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Abstract

We solve the d-equation for (p, g)-forms locally on any reduced pure-dimensional
complex space and we prove an explicit version of Serre duality by introducing suitable
concrete fine sheaves of certain (p, g)-currents. In particular this gives a condition
for the d-equation to be globally solvable. Our results also give information about
holomorphic p-forms on singular spaces.
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1 Introduction

Let X be a reduced complex space of pure dimension n. A smooth form on X is
locally the pullback to X,., of a smooth form in some ambient complex manifold. It
is well known that this is an intrinsic notion and we denote the corresponding sheaf
by &. It is proved in [8] that if ¢ is a smooth d-closed (0, g)-form, g > 0, on X and
X is Stein, then there is a smooth (0, ¢ — 1)-form ¥ on X,., such that 51// = @; if
q = 0 then ¢ is strongly holomorphic. In general v cannot be smooth on X, see, e.g.,
[8, Example 1.1]. However, the local solution operators constructed in [7,8] provide
solutions ¥ with certain mild singularities at X ;. In particular it is shown that v is
a current on X and that E_)w = @ in the current sense also across X;g.

In case X is smooth, local existence results for the d-equation for (0, ¢)-forms
easily carry over to (p, g)-forms. The reason is that the holomorphic p-forms in this
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case are the sections of a vector bundle, i.e., a locally free sheaf. However, in the
presence of singularities the situation is much more involved since, in this case, there
are several natural notions of holomorphic p-forms and usually the correspondlng
sheaves are not locally free. We will be particularly interested in two notions, .Q
and - The sheaf 2 § is the s sheaf of Kdhler—Grothendieck p-forms modulo t0rs10n
Alternatively one can define .Q in the same way as &y above replacmg ‘smooth form”
by “holomorphic p-form”. Notlce that .Qg)( = Ox. The sheaf a)X was introduced by
Barlet [13]; for p = n it is the Grothendieck dualizing sheaf.

Our main result is that locally on X the d-equation for (p, g)-forms is always
solvable, i_f interpreted in the sense of currents even across Xg;,e. For other results
about the d-equation in the singular setting see, e.g., [14,21,29,31-33,37,39]. Recall
that the (p, g)-currents on X are the dual of the compactly supported sections of
&y "1, given an embedding X < M, currents on X can also be identified with
certain currents in ambient space, see Sect. 2.

Theorem 1.1 Let X be a pure n-dimensional analytic subset of a pseudoconvex domain
D C CN,let D' € D bearelatively compact open subset, and set X' := XN D'. There
are integral operators K : EP4(X) — &P471 (X;eg) and 7. £P0(X) — .QP(X )
such that # ¢ has a current extension to X' and, as currents on X/,

¢ =X 09)+ Po, ¢e&MNX),
0 =0 ¢+ (), peb&lIX), q=>1

The construction of & shows that ¢ in fact has a holomorphic extension to D’.
The integral operators .# and & are given by kernels k(¢, z) and p(¢, z) which are
currents on X x X' that are respectively integrable and smooth on X,.; X X. eg and
that have principal value-type singularities at the singular locus of X x X’. Since a
current locally has finite order we get the following result.

Corollary 1.2 Let ¢ be a smooth d-closed (p, q)-form on Xyeg such that there is a ct-
smooth form in D whose pullback to X,.q equals . There is an M > 0, independent
of ¢, such that the following holds:

(1) Ifg =0and € > Mp then thereisa ¢ € §P(X/) such that 91, = ¢y,

reg

(ii) Ifq = 1 and £ = My then there is a smooth (p, q — 1)-form u on X,eg such that
du = ¢ on Xreg

Part (i) for p = 0and My = oois aclassical result by Malgrange [30, Théoreme 4]
answering a question by Grauert; for M < oo it is due to Spallek [42]. Part (ii) for
p = 0 was proved by Henkin and Polyakov [25] in case X is a reduced complete
intersection and in general in [7]. We remark that Corollary 1.2 is explicit in the sense
that Z¢ (resp. ) provides an explicit holomorphic extension of ¢ to D’ (resp.
explicit solution to du = ¢ on X eg)-

As already mentioned, 3y = ¢ is in general not smoothly solvable in neighbor-
hoods of singular points even if ¢ is smooth (and 5-closed), i.e., the complex (éa}’; - E_))
is in general not exact. Therefore .# ¢ cannot be smooth in general. However, the sin-
gularities of JZ ¢ are not worse than that one can apply another .Z -operator. In fact, one
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1788 H. Samuelsson Kalm

can apply % -operators repeatedly. In a similar way as in [8], starting with smooth
forms and iteratively applying .# -operators and multiplying by smooth forms, we
construct fine sheaves 42{; "9 of certain currents, which are closed under % -operators
and 9, see Sect. 6.1 below for details. We have the following generalization of [8,
Theorem 1.2].

Theorem 1.3 Let X be a reduced complex space of pure dimension n. For each p =
0, ..., n there are fine sheaves ﬂ;’q, q=0,...,n, of (p,q)-currents on X with the
standard extension property such that

@) g)f’q C sz)f’q and @q%)f’q is a module over @qé’}?’q,
e [ X
(11) t’Mxr('g - @@Xreg’
(iii) the following sheaf complex is exact
00 DF s P00y gpt 3,8 g g (1.1)
X X X X : :
That a current has the standard extension property (SEP) means roughly speaking
that it is determined by its restriction to any dense Zariski open subset, see Sect. 2 for
the precise definition.
Since the «7x-sheaves are fine, the de Rham theorem gives the following general-
ization to the singular setting of the classical Dolbeault isomorphism.

Corollary 1.4 Let X be a reduced complex space of pure dimension, let F — X be
a holomorphic vector bundle, and let F be the associated locally free Ox-module.
Then

HI(X, 7 ® 2%) ~ HI(a/7*(X, F), d).

Notice that since («7°®, ) is a resolution of 2%, whose sections in particular
are smooth, and since &"* C #7%’°, it follows from a well-known construction that
each cohomology class in H? (ﬂ P (X), 5) has a smooth representative (cf., e.g., [38,
Sect. 7]).

The operators .# and & in Theorem 1.1 extend to operators o7/79(X) —
dP4=1(X") and ZP0(X) — 2P(X'), respectively, and the integral formulas con-
tinue to hold; it is this generalized version of Theorem 1.1 that we will prove below.

The operators " and &2 can be applied to, for instance, semi-meromorphic cur-
rents. However, the integral formulas of Theorem 1.1 then cannot hold in general.
Indeed, if this were the case then, in particular, any d-closed meromorphic p-form on
X would be in 27 (X’). This is to say that a)§ = §§, which is not true in general. On
the other hand, the obstruction to the integral formulas to hold is explicit and gives a
residue criterion, formulated in Theorem 5.5 below, for a meromorphic p-form to be
a section of 2 5. This generalizes results by Tsikh [43], Andersson [5], and Henkin-
Passare [24]. The residue criterion leads to a geometric criterion, Proposition 5.6,
which in turn gives the following geometric characterization of complex spaces with
the property that any holomorphic p-form on the regular part extends to a section of
ﬁ)’;. Recall that to a coherent analytic sheaf ¢ on X there are associated singularity
subvarieties So(¥4) C S1(¥9) C --- C X, see, e.g., [41, §1] or Sect. 2.3 below.
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Proposition 1.5 Let X be a reduced complex space of pure dimension n. Then the
following conditions are equivalent:

(1) codimy Xing > 2 and codimy S, k(Q )>k+ 2f0rk > 1.
(i) For any open U C X the restriction map Q”(U) — .Q”(Ureg) is bijective.

This result is a variation on [41, Theorem 1.14], see also [40], that is explicit in the
sense mentioned above. Notice that, for p = 0, Proposition 1.5 is a normality criterion.
It is in fact possible to verify directly that condition (i) with p = 0 is equivalent to
Serre’s conditions R1 and S2. From Proposition 1.5 we get the following result, see
the end of Sect. 6.1.

Corollary 1.6 Assume that X is a reduced complete intersection. Then X is smooth if
and only if condition (i), or equivalently (ii), of Proposition 1.5 with p = n holds.

In view of Corollary 1.4, H1(X, ff;;) encodes the global obstructions to solv-
ing the é-equation To get some control of these obstructions we will describe the
dual of HY(X, 27 x) as Dolbeault cohomology of fine sheaves %’ "4 of certain
(n — p,n — g)-currents on X. This description of the dual of H ‘1 (X, Q° x) provides
a concrete analytic realization, Theorem 1.9 below, of Serre duality in the singular
setting analogous to the classical one in the non-singular case. The operators #" and
& correspond to integrating the kernels (¢, z) and p(¢, z), respectively, with respect
to ¢; integrating with respect to z instead gives operators 2 and & with different
properties. Applying Vi -operators repeatedly gives the Ay -sheaves, which in a sense
are dual to the o7x-sheaves. The case p = 0 of the following result is proved in [38].

Theorem 1.7 Let X be a reduced complex space of pure dimension n. For each p =
0, ..., n there are fine sheaves %’ﬁ_p’q ,q' =0,....n, 0of (n— p,q’)-currents on X
with the SEP such that
(1) éagfp’q,/ - ,%’;711"11 and @q/,%";;p’q/ is a module over @q/cg’)(()'q/,
s n—=p.q' _ on—p.gq
(i) %Xmg =&y ,

reg

d ]

9 n—p,1 d n—p,n .
By — o —> By — 0 is a sheaf complex

(i) 0 —» &y 70
with coherent cohomology sheaves a)x —pd %ﬂq,(%;_p **.9) and a);l(_p =
n P-0 If.Q is Cohen—Macaulay then (93;'(_”", d) is a resolution ofa)’;(_p

The proof of Theorem 1.7 will show that if i : X < D c CV, then i*a)')l(_p’ql ~
é’x/gql(ﬁp, 2Ny, wherexk = N —n, 0 = Ocn, and oV = .Qg,v is the sheaf of
holomorphic p-forms in CV; we will use this notation throughout.

Theorem 1.8 Let X be a pure n-dimensional analytic subset of a pseudoconvex domain
D C CN, let D' € D and set X' := X N D'. There are integral operators

A Brd (X) — BP4=NX) and P: BP9 (X) — BP9 (X)) such
that

V=AY + K BY) + Py
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1790 H. Samuelsson Kalm

on X'. Ifﬁ)'; is Cohen-Macaulay and € B" P4 (X) then Pv € o" P (X') if
g =0and Py =0ifq > 1.

