
Rn−1

(
2

(2i)n−1

n∏
�=2

(
1

t� − z�

− 1

t� + i

)

− 1

(2i)n−1

n∏
�=2

(
1

t� − i
− 1

t� + i

))
dσ(t2, . . . , tn)

= 1

πn−1

∫
Rn−1

Kn−1((z2, . . . , zn),

(t2, . . . , zn))dσ(t2, . . . , tn). (3.3)

Note that, at this point, we do not know if the function q1 is well-defined. To this
end, we observe now that

∫
Rn

n∏
�=1

1

1 + t2�
dμ(

⇀
t)

=
∫
Rn

n∏
�=1

1

1 + t2�
dμ̃(

⇀
t) + 1

1 + p2

∫
Rn−1

n∏
�=2

1

1 + t2�
dσ(t2, . . . , tn). (3.4)

All of the three terms above are non-negative since all of the integrands and measures
are positive. But the term on the left is finite, so both terms on the right must also be
finite as well. This implies, first, that the function q1 is well-defined and holomorphic
in the poly-upper half-plane C+(n−1) of dimension n − 1. Furthermore, we are able
to change the order of limits and integrations whenever we have either of the two
measures on the right-hand side of equality (3.4), as we are allowed to do this with
the measure on the left-hand side of equality (3.4).

Using this, we calculate that

lim
z1

∧−→ p
(p − z1)

1

πn

∫
Rn

Kn(
⇀
z,

⇀
t)dμ̃(

⇀
t) = 1

πn

∫
Rn

lim
z1

∧−→ p
(p − z1)Kn(

⇀
z,

⇀
t)dμ̃(

⇀
t)

= 1

πn

∫
Rn

1

(2i)n−1

n∏
�=2

(
1

t� − z�

− 1

t� + i

)
χ{p}(t1)dμ̃(

⇀
t)

= 1

πn
· 1

(2i)n−1

∫
Rn−1

n∏
�=2

(
1

t� − z�

− 1

t� + i

)
dσ(t2, . . . , tn) = 0

as the measure μ̃ is, by construction, identically zero on the hyperplane Hj (p).
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By Corollary 2.4, there exists a number c := c1(p) ≥ 0, independent of the value
of (z2, . . . , zn) ∈ C

+(n−1), such that

lim
z1

∧−→ p
(p − z1)q(

⇀
z) = c.

But this limit is, by expansion (3.2), also equal to

lim
z1

∧−→ p
(p − z1)q(

⇀
z) = lim

z1
∧−→ p

(p − z1)
1

πn

∫
Rn

Kn(
⇀
z,

⇀
t)dμ̃(

⇀
t)

+ lim
z1

∧−→ p
(p − z1)

1

π

(
z1 + i

2i(p − z1)(p + i)
· q1(z2, . . . , zn)

+ z1 − i

2i(p − z1)(p − i)
· q1(i, . . . , i)

)

= 1

2π i
(q1(z2 . . . , zn) + q1(i, . . . , i)) .

We thus have that

c = 1

2π i
(q1(z2 . . . , zn) + q1(i, . . . , i)) .

Since this equality holds for every vector (z2 . . . , zn) ∈ C
+(n−1), we can set first

(z2 . . . , zn) = (i, . . . , i). This gives that q1(i, . . . , i) = π i c, allowing us to solve the
above equation for q1(z2, . . . , zn), yielding

q1(z2, . . . , zn) = π i c.

We infer now that the function q1 is a Herglotz–Nevanlinna function in n − 1
variables. On one hand, its representing measure is μ|H1(p) due to equality (3.3) and
[17, Corollary 4.7]. On the other hand, we know that the representing measure of the
function

⇀
z �→ i, as a function of n − 1 variables, is λRn−1 , cf. [17, Example 3.5].

Invoking the uniqueness statement of Theorem 2.2 finishes the proof. �

The following corollary of Theorem 3.4 gives a particular decomposition of a

Herglotz–Nevanlinna function with respect to a collection of coordinate-orthogonal
hyperplanes.

Corollary 3.5 Let n ≥ 2, let q be a Herglotz–Nevanlinna function and let μ be its
representing measure. Decompose the measure μ as

μ =
∑
i∈I

μ|Hji (pi ) + μ̃

for some indices ji ∈ {1, 2, . . . , n} and some points pi ∈ R, where I ⊆ N is a finite
set of indices and μ̃ denotes the remaining positive Borel measure. Then the function
q can be written, for any

⇀
z ∈ C

+n, as
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q(
⇀
z) =

∑
i∈I

c ji (pi )

pi − z ji
+ q̃(

⇀
z), (3.5)

where q̃ is a Herglotz–Nevanlinna function which admits an integral representation
formula of the form

q̃(
⇀
z) =

(
a −

∑
i∈I

c ji (pi ) pi

1 + p2i

)
+

n∑
�=1

b�z� + 1

πn

∫
Rn

Kn(
⇀
z,

⇀
t)dμ̃(

⇀
t), (3.6)

where Kn, a,
⇀

b, and μ are as in Theorem 2.2 and c ji (pi ) are given by the limit (2.5).

Remark 3.6 In the above corollary, we assume that the pairs ( ji , pi ) are distinct in the
sense that there do not exist i1, i2 ∈ I such that both ji1 = ji2 and pi1 = pi2 .

