The Journal of Geometric Analysis (2021) 31:2296-2330
https://doi.org/10.1007/s12220-019-00340-x

®

Check for
updates

Optimal Extensions of Conformal Mappings from the Unit
Disk to Cardioid-Type Domains

Haiging Xu'

Received: 23 September 2019 / Published online: 3 January 2020
© The Author(s) 2020

Abstract

The conformal mapping f(z) = (z + 1)2 from D onto the standard cardioid has
a homeomorphic extension of finite distortion to entire R?. We study the optimal
regularity of such extensions, in terms of the integrability degree of the distortion and
of the derivatives, and these for the inverse. We generalize all outcomes to the case of
conformal mappings from D onto cardioid-type domains.
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1 Introduction
The standard cardioid domain
A={(x,y) e R : (x? 4+ y})? —dx(x? + y?) —4y? < 0} (1.0.1)

is the image of the unit disk ID under the conformal mapping g(z) = (z+1)?. Since the
origin is an inner-cusp point of d A, the Ahlfors’ three-point property fails, and hence
dA is not a quasicircle. Therefore the preceding conformal mapping does not possess
a quasiconformal extension to the entire plane. However, there is a homeomorphic
extension f : R> — R? by the Schoenflies theorem, see [10, Theorem 10.4]. Recall
thathomeomorphisms of finite distortion form a much larger class of homeomorphisms
than quasiconformal mappings. A natural question arises: can we extend g as a
homeomorphism of finite distortion? If we can, how good an extension can we find?
Our first result gives a rather complete answer.
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Theorem 1.1 Let F be the collection of homeomorphisms f : R?> — R? of finite
distortion such that f(z) = (z + 1) for all z € D. Then F # #. Moreover

sup(p € [1,+00) : f € F N W, P (R, R?)) = +o0, (1.0.2)
sup{g € (0, +00) : f € F, Ky e L] (R} =2, (1.0.3)
sup{g € (0, +00) : f € FN WIL’LP(Rz, R?) for afixed p > 1and K s € L}, (R?)}
=1, (1.0.4)
sup{pe[l,+o0): feF, fle WIL’CP(RQ, R?)} = g (1.0.5)

and

sup{g € (0, +00) : f € F, K1 € L] (R*)} =5. (1.0.6)

loc

The cardioid curve dA contains an inner-cusp point of asymptotic polynomial
degree 3/2. Motivated by this, we introduce a family of cardioid-type domains Ay
with degree s > 1, see (2.3.2). Our second result is an analog of Theorem 1.1.

Theorem 1.2 Let g be a conformal map from D onto A, where Ay is defined in (2.3.2)
and s > 1. Suppose that F;(g) is the collection of homeomorphisms f : R — R? of
finite distortion such that f|p = g. Then F5(g) # @. Moreover

sup{p € [1,+00) : f € Fy(g) N WP ([R2, R?)) = 400, (1.0.7)
sup{q € (0, +00) : f € Fy(g), Ky € L] (R?)} = max {ﬁ 1} , (1.0.8)

suplq € (0, +00) : f € Fy(g) N WP (R2, R?) forafixed p > 1and K ; € LY (R?))
_ max{ L 3p } (1.0.9)

s—1 Q2s—Dp+4—2s
sup{p € [1,+00) : f € Fy(g), [~ e WL (R RY) = 22(2 J_r 1) (1.0.10)
and
g m2y _ S T1

sup{g € (0, +00) : f € Fs(g), Ky-1 € L}, (R} = = (1.0.11)

Let us recall previous extension results. In [3,4], sufficient conditions on €2 are
introduced to guarantee that a conformal mapping g : D — €2 has a homeomorphic
extension of locally exponentially integrable distortion to the whole plane. Specially,
when €2 is a Jordan domain with an outer-cusp point on its boundary, the authors
from [8] established the optimal exponential regularity of distortion of homeomorphic
extensions.

In Sect. 2, we recall some basic definitions and facts. We also introduce auxiliary
mappings and domains. In Sect. 3, we give upper bounds for integrability degrees of
potential extensions. Section 4 is devoted to the proof of Theorem 1.2. In Sect. 5 we
prove Theorem 1.1.
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2 Preliminaries
2.1 Notation

By s > 1 and r <« 1 we mean that s is sufficiently large and ¢ is sufficiently small,
respectively. By f < g we mean that there exists a constant M > 0 such that f(x) <
Mg (x) forevery x. We write f ~ gifboth f < gandg < f hold. By £? (respectively
L") we mean the 2-dimensional (1-dimensional) Lebesgue measure. Furthermore we
refer to the disk with center P and radius r by B(P,r), and S(P,r) = dB(P,r). For
aset E C R? we denote by E the closure of E. If A € R?*? is a matrix, adj A is the
adjoint matrix of A.

2.2 Basic Definitions and Facts

Definition 2.1 Let 2 € R?and Q' C R? be domains. A homeomorphism f : @ — Q'
is called K-quasiconformal if f € WIL‘CZ(Q, Q') and if there is a constant K > 1 such
that

IDf(2)]> < KJ¢(2)

holds for £2-a.e. z € Q.

Definition 2.2 Let 2 C R? be a domain. We say that a mapping f : @ — R? has
finite distortion if f € WL (@, R?), J; € L () and

IDfF@I? < Kp(2)Jp(z) LPae.zeQ, 2.2.1)

where

\Df @I
Ky(2) = re) forall z € {Jy > 0},
1 forall z € {J; =0}

Note that a necessary condition in Definition 2.2 is that J ¢ (z) > 0 for L2-ae. z € Q.
When J¢(z) < 0 for L?-ae.z € Q, we also define mappings of finite distortion.
Modification on (2.2.1) is that | Df (z)|? < —K (2)J7(z) for L?-ae.z € Q with

|Df (@) .
Ki(m)y=1 /1@ forall z € {Jy <0},
‘ 1 forallz € {J; = 0}.

Analogous explanation is applied to Definition 2.1.

Definition 2.3 Given A C R?, amap f : A — R? is called an (/, L)-bi-Lipschitz
mapping if 0 </ < L < oo and

lx =yl =[f(x) = fI = Lix =yl
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forall x, y € A.

If @ ¢ R?is a domain and f : @ — R? is an orientation-preserving bi-Lipschitz
mapping, then f is quasiconformal.

Definition 2.4 Given a function ¢ defined on set A C R2, its modulus of continuity
is defined as

w () = w(s, ¢, A) = sup{le(z1) — @(z2)| : 21,22 € A, |21 — 22| < &}

for § > 0. Then ¢ is called Dini-continuous if
T
t
/ w dt < o0,
0 t

where the integration bound 7 can be replaced by any positive constant.
We say that a curve C is Dini-smooth if it has a parametrization «(¢) for ¢t € [0, 2]
so that o’(z) # O for all ¢ € [0, 27r] and &’ is Dini-continuous.

Definition 2.5 Let Q@ C R? be open and f : 2 — R? be a mapping. We say that f
satisfies the Lusin (N) condition if £>(f(E)) = 0 for any E C Q with £>(E) = 0.
Similarly, f satisfies the Lusin (N ') condition if Ez(f_l (E)) =0forany E C f(2)
with £2(E) = 0.

Lemma 2.1 ([6, Theorem A.35]) Let 2 C R? be openand f € Wl’l(Q, R2). Suppose

loc
that 1 is a nonnegative Borel measurable function on R>. Then

/n(f(X))lJf(X)ldx S/ nN(f. 2, y)dy, (2.2.2)
Q f(€2)

where the multiplicity function N(f, 2, y) of f is defined as the number of preimages
of y under f in Q. Moreover (2.2.2) is an equality if we assume in addition that f
satisfies the Lusin (N ) condition.