Notice that if ¥ € "~ ?(X) then, on X', ¥ = @w is a representation formula for
sections of @y ”.

Ifp € 427" 9(X)andyr € B"~P"~9(X) then the product p Ay exists, Theorem 7.1.
On X, it is just the exterior product of smooth forms, and this form turns out to
have a unique extension to X as a current with the SEP. Moreover, (¢ A ) =
3@ A +(—1)P 99 A3y Hence, there is a pairing, the trace map, (¢, V) — [y 9 AV
and it descends to a trace map on cohomology.

Theorem 1.9 Let X be a compact reduced complex space of pure dimension n and
let F — X be a holomorphic vector bundle. Then the following pairing is non-
degenerate:

H(«/"*(X,F),0) x H'4(#" "*(X, F*),08) — C, (1.2)

(lpls. [¥15) — /Xw A (1.3)

The case p = 01is proved in [38]. Notice that it follows from Theorem 1.9 together
with Corollary 1.4 and Theorem 1.7 that if §§ is Cohen—Macaulay, then there is a
non-degenerate pairing H9 (X, §§) x H'" 9(X, wgl(_p) — C. For p = 0 this is the
well-known duality on Cohen—Macaulay spaces. For p > 0 it follows that Barlet’s
sheaf a)’;(_ is dualizing with respect to § in the same way as the Grothendieck sheaf
o'y is dualizing with respect to Oy. If .Q§ is not Cohen—Macaulay, then a)X ~7 does
not suffice to describe the dual of HY(X, 2% ); higher &27’s come into play. This is
also the case in the classical duality by Ramls and Ruget [36]: Given a coherent sheaf
Z on X they describe the dual of H?(X,.%) as Ext™9(X; .#, K%,), where K}, is the
dualizing complex in the sense of [36].

We notice the following consequence of Theorem 1.9: If ¢ is a smooth 3-closed
(p, g¢)-form on X, then there is a smooth solution to the E_)-equation on X, g if f x PN
¥ = 0 for all d-closed smooth (n — p, n — g)-forms ¥ on X. Indeed, ¢ defines an
element in H7(%P*(X), d) and each element in H"~9(</"~P-*(X), 3) has a smooth
representative.

With a slight modification of the statement, the Serre duality, Theorem 1.9, con-
tinues to hold on paracompact spaces provided certain separability conditions are
fulfilled. In fact, instead of proving Theorem 1.9, we will prove the following slightly
more general result:

If X is a reduced paracompact complex space of pure dimension n and we replace
B"P*(X, F*) in Theorem 1.9 by the corresponding space of sections with compact
support, then the conclusion of Theorem 1.9 holds provided that H 19X, 7 ® §§)
and HIT' (X, F ® [25) are Hausdorff.

We remark that the Hausdorff assumption is automatically fulfilled if X is compact
or holomorphically convex; this follows from the Cartan—Serre theorem and Prill’s
result [35], respectively. Moreover, by the Andreotti—Grauert theorem, 9(X, 7 ®

) and H1HY(X, Z ® Q7 x) are Hausdorff for g > k if X is k-convex.
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2 Preliminaries

Let X be a pure n-dimensional reduced complex space. Following [26, Sect. 4.2], the
vector space of (p, g)-currents on X is the dual of the vector space of (n — p, n — gq)-
test forms 2"~ P"~4(X), i.e., the compactly supported sections of éa;_p’n_q. More
concretely, ifi: X < D C CV isan embedding and w is a (p, g)-current on X, then
vi=iyuisa(p+k,q+x)-currentin D (recall thatx := N —n) and v.£& = O for any
test form & in D whose pullback to X, vanishes. Conversely, if v is such a current
in D then there is a current  on X such that v = i, u.

Let x be any smooth regularization of the characteristic function of [1, o0) C R;
throughout the paper, x will denote such a function. A current © on X is said to
have the standard extension property (SEP) with respect to a subvariety Z C X if
X(Ihlz/e),ury — [}y, as € — 0 for any open U C X, where h is any holomorphic
tuple on U not vanishing identically on any irreducible componentof ZNU.If Z = X
we simply say that u has the SEP (on X).

2.1 Meromorphic Forms

Let here X be a pure-dimensional analytic subset of some domain D ¢ CV and
let W be an analytic subset containing Xy;,e but not any irreducible component of
X. It is proved in [24] that the following conditions on a holomorphic p-form ¢ on
X\W are equivalent. (1) ¢ is locally the pullback to X\W of a meromorphic p-
form in a neighborhood of X. (2) For any desingularization 7: X — X such that
i Xyeg > Xreg, "¢ has a meromorphic extension to X. (3) There is a current T in
D such that i, = T[D\W, where i : X < D is the inclusion. (4) For any & € 0 (X)
that vanishes on W, but not identically on any component of X, the current

70038 ot [ (P A @1
€—> X

exists and is independent of 4.

The sheaf of germs of p-forms satisfying these conditions is called the sheaf of
germs of meromorphic p-forms on X; we will denote it by ///}? . One can check that
if x € X is an irreducible point then .7 )?’x is (isomorphic to) the field of fractions
of Ox x. We usually make no distinction between a meromorphic form ¢ and the
associated principal value current (2.1).

2.2 Pseudomeromorphic Currents

Pseudomeromorphic currents were introduced in [10]; the definition we need and will
use is from [8]. In one complex variable z it is elementary to see that the principal value
current 1 /7" exists and can be defined, e.g., as the limit as € — 0 of x (|h(z) 12/€)/z™,
where £ is a holomorphic function (or tuple) vanishing at z = 0, or as the value at A = 0
of the analytic continuation of the current-valued function A — |h(z)|**/z™. It follows
that the residue current 3(1/z™) can be computed as the limit of 3x (|h(z)|*/€)/z™
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1792 H. Samuelsson Kalm

or as the value at . = 0 of A +— 9|h(z)|** /2. Since tensor products of currents are
well-defined we can form the current

-1 -1 v(2)
21 r Zrgl " Zn
inC", wheremy, ..., m, are positive integers, m, 1, . . . , m, are nonnegative integers,

and y is a smooth compactly supported form. Notice that 7 is anti-commuting in the
residue factors 5(1/13” ) and commuting in the principal value factors l/z;:”(. We
say that a current of the form (2.2) is an elementary pseudomeromorphic current.
Let X be a pure-dimensional reduced complex space and let x € X. We say that a
germ of a current p at x is pseudomeromorphic if it is a finite sum of pushforwards

T = ni . Jrfr, where U is a neighborhood of x,

7TZ 7'[2 7T1
ut L o Syt Sy =u,

each 7/ is either a modification, a simple projection U/ = U/~ x Z — U/~!, or
an open inclusion, and 7 is an elementary pseudomeromorphic current on ¢ ¢ CV.
The union of all germs of pseudomeromorphic currents on X forms an open subset of
the sheaf of germs of currents on X and thus defines a subsheaf P M x. Notice that
since d maps an elementary pseudomeromorphic current to a sum of such currents it
follows that d maps P M to itself.

The following result is fundamental and will be used repeatedly in this paper.

Dimension principle. Let X be a reduced pure-dimensional complex space, let 1 €
PM(X), and assume that . has support contained in a subvariety V. C X. If u has
bidegree (x, q) and codimyV > g, then u = 0.

This result is from [10], see also [8, Proposition 2.3]. In connection to the dimension
principle we also mention that if © € PM(X), supp C V, and & is a holomorphic
function vanishing on V, then Ay = 0 and dh A o = 0. An arbitrary current u with
supp u C V is of the form u = i, 7, where i is the inclusion of V, for some current t
on Vifand only if hyu = dh Ay = hp = dh A = 0 for all holomorphic 4 vanishing
on V. Thus, if © € PM(X), there is such a t if and only if hu = dh A u = 0O for all
holomorphic functions /# vanishing on V.

Another fundamental property of pseudomeromorphic currents is that they can
be “restricted” to analytic (or constructible) subsets: Let u € PM(X),let V C X
be an analytic subset, and set V¢ := X\V. Then the restriction of u to the open
subset V¢ has a natural pseudomeromorphic extension 1ycu to X. It follows that
1y := pw — 1ycp is a pseudomeromorphic current with support contained in V. In
[10] 1y is defined as the value at O of the analytic continuation of the current-valued
function A — |h|** 1, where / is any holomorphic tuple with zero set V; 1y can also
be defined as lim,_o x (|1|>v/€)u, where v is any smooth strictly positive function,
see [11, Lemma 3.1], cf. also [28, Lemma 6]." Taking restrictions is commutative, in

1 e-Approximations and A-approximations can be used interchangeably; A-approximations are often com-
putationally easier to work with while we believe that e-approximations are conceptually easier. For the
rest of this paper we will work with e-approximations.
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The 3-Equation, Duality, and Holomorphic Forms 1793

fact, if V and W are any constructible subsets then 1y 1y = 1lyaw . Let us also
notice that u € PM(X) has the SEP (on X) precisely means that 1y = 0 for all
germs of analytic subsets V' C X of positive codimension. We will denote by Wx the
subsheaf of P M x of currents with the SEP on X. From [11, Sect. 3] it follows that
if 7: X’ — X is either a modification, a simple projection, or an open inclusion, and
€ W(X') then o € W(X).

Lemma 2.1 Let X be a reduced complex space and let Y C X be an analytic nowhere
dense subset. If u© € PM(X) N W(X\Y) then 1x\yu € W(X).

Proof LetV C X be a germ of an analytic nowhere dense subset. Since u € W(X\Y)
we see that supplyu C Y NV andsolylx\ypu = 1x\ylypu =0. O

For future reference we give the following simple lemma, part (i) of which is almost
tautological.

Lemma 2.2 Let X be a germ of a reduced complex space and let © € W(X).

(i) We have that du € W(X) if and only if lime_0dx (|h|?/€) A n = O for all
generically non-vanishing holomorphic tuples h on X.

(i) Let Y C X be an analytic nowhere dense subset, let h be a holomorphic tuple
such that Y = {h = 0}, and assume that . € W(X\Y). Then o € W(X) if
and only iflime_o dx (|h|*/€) A = 0.