Proof Without loss of generality, we may assume that I = {1} and write p := p1.
If this is the case, we infer from the proof of Theorem 3.4 that the function q can be
written as

q(z) = a +
n∑

�=1

b� z� + 1

πn

∫
Rn

Kn(
⇀
z,

⇀
t)dμ̃(

⇀
t)

+ 1

π

(
z1 + i

2i(p − z1)(p + i)
· q1(z2, . . . , zn) + z1 − i

2i(p − z1)(p − i)
· q1(i, . . . , i)

)
,

where q1 is the auxiliary function defined by formula (3.3). Furthermore, we have also
learned that the function q1 is, in fact, identically equal to π i c1(p), yielding that

1

π

(
z1 + i

2i(p − z1)(p + i)
· q1(z2, . . . , zn) + z1 − i

2i(p − z1)(p − i)
· q1(i, . . . , i)

)

= c1(p) (1 + p z1)

(p − z1)(1 + p2)
= c1(p)

p − z1
− c1(p) p

1 + p2
.

This implies that expansion (3.2) takes the desired form (3.5), with the function q̃
given, indeed, by representation (3.6).

Thus, it remains to conclude that the function q̃ , as defined in the theorem, is a
Herglotz–Nevanlinna function. To do this, we only need to check that the measure μ̃

satisfies the Nevanlinna condition (2.4), since we have already shown in the proof of
Theorem 3.4 that it satisfies the growth condition (2.3) when we considered equality
(3.4).

Without loss of generality, we restrict ourselves to only check the case �1 = 1 and
�2 = 2 in condition (2.4). Hence, we consider the identity
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∫
Rn

1

(t1 − z1)2(t2 − z2)2

n∏
j=3

(
1

t j − z j
− 1

t j − z j

)
dμ(

⇀
t)

=
∫
Rn

1

(t1 − z1)2(t2 − z2)2

n∏
j=3

(
1

t j − z j
− 1

t j − z j

)
dμ̃(

⇀
t)

+ C

(p − z1)2
·
∫
Rn−1

1

(t2 − z2)2

n∏
j=3

(
1

t j − z j
− 1

t j − z j

)
dt2 . . . dtn, (3.7)

where C ≥ 0 is some constant. The left-hand side of equality (3.7) is identically zero
for any vector

⇀
z ∈ C

+n since μ is the representing measure of a Herglotz–Nevanlinna
function and, thus, satisfies the Nevanlinna condition (2.4). Furthermore, the second
term on the right-hand side of equality (3.7) is, likewise, identically zero since

∫
R

1

(t2 − z2)2
dt2 = 0

for any z2 ∈ C
+ by standard residue calculus. Therefore, the first term on the right-

hand side of equality (3.7) is also identically zero for any vector
⇀
z ∈ C

+n , implying
that the measure μ̃ does indeed satisfy the Nevanlinna condition (2.4) and finishing
the proof. �


Note that in one variable the decomposition of the function in formula (3.5) in
Corollary 3.5 is, of course, well known. Given just a single point p ∈ R, one can find
a number c ≥ 0 such that

μ|{p} = cπδp,

which yields a decomposition of the function q as

q(z) = c

p − z
+ q̃(z),

where q̃ is a Herglotz–Nevanlinna function whose representing measure is μ − μ|{p}.
Note that the convention of writing the measure μ|{p} as cπδp, and not c′δp, comes
from the fact that the Herglotz–Nevanlinna function z �→ − 1

z is represented by the
measure πδ0.

In several variables, the procedure of decomposing a Nevanlinna measure and
obtaining a decomposition of a Herglotz–Nevanlinna function as in formula (3.5)
cannot be generalized to arbitrary sets. Indeed, given a Nevanlinna measure μ and
given any Borel measurable subset U ⊆ R

n , one might consider the decomposition

μ = μ|U + (μ − μ|U ). (3.8)

In one variable, the only constraint on a representing measure is the growth condition
(2.3), and, hence, both measures on the right-hand side of equality (3.8) are automat-
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ically Nevanlinna measures. However, in several variables this is not necessarily the
case as the Nevanlinna condition (2.4) must be fulfilled as well.

Example 3.7 Consider the Borel set [0, 1]2 ⊆ R
2 and consider the Nevanlinna mea-

sures μ1 = λR2 and μ2 defined, for any Borel measurable set V ⊆ R
2, as

μ2(V ) :=
∫
R

χV (t,−t)dt,

i.e., the measure μ2 captures the Lebesgue-length of the intersection between the set
V and the anti-diagonal in R

2.
For the measure μ1, the restriction μ1|[0,1]2 is not a Nevanlinna measure due to

Proposition 3.3, implying that the measure μ1 cannot be decomposed as in formula
(3.8)with respect to the set [0, 1]2.On the other hand, for themeasureμ2, the restriction
μ2|[0,1]2 is identically zero and, hence, a Nevanlinna measure.

Attempting to decompose the same twomeasures with respect to the set [0,∞)×R

gives, however, completely different results. For the measure μ1, it is easily checked
via a direct verification of condition (2.4) that the measures

μ1|[0,∞)×R = λ[0,∞)×R and μ1 − μ1|[0,∞)×R = λ(−∞,0]×R

are, in fact, Nevanlinna measures. For the measure μ2, the conclusion is different as
the measure μ2|[0,∞)×R is not a Nevanlinna measure, which can be seen, e.g., by a
direct verification of condition (2.4) or by applying Theorem 3.25 presented later. ♦

Let us now return to the μ-mass of certain subsets of Rn . Suppose so that U ⊆ R
n

is a Borel measurable set such that U ⊆ Hj (p) for some index j ∈ {1, 2 . . . , n} and
some point p ∈ R. Then, obviously,

μ(U ) = 0 ⇐⇒ μ|Hj (p)(U ) = 0.

A direct implication of this trivial fact, together with Theorem 3.4, is the following
important statement.