Let Q c R2 be open. Via Lemma 2.1, we have that
if fisa WIL’CI(Q, Rz) homeomorphism, then J; € LIIOC(Q). (2.2.3)

Lemma 2.2 ( [6, Lemma A.28]) Suppose that f : R> — R? is a homeomorphism
which belongs to WI’I(RZ, R?). Then f is differentiable L*-a.e. on R>.

loc

Lemma 2.2 and a simple computation show that

P =K in |9 L*-ae. .z € R? 224
pmax [35f (@) = K@) min () ae.z (2:2.4)

when f : R?> — RZ? is a homeomorphism of finite distortion. Here 9y f(z) =
cos(0) fx(z) + sin(0) fy () for 6 € [0, 27].
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Lemma 2.3 ([5, Theorem 1.2], [6, Theorem 1.6]) Let Q C R? be a domain and
£+ Q@ — R? be a homeomorphism of finite distortion. Then f~' : f(Q) — Qs also
a homeomorphism of finite distortion. Moreover

IDF TP < K11 () Laey € f(Q). (2.2.5)

Lemma 2.4 ([14, Theorem 2.1.11]) Let all @ € R?, Q1 € R? and Q» C R? be open,
and T € Lip(Q, Q). Suppose that both f € WP (Q, Q) and To f € LY (R, Q)

loc
hold for some pwith1 < p <oo.ThenT o f € W,l’p(Q, Q) and

D(T o f)(z) = DT(f())Df(2) L -ae zeQ.

Definition 2.6 A rectifiable Jordan curve I" in the plane is a chord-arc curve if there
is a constant C > 0 such that

Lr(z1,22) < Clz1 — 22|

forall z1, zo € ', where €1 (z1, z2) is the length of the shorter arc of I joining z; and
22.

It is a well-known fact that a chord-arc curve is the image of the unit circle under
a bi-Lipschitz mappings of the plane, see [7]. Thus chord-arc curves form a special
class of quasicircles. The connections between chord-arc curves and quasiconformal
theory can be found in [1,12].

2.3 Definition of Cardioid-Type Domains
Lets > 1. Weintroduce a class of cardioid-type domains A whose boundaries contain
internal polynomial cusps of order s, see Fig. 1. For technical reasons we do this in
the following manner. Denote
Ci(s) = {,v) € B 1w € [-1,0], v = (—u)’)
and
() = {(u,v) € R? 1w € [-1,0], v = —(=u)°).

Write £1(s) and £, (s) in the polar coordinate system as

01(s) = {Re'® : R = (—u)(1 + (—u)26~Dy3

and ©® = 7 — arctan((—u)* 1) foru € [—1, 0]}
and

lH(s) = {Rei® tR=(—u)1+ (_M)Z(s—l))%
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Fig.1 M and Ay

and ® = —7 + arctan((—u)* ") foru € [—1, 0]}.

Take the branch of complex-valued function z = w'/? with 1'/2 = 1. Denote by 27 (s)

and £5 (s) the images of £ (s) and £ (s) under the preceding z = wl/2, respectively.
Then we can write £7'(s) and £5 (s) in the polar coordinate system as
e s) = {re? : r = v=u(l + (-6 D)
_ t _as—1
and g = T AT e —1L0p) 2.3.1)

2

and

HOES re' : r=v=u(+ (_u)2<s—1))£
—7 + arctan((—u)* 1)

and 6 = > foru € [—1,0]}.

Denote by z; and z> the end points of £7'(s) U £5'(s). Notice that there is a unique
circle sharing both the tangent of £ (s) at z1 and the one of £5' (s) at z5. This circle is
divided into two arcs by z; and z. Concatenating £7' (s) U £7' (s) with the arc located
on the right-hand side of the line through z; and z;, we then obtain a Jordan curve
£"(s). Denote by £(s) the image of £ (s) under Z2. Let

M and A; be the interior domains of £ (s) and £(s), respectively. (2.3.2)

Then Ay is the desired cardioid-type domain with degree s. Moreover £ (s), £(s), M,
and A are symmetric with respect to the real axis.

By the Riemann mapping theorem, there is a conformal mapping from D N Rﬁ
onto M; N R%_ such that D N R is mapped onto M N R. It follows from the Schwarz
reflection principle that there is a conformal mapping

gs D — M. (2.3.3)

such that g;(z) = g,(z) forallz € . Moreover by_the Osgood—Carathéodory theorem
gs has a homeomorphic extension from D onto Mj, still denoted g;.
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Lemma 2.5 Let M; and gs be as in (2.3.2) and (2.3.3) with s > 1. Then g; is a
bi-Lipschitz mapping on D.

Proof If 0 M, were a Dini-smooth Jordan curve, from [11, Theorem 3.3.5] it would
follow that g/ is continuous on D and gi(z) #0forallz € D. Since M; is convex, the
mean value theorem would then yield that g, is a bi-Lipschitz map from D onto Mj.

In order to prove that d M is a Dini-smooth Jordan curve, we first analyze d M in
a neighborhood of the origin. For any point in £]" with Euclidean coordinate (x, y),
we have

x =rcosf and y = rsiné. 2.34)

where both r and 6 share the expression in (2.3.1). We then obtain that

T Jr -1 a0
AU, 0~ —, — ~ ——and — ~ (— s—2
" " 2 du  /-u an ou (=)

whenever |u| < 1. Therefore from (2.3.4) and (2.3.5), it follows that

(2.3.5)

0 3 0
XA (—u) T,y A (—u)E, o A —(—u)* T2 and 22 A —(—u) 7l
u ou

Together with symmetry of d My, we conclude that g—’y‘ ~ |y|?6=D whenever |y| < 1.
Next, notice that the part of M, away from the origin is piecewise smooth. By
parametrizing d M as a(y) = (x(y), y), we then obtain that the modulus of continuity
of o’ satisfies

w8, o, dM;) < max{8>¢*~D 5} Vs« 1.

Consequently &’ is Dini-continuous. Therefore d M is a Dini-smooth Jordan curve. O

Remark 2.1 Since g : S!' — 9M, is a bi-Lipschitz map by Lemma 2.5, via [13,
Theorem A] there is a bi-Lipschitz mapping g§ : D° — M¢ such that g{|s1 = g5. Let

Gy(z) = {gS(Z) vzeD, (2.3.6)

gs(z) VzeD".
Then Gy is an orientation-preserving bi-Lipschitz mapping.
Lemma2.6 Let hy : R> — R? be a homeomorphism of finite distortion, and hy -
R? — R2 be an (I, L)-bi-Lipschitz, orientation-preserving mapping. Then hy o h is

a homeomorphism of finite distortion.

Proof Since h; is an orientation-preserving bi-Lipschitz mapping, we have that 4, is
quasiconformal. From [2, Corollary 3.7.6] it then follows that
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hy satisfies Lusin (N) and (N *1) condition, 2.3.7)
Jp, >0 L2-ae. onR% (2.3.8)

By Lemma 2.2 we have
both h; and h, are differentiable £-a.e. on R2. (2.3.9)

From (2.3.9) and (2.3.7) it therefore follows that /1 o h, is differentiable £2-a.e. on
R2, and

D(hy o hy)(z) = Dhy(h2(z))Dha(z)  L*-ae.z € R, (2.3.10)
From (2.3.10) and the distortion inequalities for /| and h; it follows that

|D(hy 0 hy)(2)* <[Dhy(hy(2)*|Dh2(2)|* < Kny (h2(2)) Ky (2) Jhy (h2(2)) Iy (2)
=Kh| (h2(Z))Kh2 (Z)Jhlohz (2) (2.3.11)

for £?-a.e. z € R?.

To prove that /11 oh» is ahomeomorphism of finite distortion, via (2.2.3) and (2.3.11)
it is sufficient to prove that iy o hy € Wb (R?, R?). Since /s is an (I, L)-bi-Lipschitz
orientation-preserving mapping, by (2.3.9) and (2.2.4) we then have that

[ <|Dhy(z)| < Land 1 < Kj,(z) < L%-ae. z € R%. (2.3.12)

From(2.3.8), (2.3.12), and (2.2.1) it then follows that

l3
T =@ < L?> [’ae zeR. (2.3.13)

By (2.3.10), (2.3.12), (2.3.13), and Lemma 2.1, we therefore have

|Dhy(2)|
|D(hyoho)(z)ldz < | |Dhi(h2(2))|———Jp,(2) dz
M M Jn, (2)
’\*/ [Dhy(ha(2))]Jn, (z) dz
M

:/ |Dhi(w)|dw < 00
ha(M)

for any compact set M C R2, where the last inequality is from & € Wllo’c] (Rz, Rz). O

3 Bounds for Integrability Degrees

For a given s > 1, let M; as in (2.3.2). Define
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Es={f: f: R?> —> R%isa homeomorphism of finite distortion
and f(z) = 2> forall z € My). (3.0.1)

Lemma3.1 Let & be as in (3.0.1) with s > 1, and f € &. Suppose that f~! €
WZL’CP (R%, R?) for some p > 1. Then necessarily p < 2(s +1)/(2s — 1).