Proof Since € W(X) we have that i = lim¢_¢ x (|h|>/€)u for any generically
non-vanishing . It follows that

dp = lim d(x (|h1*/e)p) = lim dx (|h*/€) A+ lim x(|h*/€)dp. (2.3)
e—0 e—0 e—0

Now, du € W(X) if and only if the last term on the right-hand side equals du for all
generically non-vanishing & and part (i) of the lemma follows. The “only if” part of
(ii) also follows directly from (2.3). On the other hand, if lim._.¢ ] x(|h |2 /e)Au =0
then, by (2.3), o = 1X\y2§u and so the “if” part of (ii) follows from Lemma 2.1. O

Recall that a current on X is said to be semi-meromorphic if it a principal value
current of the form «/ f, where « is a smooth form and f is a holomorphic function
or section of a complex line bundle such that f does not vanish identically on any
component of X. Following [8], see also [11], we say that a current a on X is almost
semi-meromorphic if there is a modification 7 : X’ — X and a semi-meromorphic
current o/ f on X’ such that a = m,(a/ f); if f takes values in L — X’ we need
also « to take values in L — X' if we want a to be scalar valued. If a is almost semi-
meromorphic on X then the smallest Zariski-closed set outside of which a is smooth
has positive codimension and is denoted ZSS(a), the Zariski-singular support of a,
see [11].

For proofs of the statements in this paragraph we refer to [11, Sect. 3], see also [8,
Sect. 2]. Let a be an almost semi-meromorphic current on X and let © € PM(X).
Then there is a unique pseudomeromorphic current 7 on X coinciding with a A
outside of ZSS(a) and such that 17557 = 0. If i is a holomorphic tuple, or
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1794 H. Samuelsson Kalm

section of a Hermitian vector bundle, such that {h = 0} = ZS5S(a), then T =
lime_0 x (|h]?/€)a A p; henceforth we will write a A u in place of 7. One defines
da A u so that Leibniz’ rule holds, i.e., da A o := d(a A p) — (—1)9€% A dp. If
w € W(X) then a A u € W(X); in this case a A . = lime_0 x (|h]?/€)a A p if h
is any generically non-vanishing holomorphic section of a Hermitian vector bundle
such that {# = 0} D ZSS(a). If u is almost semi-meromorphic then a A p is almost
semi-meromorphic and, in fact, a A u = (—1)degadegr A g,

Let X be an analytic subset of pure codimension « of some complex N-dimensional
manifold D. The subsheaves of PMp of germs of 9-closed (k, k)-currents, k =
0, ..., N, with support on X are the sheaves of Coleff—Herrera currents with support
on X and are denoted %%”)f Coleff—Herrera currents were originally introduced by
Bjork as the d-closed currents 1 on D of bidegree (N, k) such that ~u = 0 for any
holomorphic function £ vanishing on X and with the SEP with respect to X, see, e.g.,
[15]. Tt is proved in [4] that the definitions are equivalent. The model example is the
Coleff-Herrera product: Assume that fi, ..., fi € O(D) defines a regular sequence.
Then the iteratively defined product d(1/f1) A --- A 3(1/ f,) is the Coleff-Herrera
product originally introduced by Coleff and Herrera in [17] in a slightly different way;
cf. also [16].

Let us also notice that if X and Z are reduced pure-dimensional complex spaces
and u € PM(X),then u ® 1 € PM(X x Z), see, e.g., [8, Sect. 2]. We will usually
omit “®1” and simply write, e.g., ;£(¢) to denote which coordinates ¢« depends on.

2.3 Residue Currents Associated with Generically Exact Complexes

Let E;, j = 0,..., M, be trivial vector bundles over an open subset of CN, let
fj: Ej — Ej_1 be holomorphic mappings, and assume that

0= Ey % . g IS gy Lo 2.4)

is acomplex that is pointwise exact outside of an analytic subset V of positive codimen-
sion. The bundle E := @ E; gets a natural superstructure by setting E™ := @, Ey;
and E~ := @ E7j41. Following [9] we define currents U and R with values in End(E)
associated with (2.6) and a choice of Hermitian metrics on the Ey.2 Notice that End(E)
gets an induced superstructure and so spaces of forms and currents with values in E
or End(E) get superstructures as well. Let f := @®; f; and set V := f — 9, which
then becomes an odd mapping on spaces of forms or currents with values in £ such
that V2 = 0; notice that V induces an odd mapping Vgpq on End(E)-valued forms
or currents such that Vénd = 0. Outside of V, let oy : Ex—1 — Ej be the pointwise
minimal inverse of fi, i.e., foreachz ¢ V,

01(2) fk(2) = Niker frapts  Se(@0k(2) = Him g (2),

where IT denotes orthogonal projection. Leto := 01 +02+- - -;itis an odd element in
End(E)and fo+o f =1dg.Letu := o +odo +a(30)2+- --. Outside of V we have

2 That a current takes values in a vector bundle F means that it acts on test-forms with values in F*.
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fu+uf =Idg + du, i.e., Venqu = Idg, see [9]. Notice that u = D o<t ZO§k<€ u’z,
where ulg = 0pdoy_1 - éak_H, is a smooth Hom(Ey, E¢)-valued (0, £ —k — 1)-form
outside of V. We extend u as a current across V by setting U := lim¢_,¢ x (| F|?/€)u,
where F' is a (non-trivial) holomorphic tuple vanishing on V, cf., [9, Sect. 2] and [2,
Theorem 5.1]. As with u we will write U = 3"_, 3", _, UK, where now U} is a
Hom(Ey, E¢)-valued (0, £ — k — 1)-current.

Remark 2.3 The procedure of taking pointwise minimal inverses produce almost
semi-meromorphic currents, see, e.g., [11, Sect. 4]. Thus the o; have almost semi-
meromorphic extensions across V and, letting o; denote the extension as well, we
have Ué‘ = 0[503_1 e 5Uk+1 , where the products are in the sense of Sect. 2.2 above.
In particular, each U, é‘ is an almost semi-meromorphic current in (some domain in)
CcN.

The current R is defined by the equation Vg,qU = Idg — R, and hence R is
supported on V. Since V%nd = 9, we have Vgp,gR = 0. Notice that R is an almost
semi-meromorphic current plus d of such a current. One can check that

R = lim (1= x(FI*/O))Idg + dx (| FI*/€) Au. (2.5)

We write R = D o_; > o<i¢ ng, where Réf is a Hom(Ey, Ey)-valued (0, £ — k)-
current.
Now consider the sheaf complex

0= OEy) 2 .. L oE) L 0Ey) (2.6)

associated with (2.4). Assume that (2.6) is exact so that it provides a free resolution
of the sheaf .% = O'(Ey)/ #2772 f1. Recall that any coherent sheaf is of this form and
has a free resolution locally. By definition, .% has (co)dimension r if the associated
primes of each stalk .%, all have (co)dimension < r (> r); .# has pure (co)dimension
if all associated primes are equidimensional. Let Z; be the set where f; does not
have optimal rank; it is well known that the Z; are analytic and independent of the
choice of free resolution, thus invariants of .%. Let k = codim.%. By, e.g., [19,
Corollary 20.12],

"‘CZkCZkflc"'CZ;H»l_,C,_ZKZ"'ZZI-

Moreover, by [19, Corollary 20.14], codim Z; > k + 1 for k > « + 1 if and only if
Z has pure codimension x. We recall also that .% is Cohen—Macaulay if and only if
Zr = @ fork > k + 1, 1i.e., if and only if there is a resolution (2.6) of .# with M = «.

By definition, see [41, §1], the singularity subvarieties S¢(¥) of 4 := .F [, are
the set of points x € Z such that depthﬁzl'x (9y) < (L. 1tis straightforward to check

that Z is the set of points x € C such that the projective dimension of .%, is > k
and so, from the Auslander—-Buchsbaum formula, it follows that Sy_ (%) = Z;.
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It is proved in [9] that if (2.6) is exact and R is the associated current, then R =
Zezx sz). Moreover, a section ¢ of O (Eg) is in #7272 f) if and only if (the E-valued)
current Rg vanishes. Thus, if (2.6) is exact, Rf = Rf1 = 0 and hence

0= VgndR = fR—Rf —3R = fR — 3R. 2.7

In what follows we will only be concerned with currents associated to exact complexes
(2.6). We will therefore write Ry := Rg.

Example 2.4 The model example is the Koszul complex: Let f1, ..., f, € O(D) (D
a domain in CV) be a regular sequence and let (2.6) with M = « be the associated
Koszul complex, which then is a resolution of &/( f1, ..., fi). With the trivial metric

on the bundles E; the resulting R is Rpy A e, Aefj, where Rpyy is the residue current
of Bochner—Martinelli type introduced in [34] and ey and ¢, are suitable frames for
the line bundles Eq and E, respectively. It is shown in [34], see also [4], that Ry
equals the Coleff—Herrera product in the present situation. By [9, Theorem 4.1], R is in
fact independent of the choice of Hermitian metric and so the above procedure always
produce the Coleff-Herrera product (times e, A ef}) in the case of regular sequences.

3 The Sheaves ﬁf} and Associated Residue Currents

Let X = {h; = --- = h, = 0} be a pure n-dimensional analytic subset of an open
set D C CN and set k := N — n; assume that 0 € X. Let jf(’ C £2} be the subsheaf
generated over Op by h;dz! anddh; Adz/, 1 <i,j <r,|I|=p,|J|=p—1.By
definition, £2 )[; =0 g / j )’; is the sheaf of germs of Kihler—Grothendieck differential
p-forms on X. It is clear that it is a coherent analytic sheaf of codimension « in D and
that it coincides with the standard sheaf of holomorphic p-forms on X, .. In general,
52§ has non-trivial torsion; recall that a torsion element of .Q§ is represented by a
form ¢ in ambient space such that ¢ € 7. )f generically on each irreducible component
of X, i.e., the pullback of ¢ to X, vanishes.