Corollary 3.8 Let n ≥ 2 and let μ be a Nevanlinna measure on R
n. Let U be an affine

subspace ofRn which is orthogonal to some coordinate axis. Then the following holds:
if codim(U ) ≥ 2 then μ(U ) is zero, while if codim(U ) = 1 then μ(U ) is either zero
or infinity.

In particular, for n ≥ 2, points, i.e., affine subspaces of codim(U ) = n, have
measure zero.

From the above corollary, we conclude that if an affine subspace which is orthog-
onal to some coordinate axis is to hope to have non-zero μ-mass, it needs to have
codimension one. Even then, the only non-zero option is infinity, and the measure on
the subspace may only have the form of the Lebesgue measure due to Theorem 3.4.

The final corollary of this section establishes a relation between the variable depen-
dence of the function q and the μ-masses of the hyperplanes Hj (0).

123



2622 A. Luger, M. Nedic

Corollary 3.9 Let n ≥ 2, let q be a Herglotz–Nevanlinna function and let μ be its
representing measure. If μ(Hj (0)) = ∞, then q has to depend on the z j -variable.

Proof As in the proof of Theorem 3.4, we may, without loss of generality, assume that
j = 1. Let us now do a proof by contradiction. Suppose so that μ(H1(0)) = ∞ and
that the function q does not depend on the z1-variable.

By Theorem 3.4, we have that μ|H1(0) = c1(0)πλRn−1 , where c1(0) �= 0 due to our
assumption. On the other hand, Corollary 2.4 implies that

c1(0) = − lim
z1

∧−→ 0
z1 q(

⇀
z) = lim

z1
∧−→ 0

z1 q(i, z2, . . . , zn) = 0.

This gives the desired contradiction, finishing the proof. �

Observe, though, that the converse to Corollary 3.9, i.e., that functions depending

on the z j -variable have to have μ(Hj (0)) = ∞, is not true, as demonstrated by the
function q(z1, z2) = − 1

z1+z2
.

3.2 Geometry of the Support

As we have seen before, hyperplanes which are orthogonal to some coordinate axis
appear as support sets for Nevanlinna measures. However, for rotated hyperplanes,
this may or may not be true.

Example 3.10 Let n = 2 and consider the following three hyperplanes in R
2: H1 :=

{t1 = 1}, H2 := {t1 = −t2} and H3 := {t1 = t2}.
We know from Theorem 3.4 that the hyperplane H1 appears as the support of some

Nevanlinna measure. Similarly, for the hyperplane H2, one can find a Nevanlinna
measure whose support is equal to H2, cf. Example 3.16 and [21, Example 4.2].
However, wewill soon see that there exists noNevanlinnameasure such that its support
would be equal to, or even contained in, H3, cf. Theorem 3.11, Examples 3.14, 3.16
and Fig. 1. ♦

In what follows, we are interested in identifying subsets ofRn which cannot contain
the support of a Nevanlinna measure.

Theorem 3.11 Let n ≥ 2and letμbe a Nevanlinna measure. Define the affine subspace
	(A,

⇀

β) ⊆ R
n as

	(A,
⇀

β) := {A
⇀
s + ⇀

β | ⇀
s ∈ R

n},

where
⇀

β ∈ R
n and the matrix A = {αi, j }n

i, j=1 ∈ Mn(R) satisfies the following
properties:

• the matrix A contains no trivial rows,
• there exist two distinct indices j1, j2 ∈ {1, 2, . . . , n} and a number γ > 0 such

that α j1,� = γ α j2,� for all � ∈ {1, 2, . . . , n}.
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Fig. 1 The solid lines are
examples of those which can
contain the support of some
Nevanlinna measure, while the
dashed lines are examples of
those which cannot contain the
support of any Nevanlinna
measure, cf. Examples 3.10 and
3.16. The plot area is
[−3, 3]2 ⊆ R

2

Then
supp(μ) ⊆ 	(A,

⇀

β) �⇒ μ ≡ 0. (3.9)

Remark 3.12 The conditions on the matrix A say, in other words, that the set	(A,
⇀

β),
firstly, should not be coordinate-parallel and, secondly, it should be contained in
a hyperplane of the form γ x j1 = x j2 for some indices j1 and j2 and a positive
dependence-factor γ . In the case n = 2, these sets are precisely lines with positive
slope.

Proof Let supp(μ) ⊆ 	(A,
⇀

β) for A and
⇀

β as in the theorem. Without loss of gen-
erality, we may assume that j1 = 1 and j2 = 2. Since μ is a Nevanlinna measure, it
satisfies, in particular, the condition that

∫
Rn

1

(t1 − z1)2(t2 − z2)2

n∏
j=3

(
1

t j − z j
− 1

t j − z j

)
dμ(

⇀
t) = 0 (3.10)

for any
⇀
z ∈ C

+n . In our case, this integral may be rewritten as

∫
Rn

1

((A
⇀
s + ⇀

β)1 − z1)2((A
⇀
s + ⇀

β)2 − z2)2

·
n∏

j=3

(
1

(A
⇀
s + ⇀

β) j − z j

− 1

(A
⇀
s + ⇀

β) j − z j

)
dμ(A

⇀
s + ⇀

β) = 0. (3.11)

The assumptions on the matrix A give that

(A
⇀
s)2 = γ (A

⇀
s)1,

yielding further that
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1

((A
⇀
s + ⇀

β)1 − z1)2((A
⇀
s + ⇀

β)2 − z2)2
= 1

γ 2((A
⇀
s)1 + β1 − z1)2

(
(A

⇀
s)1 + β2

γ − z2
γ

)2 .