Proof Givenx € (—1, 0), denote by I, the line segment connecting the points (x, |x|%)
and (x, —|x|*). Since f~! € Wlt’cp for some p > 1, by the ACL-property of Sobolev
functions it follows that

oscr, [~ S/I |Df ! (x, y)| dy (3.0.2)

holds for £'-a.e. x € (—1, 0). Applying Jensen’s inequality to (3.0.2), we have

(oscle_l)l’ _
(—x)ys—D =

/1. |Df~x, »)|” dy. (3.0.3)
Since f(z) = z* forall z € M, we have
(=x)'2 Soscr, f71 Vx e (—1,0). (3.0.4)
Combining (3.0.3) with (3.0.4), we hence obtain
(—x) 775D < /1 |IDf ', »|"dy  Llae.xe(=1,00.  (3.0.5)
Integrating (3.0.5) with respect to x € (—1, 0) therefore implies

0
f (—x) 2= dx,s/ |Df 1 (x, y)|” dx dy. (3.0.6)
—1 B(0,v/2)

Since f_1 € Wllo’cp, from (3.0.6) we necessarily obtain % —s(p—1) > —1, which is
equivalentto p < 2(s +1)/(2s — 1). O

Our next proof borrows some ideas from [9, Theorem 1].

Lemma3.2 Let & be as in (3.0.1) with s > 1. Let f € & and suppose that K ;-1 €
LY (R2) foragivenq = 1. Thenq < (s + 1)/(s — ).

Proof For a given t < 1, we denote
t
Er={(r,y) €R?:x € (=%, =(5)") and y = —|x[")
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and
t
F,={(x,y) e R*: x € (-1, —(5)2) and y = |x|*}.

Let E, = f~Y(E;) and F;, = f~'(F}). Set

L,1 = min{|z| : z € F}}, L,2 = max{|z| : z € F}},
L; = dist(E;, F;), Lo = max{|f~'(z)| : Rez = —1,Imz € [—1, 1]}.
Since f(z) = z? for all z € M, we have L,1 ~t]2, Lt2 ~ t and L; ~ t whenever

t < 1.Givenw € A, = {w € R? : L < |w| < L?}, set p(w) = L?/(L;|wl).
Define

forall z € B(0, Lo) \ Ay,

- 3.0.7
v {infyzfyzpds forall z € A;, 0.7

where the infimum is taken over all curves y, C A; joining z and E;. From (3.0.7) it
follows that for any z1, z» € A; and any curve y;,,, C A; connecting z; and zo we
have

(1) — v(z)] < / »ds. (3.08)

Yz120

Therefore v is a Lipschitz function on A;. By Rademacher’s theorem, v is differentiable
L£?-a.e. on A;. Hence (3.0.8) together with the continuity of p gives

|IDv(z)| < p(z) L*ae.z€A. (3.0.9)

Integrating (3.0.9) over Q, = A; \ M, then yields

2
Dv2< [ p*~ L~ og2 3.0.10
~ _~,0~Irr~og. (3.0.10)
O t L;

By Lemma 2.3 we have f~! € WlL’Cl. Letu = vo f~!. From Lemma 2.4 we then
have u € Wi (f(B(0, Lo))) and

|Du(z)| < |Dv(f ' )IDf ()] LP-ae.in f(A). (3.0.11)

By (3.0.7), v(z) = 0forall z € E,. Hence u(z) = O forall z € E,. Whenever z € F},
we have £'(y,) > L, for any curve y, C A; joining z and E;. Therefore v(z) > 1 for
all z € F,. Hence u(z) > 1 forall z € F;. By the ACL-property of Sobolev functions
and Holder’s inequality, we therefore have that
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1

s

X X 14 P—
15/ |Du(x,y)|dy§(/ |Du(x,y)|pdy> 2T (3.0.12)

s

forany p > 1 and £L'-a.e. x € [—r%, —(1/2)?]. Define
R ={(x,y) e R :x e (=%, —(t/2)%), y € (=IxI', [x[*)}.

Fubini’s theorem and (3.0.12) then give

—(t/2)? px*
/ |Du(x,y)|”dxdy=/ / |Du(x, y)|? dy dx
R; —12 —x*

—/2)?
>/ U=P) gy~ 2004s(1=p), (3.0.13)

12

Set Q; = f(Qt). Then for any z € R; \ Q; there is an open disk B, C R; \ Q; such
that z € B; and u|p, = 1. Therefore

/ |Du|? zf |Du|P = |Du|?. (3.0.14)
t O:NR; R;
Combining (3.0.13) with (3.0.14) gives that

t2(1+s(17p))§/ |Du|? (3.0.15)

t

forall p > 1.
For any p € (0, 2), by (3.0.11), (2.2.5), and Holder’s inequality, we have

/Q, \Du|? S/Q; )Dvof’l‘p‘Df’l‘p

LS
< )Dvof ‘Jf_le_l
o

2—p

(s 1) )’
o o '
2\ % N
5(/ )m‘) (/ K}:f) (3.0.16)
Qf Qf

where the last inequality comes from Lemma 2.1. Let ¢ = p/(2 — p). Via (3.0.10)
and (3.0.15), we conclude from (3.0.16) that

,2(1+q+s(1—q>>5fQ K (.0.17)
o
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for all ¢ > 1. We now consider the set Q; for t = 27/ with j > j, for a fixed large
Jo- Since

o
3 o, () <2xp(x)  VxeR%,
J=Jo

by (3.0.17) we have that

2212(5(11 D=¢-1) < Z/

J=Jo J=Jo Oy

/ K;’, . (3.0.18)

The series in (3.0.18) diverges when ¢ > il and hence K ;-1 € L] _(R?) can only
hold wheng < (s + 1)/(s — 1). O

We continue with properties of our homeomorphism f. The following lemma is a
version of [4, Theorem 4.4].

Lemma3.3 Let & beasin (3.0.1)withs > 1.If f € Esand Ky € L
q > 1, then g < max{l, 1/(s — 1)}.

loc (R2) for some

Proof Denote
Q={(x1.x2) €R?:x; € (—1,0), x2 € (=|x1 [, x|}
For a given ¢t < 1, set

Q; ={(x1,x) € Q:x1 € (—1, —tz)},
0 = {(x1,x2) € Q:x1 € [—12, _(%)2]} and @2 = Q\ (2! U B)).

Define
1 Y(x1, x2) € 9},
2 -1 -
v(xg, x2) = 31— (f t(zt/z) (d))cc)s) I, (_df)s Y(x1,x2) € 0;, (3.0.19)
0 Y(x1,x2) € Q2.

Thlel? v is a Lipschitz function on Q. Let u = v o f. By Lemma 2.4, we have u €
Wige (f 1(82)) and

Du(z) = Dv(f(2))Df(z) L*ae.ze f71(Q). (3.0.20)
Let P = 1 ((=1%,1%), P, = f~'((—=(t/2)%, (t/2)*)), and O be the origin.