Example 3.1 Let X = {z% = z%} C C? and ¢ = 2z»dz; — 3z1dzs. Then ¢ defines a
torsion element in .Q)l( In fact, it is straightforward to check that ¢ is not in 7, )}, and
using the parametrization ¢ — (13, 2) of X it is immediate that ¢ vanishes on Xyeg-

We set 2% := 2% /torsion and we call the sections of 2% strongly holomorphic

p-forms. Let jX C .Qp be the subsheaf of forms whose pullback to X,., vanishes.
Since J§ C JJ thereis anatural surjective map 2% — 25 /77 X with kernel 77 /77,
which consists of the torsion elements of .Qp Hence 2 }lz = / Jr X Notice that the
sections of .Qp define d-closed currents on X with the SEP. Notice also that Qp has
pure cod1mens10n k.Infact, forany ¢ € 27 x> ann(e) is the ideal corresponding to those
irreducible components of X where ¢ is generically non-vanishing. The associated
primes of 2 )’; are thus the ideals of the irreducible components of X. We remark that
strongly holomorphic forms have been studied by several authors, e.g., in [20] and
[24].
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For simplicity we will for the rest of this section assume that D is a neighborhood
of the closure of the unit ball B of CV and we denote the inclusion X — B by i.
Moreover, we let (2.6) be a resolution of 2§ = 2§ /Jy with Eg = T (B so that

O(Ey) = 2F; recall also the associated sets Z, cf. Sect. 2.3. Since SZ)’; has pure
codimension k we have codim Zy > k+ 1,fork =« + 1,k +2, ..., and in particular
Z N = . Hence, we can, and will, assume that M < N —1in (2.6). The resolution (2.6)
induces a complex (2.4) that is pointwise exact outside of X. A choice of Hermitian
metrics on the E; gives us associated Hom(Ey, E)-valued currents U and R so that,
in particular, a holomorphic p-form ¢ is a section of 7. )’; if and only if the E-valued
current R¢ vanishes.

Notice that Ry A dz, where dz = dzy, ..., dzy, is a Hom(Eq, Ey)-valued (0, k)-
current, i.e., a distribution-valued section of E; ® E(’)k & T;'\;’ «B. Recalling that Eg =
T;’O]B, interior multiplication induces a natural isomorphism E;® Ty, ]BS — Ty_ B
Hence we can view R; A dz as a distribution-valued section of Ej ® ok B, i.e.,as
an Ej-valued (N — p, k)-current. Unless explicitly said, we will use the second point
of view (even though the notation might suggest otherwise).

To explain the two view-points of Rx Adz in some more detail, let ¢ be an E; ® Ep-
valued test form of bidegree (0, N — k). Then, since Ey = T*OIB @ can as well be
seen as an E;-valued test form ¢ of bidegree (p, N — k). Con31der the diagram

Ex®E; @ Ty B —> Ty yB
J [l
* A(ﬁ *
Ex®T;_, B =5 T \B

where ¢ also denotes the natural map induced by ¢, and the map A¢ is defined by
taking wedge product with ¢. One checks that the diagram commutes. With the original
view-point, Ry A dz acts on ¢; with the second view-point, Ry A dz acts on ¢.

For future reference we also note that with the first point of view R A dz can be
naturally multiplied by smooth Ejp-valued (0, x)-forms yielding E-valued currents;
with the second point of view R A dz can be naturally multiplied by scalar-valued
(p, *)-forms yielding the same E-valued currents.

Example 3.2 Assume that X ={w;=--- = w, = 0}, where (z1, ..., Zn; W1, ..., W)
are local coordinates in an open subset I/ of CV. A basis for the (p, 0)-forms in ¢/ is
given by the union of {dz; A dw;}, where I and J range over increasing multiindices
such that |I| 4 |J| = p. Let E and E] be the subbundles of T ;"OU generated by

dzs, |I| = p,and dz; A dwg, |J| < p, respectively. It is clear that jfg is generated

by w;dzy,i = 1,...,k,|J| = p and dz; A dwy, |J| > 1. To get a resolution of
.Q§ we let, for each increasing multiindex J C {1, ...,n} with [J| = p, (E.] f.J)
be the Koszul complex corresponding to wy, ..., w,, where E({ is (identified with)

the line bundle generated by dz,; notice that @)= pE({ = E|. It is well known that
(O(E]), 1) is a resolution of the quotient &dz;/(wy., ..., w,)Odzy. Let (E,, f])
be the direct sum of the complexes (E], f;/) over all increasing multiindices J with
|J] = p. Then
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0— O(E,) —/> —> ﬁ(Ez) ﬁ(El) ® O(Ey) —> O(Ey) ® O(E})
3.1

is a resolution of £2 § since (3.1) is exact (as a direct sum of exact complexes) and the
cokernel of the map f| @ Id equals 52”

Since wy, ..., wy is a regular sequence it follows that, for any choice of Hermitian
metrics on the E,.J , the current R associated with (E/, f;/) equals

-1 -1
R'=¢! ® dz))*®9— A Nd—,
w1 Wy

where ¢” is a frame for EK] (dzy)* is the dual of dz;, and E_)(l/wl) A A E_)(l/wK)

is the Coleff—Herrera product, cf. Example 2.4. Choosing a metric that respects the

direct sum structure we get that R = Zf Jl=p R’ is the current associated with (3.1).
The two view-points mentioned before this example are illustrated by

- 1
RAdzAdw = Z £ ®(d21)*®8—/\ A O— Adz Adw

= W
1
= Z P ®8—/\ C Ad— Adzye Adw, (3.2)
=" Wi «

where J¢ = {1,...,n}\J.

4 Barlet’s Sheaf @y and Structure Forms on X

The sheaf w§ was introduced by Barlet in [13] as the kernel of a natural map
Jsj* 2y — %)}wg(é?u‘%(ﬁx, 2°**)), where j: X, < X is the inclusion. It
is proved, [13, Proposition 4], that the sections of a)X can be identified with the holo-
morphic p-forms on X, that have an extension to X as a 9- closed current with the
SEP. Moreover, it is shown that wX is coherent. Hence, wX / .Q is a coherent sheaf
supported on Xy;pg. It follows that locally, for a suitable genencally non-vanishing
holomorphic function /4, one has hw’ y C .Qp Therefore a)z can be identified with
the sheaf of germs of meromorphic p- forms on X that are d-closed considered as
principal value currents; we will use this as the definition of a)§ This analytic point
of view was emphasized and explored by Henkin and Passare [24], and therefore we
sometimes call sections of wf( Barlet—-Henkin—Passare holomorphic p-forms.

From Barlet’s definition, since j, j*$25 is torsion free (and from the one we use
as well), it is clear that w§ is torsion free. Moreover, from [13, p. 195] it follows
that if codimy Xyize > 2, then any holomorphic form on X,., extends (necessarily
uniquely) to a section of w§ over X. Thus, by [23, Proposition 1.6], if X is normal
then % is reflexive. On a normal space the reflexive hull of any reasonable sheaf of
holomorphic forms therefore coincides with @%.
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Leti: X — D be a pure n-dimensional analytic subset of a neighborhood D
of B c CN, k = N —n. As in the previous section, let (2.6) be a resolution of
§§ = Qf /Ty with O(Eo) = 24, recall the associated sets Zi, andlet R = R+ - -
be the associated current (for some choice of Hermitian metrics). Recall that R A dz
is (considered as) an (N — p, x)-current with values in E,, cf. the paragraph before
Example 3.2. The following proposition is the analogue of [8, Proposition 3.3] and
the proof is essentially the same, we therefore omit it.

Proposition 4.1 There is a unique almost semi-meromorphic current v = wo + w1 +
<o+ wy—1 on X, where wy, is an E,y-valued (n — p, k)-current, such that

R Adz =io.
Moreover, cf. (2.7),
fixo = do.

The current w has the following additional properties:

a If §§ is Cohen—Macaulay, then wq is an E,-valued section of a)’;p over X.
In general, there is a vector &y = (@o1, ..., woy) of sections of a)’;(_p over X
and a vector ay = (o, . . . , &oy) of almost semi-meromorphic E-valued (0, 0)-
current in B, smooth outside of Z,y1, such that wy = ag;y - "@g as currents on
X.

(i) Fork > 1 there are almost semi-meromorphic (0, 1)-currents oy in B with values
in Hom(E4+k—1, Ec+r) that are smooth outside of Z,+ and such that wp =
Q| x Wk—1 QS CUrTents.

The form w will be called an (n — p)-structure form.
Since R A dz = i,w, where w is almost semi-meromorphic on X, it follows that R
has the SEP with respect to X.

Example 4.2 (Example 3.2 continued) We use the notation of Example 3.2 and we set
dz =dziA---Adz, anddw = dwj A- - - Adw,. From (3.2) and the Poincaré-Lelong
formula we get

R Adw Adz
’
-d -d
= Z 8]®aﬂ/\~-~/\8 Wi Adzje
wy Wy
[J|=p

I
=+Qri) Y &/ @ [X]Adzye.
ll=p

The (n — p)-structure form thus is +(27i)* Zf”:p e’/ ® dzye in this case.

Using our (n — p)-structure form « we now give various descriptions of w$%.
Dualizing our resolution (2.6) of Qf; and then tensoring by Q@' we get the sheaf
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complex (O(E})® 2}, f} ®1d) with associated cohomology sheaves J#*(0(E¥) ®
2}); itis well known that #(0/(E¥) @ QL) ~ &wt'y (28, 2F). Leté € O(E})
be such that f:Hé = 0. Then, in view of (2.7),

I - ixwo) =& - R Nz =& - fiy1Rep1 Adz = [ 1§ Rey1 Adz =0.

It follows that the current i*£ - wq is d-closed on X. Hence, i*£ - wy is a section of
a)')l(_p If & = X&' one checks in a similar way that i*& - wp = 0 and we see that we

have a mapping,
A(OED @ RY) = oy ¥, [E1®dz > i*E - wo. .1

Proposition 4.3 The mapping (4.1) is an isomorphism and it induces a natural iso-
morphism 'y " ~ &ty (2%, 2F).