Choosing the point

⇀
z = (i, β2 − β1γ + γ i, i, . . . , i) ∈ C

+n,

we calculate that the integral (3.11) at this point is equal to

(2i)n−2
∫
Rn

1

γ 2|(A
⇀
s)1 + β1 − i|4

n∏
j=3

1

1 + ((A
⇀
s) j + β j )2

dμ(A
⇀
s + ⇀

β) = 0,

and since the integrand is a positive function and supp(μ) ⊆ 	(A,
⇀

β), we must have
μ ≡ 0. This finishes the proof. �

Remark 3.13 If the matrix A in the formulation of Theorem 3.11 would contain a
trivial row, then the set 	(A,

⇀

β) would be contained in a hyperplane orthogonal to
some coordinate axis. Thus, it is covered by Theorem 3.4 and Corollary 3.8.

Let us now consider some examples which show the use of Theorem 3.11 as well
as the necessity of its requirements on the matrix A.

Example 3.14 Let us choose

A =

⎡
⎢⎢⎢⎣

1 0 . . . 0
1 0 . . . 0
...

...
. . .

...

1 0 . . . 0

⎤
⎥⎥⎥⎦

n×n

.

Then the set 	(A,
⇀

0) equals the diagonal in R
n , with Theorem 3.11 showing that a

Nevanlinna measure cannot be supported only in this set. ♦
Example 3.15 Let n = 3 and let us choose

A =
⎡
⎣ 1 0 0

0 1 0
−1 −1 0

⎤
⎦ .

Then the set 	(A,
⇀

0) equals the plane {(t1, t2, t3) ∈ R
3 | t1 + t2 + t3 = 0} ⊆ R

3.
However, the matrix A, though not of maximal rank, does not satisfy the assumption
of Theorem 3.11 about having a pair of linearly dependent rows. Thus, Theorem 3.11
does not apply, and in fact, it can be shown that the set 	(A,

⇀

0) equals the support of
the representing measure of the Herglotz–Nevanlinna function

(z1, z2, z3) �→ −1

z1 + z2 + z3
,
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see also [17, Example 4.7]. ♦

Example 3.16 Let n = 2 and let us choose

A =
[
1 0
ξ 0

]
and

⇀

β =
[
0
η

]
.

Then the set 	(A,
⇀

β) equals the line {(t1, t2) ∈ R
2 | ξ t1 + η = t2} ⊆ R

2. If ξ > 0,
then, by Theorem 3.11, the set	(A,

⇀

β) cannot contain the support of someNevanlinna
measure. However, if ξ < 0, Theorem 3.11 does not apply, and one can, in fact, find
a Herglotz–Nevanlinna function such that the support of its representing measure is
equal to 	(A,

⇀

β). In particular, when ξ = −1 and η = 0, the set 	(A,
⇀

β) equals the
anti-diagonal in R

2, cf. Fig 1, which equals the support of the representing measure
of the Herglotz–Nevanlinna function

(z1, z2) �→ −1

z1 + z2
,

see also [21, Example 4.2]. ♦

More generally, we show now that the support of a Nevanlinna measure cannot
even be confined to a strip of positive slope.

Theorem 3.17 Let n ≥ 2 and let μ be a Nevanlinna measure. Define the strip

S j1, j2(α, β1, β2) := {⇀t ∈ R
n | β1 < t j2 − α t j1 < β2},

where α > 0 and β1, β2 ∈ R are two numbers with β1 < β2, and j1, j2 ∈ {1, 2, . . . , n}
two distinct indices. Then

supp(μ) ⊆ S j1, j2(α, β1, β2) �⇒ μ ≡ 0.

Proof Letα, β1 andβ2 be as in the theorem.Without loss of generality, wemay assume
that j1 = 1 and j2 = 2. We will now show that there exists a vector

⇀
z ∈ C

+n , for
which condition (3.10) is fulfilled only in the case of the zero measure.

First, we observe that

1

(t1 − z1)2(t2 − z2)2
= (t1 − z1)2(t2 − z2)2

|t1 − z1|4|t2 − z2|4

= ((t1 − x1)(t2 − x2) + y1y2)2 − ((t1 − x1)y2 − (t2 − x2)y1)2

|t1 − z1|4|t2 − z2|4
−2i

((t1 − x1)(t2 − x2) + y1y2)((t1 − x1)y2 − (t2 − x2)y1)

|t1 − z1|4|t2 − z2|4 ,

where we used xi := Re[zi ], yi := Im[zi ] for i = 1, 2. Introduce now two new
variables s1 and s2 as s1 := 1

2 (α t1 + t2) and s2 := 1
2 (α t1 − t2). Choose y1, y2 > 0
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such that y2 = α y1 and denote y := y2 = α y1. With these choices, the numerator of
the imaginary part of the above expression becomes

((t1 − x1)(t2 − x2) + y1y2)((t1 − x1)y2 − (t2 − x2)y1)

=
(( s1+s2

α
− x1

)
(s1 − s2 − x2) + y2

α

) (( s1+s2
α

− x1
)

y − 1
α
(s1 − s2 − x2)y

)
= y

α2 ((s1 + s2 − α x1)(s1 − s2 − x2) + y2)(2s2 − α x1 + x2).

Since β1 < t2−α t1 < β2, we infer that β1 < −2s2 < β2, implying that the parameter
s2 is bounded. As such, we may choose x1 and x2 such that 2s2 − α x1 + x2 > 0.

Wemay now adjust the choice of y to ensure that the expression (s1+s2−αx1)(s1−
s2 − x2) + y2 is also positive. Indeed, observe first that

(s1 + s2 − α x1)(s1 − s2 − x2) + y2

= (
s1 − αx1+x2

2

)2 − (
αx1+x2

2

)2 − (s2 − α x1)(s2 + x2) + y2.