Denote by Ltl and L,2 the length of line segment P; P, and of P; O, respectively. Then
L} < L?. Since f(z) = z* for all z € 3Mj, we have
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t
L~ 7 and L? ~t  wheneverr < 1. (3.0.21)

Let$ (P1,r) = S(P,r)N £~ (). From the ACL-property of Sobolev functions and
Holder’s inequality, we have that

1
—1 F
0SCg(p, U = / |Dulds < (27rr)pT (/ |Du|”ds> (3.0.22)
S(P1,r) S(P1,r)

forany p > 1 and L'-ae.r € (L}, L?). Since 05Cgp, it = 1 forall r € (L, L%,
we conclude from (3.0.22) that

/ |DulPds > r'=7  Llaere (), L. (3.0.23)
S(P1r)

Let A, = f~(Q) N B(P1, L) \ B(Py, L}). By Fubini’s theorem and (3.0.21), we
deduce from (3.0.23) that

L L?
|Du|P = / / |Du|P ds dr > / PP dr 2P (3.0.24)
Ay Ll JS(P,r) L}

t

Let O, = f‘l(Q,). From (3.0.19), we have |Du(z)| = O for all z € A; \ Q. We
hence conclude from (3.0.24) that

/ |Du|P 3/ |Du|? = | |Du|P > >7P (3.0.25)
O 0/NA; Ay

for any p > 1.
From (3.0.20), (2.2.1), and Holder’s inequality, it follows that for any p € (0, 2)

/ | Du|? §f |Dvo f|P|DFI” 5/ |Dvof]pJf%KJ§
o 0 o '

2-p

(st ()

4 p o\ S
5(f }DU]Z)Z (/ K;”) o (3.0.26)
Ql‘ t

where the last inequality is from Lemma 2.1. From (3.0.19), we have that

5 —@/2% gy /2% rlal
/~ ’Dv(xl,xz)} dx;dxp = / / / T dxp dxg
0, —12 (=x)* berls (= X1) s

—(t/2)
~ ( / dx ) ~ 26—, (3.0.27)
2 (0
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Letgq = p/(2 — p). Then g € [1, +00) whenever p € [1, 2). Combining (3.0.27),
(3.0.25) with (3.0.26) yields

l2+2(17s)q§/ K?- (3.0.28)
o

for all ¢ > 1. We now consider the set Q; for t = 27/ with j > j, for a fixed large
Jo- Analogously to (3.0.18), it follows from (3.0.28) that

Zzzms Dg-1) < Z/

K <2 / K. (3.0.29)
Jj=Jo =0 @ami BO.I)
Whenever s > 2, the sum in (3.0.29) diverges if ¢ > 1. Whenever s € (1, 2), the
sumin (3.0.29) also divergesif g > 1/(s —1). Hence K y € LlOC (R?) is possible only
when g < max{1, 1/(s — 1)}. O

In Lemma 3.3, we obtained an estimate for those g for which Ky € L . We

loc*
continue with the additional assumption that f € Wloc for some p > 1.

Lemma3.4 Let & beasin (3.0.1) withs > 2. If f € &, f € WIL’CP(RZ, R?) for some
p>1land Ky € L? (Rz)forwmeq € (0, 1), theng <3p/((2s — 1)p +4 — 2s).

loc

Proof Let f be ahomeomorphism with the above properties. By [5, Theorem 4.1] we
have f~! Wli)’cr (R?) where

_(g+Dp—2q
pP—q
Moreover
2 1 3
2s — 1 2s—-1Dp+4—2s
Hence the claim follows from Lemma 3.1. O

Remark 3.1 Notice that in the proof of Lemma 3.3 we only care about the property of
f in a small neighborhood of the origin. Let + < 1. By modifying dM; N B(0, 1),
we may generalize Lemma 3.3. For example, we modify 0 M3, N B(0, #) such that
its image under f(z) = 2is

{(x,y) e R* 1 x € [-2770,0], y* = c[x]*}
where c is a positive constant. If K € LfOC(RZ) for some ¢ > 1, by the analogous

arguments as for Lemma 3.3 we have g < 2. Similarly, one may extend Lemmas 3.1,
3.2 and 3.4 to the above setting.
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Lemma3.5 Let Ag be as in (2.3.2) with s > 1. Suppose that f : R> — R% isa
homeomorphism of finite distortion such that f maps D conformally onto As. We
have that

(1) if f~ € WhP(R2, R?) for some p > 1 then p < 2(s +1)/(2s — 1),

loc

2) ifo4 elL? (R2)fors0me qg>1ltheng < (s+1)/(s —1),

loc

(3) ifKy e L;IOC(Rz)forsome q > 1then g < max{l, 1/(s — 1)},

@) ifs>2 fe WIL’CP(RZ,Rz)forsomep >land Ky € L;’chorsomeq € (0, 1),
thenqg <3p/((2s — 1)p +4 —2s).

Proof Let g, be as in (2.3.3), and hy = z% o g,. Since by : D — Ay is conformal,
there is a Mobius transformation

g £ —a

mg(z) =e where 0 € [0, 2] and |a| < 1

1—az
such that f(z) = hy o ms(z) for all z € . Since my : S! — S! is a bi-Lipschitz

mapping, by [13, Theorem A] there is a bi-Lipschitz mapping m§ : D¢ — AS such
that m§|g1 = m,. Define

_Jms@ zeD,
My (2) = @) 2D (3.0.30)

Then M, : R? — R? is a bi-Lipschitz, orientation-preserving mapping. Let G be as
in (2.3.6). Define

E=foM oG, : R - R%.

Lemma 2.6 implies that E € &, where & is from (3.0.1). From Lemmas 2.2 and
2.3, it follows that

both fﬁ1 and E~! are differentiable £%-a.e. on R?. (3.0.31)
Since

ey = )| B en - BN 65T ET @) - 65 BT @)
= X

21 = 2| |21 22| [E@) - B )|

271G o B @) - 07 (G o B @)
X

(67 o E-len = G5l o Bl ()|

for all z1, zo € R? with z; # z2, by (3.0.31) and the bi-Lipschitz properties of G
and 9! we have that

‘Df‘l(z)‘ ~ ‘DE‘I(z) : (3.0.32)
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9 ‘ WE~
g |90 S '@ o 10
in |opf- ‘ ‘aEl ‘ 3.0.33
(3O~ i [wE 3039

for £L%-ae. z € RZIf f’] € Wli)’cp for some p > 1, Lemma 3.2 together with (3.0.34)
gives p < 2(s + 1)/(2s — 1). By (3.0.33) and (2.2.4) we have that

Kji() ~ Kp-1(z)  LPae.zeR (3.0.34)

If K f-1 € L IOC(RZ) for some ¢ > 1, combining (3.0.32) and Lemma 3.1 then yields
g<(s+1/s—1.
By Lemma 2.2 and 2.6, we have that

both f and E are differentiable £*-ae.on R (3.0.35)
From [2, Corollary 3.7.6], G o M satisfies Lusin (N) and (N —1y conditions. Since

7@ = f@)|  |EG oMo = EGy 0 My 22)] 1G5 My (21)) — Gy (M (22)|

X

|21 - 22| Gy 0 M, (22)| RUNEREHEH]

‘fms(m)— 5

‘Zl — 22

for all 7, z» € R? with z; # 79, from (3.0.35) and the bi-Lipschitz properties of G
and s we have that

IDf(2)| = |DE(Gs o M (2))], (3.0.36)
. max |39 f@] =~ max |89E(GY o Ms(2))1, (3.0.37)
eerlr(1)1r21n] |0g f(2)]| ~ mln |89E(GS o M (2))] (3.0.38)

for £2-a.e. z € R%. By (2.2.4), (3.0.37), and (3.0.38), we have that
K;(2) ~ Kp(Gy 0o M(2))  L*-ae .z € R% (3.0.39)
Via the same reasons as for (2.3.13), we have that
JGom, (2) &1 Lrae zeR% (3.0.40)
By (3.0.40) and Lemma 2.1, we derive from (3.0.39) that
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JG,om, (2)

dz
JG om;(2)

/ Ki(2)dz = / K4(Gy 0 My(2))
A A

~ / K4(Gy 0 M,(2)) 6,00, (2) dz = / K4(w) dw
A G095 (A)
(3.041)

for any ¢ > 0 and any compact set A C R%. By (3.0.36) and Lemma 2.1, we obtain
that

JG oo, (2)
JG,om, (2)
“/ IDE(G; o My ()P Jg,00m, (2) dz =/ |DE|?(w) dw
A G oM (A)
(3.0.42)

/ IDFE)IP =/ IDE(G, o9, (2))]”
A A

forany p > 0.If Ky € L? (R?) for some g > 1, Lemma 3.3 together with (3.0.41)

loc

gives that g < max{l,1/(s — D}. If f € Wllo’cp and Ky € L!  for some p > 1 and

loc

some g € (0, 1), combining Lemma 3.4 with (3.0.42) then implies ¢ < 3p/((2s —
Dp+4—2s). O

Under a more general assumption that f in Lemma 3.5 is K -quasiconformal from D
onto Ay, authors from [4, Theorem 4.4] showed a result analogous to Lemma 3.5 (3).