Proof Let ¢ be a section of oY 7. Theni,¢ is a d-closed (N — p, x)-current in B and
it induces a map 22}, — €} by

Y= 1 A Y, 4.2)

whose kernel clearly contains 7. )‘? . Hence, (4.2) induces a map .Q]g /T )[; — %%”XN .
Thus, we get a map a)?{p — Horre gy (27, ‘é%”XN ), which one easily checks is
injective. In view of (4.1) we get a commutative diagram

H(OEHR QL) ————— oy " 4.3)

T |

Horze gy, (§§, ‘K%XN),

where the diagonal map is the composition, i.e., the map given by [§] ® dz +— & -
R, A dz, where we here temporarily view R, A dz as a Hom(Ey, E,)-valued (N, «)-
current; cf. the paragraphs preceding Example 3.2. By [6, Theorem 1.5] this map is an
isomorphism and since the vertical map is injective it follows that both the horizontal
map and the vertical map are isomorphisms. From ibid. we also know that the diagonal
map is independent of the choices of Hermitian resolution of Q )’; and of dz. O

Notice that the isomorphism wy " =~ &2/, (2%, 22') of Proposition 4.3 is
explicitly realized by our (n — p)-structure form . An elegant algebraic proof of the
isomorphism was recently found by Barlet. He has communicated his proof to us and
generously let us include it here.

Alternative proof of Proposition 4.3 Consider the natural map .Q)’; — §§ Denote the
kernel by .7 and notice that it has codimension > «; it is the torsion submodule of
.Q)’;, cf. Sect. 3. It follows that &z %E(ﬂ , .Q]g ) = 0 for k < k. Applying the functor
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Hrrre gy (—, 2) to the exact sequence 0 — 7 — 2% — 25 — 0 we get a long
exact sequence of &z/-sheaves. From this, and the vanishing of &7*(.7, .QIQ] ) for
k < «, it follows that &2/, (2y, 2g) = &ty (2%, 2g).

Let 4 := (dJy A Qﬁ_l) N(TRRE), let F = dJy A Qﬁ_l/%, and notice that
Z and ¥ are Ox-modules; J)(() C Oy is the ideal defining X, cf. Sect. 3. We have a
natural short exact sequence of &'x-modules in B

0—>ﬁ—>ﬁx®(2§—>9§—>0,

Applying Hzzzz g (—, ‘QJ]B;/ ) we again obtain a long exact sequence of &z/-sheaves.
Since codim X = « these sheaves vanish until level « and in particular one gets the
exact sequence

0 — &ty (4. Q) — &ty (Ox ® QL. Q) > &ty (F. 21,

Since £2f, is a free O-module and since Eut'y (O, 2} ~ i} by [13, Lemma4],
one has
Ext'y (Ox @ 2f, )
~ Hom gy (2L, Exly (Ox, 25)

> Ao gy (2, i0y).

Since wy © x A 5y, (2%, %) by [13, Proposition 3], we will be done if we can
show that the kernel of the map b above consists of those homomorphisms 'ng — iy
which in fact are homomorphisms .Q)’; — w'y; since J)?i*w’;( =0,a homomorphisrln
2f — i, isahomomorphism 2} — o' if and only if it vanishes on d.J. AL
To understand the map b one can for instance use that (¢’ N.e 3), where €V-* is the
sheaf of germs of (N, e)-currents in B, is a resolution of .QIQ/ by stalk-wise injective
sheaves. In fact, then

Eal'y (Ox @ 2L, 2)) = A (Hrwr g,(Qf, Hom g,(Ox, CN)), 9)
and, since % = Ox ® %,

bty (T, Qy) = (Ao g, (F, Hom g,(Ox, CV*)), d)

and the map b is induced by restricting homomorphisms defined on .Qg to the subsheaf
dgo A b O
It follows from Proposition 4.3 that % is coherent, which, as mentioned above,

also is proved in [13]. In addition to Proposition 4.3 we have the following descriptions
of wy ”; the second one is [13, Lemma 4].
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Proposition 4.4 We have
() sy " ={n e €ty "s Tf Ap=0},
(i) iy 7 ={u € CHy Py TIn=0.dT¢ A =0},
(iii) the map a)';(_p — Hoze gy (227, o), b+ (¢ = W A @), is an isomorphism.

Proof Part (i) follows since the vertical map in (4.3) is an isomorphism. As mentioned,
part (ii) is [13, Lemma 4] (expressed in our terminology, cf. [6, Theorem 1.5]). To
show part (iii), first notice that the map clearly is injective. To see surjectivity, let A
be a homomorphism ﬁ)'; — o'. Then iy o A is a homomorphism 5’2\; — %ffo .
Since the vertical map in (4.3) is an isomorphism there is a u € a)’;(_p such that
iv o A(@) = ix(t A @) and thus the map in (iii) is surjective. m|

We remark that one may replace 7} § in part (iii) by £27, cf. the proof above; then
we recover [13, Proposition 3]. We remark also that [13, Proposition 3] implies that
wy ” coincides with the differential n — p-forms considered by Kersken in [27];
Proposition 4.3 is [27, Korollar 6.2 (2)].

We conclude this section with the following lemma.

Lemma4.5 If ¢ is a smooth (n — p, q)-form on X, then there is a smooth (0, q)-form
¢ on X with values in E [x such that ¢ = wo A .

Proof Consider a smooth extension of ¢ to B and write the extension on the form
> <p;. A (p;./, where go;. is a holomorphic n — p-form in B and go}’ is a smooth (0, g)-
form in B. The (N — p, «)-current go} A[X] defines a section of #2272 g, (§§ ‘é%”XN)
by Q § SY Y /\go} A[X]. From the proof of Proposition 4.3 it follows that there is a
section & of O'(E}) such that i, (i*&; - wp) = (p} A[X]. It follows that i*go} =i*j-wp
andsop =3}, i*q);. A i*(p;./ =2 ;i"j 0o A i*go}/ =wy ANi*Y; Ejgz);./. O

5 Integral Operators on an Analytic Subset

Let D ¢ CV be a domain (not necessarily pseudoconvex at this point), let k(¢, z) be
an integrable (N, N — 1)-form in D x D, and let p(¢, z) be a smooth (N, N)-form
in D x D. Assume that k and p satisfy the equation of currents

k¢, z) = [AP]— p(¢, 2) (5.1)

in D x D, where [AP] is the current of integration along the diagonal. Applying
(5.1) to test forms 1 (z) A @(¢) it is straightforward to verify that for any compactly
supported (p, g)-form ¢ in D one has the following Koppelman formula:

p(z) = 8/ k(¢,2) Ag(g) +/
Dy

Dy

k(¢,2) A dg(g) + /D p(&,2) Ag(0).
4

In [1] Andersson introduced a very flexible method of producing solutions to (5.1).
Letn = (1, ..., ny) beaholomorphic tuple in D x D that defines the diagonal and let
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A, be the exterior algebra spanned by Tof 1 (D x D) andthe (1, 0)-formsdny, ..., dny.
On forms with values in A, interior multiplication with 277i )" 1;9/97;, denoted §,),
is defined; set V,, = §,, — 9.

Let s be a smooth (1, 0)-form in A, such that |s| < |n] and n? < |8,s] and
let B =1 s A (35)71/(8,9)F. It is proved in [1] that then V, B = 1 — [AP].
Identifying terms of top degree we see that 5BN, N—1 = [AP] and we have found
a solution to (5.1). For instance, if we take s = 9|¢ — z|? and n = ¢ — z, then the
resulting B is sometimes called the full Bochner—-Martinelli form and the term of top
degree is the classical Bochner—Martinelli kernel.

A smooth section g(¢, z) = go,0 + - - - + gn,n of Ay, where the subscript means
bidegree, defined for z € D’ C D and ¢ € D, such that V,,¢ = 0 and g0 [op=11is
called a weight with respect to z € D’. It follows that V(g A B) = g — [AP] and,
identifying terms of bidegree (N, N — 1), we get that

g ABvN-1 =[APT—gn N (5.2)

in Dy x D; and hence another solution to (5.1). If D is pseudoconvex and K is a
holomorphically convex compact subset, then one can find a weight g with respect to
z in some neighborhood D’ @ D of K such that z > g(¢, z) is holomorphic in D’
and ¢ — g(¢, z) has compact support in D independently of z € D’; see, e.g., [3,
Example 2] or [8, Example 5.1] in case D = B. Weights with compact supportin ¢ will
be used in the construction of the operators %" and . In the construction of the “dual
operators” A and ,@, see Sect. 5.2 below, the roles of z and ¢ will be interchanged
and we then use weights g(¢, z) with respect to { € D’ such that z — g(¢, z) has
compact support in D independently of ¢ € D’.

Let V — D be a vector bundle, let 7, : Dy x D, — Dy and ,: Dy x D; — D,
be the natural projections and set V, ® V* := 7}V ® w}V*. Then a weight may take
values in V; ® Vg* >~ Hom(V;, V;). Such a weight should satisfy the same properties
but with the condition go,0 [op= 1 replaced by go,0 [op= Idy, cf. [22] and [3]. If g
is a weight with values in V, ® Vg* then (5.2) holds with [ADP] replaced by Idy ® [AD].

The main difference in the construction of our operators 2", &, A and & com-
pared to the ones in [8] and [38] is that in the present setting we need to use weights with
values in the vector bundle T;,()Dz ®Tp,0D; . Weights with values in T;,()Dz ®Tp,0D¢
is necessary for us since we need weights for division-interpolation with respect to
the submodule j)‘? C 2 g. The construction of these weights is as follows, cf. [9].

Let X be an analytic subset of pure codimension « of a neighborhood of D, where
D now is assumed to be strictly pseudoconvex, and set X = X N D. Let (2.6) be
a free resolution of ﬁ)’; in D with Eg = T;’OD andlet U = U(¢) and R = R(¢)
be the associated currents (for some choice of Hermitian metrics on the E’s). Let
E; = n}E} and E,f = n;‘Ek. One can find Hefer morphisms H,f = H,f(;,z),

which depend holomorphically on (¢£,z) € D x D and are Hom(E £ E})-valued
(k — ¢, 0)-forms such that
Hf lap=1dg, and 8,Hf = H{_, fi — fern@QH ™, k> ¢,
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where fiy = fi(¢); see [3, Proposition 5.3]. Let F = F(¢) be a holomorphic tuple
such that X = {F = 0} and set x€ := x (| F|?/€); we regularize U and R as in Sect. 2
so that U€ := x“u and

R¢ :=1Idg — VEnaU€ = (1 — x9Idg + 5)(6 AU,

We write Uy and Ry, for the parts of U and R that take values in Hom(Eo, Ey) and
we define

G =) H{R{+ fix) Y _ HUf, (5.3)

k=0 k=1

which one can check is a weight with values in Hom(Eg, E(z)) = T;,ODZ ® Tp,oDr.