The second and third term in the above expression depend only on x1, x2, which have
been fixed, and s2, which is bounded. Therefore, the value of y may be chosen such
that the sum is positive for all possible values of s2.

In conclusion, we have shown that there exist values x1, x2, y1 and y2 such that

((t1 − x1)(t2 − x2) + y1y2)((t1 − x1)y2 − (t2 − x2)y1)

|t1 − z1|4|t2 − z2|4 > 0

for all t1, t2 ∈ S1,2(α, β1, β2). This means that, when considering the condition (3.10)
at the point

⇀
z = (x1 + i y1, x2 + i y2, i, . . . , i) ∈ C

+n,

we have that the imaginary part of the term

1

(t1 − z1)2(t2 − z2)2

is always negative, while the term

n∏
j=3

(
1

t j − z j
− 1

t j − z j

)
= (2i)n−2

n∏
j=3

1

1 + t2j

is a positive function multiplied with either pure-real or pure-imaginary number.
Depending on which option occurs here, we conclude that the integrand in condi-
tion (3.10) either has non-zero real or imaginary part at this particular point in C

+n ,
implying that the measure μ must be identically zero. This finishes the proof. �
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Example 3.18 Let n = 2 and consider the strip

S1,2(1,−1, 1) = {(t1, t2) ∈ R
2 | − 1 < t2 − t1 < 1}.

Theorem 3.17 now says that any non-zero Borel measure μ with support contained
in this strip is not a Nevanlinna measure. In particular, we observe, again, that any
non-zeromeasure whose support is contained in the diagonal inR2 is not a Nevanlinna
measure. ♦

3.3 Refinements UsingMöbius Transforms

Given a Herglotz–Nevanlinna function, one can precompose it, in each variable sep-
arately, with a Möbius transform that fixes the upper half-plane to obtain, again, a
function of the same class. This can be used in order to obtain a generalization of
Corollary 3.5, as well as further refinements of the geometric restrictions on the sup-
port of a Nevanlinna measure given by Theorems 3.11 and 3.17. We give some such
statements below. To start with, we need some notation.

Consider a Nevanlinna measure μ, such that for some point
⇀
p ∈ R

n , it holds
that μ|Hj (p j ) ≡ 0 for all j = 1, 2, . . . , n. Such a measure can be considered as a
measure on

Śn
j=1(R \ {p j }) and, therefore, we may, for any collection of indices

{ j1, j2, . . . , jk} ⊆ {1, 2, . . . , n}, do k changes of variables

t j� �−→ 1

p j� − t j�
(3.12)

for � = 1, 2, . . . , k. Without loss of generality, wemay restrict ourselves to investigate
the case k = 1, j1 = 1 and p1 = 0. In this case, it suffices to assume that only
μ|H1(0) ≡ 0.

For a Borel set U ⊆ (R \ {0}) × R
n−1, we define

J 0
1 (U ) := {

(x1, x2, . . . , xn) ∈ R
n |

(
− 1

x1
, x2, . . . , xn

)
∈ U

}
, (3.13)

where the subscript (·)1 refers to taking j� = 1 in formula (3.12), while the superscript
( ·)0 refers to taking p j� = 0. Similarly, for a Nevanlinna measureμwithμ|H1(0) ≡ 0,
we define

((J 0
1 )∗μ)(U ) := μ(J 0

1 (U )) (3.14)

for any Borel setU as before. The following proposition now justifies the introduction
of these maps.

Proposition 3.19 Let μ be a Nevanlinna measure with μ|H1(0) ≡ 0. Then the measure
(J 0

1 )∗μ is also a Nevanlinna measure.

Proof We begin by investigating what happens to the integrals

∫
R\{0}

1

1 + t2
dt and

∫
R\{0}

(
1

t − z
− 1

t − w

)
dt,
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where z, w ∈ C \ R, under the change of variables t = − 1
τ
. As such, we calculate

that
∫
R\{0}

1

1 + t2
dt =

∫
R\{0}

1

1 + τ 2
dτ

and that

∫
R\{0}

(
1

t − z
− 1

t − w

)
dt =

∫
R\{0}

(
1

− 1
τ

− z
− 1

− 1
τ

− w

)
1

τ 2
dτ

=
∫
R\{0}

(
1

τ + 1
z

− 1

τ + 1
w

)
dτ.

The first of the above calculations implies immediately that the measure (J 0
1 )∗μ

satisfies the growth condition (2.3), while the second calculation shows that, due
to z �→ − 1

z being an automorphism of C+, the measure (J 0
1 )∗μ also satisfies the

Nevanlinna condition (2.4). The result then follows. �

Using Proposition 3.19, the results of Corollary 3.5 and Theorems 3.11 and 3.17

can be extended as follows.

Corollary 3.20 Let n ≥ 2, let q be a Herglotz–Nevanlinna function and let μ be its
representing measure. Then the Herglotz–Nevanlinna function

Q1 : (z1, z2, . . . , zn) �→ q
(
− 1

z1
, z2, . . . , zn

)

can be written, for any
⇀
z ∈ C

n, as

Q1(
⇀
z) = a + c1(0) z1 − b1

z1
+

n∑
�=2

b� z� + 1

πn

∫
Rn

Kn(
⇀
z,

⇀
t)d

(
(J 0

1 )∗μ̃
)
(
⇀
t),

where Kn, a,
⇀

b and μ are as in Theorem 2.2, the number c1(0) is given by the limit
(2.5) and

μ̃ := μ − μ|H1(0).