4 Proof of Theorem 1.2
4.1 Prove that the Class F;(g) from Theorem 1.2 is Nonempty

Proof Let g be as in Theorem 1.2. The beginning of proof for Lemma 3.4 shows that
g = Zz o gS omyg,

where mg : D — D is a Mobius transformation and g; : D — M, from (2.3.3) is a

conformal mapping. Recall that m (or g¢) has a bi-Lipschitz extension 91 : R?2 - R?

(or Gy : R? — R?) as in (3.0.30) (or (2.3.6)). Via Lemma 2.6, it suffices to prove

that z> : My — A, has a homeomorphic extension E : R — R? of finite distortion.
Then

fi=EoGyoM, € F(g). @.1.1)

We divide the construction of E into two steps.

Step 1: we construct £ in a neighborhood of the cusp point, see Fig. 2. To be precise,
we define f1, ..., fa and let E| be the sum of compositions of f, ... f1.
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( .

foo fi 13

R et

Fig.2 The construction f3_] o f4_] o fr ofl_l 10— O

Aim 1: to define f; and f>. Fix s > 1, and define

n(x) = Vx(1 +x2"D)4  forall x > 0. (4.12)
Then
1
(1 + xz(s_l))Z (S _ 1)x2s—2
/ = ——
nx) = NG 1+ TIae ) 4.1.3)
For a given r « 1, let
L} =n(@/2%), L2 =@, ando, = L2 — L. (4.1.4)

Then L! ~ t/2, L? ~ t and o, ~ t/2 whenever t < 1. Set

Q; = B(0, L2)\ (B(0, L) U M,), and fi(x,y) = xe’” V¥x >0andy € [0, 27].
4.1.5)

Let £(r) be the length of ff](Q,) N{(x,y) e R2:x = r}. Define
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fa(r,0) = (r m(yr —9)) V(r,0) € f; (0. (4.1.6)

Since d M, is mapped onto dA; by z2, we have that
26=D and r = n(<?) (4.1.7)

L(r) = m + arctan t

for all T € (¢/2,1). Then £(r) = m and r ~ 7 whenever 7 < 1. From (4.1.3), it
follows that g—: ~ 1. Together with g—ﬁ ~ 1273, we have that

al(r) o 253

forall r <« 1. 4.1.8)
ar

Denote R; = f> o fl_l(Qt). Then R, = [L,l, Ltz] X [—o07/2, 01/2]. Combining
(4.1.5) with (4.1.6) implies

E(x)y’ X sin E(x)y> Y(x,y) € R;.
Oy

frofy = (—x cos

Ot
Therefore

cos £Q0 | @ gy L)y 2@ iy Ly

—1
Dfio fy (x,y) = [ sin Ly pald () o L0y 200 cos tz(aby] (4.1.9)

CoS
ot ot oy (o2 Ot

By (4.1.4), (4.1.7), and (4.1.8), we deduce from (4.1.9) that

£
IDfio f5 eyl S Tand I, i (3, y) = MO L @)
o
for all r <« 1 and each (x, y) € R;. Since Kflof—l > 1, from (4.1.10) we have
2
Kflofz—] ~ 1. 4.1.11)
By (4.1.10) again we have that
djD ! 1
|Df20f1_1|:M%|Dflof2_l|§landj = ~ 1.
|J —1 faofi J, 1
fiof, fiofy
(4.1.12)
Analogously to (4.1.11), we have that
Kfzofl—l(x, A1 ViglandV(x,y) € Q. (4.1.13)

Aim 2: to define f3 : Q, — R,. Let
0r ={(x,y) e R?:x e [—12, —(1/2)%], Iy] < Ix[*}.
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Define
2s B
f3(uav) = | —u, v v(u’v) € Ql‘~
(—u)?
Then f3 is diffeomorphic and
-1 0
Dfz(u,v) = | 42 2| (4.1.14)
SR ey
From (4.1.14) we have that
IDf3] Sland Jpy = -1 VY(u,v) € 0. (4.1.15)
Analogously to (4.1.11), we have that
Kpw,v)~1 Vi< landV(u,v) € Q. (4.1.16)

Let R, = f3(Qt). Then R, = [(t/2)%, 1*] x [—t*,1%*]. The same reasons as for
(4.1.12) and (4.1.13) imply that

D IS L S A —land K ey~ 1 @117)

forallt < 1 and (x,y) € ﬁt.

Aim 3: to deflne fa: Rt — R;. Denote by Py, P>, P3, P4 and 151, }32, f’3, f’4 the
four vertices of R; and R;, respectively. Then

[oF [oF [oF [oF
P = (L}, 3’) P = (L?, é) Py = (L?, —Et) Py = (L,l, —é)

and

ﬁl = ((t/z)zs tzs) ) ﬁZ = (t29 IZS)’ ﬁ3 = (tzs _tzs)s ]54 = ((t/z)z’ _IZS)‘

Since d M is mapped onto d A by Z2, the line segment f’l ﬁz is mapped onto P; P>
by

) > (000, 2F)  ue [a/2% 2,
2
and the line segment P4 P is mapped onto P4 P3 by
=) > (. =5)  Vuel/2% .
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Define

- % v R 4.1.18
ftwv) = (nw). T5v) Vo) € Ry, (4.118)

Then f4 is a diffeomorphism from E, onto R; and

Dfa(u, v) = [’7/(()”) 9 } (4.1.19)
2%

By (4.1.3) and (4.1.4) we have that ' (1) ~ +~!and 2;’§s ~ 11725 whenever t <« 1
and (u, v) € R,. It follows from (4.1.19) that

|D 4(M,U)| %tl $ and] (M,U) ~t § (4120)
fa
fOr allt << 1 and all (l/l, v) € Rt- lhen

Dfs(u, v)|? -
Ky (u,v) = IDfatu, 017 7% Vi< land (u,v) € R;. (4.121)

Jp (u, v)
The same reasons as for (4.1.12) and (4.1.13) imply that

|Df; x| & Ty, y) ~ 1> and Koi(x,y) ~ P27 (4.1.22)

forall r <« 1 and all (x, y) € R;.
Aim 4: to define E. Set

Fo=ftof ohofilh
Then F; is a diffeomorphism from Q; onto Q,. Therefore

DFi(z) = Dfy ' (f; ' o fao 7 @)D (fro 7 @)D (f20 7 H(2)

forall z € Q;. From (4.1.17), (4.1.22), and (4.1.12) it then follows that
\DE,|Pdz < D=l e NERYS| —1,|? —117
t|Pdz < f3 (fy o fao fy )| |Dfy (fao fy )| |Dfaofi | dz
t Qt
StPLA(Q)) ~ PP (4.1.23)

for all p > 0. For a fixed large jy, we now consider the set Q; with 1 = 2= for all
Jj = jo. Define
400
Er=) Fy-iXo, ;- (4.1.24)
Jj=Jo
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Denote Q] = Ujfij.o Q,-j and Q| = U};O‘;O Q,-;. Then E{ is a homeomorphism from
€21 onto Q1, and satisfies (2.2.1) for E1 on L2-ae. 1. In order to prove that E1~has
finite distortion on €21, via (2.2.3) it thus suffices to prove that £ € WIL’CI(Ql, Q).
Actually, from (4.1.23) we have that

—+00 —+00
f IDE|P = Zf IDFy @17 dz S Y 2773 <00 (4.1.25)
@ j=jo " Cr j=Jo

forall p > 1.