Remark 5.1 One can use the A-regularizations U* = |F|**u and R* = (1 —
|FI*)Idg + 8|F|** A u of U and R, respectively, and define the weight G* =
HR* + f1(z) HU*. Our integral operators can then be obtained as the value at A = 0
via analytic continuation, cf. Sect. 2.2 and in particular Footnote 1.

Letting g be any scalar-valued weight with respect to, say, z € D’ C D it follows
that G¢ A g is a Hom(EC, E§)-valued weight and (5.2) holds with g replaced by
G Agand [AP]replaced by Idg, ® [AP]. Let VZ = ®;fix)— 9 and let Vg be the
corresponding endomorphism-valued operator. Recall that Vg ;R(z) = 0 and notice
that, since f(z) [g,= O,

Vind (G A g AB)NN-1
=—3(G° AgAB)N N1
= —ldg, ® [AP]+ (G A g)n.n-

Hence, we get

_vénd(R(Z) AdzA(GEAgA B)N,N—l)
= R(z) Adz A[AP] — R(z) Adz A (GE A Q). (5.4)
Notice that R(z) A[AP]and R(z) A B are well-defined; they are simply tensor products
of currents since z and { — z are independent variables on D x D. In view of (5.3),

since R(z) f1(z) = 0, (5.4) becomes

~Vina(R@) Adz A (HR A g AB)N.N—1)
= R(2) Adz A[AP]— R(2) Adz A (HR® A g)w ., (5.5)

where HR® :=} ;- HPR{.Lett: X >~ A¥ < X x X be the diagonal embedding
and leti: X x X < D x D be the inclusion. By Proposition 4.1 we have

.. = R(z) Adz A [AP], (5.6)
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where w is the (n — p)-structure form corresponding to R.
Consider now the term (H R A g)n,n. Noticing that R€ contains no dn; we see
that

(HR Ag)n.N = P(§,2) A RS Adn, (5.7

for some Hom(E?®, Ejj)-valued form j(¢, z) thatis smooth for (¢, z) € D x D';if g is
chosen holomorphic in z (respectively ¢), then p is holomorphic in z (respectively ¢).
To further reveal the structure of p, let ¢1, ..., ex be a frame for an auxiliary trivial
vector bundle ' — D x D, replace each occurrence of dn; in H and g by ¢;, and

denote the result by H and 8. We get

PECDAR Ne=(HR ADNN=) H'R{AEN 1Nk
k>0

= Z i, 2) ARE A, (5.8)
k>0

where pi (¢, z) = :I:E*Jﬁ,? A gN—k.N—k is a smooth (0, N — k)-form in D x D’ with
values in Hom(E{, Eé); it is holomorphic in z (or ¢) if g is chosen so. For degree
reasons it follows that

R(@)Adz A (HRC AN =R@AdzA Y pr(6.2) ARf AdE. (5.9)
k>0

Since R(z) A R is well-defined (as a tensor product) we may set € = 0 in (5.9) and
since R = Ry + Ry+1 + - - - we then sum only over k > «. In view of Proposition 4.1
it follows that

1in% R(z) Adz A (HR A gy N = ix0(2) A p(L, 2), (5.10)

where

P D) =Y VP P(E, D) Ak (§) = Y (" DH) A @GNk k) A Ok (0.

k>K k>k

We here, and in the following, view p; not as (0, N — k)-form with values in
Hom(EC, Ej) but as a (p, N — k)-form with values in (E,f)*; cf. the paragraphs
before Example 3.2. Thus, p(¢, z) is a scalar valued almost semi-meromorphic cur-
rent on X x X’ of bidegree (n, n) such that z — p(Z, z) is, or rather, has a natural
extension that is smooth in D (or holomorphic if z — g(¢, z) is); notice that p(¢, z)
has degree p in dz; and degree n — p in d¢;.

We proceed in an analogous way with the current R(z) AdzA(HR AgAB)N N—1
and we get, cf. (5.9), that
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R(z) AdzA(HR* AgAB)NN—1 = R(z) Adz A Zl;j(;,z) A R; Ade,
j=0
(5.11)

where 12,- ¢, z2) = :I:e*_anIjQ A(gA B)N_j’N_j_l isa (0, N — j — 1)-form with values
in Hom(Ej, Eé). From Sect. 2 we know that the limit as € — 0 of (5.11) exists and

yields a pseudomeromorphic current in D x D’. Moreover, precisely as in [8, Lemma
5.2] one shows that

lin})R(z) ANdzA(HR* AgAB)N.N-1 = lin})R(z) ANdzA(HRAEAB)NN-1,
€— €—

where B¢ = X(|n|2/e)B, holds in the sense of current on (D\ X;ng) X (D’\Xsi,,g).
In view of (5.11) and Proposition 4.1 we thus get

1i1% R() Ndz A (HR* AgAB)N,N-1 = 11II})X(|77|2/€)1*0)(Z) Nk(C,z)
€~ €—

(5.12)
in (D\Xying) X (D'\ Xsing), where
k(. 2) =) Tki(0, D) A wje(0)
Jj=xK
=+ F(ELH)AN@ABN_jN-j1) Aoj (). (5.13)
Jj=xK

As with p; (¢, z), we here and in the following view /Ej (¢,z)asa(p, N—j—1)-form
with values in (Ef- )* sothat k(¢, z) becomes a scalar valued almost semi-meromorphic
(n,n — 1)-current on X x X'; the degree in dz; being p and the degree in d¢; being
n — p. Recall that By —1 = s A (35)°7!/(8,5)" and that |s| < |n| and |n|*> < |8,s].
Since lA?g, ¢—1,€ =1,---, n,are the only components of B that enter in the expression
for k(¢, z) it follows that k(¢, z) is integrable on X,.¢ x X;eg. Hence, the limit on
the right-hand side of (5.12) is just the locally integrable form k(¢, z) A @(¢) on
Xreg X X;eg. From (5.5), (5.6), (5.10), and (5.12) we thus see that

— Vo) ANk, 2) = s — 0 (2) A pL, 2) (5.14)

;e - where V here means the endomorphism-version of f(z) [x

—3. Since R is VEnd-cloged it follows that w(z) is V-closed and so the left-hand side
of (5.14) equals w(z) A 9k(¢, 7). By Lemma 4.5 we have thus proved.

as currents on X, X X

Proposition 5.2 In X,., x X;eg we have that 5k(§, ) = [AX] — p(¢, z) as currents.

The following technical lemma corresponds to [8, Lemma 6.4]; cf. also [38, Propo-
sition 4.3 (ii)]. It is a statement on X! := X x --- x X (v + 1 factors); X ¢ refers
to the €™ factor and z* are points on X ..
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Lemma 5.3 Let w be any (n — p)-structure form and let k© (zz’l, ze), =1,...,v,
be given by (5.13) for possibly different choices of H’s, g’s, B’s, and (n — p)-structure
forms w’s. Then

T :=o0@) AL ) AT Y A A kDE D (515)

is an almost semi-meromorphic current on X VL I h = h(zY) is a generically non-
vanishing holomorphic tuple on X ,¢ then 9 x (|h|?/e) AT — 0ase — 0.

5.1 The Integral Operators #" and &2 on (p, *)-Forms

In order to construct the integral operators .7~ we choose the weight g in the definitions
of p(¢, z) and k(¢, 7) to be a weight with respecttoz € D’ € D suchthat¢ — g(¢, z)
has compact supportin D. Let ¢ be a pseudomeromorphic (p, g)-currenton X. In view
of Sect. 2.2, k(¢,2) A @(¢) and p(¢, z) A ¢(¢) are well-defined pseudomeromorphic
currents in X, x X/, where X’ = X N D'. Let 7°: X; x X, — X_ be the natural
projection and set

Ho(2) =naik(C,2) Ap), Pe) =i p(&,2) Ap(). (5.16)

Since ¢ — g(¢, z) has compact support in D it follows that /# "¢ and P¢ are well-
defined pseudomeromorphic currents in X’. Notice that ¢ has a natural smooth
extension to D’ since z — p(, z) has; notice also that if ¢ has the SEP then .# ¢ has
the SEP in view of Sect. 2.2. Moreover, as in [8, Lemma 6.1] one shows that if ¢ = 0
in a neighborhood of a point x € X', or if ¢ is smooth in a neighborhood of x and
xeX ;eg, then J# ¢ is smooth in a neighborhood of x.

If ¢ is a pseudomeromorphic (p, g)-current with compact support in X, then one
can choose any weight g in the definitions of k(¢, z) and p(¢, z) and define J# ¢ and
P ¢ by (5.16); the outcome has the same general properties.

The following proposition is proved in the same way as [8, Proposition 6.3].

Proposition 5.4 Let ¢ € WP 4(X), let w be the (n — p)-structure form that enters in
the definitions of k(¢, z) and p(¢, 7), and assume that 3w A @) has the SEP. Let g be
a weight with respect to z € D' C D. If either g has compact support in D; or ¢ has
compact support in X then ¢ = 3.4 ¢ + # (d¢) + P as currents on X;eg.

Notice that the condition that 8(w A @) has the SEP implies that d¢ has the SEP. In
fact, from Sect. 2.2 we know that w A ¢ has the SEP and so, in view of Lemma 2.2,
d(w A @) has the SEP if and only if dx(|h|*>/€) A @ A ¢ — O for all generically
non-vanishing 4. In particular, dx(|h1?/€) A wo A @ — 0 and so, by Lemma 4.5,
dx(|h|>/€) A ¢ — 0. By Lemma 2.2 again we conclude that 3¢ has the SEP.

From Proposition 5.4 it is easy to prove the following residue criterion for a mero-
morphic p-form to be strongly holomorphic. Recall the operator V. = @®; f; — 9.
attached to (2.6).