Corollary 3.21 Let n ≥ 2 and let μ be a Nevanlinna measure with μ|H1(0) ≡ 0. Then,

for sets 	(A,
⇀

β) and S j1, j2(α, β1, β2) as in Theorems 3.11 and 3.17, respectively, it
holds that

supp(μ) ⊆ J 0
1 (	(A,

⇀

β) ∩ (R \ {0}) × R
n−1) �⇒ μ ≡ 0

and

supp(μ) ⊆ J 0
1 (S j1, j2(α, β1, β2) ∩ (R \ {0}) × R

n−1) �⇒ μ ≡ 0.
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Remark 3.22 Any combination of maps J
p j
j and (J

p j
j )∗, defined analogously as the

maps J 0
1 and (J 0

1 )∗ in formulas (3.13) and (3.14), respectively, can be used to extend
the results of Proposition 3.19 and Corollaries 3.20 and 3.21.

In particular, any set as in Theorems 3.11 and 3.17may be successively transformed
by maps of the form J

p j
j , thereby enlarging our collection of subsets of Rn which

cannot contain the support of some Nevanlinna measure, cf. Example 3.24.

Example 3.23 Let n = 2 and consider the situation of Example 3.14, i.e., choose

A =
[
1 0
1 0

]
.

Then the set 	(A,
⇀

0) equals the diagonal in R2. One can then calculate that

J 0
1 (	(A,

⇀

0) ∩ (R \ {0}) × R) =
{
(τ1, τ2) ∈ R

2 | τ2 = − 1
τ1

}
,

with Corollary 3.21 now implying that a Nevanlinnameasureμ cannot have its support
contained only in the hyperbola given by the equation τ2 = − 1

τ1
. ♦

Example 3.24 Let n = 2 and consider the strip

S1,2(1,−1, 0) = {(t1, t2) ∈ R
2 | 0 < t1 − t2 < 1}.

One can then establish its transformations using the maps J 0
1 and J 0

2 to be equal to

J 0
1 (S1,2(1,−1, 0) ∩ (R \ {0}) × R) =

{
(τ1, τ2) ∈ R

2 | 0 < − 1
τ1

− τ2 < 1
}

,

J 0
2 (S1,2(1,−1, 0) ∩ (R × R \ {0})) =

{
(τ1, τ2) ∈ R

2 | 0 < τ1 + 1
τ2

< 1
}

,

J 0
1 J 0

2 (S1,2(1,−1, 0) ∩ (R \ {0})2) =
{
(τ1, τ2) ∈ R

2 | 0 < − 1
τ1

+ 1
τ2

< 1
}

.

Theorem 3.17 and Corollary 3.21 imply now that a Nevanlinna measureμ cannot have
its support contained in any of the above subsets of R2, cf. Fig. 2. ♦

From Proposition 3.3, it is clear that the support of a Nevanlinna measure cannot
be a bounded set. As a consequence of this fact and the technique of coordinate trans-
formation presented previously in this section, we can show that the support cannot be
localized too much, in the sense that there cannot exist n coordinate-orthogonal strips
that do not intersect the support, cf. Fig. 3.

Theorem 3.25 Let n ≥ 2 and let μ be a Nevanlinna measure and suppose there exist
numbers α j < β j for j = 1, 2, . . . , n, such that

supp(μ) ∩
n⋃

j=1

{⇀t ∈ R
n | α j < t j < β j } = ∅.

Then μ ≡ 0.
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Fig. 2 The strip S1,2(1, −1, 0) from Example 3.24 (top left) and its transformations using the maps J01 (top

right), J02 (bottom left) and J01 J02 (bottom right). The plot area is always [−3, 3]2 ⊆ R
2

Proof Without loss of generality, we may assume that n = 2. Furthermore, we may
also assume that α1 = α2 = −1 and β1 = β2 = 1 as other cases may be covered by
scalings and translations.

As such, we suppose that

supp(μ) ∩
(
{(t1, t2) ∈ R

2 | − 1 < t1 < 1} ∪ {(t1, t2) ∈ R
2 | − 1 < t2 < 1}

)
= ∅.

In this case, the support of the measure (J 0
1 )∗(J 0

2 )∗μ is contained in the square
[−1, 1]2 ⊆ R

2, and is, therefore, a finite Nevanlinna measure. But, by Proposition 3.3,
it now holds that (J 0

1 )∗(J 0
2 )∗μ ≡ 0. This translates back to the measure μ, finishing

the proof. �

Example 3.26 When n = 2, we may infer immediately from Theorem 3.25 that the
only Nevanlinna measure whose support is contained in the (closed) first quadrant is
the trivial measure. ♦

4 Properties of Measures on the Unit Polydisk with VanishingMixed
Fourier Coefficients

In this section, we are going to translate the results established for the class of Nevan-
linna measures in Sect. 3 to the case of functions from the unit polydisk into the
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Fig. 3 The only Nevanlinna
measure whose support is
contained in the shown set is the
trivial measure, cf. Theorem
3.25. This figure shows the
complement of the union of the
strips {(t1, t2) ∈ R

2 | 1 < t1
< 2} and {(t1, t2) ∈ R

2 | 1
2

< t2 < 2}. The plot area is
[−3, 3]2 ⊆ R

2

closed right half-plane and their associated measures. Even if this is straightforward,
we choose to state the properties of the measures explicitly, in order to give a complete
picture even for the case of the polydisk.