Step 2: we construct £, on the domain away from the cusp point. Denote

Q =M\ Qrand Q) = AS\ Q.
Notice that both 32, and <2, are piecewise smooth Jordan curves with nonzero angles
at the two corners. Therefore both 92, and 92, are chord-arc curves. By [7] there
are bi-Lipschitz mappings

H; :R> > R?>and H, : R?> > R? (4.1.26)

such that H; (S!) = 92, and H»(S') = 8Q,. Define

Ei1(z) Yz€ QN 0aLQ,
h(z) =14 ,
z Vz € 99 N IM,.

Then A is a bi-Lipschitz mapping in terms of the arc lengths. By the chord-arc properties
of both 9€2, and 92, we have that  is also a bi-Lipschitz mapping with respect to
the Euclidean distances. Taking (4.1.26) into account, we conclude that H,~ Yoho H;:
S! — S!is a bi-Lipschitz mapping. By [13, Theorem A] there is then a bi-Lipschitz

mapping
H:R?> > R? 4.1.27)
such that H|g1 = H2_1 o h o Hy. Define
Ey=HyoHoH " (4.1.28)
By (4.1.26) and (4.1.27), we have that E» is a bi-Lipschitz extension of . Furthermore
since deg M, (h, w) = 1, we obtain that E, is orientation-preserving. Hence E» is a

quasiconformal mapping. The same reasons as for (2.3.12) and (2.3.13) imply

|IDE>(z)|, KE,(z), and Jg,(z) are bounded from both above and below
(4.1.29)
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for £2-a.e. z € RZ, and

’DEz_ ! (w)|, K Ezl (w) and J E_zl (w) are bounded from both above and below
(4.1.30)
for £2-a.e. w € R2.
Via (4.1.24) and (4.1.28), we set
Ei(x,y) for all (x, y) € 2,
E(x,y) =1 Ex(x,y) for all (x, y) € Q, (4.1.31)
(x2 —y?%, 2xy) forall (x,y) € M.
By the properties of E1 and E, we conclude that E € &;. O

4.2 Proof of (1.0.7), (1.0.10), and (1.0.11) in Theorem 1.2

Proof of (1.0.7) Let g be as in Theorem 1.2. It suffices to check that there is f € F;(g)
satisfying that f € WIL’C” (R?,R?) forall p > 1. Let f be as in (4.1.1) and E be as in
(4.1.31). By (4.1.25), (4.1.29), and the fact that E(z) = z2 for all z € My, we obtain
that E € WP (R2, R?) forall p > 1. By (3.0.42) f € W,./ (R2, R?) forall p > 1.0

Proof of (1.0.10) Let g be as in Theorem 1.2. By Lemma 3.5 (1) it suffices to construct
a f € Fy(g) satisfying that f~! € Wlf;f(RZ,RZ) forall p < 2(s + 1)/(2s — 1).
Let f be as in (4.1.1) and E be as in (4.1.31). Via (3.0.32) it suffices to check that
E-le WIL’CP(RZ,RQ) forall p < 2(s +1)/(2s — 1).

By (4.1.15), (4.1.20), and (4.1.10), we have that

‘DF;i(w)‘ < ‘Dfl o f; (fao f3(w))"Df4(f3(w))HDf3(w)‘ < 2/@s=D

forall j > joand £%-ae. w € QT,-.Together with £2(Q27,-) ~ 27276+ e hence
obtain that

» +00

-1 -1
f‘DEl ‘ = / )DFz_j
! j=Jjo 05-j

forall p <2(s 4+ 1)/(2s — 1). Since

+00
p < Z 2—j(2(s+l)+p(l—2s)) < 00 (421)
J=jo

‘DE_I(u, v)’ <@ ) Y, v) e A, 4.2.2)

by a change of variables we have that

» 2 pl , 1 ,
/ )DEil(w)‘ dw §/ / =2 drde %/ rTTdr <oco  (4.2.3)
Ag 0 0 0
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forall p < 2(s + 1)/(2s — 1). By (4.1.30), (4.2.1), and (4.2.3), we conclude that
E-le ngg’(Rz,R?) forall p <2(s +1)/(2s — 1). o
Proof of (1.0.11) Let E be as in (4.1.31). Analogously to the proof of (1.0.10), it
suffices to check that Kz-1 € L?OC(RZ) for all ¢ < (s + 1)/(s — 1). Note that
Lemma 3.5 (2) and (3.0.34) play game now. From (4.1.11), (4.1.21), and (4.1.16), we
have that

Kpo ) =Ko o (fao fs)K i (Fw)K gy (w) ~ 2/

for all j > jo and £L%-a.e. w € Q,-;. Together with £2(0,-,) ~ 27/26FD  we then
obtain that

+00
/~ E = Z/ Kfl < Z 22jls=Dg—(s+D1 _ 55 (4.2.4)
0, F, J

i=Jo - j=Jo

forallg < (s +1)/(s — 1). By (4 1.30), (4.2.4), and the fact that E is conformal on
M, we conclude that K1 € L (R*) forallg < (s +1)/(s — 1). O

loc
4.3 Proof of (1.0.8) in Theorem 1.2

Proof Analogously to the proof of (1.0.10) in Sect. 4.2, viaLemma 3.5 (3) and (3.0.41)
itsuffices to constructa E € & satisfyingthat K € L _forallg < max{l, 1/(s—1)}.
The construction is divided into two cases.

Case 1: s € (1,2). Let E be as in (4.1.31). From (4.1.17), (4.1.22), and (4.1.13), it
follows that

loc

Kr, ;@) =K1 (fi o fro fi @)K o1 (f2o fT @)Ky o1 (2) 2 2267

forall j > jo and £?-a.e. z € Q,-;. Together with £2(Q,-;) ~ 272/ we then have
that

/ Ko — Z/ K‘f ~ Zzzmm - _ o “3.1)
Q2

J=Jo Jj=Jo

forallg < 1/(s — 1). By (4.3.1), (4.1.29), and the fact that E is conformal on M,
we conclude that Kg € L?OC (R?) for all q < 1/(s — 1). Therefore we have proved
(1.0.8) whenever s € .(1, 2).
Case 2: s € [2, o0). Except for redefining f[1 : R, = R, as in (4.1.18), we follow
all processes in Sect. 4.1 to define a new E, see Fig. 3. To redefine f4_1, we should
define mappings A, B, C.

We begin with notation. Let «; and B; be the length of sides of R;, and y; be the
length of a side of R;. Whenever ¢ < 1, we have that

a =12 — (/2> ~ %, B =2t andy, = n(t?) — n((1/2)*) ~ 1. (4.3.2)
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Fig.3 The redefined f}

Let To = Ql Q2 Q3 Q4 be the concentric square of 1%, with side length 8, /2. Set
4.3.3)

o = exp(—fl) fort >0

and let 7o = Q1020304 be the concentric square of R, with side length y, (1 —26;).
We divide R; \ Tp into four isosceles trapezmds T1, T2, T3, and T4. Similarly, we

obtain isosceles trapezoids T], T2, T3, T4 from R, \ To, see Fig. 3.