Theorem 5.5 Let X be a pure n-dimensional analytic subset of some neighborhood of
the closure of a strictly pseudoconvex domain D € CN and let w be an (n— p)-structure
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formon X N D corresponding to a resolution (2.6) of 2 )’; Then a meromorphic p-form
¢ on X N D is strongly holomorphic if and only if

V(oA @) =0. (5.17)

Moreover, if (5.17) holds, D' € D, and & is an integral operator constructed using
w and a weight g(¢, z) such that z — g(¢, z) is holomorphic in D' and ¢ — g(¢, 2)
has compact support in D, then ¢ is a holomorphic extension of ¢, _ . to D'

Proof Notice first that if ¢ is strongly holomorphic then (5.17) holds since Vo = 0.
For the converse, notice that w A ¢ has the SEP so that x (|h]2/€)w A ¢ — w A @
for all generically non-vanishing /. Hence, if (5.17) holds, we get

0=VwAgp) = lirrbV(X(|h|2/e)a) Ag)=— 1inBéx(|h|2/e) A®AQ
€e—> €e—

for all such 4. From Lemma 2.2 it thus follows that 3(w A ¢) has the SEP. From the
paragraph after Proposition 5.4 it then follows that d¢ has the SEP and since ¢ is
holomorphic generically we see that d¢ = 0. By Proposition 5.4 we get that ¢ = P
on X,.g N D'. However, both ¢ and Z¢ have the SEP so this holdson X " D". O

Theorem 5.5 gives the following geometric criterion for a meromorphic p-form to
be strongly holomorphic.

Proposition 5.6 Ler X be a pure n-dimensional reduced complex space and let ¢ be a
meromorphic p-form on X with pole set P, C X. Suppose that (i) codimx P, > 2, and
that (ii) codimy S, — k(SZ )N Py >k + 2f0r k > 1. Then ¢ is strongly holomorphic.

Proof Since £2 § is torsion free a strongly holomorphic extension of ¢, if such exist,
is unique. Therefore the statement of the proposition is local and we may assume
that X is an analytic subset of a neighborhood of B ¢ CVN. Let w = wg + - - -
be an (n — p)-structure form on X N B. By Theorem 5.5 we need to show that
V(w A ¢) = 0. Since w and ¢ are almost semi-meromorphic we have +w A ¢ =
@A = lime_o x (|h|*/€)p Aw, where h is a generically non-vanishing holomorphic
function such that {# = 0} D P,. Thus, since Vo = 0, we see that V(v A ¢) =
+1lime_odx (|h|>/€) A ¢ A w and so we need to show that

lirrbé)((|h|2/e)/\q)/\a)g=0 (5.18)
(g

for ¢ =0,1,2,.... For £ = 0 the left-hand side of (5.18) is a pseudomeromorphic
(n, 1)-current on X with support contained in P,; hence it vanishes by the dimension
principle and assumption (i).

Recall from Sect. 2.3 the sets Z; associated with a resolution (2.6) of .Qp and that
Sn— k(.QX) = Z. Assumption (ii) is thus equivalent to codim Z; N Py > k + 2 for
k > N —n + 1. Now, assume that (5.18) holds for £ = m. Since, by Proposmon 4.1
(ii), w41 is a smooth form times w,, outside of Z,, it follows that for £ = m + 1
the left-hand side of (5.18) is a pseudomeromorphic (n, m + 2)-current with support
contained in Z,, 1 N Py. Thus, (5.18) holds for £ = m + 1 by assumption (ii) and the
dimension principle. O
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5.2 The Integral Operatorsjt; and & on (n — p, *)-Forms

A general integral operator ¥ is constructed by choosing the weight g in the definitions
of k(¢, z) and p(¢, z) to be a weight withrespectto ¢ € D’ € D suchthatz — g(¢, z)
has compact support in D. Let ¥ be a pseudomeromorphic (n — p, g)-current on
X. In the same way as above k(¢,z) A ¢(z) and p(¢, 2) A @(z) are well-defined
pseudomeromorphic currents in X 2 X X, and we set

HY Q) =L k(D) ApR), PY(E) =L p(L,2) A p2),

which become pseudomeromorphic currents on X’. Notice that @1// has the SEP if
Y has, and moreover, is of the form Zezo A¢(&) N we(Z), where Ay is a smooth
form with values in E ,; if g is chosen so that { +— g(¢, z) is holomorphic then
the A, are holomorphic. The current A ¥ has the SEP if i has, and it has the form
Zezo Ce(2) N we(¢), where the Cy take values in E;“+e and are: (i) smooth close to
x € X"if y = 0 close to x, and (ii) smooth close to x € X, if ¥ is smooth close to
X.

As for # and 2, if ¢ happens to have compact support in X then any weight g

may be used to define N ¥ and @w.

Proposition 5.7 Let vy € W"=P-4(X), assume that 3y € W' P4T1(X), and let g be
a weight with respect to ¢ € D' C D. If either g has compact support in D; or ¥ has
compact support in X then r = 9. + H (Y + P as currents on X;eg.

This is proved in the same way as [38, Proposition 3.1].

6 The Sheaves .gz(f(’q and g;—ﬂ,n—q

6.1 The Sheaves Jz{f("

Let X be a reduced complex space of pure dimension n. Following [8, Definition 7.1]
we say that a (p, g)-current ¢ on X on an open subset U C X is a section of d;’q
over U if for every x € U the germ ¢, can be written as a finite sum of terms

EAFDC e A PE A D)) ), (6.1)

where &j is a smooth (p, *)-form and the &, £ > 1, are smooth (0, *)-forms such that
&¢ has support where z k®©(z, z) is defined.

Proposition 6.1 The sheaf JZ{; ! has the following properties:
(1) é;?’q C d;’q C W)’;’q and Gaqeﬁz%;’q is a module over Gaqé")(()’q,

H P.q _ pP.9q
(11) O(Z{Xreg - ngeg’

(iii) for any operator & on (p, *)-forms as in Sect. 5.1 & M;’q — ﬂ}f’qfl,
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(iv) if ¢ is a section of d}f 1 and w is any (n — p)-structure form, then d(w A @) has
the SEP.

Proof (i), (ii), and (iii) are immediate from the definition of <7;"? and the general
properties of the .# -operators in Sect. 5.1. To prove (iv) we may assume that ¢ is of
the form (6.1). Then w A ¢ is a push-forward of 7' A &, where T is of the form (5.15)
and £ is a smooth form on XV *!. Choosing & = h(z") in Lemma 5.3 it follows that
dx(|h)?/e) Aw A @ — 0as e — 0 and so, by Lemma 2.2, d(w A @) has the SEP. O

Proof of Theorem 1.1 Let D” &€ D be a strictly pseudoconvex neighborhood of D'
and carry out the construction of k(¢, z) and p(Z, z) in Sect. 5in D” x D" using a
weight g(¢, z) with respect to z € D’ such that z = g(¢, z) is holomorphic in D" and
¢ + g(¢, z) has compact support in D”. Notice that then Z¢ is holomorphic and that
g, and hence also p(¢, z), has bidegree (*, 0) in the z-variables so that Z¢ = 0 if ¢
has bidegree (p, q) with g > 1. Let ¢ € /79 (X). By Proposition 6.1 (iv), A(w A @)
has the SEP and so Proposition 5.4 shows that

0 =0X ¢+ K (09 + Py (6.2)

in the sense of currents on X;eg. Now, % ¢ € /P49~ 1(X’) by Proposition 6.1 (iii).
Hence, by Proposition_6.1 (iv) and the comment a_fter Proposition 5.4, bW 4 ¢ has the
SEP. In the same way d¢ has the SEP and so J# (3d¢) has the SEP. All terms in (6.2)

thus have the SEP and therefore (6.2) holds on X', concluding the proof. O

Proposition 6.2 Let X be a reduced complex space of pure dimension n. Then
9: M)‘?’q — d;’qﬂ and the sheaf complex (1.1) is exact.

Proof Let ¢ be a d-closed section of ;zf}f ! over some small neighborhood U of a
given point x € X; we may assume that U is an analytic subset of some pseudoconvex
domain in some CV . As in the proof of Theorem 1.1 above one shows that, for suitable
operators .# and 2, ¢ = 3.# ¢ if ¢ > 1 and ¢ = Py is a section of 5)’; ifg =0.

It remains to see that 3: o7 — %}f’qﬂ. Let ¢ be a d-closed section of <7}
over some small neighborhood U of a given point x € X; we may assume that ¢ is
of the form (6.1) and we will use induction over v. If v = 0 then ¢ = & is smooth
and so0 d¢ is in é”f;’qﬂ - %;’qﬂ. Assume that d¢’ is in M;* for any ¢’ of the form
(6.1). Since ¢’ is a section of 4247 "* it follows from Proposition 5.4 that

(,0/ — 5%(u+1)¢/ +%(V+1)(5(p/) + @(u+l)¢/ (6.3)

as currents on U, ¢g for some sufficiently small neighborhood U " of x, cf. the proof of
Theorem 1.1 above. As in that same proof, (6.3) extends to hold on U’. The left-hand
side as well as the last term on the right-hand side of (6.3) are clearly in @4’ ™ and,
since d¢’ is in ,Qf)f "* by assumption and .# -operators preserve M; "*, also the second
term on the right-hand side is in «{"*. Hence, 3.%# "*D¢’ is a section of &7{"* over
U’ showing that d¢ is in d}f’* for ¢ of the form (6.1) with v replacedby v + 1. O
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Notice that Theorem 1.3 follows from Propositions 6.1 and 6.2.

Proof of Proposition 1.5 Assume that condition (i) of Proposition 1.5 holds. Then, in
view of the last paragraph in Sect. 4, any holomorphic p-form on the regular part
at least extends to a section of a);}, in particular, such forms are meromorphic. It is
thus clear from Proposition 5.6 that Qru) —» Q20 (Uyeg) is surjective for any open
U C X; the injectivity is obvious. We remark that the implication (i) = (ii) also
follows from [40, Satz III].