This class of functions is a generalization of Caratheodory functions and appears at
different places, e.g., [14,19,24]. In particular, it is shown in [14, Theorem 1] that they
can be characterized by an integral representation in the following sense. A function
f maps the polydisk D

n analytically to the closed right half-plane if and only if it
admits an integral representation of the form

f (
⇀
w) = i Im[ f (

⇀

0)] + 1

(2π)n

∫
[0,2π)n

(
2

n∏
�=1

1

1 − w�e−is�
− 1

)
dν(

⇀
s), (4.1)

where ν is a finite positive Borel measure on [0, 2π)n with vanishing mixed Fourier
coefficients, i.e., ∫

[0,2π)n
ei m1s1 . . . ei mnsndν(

⇀
s) = 0 (4.2)

for any multi-index
⇀
m ∈ Z

n with at least one positive entry and at least one negative
entry.

Remark 4.1 Related classes of measures are considered in the literature. In particular,
we want to point out [10,23], where complex measures with vanishing non-negative
Fourier coefficients, i.e., all components of the multi-index

⇀
m in formula (4.2) are non-

negative, are studied. Note that even if this class is defined in a similar way, it is quite
different as, for example, it does not contain any positivemeasure. Additionally, There,
the investigation focuses on describing zero-sets rather than dealing with supports.

In [16,17], we have used characterization (4.1) and transformed it via a suitable
Cayley transform to the poly-upper half-plane. Here, we are going to utilize its inverse
transform instead. To do that in practice, we also need notations for the subsets of
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[0, 2π)n that correspond to coordinate-orthogonal subspaces in R
n . A hyperplane of

[0, 2π)n that is orthogonal to some coordinate axis will be denoted as

A j (p) := {⇀s ∈ [0, 2π)n | s j = p},

where j ∈ {1, 2, . . . , n} and p ∈ [0, 2π). Theorem 3.4 and Corollary 3.5 in the case
of the polydisk can now be formulated as follows.

Theorem 4.2 Let n ≥ 2, let ν be a positive Borel measure on [0, 2π)n with vanishing
mixed Fourier coefficients (4.2). Take an index j ∈ {1, 2, . . . , n} and a point p ∈
[0, 2π). Let ν|A j (p) denote the restriction of the measure ν to the hyperplane A j (p).
Then there exists a constant d j (p) such that

ν|A j (p) = d j (p)λ(0,2π)n−1 , (4.3)

where λ(0,2π)n−1 denotes the Lebesgue measure on (0, 2π)n−1.

Remark 4.3 In particular, we note that for a positive Borel measure on [0, 2π)n with
vanishing mixed Fourier coefficients (4.2), all points must have zero mass, and more
generally, a statement analogous to Corollary 3.8 also holds. Furthermore, the area of
integration in formula (4.2) may be replaced with the open square (0, 2π)n .

Remark 4.4 A related but independent result in this direction may be found in [5,
Proposition 1]. There, it is investigated how a measure with vanishing mixed Fourier
coefficients behaves over a set E with λ[0,2π)k (E) = 0, where 0 < k < n.

Proof For such a measure ν, we may use its restriction to the open square (0, 2π)n to
build a Nevanlinna measure μ on R

n via the mapping ϕ : (0, 2π) → R, defined by

ϕ : s �→ t := i
1 + ei s

1 − ei s
,

leading us to define

dμ(
⇀
t) :=

n∏
j=1

|ϕ′(s j )|dν(
⇀
s).

The properties of such a measure μ, as described by Theorem 3.4 and Corollary 3.5,
then translate back to the measure ν due to the particular way the measure μ was
defined in terms on ν.

This procedure does, in principle, miss a few coordinate-parallel affine subspaces
of [0, 2π)n , for example {0} × [0, 2π)n−1, but this is trivially fixed by applying any
translation in the definition of the map ϕ, that is not an integer multiple of 2π , say

ϕ : s �→ t := i
1 + ei (s+1)

1 − ei (s+1)
.

This finishes the proof. �
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Corollary 4.5 Let n ≥ 2, let f be a function mapping the unit polydisk analytically
into the closed right half-plane and let ν be its representing measure in the sense of
representation (4.1). Decompose the measure ν as

ν =
∑
i∈I

ν|A ji (pi ) + ν̃

for some indices ji ∈ {1, 2, . . . , n} and points pi ∈ [0, 2π), where I ⊆ N is a finite
set of indices and ν̃ the remaining positive Borel measure. Then the function f can be
written as

f (
⇀
w) =

∑
i∈I

d ji (pi )
ei pi + w ji

ei pi − w ji
+ f̃ (

⇀
w), (4.4)

where the function f̃ is represented by the measure ν̃ in the sense of representation
(4.1).

The result on the non-finiteness of Nevanlinna measures, discussed in Proposi-
tion 3.3, for the case of the polydisk may be formulated as follows.

Corollary 4.6 The function

⇀
s �→

n∏
j=1

1

s2j

is not integrable with respect to any non-trivial positive Borel measure on [0, 2π)n

with vanishing mixed Fourier coefficients (4.2).

Proof Employing the bijection between non-trivial Nevanlinna measures and non-
trivial positive Borel measure on [0, 2π)n with vanishing mixed Fourier coefficients
(4.2) as in the proof of Corollary 4.2 yields that

∫
Rn

dμ(
⇀
t) =

∫
(0,2π)n

n∏
j=1

|ϕ′(s j )|dν(
⇀
s) =

∫
(0,2π)n

n∏
j=1

1

1 − cos(s j )
dν(

⇀
s) = ∞.