Aim 1: define A : T} — Tl. Set

1
Ax(x,y) = 45:% <y - Vt(z - 8;)) + % V(x,y) €T.

4.3.4)

Foragiven (x,y) e 1, let (xp,y) = P11 N{(X,Y) € R2:Y = v} (Xp, A2) =
P1Q1 N{(X,Y) e R?:Y = Ay(x, y)}, £(y) be the length of Ty N {(X, Y) : ¥ = y},
and E(y) be the length of TiN{(X,Y):Y = A,}. Denote (P}); by the first coordinate

of P;. Then
Xp=—y+ % + (P and X, = 5 b ('it Az) + (P11, (43.5)
t
- 4oy — 2
U(y) =2y ~ yand £(y) = ’ﬁ M 2P )+ By - = @. (4.3.6)
t

Letu = Z%(x —xp) + (P for (x, y) € Ty, and n be as in (4.1.2). Define
( ) (o S V.-
M =22 (7@ = Pi) +5, Ve @37

By (4.3.7) and (4.3.4), we have that
(4.3.8)

= (A1, A2)
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is a diffeomorphism from 7} onto T;. We next give some estimates for A. By (4.3.2)
we have that

dAr(x,y) B =

_ ~ V(x.y) €Ty 439
3y 18,7, 5, (x,y) €Ty ( )
From (4.1.3), (4.3.6), and (4.3.2) it follows that
0A1(x,y) Z( ) f( )
la—xy Y 0 Y (u ) [y V(x,y) €Ty (4.3.10)

Moreover, by (4.3.5) and (4.3.6) we have that

dxp _ %y B 2004 Q) _, 0 _ A =2 94,
dy oy B dy’ dy dy By
4.3.11)
It follows from (4.3.11) that
8A1 0%, Ay o s (y) iy
=y gy (7@ P+ >()
2 0A 2 ~
] 2[—1+—(n_1(u)—(P1)1)}
/3t dy o
o) T @ |1 g =) | (43.12)

Notice that 0 < n‘l(u) — (ﬁ1)1 <arand 0 < x —x, < £(y) for all (x,y) € Ti.
Therefore (4.3.12) together with (4.3.2) and (4.3.9) implies

Vix,y)eTi.  (43.13)

|

‘aAl(-xvy)‘ < 2al‘_18t 3A2(xa)’) ~ t
~ Bt dy

We conclude from (4.3.9), (4.3.10), and (4.3.13) that

8A1
0x

a4,
9y

0A,
0x

0A>

IDA(x, y)| < max {
dy

1
} < —  (43.14)
8

and

A 0A 12524
Tae.y) === 34194, TTED) (43.15)
X 8y 8¢
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forall t « 1 and all (x, y) € T1. Moreover by (4.3.14), (4.3.15), and (4.3.6) we have
that

DAG. )2 _ 42 4409
KaGr,y) = PAGYIE 77 43.16)
JA (-x’ )’) Stg(y) 81‘

holds for all r <« 1 and all (x, y) € Tj.

Aim 2: define B : T, — Tg. Denote by P, and 136 be the center of R, and Ié,,
respectively. Given (x, y) € T>, we define

2 _
Bi(x.y) = ‘:’Wﬂ’( (P)1—3)+(P)1+2 By(x.y)

e — (P +b
G- P +d

where a, b, c, d satisfy

1 1
ayt<——8,>+b=&, yp= P cyt<——8t)+d

2 PR 2 V\2
I
—y, (5_&), C%er:% (43.17)
Then
B = (Bi, By) (4.3.18)

is a diffeomorphism from 7> onto Tz. By (4.3.2) we have that

Bi(x.y) 20— fi

= %

t
- V(x, 7. 4.3.19
o 15,7, 5, (x,y) e ( )

Moreover, from (4.3.17) and (4.3.2) we have that

dBy(x,y) alx —(Pc)1)+b ﬂt ~ 251

- ~ (4.3.20)
Ay cx— (PO +d  w

and

9B d—>b b
‘ z(x,y)‘ ly(a AN vb o (4.3.21)

e — (Pon) +dP ~ 2
for all (x, y) € T>. We then conclude from (4.3.19), (4.3.20) and (4.3.21) that

831
ax

881
By

B>
ax

B>

IDB(x,y)| < max{
dy

1t
} <— (4322
&
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and
Jp(x,y) = ——~ —. (4.3.23)

forall + « 1 and all (x, y) € T>. Moreover by (4.3.22) and (4.3.23) we have that

IDB(x, y)[> _ 2179
Kp(x.y) = < (4.3.24)
YT T Ik y) 5

forallt < 1 and all (x, y) € T>.

Aim 3: define C : Ty — To. By (4.3.8) and (4.3.18) we have that Q0> is

mapped onto Q1Q2 by Ai(-, y1(1/2 — §;), and Q203 is mapped onto Q2Q3 by
Ba((Po)1 + y:(1/2 — &), -). For a given (x, y) € Tj, define

1 1
C(x,y)= (A1(x, Vt(E —81)), B2((Po)1 + Vt(z — &), y)) . (43.25)
Then C : Ty — fo is diffeomorphic. By (4.3.10) and (4.3.20), we have that
d 4 0 _
S A (x, yi(1/2 = 8) ~ 157, 3 BB+ 7172 =80, y) ~ !

for all (x, y) € Tp. Therefore
IDC(x, y)| <t 'and Ke(x, y) ~ 1 (4.3.26)

forall t <« 1 and all (x, y) € Tp.

Aim 4: redefine f[l and E. Via (4.3.8), (4.3.18), and (4.3.25), we set f[1 R —
R, in (4.1.18) as

A(x,y) V(x,y) € Ty,
B(x,y) V(x,y) € I,
iy =1 (A, —y), —Ax(x, =), V(x,y) € T3,
(2(P)1 — Bi2(P)1 — x,¥), By(2(P)1 — x, ) V(x,y) € Ty,
C(x,y) V(x,y) € Tp.

(4.3.27)

Like in Sect. 4.1, by taking a fixed jo > 1 we then define F,-; : Q,—j — Qz_,- for
all j > jo, E1 : Q1 — Q, E2 : Q@ — Q, and E : R — R2. It is not difficult to
see that the new-defined E is a homeomorphism such that E(z) = z° for all z € M,
and satisfies (2.2.1) for E on £%-a.e. R%. To show that E € &, via (2.2.3) it is then
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enough to prove that E € W,-! (R2, R?). By (4.1.12), (4.1.17), (4.3.14), (4.3.22), and
(4.3.26), we have that

DF,-;(z) =Df3_l(f4_1 ofao f1_1(Z))Df4_l(f2 °© fl_l(z))D(fz ° fl_l)(Z)
822% L2-ae.z € fiofy (Ui_ T,
2/0=29) r2ae z€ fio fz_l(TO)’

<

~

(4.3.28)

for all j > jo. Notice that
LA(To) = (ya-1 (1 = 28,-1)* & 272 L2(Ti) = 8y-5 v (1 — 85-5) ~ 8,272
forallk =1,2,3,4and all j > jj. It hence follows from (4.1.10) that

L2(fro £ W(To) ~ 275, L2(fro f; ' (T) ~ 8,272 forallk = 1,2,3, 4.

(4.3.29)
By (4.3.28) and (4.3.29) we then have that
4
| oral=Y [ DFi| S273 42770 <07 vz,
0, =0 fiofy (T
Therefore
o0 o0
/ |DE;| = / |DFy-;| $ ) 27 < o0 (4.3.30)
@ j=io? Qa-i Jj=Jo

By (4.1.29), (4.3.30), and the fact that E(z) = z° for all z € My, we have that
E € W) (R2, R?).
We nextshow Kz € L (R?)forallg < 1.By (4.1.13), (4.1.17), (4.3.16), (4.3.24),

loc

and (4.3.26), we have that

4j(s—1) _
25,271. Vze fiof, 1(T1UT3),
Kr, ;@ S 5= Vze fiofy (BUTY, 4331
-
1 Vze fiofy (To).

for all j > jo. For any ¢ > 0, via (4.3.29) and (4.3.31) we obtain that

4
/ K. = / K < §192i0a0-D=D (1 4 92i(1-9) 4 92
. s~ —J
0 frofytay T2

. 2-J —J
27/ k=0
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for all j > jo. Therefore

+00

q __ q
=2 [, xt,
J=jo~ =27/
+00 T
S exp((g — 127)2/H6=D= (1 4 2720079) 4 3072 < 400
J=Jo J=Jo

(4.3.32)

forallg € (0, 1) andeachs > 1. By (4.1.29), (4.3.32), and the fact that E is conformal
on M;, we conclude that K € L{_(R?) for all q € (0, 1). O

loc
4.4 Proof of (1.0.9) in Theorem 1.2

Proof Analogously to the proof of (1.0.10) in Sect. 4.2, via Lemma 3.5 (4), (3.0.41),
and (3.0.42) it suffices to construct E € & satisfying that E € Wlop (R%, R?) for
some p > land Kg € L IOC for all ¢ < max{1/(s — 1), M(p, s)}. Here we denote
M(p,s) =3p/((2s — 1)p + 4 — 2s5) with p > 1. The construction is divided into
two cases.

Case 1: s € (1,2). Let E be as in (4.1.31). Then E € &;. By (4.1.25), (4.1.29), and
the fact that E(z) = z2 for all z € My, we obtain that E € WIL’C” (R2, R?) for all
p > 1.From (4.1.17), (4.1.22), and (4.1.13), it follows that

Kr @ =K (i o oo fT @)K i (fao [T @)K py o1 (2) 2 23727

for all j > jo and £%-ae.z € Q,-;. Together with £2(Q27,-) ~ 272/ we then
obtain

/ Kl = Z/ Ki = Z 277204a(1=9) o (4.4.1)
Q

/J02 J=Jo

forallg < 1/(s — 1). By (4.4.1), (4.1.29), and the fact that E is conformal on M,
we have that K¢ € L{ (R?) forallg < 1/(s — 1).

Case 2: s € [2, 00). Redefining §; in (4.3.3) as

[N

pt

L
Stztp_ -1

logn =T (¢ 1).

We follow the methods in Sect. 4.3 to define a new f4_1. Set jo > 1. There are then
new Fr—j 1 Oy)-j — Qz__/ for all j > jo, E1 : Q1 — Ql, Er : Q) — fZg, and
E : R?> — RZ. Itis not difficult to see that the new E is homeomorphic and satisfies
(2.2.1) for E on £?-a.e. R%. To show that E satisfies all requirements, it is enough to
check that E € WILP(RZ R?) and Kr € L{ (R?) forall g € (0, M(p, s)).

loc
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From (4.1.12), (4.1.17), (4.3.14), (4.3.22), and (4.3.26), we have that

2/ —1, 4
an Vze fio Wy _Ty),
IDF,-; ()] < “2#; 5 Jiof X k=1 (4.4.2)
210729 vz e fio fy 1 (To),
for all j > jo. It follows from (4.4.2) and (4.3.29) that
/ |DF,| Z / IDFy 4|7 < 857P271%+p) 4 9/ (p(1-29-2),
0s-j frofy (T
Therefore
1
e p J(p(2s—1)+2)
/IDEI Z/ |DF2,| <Z],,+Z2 -~
j=Jo j=Jo j=Jo
4.4.3)

By (4.4.3), (4.1.29), and the fact that E(z) = z? for all z € M, we conclude that
E e le)’cp(Rz, Rz). By (4.1.12), (4.1.13), Lemma 2.1, and (4.1.17), we have

Kq ~ —1 Kq —1 Kq J _
-/J‘CIszil(Tl) Fy-i ~/f|0f271(T1) f?](f4 °f2efi) f47](f20f1 ) f2°f171| fzofll‘
< in -1 in
= [ KooKy

< / K7, 4.4.4)
n Ji

forallg > Oandall j > jo. Notice £(y,-;/2) = ay—; and £(y,-; (3 —8,-)) = By /2
for all j > 1. By Fubini’s theorem, (4.3.16), (4.3.6), and (4.3.2), we then have

o3 XpHG) [ 9is—4\?
/ Kq71 S / —_—= dx dy
n Va-i (5=8,-) Jxp 85— £(y)

Vy—i

2ja@s=4y, /22 1 a
5;]*/ Va=i (%7‘32*1') £a(y)

2J42s=4),, . 28 4 B 1
= ot aiVa <e1 "2 - el—q<y2,~<——s2,~>)>
(1 —q)87 ; 2055 — B 2

I=q~—2j[1+q(1—
8,12 Jl+q(1=9)]

4.4.5
=M, @4
for any fixed ¢ € (0, M(p, s)). Combining (4.4.4) with (4.4.5) implies that
l—qgA—2j _ ..
/ K§ sy a0l s i, (4.4.6)
flofz (1)

@ Springer



Optimal Extensions of Conformal Mappings from the Unit Disk 2327

By symmetry of f4_1 between 7T and T3, it follows from (4.4.6) that

1—gA~—2j _
/ -1 K;I’z—f :,/ -1 K;I’z—i S 827;12 2=l (4.4.7)
fiofy (T3) ’ Sfiofy " (T1) ’

for all j > jo. By (4.3.31) and (4.3.29), we have that

K%L <27% (4.4.8)
1 F27] ~
Sfirofy (To)

and

[ 22j(s=D
/ K% <6, 27% a; “122/laG=D=1 (4.4.9)
fiofy Uty 2 2

for all j > jo. From (4.4.6), (4.4.7), (4.4.8), and (4.4.9), we conclude that

F_.
/flofg Yay ¥

oo 4

K’I_Z/ Kq :+

Q)

Jj=Jjo j= Jok 0
p+2>(l q) (1—
< ZZ 2% 4o ( +2[14q(1— s)])1 gp 2 (21) (4.4.10)
i=o

Note that

(r+2U-9q)
1

+2[14+qg(1—-5)]>0%qg < M(p,s).

It from (4.4.10) follows that fQ Kq < oo for all g € (0, M(p, s)). Together with

(4.1.29) and the fact that E is conformal on My, we conclude that Kg € LloC (R?) for
allg € (0, M(p,s)). O

5 Proof of Theorem 1.1
Proof Let A be as in (1.0.1). The representation of d A in Cartesian coordinates is
2y2

(x2 4+ y9)° — 4)6()62 + yz) — 4y2 =0.

Hence we can parametrize d A in a neighborhood of the origin as
Fo = {(r,y) e B2 1x € [-270,0], 3% = d(0)},
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Fig.4 The existence of an extension

where jo > 1l and d(x) = %. Since d(x) ~ |x|3 for all |x| <« 1, there

are c; > 0, ¢ > 0 such that
—c1x® <d(x) < —epx®  Vx e [-275, 0.
Denote

[ ={(x,y) eR?:x € [-277,0],y% = —c1x°),
f‘2 ={(x,y) e R?:x e [—Z_jo, 0], y2 = —czx3},
T3 ={(x,y) e R?:x = =270 y2 € [¢;(277)3, d(—2770)},
Ty={(x,y) e R?:x = =270y € [d(=277), c2(277)°]).

Let Q » and Qd be the domains bounded by fo U, UT, and f‘o uru fg, respectively.
Denote by 2, 24 and I'y for £ = 0, ..., 4 the images of Qu, Q, and T'x under the
branch of complex-valued function z'/? with 1'/2 = 1, respectively.

We first prove the existence of an extension, see Fig. 4.

Let r = (27200 4 ¢;273/0)1/4 Denote

M={(x+1y) eR>: (x,y) € D},
Q= B0, \ (MUQ), =R\ (QUQUM),
Q= {(x,y) eR*:x e [-2770,0], y* < c1|x|’} and €, = R?\ (2, Uy U A).

énalogously to the arguments in Sect. 4.1, we define E : Q1 — le and Ey : Q) —
Q,. Here n(x) = /x(1 + ¢1x)/* and s = 3/2. Define

Ei(x,y) Vi(x,y) € Q,
E(x,y)=1Ex(x,y) V(x,y) € Q, (5.0.1)
(xz—yz,ny) Vx,y)e MUy,

and fo(x, y) = E(x + 1, y). By the analogous arguments as in Sect. 4.1, we have that
f() e F.
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We next prove (1.0.3). Suppose f € _7-' Then f(u v) = f(u —1,v) is a homeo-
morphism of finite distortion on R? and f(M \ Q) = A\ ©,. By Remark 3.1, we
have that if Kf € LIOC(RZ) then g < 2. Therefore if Ky € LIOC(RZ) then g < 2.
In order to prove (1.0.3), it then suffices to construct a mapping fo € F such that
Ky € LIOC(R2) for all ¢ < 2. Let E be as in (5.0.1) and fp(x,y) = E(x + 1, y).
Then fy € F. The same arguments as for the case s € (1, 2) in Sect. 4.3 show that
Kg € LIOC(RZ) for all ¢ < 2. Therefore K 7, € LlOC(Rz) forall g < 2.

The strategies to prove (1.0.2), (1.0.4), (1.0.5), and (1.0.6) are same as the one to
prove (1.0.3). We leave the details to the interested reader. O
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