Noting that the integrability of the functions s �→ 1
s2

and s �→ 1
1−cos(s) at the point

zero is equivalent finishes the proof. �

In order to translate the results of Sect. 3.2 to the case of the unit polydisk, we

introduce the map � : (0, 2π)n → R
n to be the bijection given as

�(
⇀
s) := (ϕ(s1), ϕ(s2), . . . , ϕ(sn)),

where the map ϕ is as in the proof of Corollary 4.2. Under this transformation
coordinate-orthogonal hyperplanes in R

n are mapped into coordinate-orthogonal
hyperplanes in [0, 2π)n , whereas the image of other affine subspaces are more com-
plicated. The following corollary is, hence, a direct consequence of Theorem 3.25.
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Fig. 4 The complement of the
union of the two strips from
Fig. 3, translated to the case of
the polydisk. The plot area is the
square [0, 2π)2

Corollary 4.7 Let n ≥ 2, let ν be a positive Borel measure on [0, 2π)n with vanishing
mixed Fourier coefficients (4.2) and suppose there exist numbers 0 ≤ α j < β j < 2π
for j = 1, 2, . . . , n such that

supp(ν) ∩
n⋃

j=1

{⇀s ∈ [0, 2π)n | α j < s j < β j } = ∅.

Then ν ≡ 0.

Remark 4.8 Due to the fact that the set [0, 2π)n is taken as a parametrization of the
poly-torus, we could, in Corollary 4.7, just as well consider the union of any combi-
nation of sets where s j < α j or β j < s j or both.

Example 4.9 Let us consider the strips {(t1, t2) ∈ R
2 | 1 < t1 < 2} and {(t1, t2) ∈

R
2 | 1

2 < t2 < 2} from Fig. 3. Then, by Theorem 3.25, the only Nevanlinna measure
whose support does not intersect the union of these strips in the trivial measure.
By Corollary 4.7, we now conclude the only positive Borel measure on [0, 2π)2

with vanishing mixed Fourier coefficients (4.2) whose support does not intersect the
union of the strips {(s1, s2) ∈ [0, 2π)2 | ϕ−1(1) < s1 < ϕ−1(2)} and {(s1, s2) ∈
[0, 2π)2 | ϕ−1( 12 ) < s2 < ϕ−1(2)} is the trivial measure, cf. Fig. 4. ♦

The following corollary is a direct consequence of Theorems 3.11, 3.17 and Corol-
lary 3.21. It will be illustrated with examples below.

Corollary 4.10 Let n ≥ 2 and let ν be a positive Borel measure on [0, 2π)n with
vanishing mixed Fourier coefficients (4.2) with ν|A1(0) ≡ 0. Let the sets 	(A,

⇀

β) and
S j1, j2(α, β1, β2) be given as in Theorems 3.11 and 3.17. Then it holds that

supp(ν) ⊆ �−1(	(A,
⇀

β)) �⇒ ν ≡ 0,

supp(ν) ⊆ �−1(S j1, j2(α, β1, β2)) �⇒ ν ≡ 0,
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Fig. 5 The solid lines are those
which can contain the support of
some positive Borel measure on
[0, 2π)2 with vanishing mixed
Fourier coefficients (4.2), while
the dashed lines are those which
cannot contain the support of
any such measure, cf.
Example 4.11. The plot area is
the square [0, 2π)2

supp(ν) ⊆ �−1(J 0
1 (	(A,

⇀

β) ∩ (R \ {0}) × R
n−1)) �⇒ ν ≡ 0,

supp(ν) ⊆ �−1(J 0
1 (S j1, j2(α, β1, β2) ∩ (R \ {0}) × R

n−1)) �⇒ ν ≡ 0.

Example 4.11 A non-coordinate-orthogonal line in R
2, given by the equation t2 =

k t1 + m with k ∈ R \ {0} and m ∈ R, yields, on the polydisk side, that

ϕ(s2) = k ϕ(s1) + m, (4.5)

where ϕ is the same biholomorphism as before. Using the identity

i
1 + ei s

1 − ei s
= − cot

( s

2

)
,

Equation (4.5) can be rewritten as

cot
( s2
2

)
= k cot

( s1
2

)
− m,

which, in the square [0, 2π)2, is further equivalent to

s2 = 2 Arccot
[
k cot

( s1
2

)
− m

]
.

Hence, the curve (4.5) is the graph of a function and taking its derivative shows that,
for k > 0, this function is increasing, passing through the points (0, 0) and (2π, 2π),
whereas, for k > 0, it is decreasing, passing through the points (0, 2π) and (2π, 0).
Note that only in the special cases k = ±1 and m = 0 is the curve actually a straight
line. In Fig. 5, the curves corresponding to the lines from Examples 3.10 and 3.16 are
shown. ♦
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Fig. 6 The sets �−1(S1,2(1,−1, 0)) (top left) �−1(J01 (S1,2(1,−1, 0) ∩ (R \ {0}) × R)) (top right),

�−1(J02 (S1,2(1, −1, 0) ∩ R × (R \ {0}))) (bottom left) and �−1(J01 J02 (S1,2(1, −1, 0) ∩ (R \ {0})2))
(bottom right) from Example 4.12. The plot area is always the square [0, 2π)2

Example 4.12 Let us consider the strip

S1,2(1,−1, 0) = {(t1, t2) ∈ R
2 | 0 < t1 − t2 < 1}

from Example 3.24, which is bounded by the lines t2 = t1 and t2 = t1−1 inR2. Using
the information from Example 4.11, we establish that the set�−1(S1,2(1,−1, 0))will
be bounded by the curves in [0, 2π)2, given by the equations

s2 = s1 and s2 = 2 Arccot
[
cot

( s1
2

)
+ 1

]
.

The boundaries of the set �−1(J 0
1 (S1,2(1,−1, 0)∩ (R\ {0})×R)), as well as the sets

�−1(J 0
2 (S1,2(1,−1, 0)∩R×(R\{0}))) and�−1(J 0

1 J 0
2 (S1,2(1,−1, 0)∩(R\{0})2)),

may be established analogously, and all four sets are visualized in Fig. 6. ♦
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