Assume that condition (ii) of Proposition 1.5 holds. In view of [41, Theo-
rem 1.14, (d) = (b)] it is sufficient to show that the restriction map H'! (U Q° ) —
H' (Ureg» X) is injective for any open U C X. By Corollary 1.4, H'(U, .Q x) =
H'(e/P*(U), 9), so let @ € dP*U) be d-closed and assume that its image in
Hl(dp"(U,eg), d) vanishes, i.e., that there is ¥ € .QW"O(U,eg) such that ¢ = 3y
on Uyeg. Let x € Usjpg. By Theorem 1.3, there is a neighborhood V' C U of x and
ay’ e o/PO(V) such that ¢ = aw in V. Then ¢ — ¢ is holomorphic on V,., and
so, by condition (ii), ¥ — ¥’ € Q). Hence ¥ = ¥’ + ¥ — ' can be locally
extended across Uy to a section of ,Qf’)f . In view of the SEP, extensions are unique
and so ¥ € &/P%(U) and consequently 3y € /P! (U). The equality ¢ = 9 on
U,eg therefore extends to hold on U by the SEP and so ¢ defines the zero element in
H'\(U, Qb %) O

Proof of Corollary 1.6 Assume that X = {f; = --- = f, = 0} ¢ D c CV has
codimension « and that dfj A --- Adfi # 0 on X,.,. Let @ be a meromorphic n-
form in D such that the polar set of @ intersects X properly and such that, outside
of the polar set of @, df] A -+ Adfi A @ = dz for some local coordinates z in
D. Let w be the pullback of @ to X. Then w is a holomorphic n-form on X, that
is uniquely determined by dz and X in fact, @ is the Poincaré-Leray residue of the
meromorphic form dz/(fi - - - fi). If w has a strongly holomorphic extension to X,
then, since d fi A --- Adfe Aw =dz, it followsthatdfi A---Adfie #0on X. O

Some a priori assumption on X is necessary for Corollary 1.6. In fact, if X = {z1 =
74 = 0} U {zo = z3 = 0} C C* then one can check that any holomorphic 2-form on
Xreg €xtends across X, to a section of 52)2(

6.2 The Sheaves ) ”*

To define %";{p ** we follow [38, Definition 4.1] and we say that an (n — p, g’)-current

on an open subse C X is a section o - 7% over U if for every x € e
pen subset U C X tion of #y 71 U if f ry U th
germ ¥, can be written as a finite sum of terms

g AA e AP E AT D0 AE))-), (6.4)
where w is an (n — p)-structure form and the & are smooth (0, ¢")-forms with support
where ¢ — kO (¢, z) is defined. Recall that w is an (n — p, *)-current with values

in a bundle &1 E; [x so we need & to take values in eakE,f [x to make w A &
scalar-valued.
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It is immediate from the definition and from the general properties of the A -
_ ’ _ / _ ’ _ / o
operators that Zy, 7 c Wy "7 | that 93;: - éa;regp "1 that the .# -operators

v _ ’ _ [
and Z-operators preserve @q%?{ P4 and that @q/%’r;{ P4 is a module over

@4/5)?"1/. Let ¥ be a smooth (n — p, ¢’)-form and let w be an (n — p)-structure
form in a neighborhood of some point in X. Then, by Lemma 4.5, there is a smooth
(0, ¢")-form ' (with values in the appropriate bundle) such that 1 = wo A . Hence

we see that éa;fp‘q/ C %;ﬁP’q/. Let us also notice that if 1 is in %?P’q/ then 9y has
the SEP. In fact, we may assume that 1 is of the form (6.4) so that = . T A&, where
T is given by (5.15), & is a smooth form, and 7 is the natural projection X"*! — X 20-
Letting & = h(z") be a generically non-vanishing holomorphic tuple on X 0, we have
that dx (|h|?/e) AT AE — 0 by Lemma 5.3. Hence, by Lemma 2.2, we see that oy
has the SEP.

Proof of Theorem 1.8 Let D" & D be a strictly pseudoconvex neighborhood of D’
and carry out the construction of k(¢, z) and p(¢, z) in Sect. 5in D” x D" using a
weight g (¢, z) with respect to ¢ € D’ such that ¢ — g(¢, z) is holomorphic in D’ and
z — g(¢, 2) has compact support in D”. Let ¢ € Z"~P-4 (X). By Proposition 5.7
we have

Y =04y + X OY)+ Py (6.5)
as currents on X;,,. From what we noticed just before the proof all terms have the
SEP and so (6.5) holds on X’. Notice that Bélﬁ = Ay (Z) AN wy (L), where o is

holomorphic. Since if .@}’; is Cohen—Macaulay we may choose @ = wy to be d-closed
it follows that 2y € 0" P(X')if ¢’ = 0 and Py = 0if ¢’ > 1. o

Proof of Theorem 1.7 We have already noted that (i) and (ii) hold.

To show that 9 : %ifp’q/ — %’;ﬁly’quﬂ let ¥ be a section of %ﬁfp’q/ in a neigh-
borhood of some x € X; we may assume that v is of the form (6.4) and we use
induction over v. If v = 0 then ¥/ = w A & and it is enough to see that dw is a section
of 2, " (with values in E [x); but since dw = f this is clear. The induction step
is done in the same way as in the proof of Proposition 6.2.

14 —p.0

To show that )y ” 4" is coherent and that wy I = oy assume that X can
be identified with an analytic subset of a strictly pseudoconvex domain D c CV.
Recall that (2.6) is a resolution of f)}’; in D. Taking #2272 into 2V we get a complex
isomorphic to (O(E}) ® 2V, 8) with associated cohomology sheaves isomorphic to
&x/* (27, 2N), which are coherent; cf. Sect. 4. We define the map

0 OEL, )@ QN — B 0y(Edz) =i - .

Since

5Qq’(§dz) =i'E- 50)(/ =i'E- Jerg'+1 [x g 41 = i* K*+q’+1 Ix & - wg41
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the map g, is a map of complexes and so induces a map on cohomology. In view of
Proposition 4.3 the proof will be complete if we show that g, is a quasi-isomorphism.

Since ixwy = Ry A dz it follows from [6, Theorem 7.1] that the map on coho-
mology is injective. For the surjectivity, let € "4 '(X) be d-closed and choose a
weight g(¢, z) in the kernels k(¢) and p(¢, z) with respect to ¢ in some D’ € D such
that ¢ — g(¢, z) is holomorphic in D" and 7 — g({ z) has compact supportin D. As
in the proof of Theorem 1.8 we get that ¢ = 8%1& + 3”1# on X,eg = Xreg N D" and

so the cohomology class of i is represented by ﬁw. From the definition of p(¢, z)
in Sect. 5 we see that

PY(§) = Fwg (£) A /x Pre+q' (€, 2) AP (2)

and £ = Pyyq(E, 2) is a section of ﬁ(E:_H],) over D’ by the choice of g. We finally
show that

Frvas /X Betra (€. 2) AP () =0, (6.6)

First notice that it follows from (5.7) and (5.8) that, for each k, pr(¢,z) Adn =
H,? A gN—k- Moreover,

HY frsr A gn—k = (L@ H 48, HY ) A gvi
A (Z)Hk1+1 ANgN—k £ Hl?+1 A Sy&N—k

= fI@H L Agv—k £ H A dgN—k—1

= A@H L AgNv—k +O(H | AgN-k—1)

=: (f1(@)Ax + 0By A dn,

* 0
Jerr Hie N gN—k

where Aj and By take values in Hom(Ek+1, E{) and Hom(Ek_H, E§) respectively;
the second equality follows from the properties of the Hefer morphisms, the third by
noting that 0 = 8, (H\ | A gnv—k) = 8yHY, | A gn—k = H\ | A 8,8n—t. the fourth
since g is a weight, the fifth since the Hefer morphisms are holomorphic, and the
sixth by collecting all dn;. Hence, we get that fk*ﬂﬁk ¢, 2)= fiAr + 9 B. Since
fitx = 0 and by Stokes’ theorem, (6.6) follows. O

7 Serre Duality
7.1 The Trace Map
The following result is the generalization of [38, Theorem 5.1] from the case p = 0

to the general case 0 < p < n. The proof of [38, Theorem 5.1] goes through in the
general case essentially verbatim.
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Theorem 7.1 Let X be a reduced complex space of pure dimension n. There is a unique
map

. P n—p,q' n,q+q'
Al "Qf/x X By — Wy

extending the exterior product on X,eq. Moreover, if ¢ and  are sections of ,527; 4
and %";(_p ‘@ respectively, then d(¢ A V) has the SEP,

It follows that (¢ A ¥) = d¢ A ¥ + (—1)PT9¢9 A 34 since both sides have the
SEP and it clearly holds on X ..

Let g € &/P9(X) and v € A" P"79(X) and assume that at least one of ¢ and
¥ has compact support. By Theorem 7.1, ¢ A ¢ is a well-defined section of W;'("
with compact support and we may define the trace map (¢, ) — [ x ® AV the
integral is interpreted as the action of ¢ A v on the constant function 1 on X. We
notice that if & is a generically non-vanishing holomorphic section of a Hermitian
vector bundle such that {h = 0} D Xj;,, then the trace map may be computed as
lime . . x X (|h)?/€) ¢ A . We get an induced trace map on the level of cohomology
since if, say, ¢ = 3¢ for some @ € /P91 (X) with compact support if ¢ has, then
@ Ay = 3(@ A ¥) by the Leibniz rule and so [y, ¢ A ¥ = 0.

7.2 Local Duality

Let X be an analytic subsetof D € CV, where D is pseudoconvex, andset X := XND.
Let F be a holomorphic vector bundle on X and let .% be the associated locally free
Ox-module. Since X is Stein and .% ® §§ is coherent it follows from Corollary 1.4
that the complex

0= POX, F) > /P (X, F) o s P (X F) - 0

is exact except at the level 0 where the cohomology is Qr (X, F). Weendow Qr (X, F)
with the standard canonical Fréchet space topology, see, e.g., [18, Chapter IX].

Theorem 7.2 Let ™ be the sheaf of sections of F* and let %’2""‘1'()(, F*) be the
space of sections of F* ® ,@;_p 4 with compact support in X. The complex

0 2 "0x, F* - B (x, Py 2 o L BPX FR) > 0

(7.1

is exact except at the level n and the pairing
2106 F) x B (AT > € e [ oow ()
X

makes H" (%Z*P*‘(X, F*), 5) the topological dual ofﬁf’(X, F).
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Sketch of proof Since we are in the local situation we may assume that an element in
%’?ﬂ”"/ (X, F*)is just a tuple of elements in %Z*”"” (X) and carry out the following
argument component-wise. Let ¥ € %?_p’q,(X) be d-closed. Let D' € D" C D,
where supp ¢ C D’ and D" is strictly pseudoconvex, and construct k(¢, z) and p(¢, z)
as in Sect. 5 with a weight g(¢, z) with respect to z € D’ such that z — g(¢, z) is
holomorphic in D" and ¢ — g(¢, z) has compact support in D”. Then p(¢,z) =
D ok Ptk (8, 2) A wi(¢), where ¢ — pPeyx (¢, z) has compact support in D” and
7 > Ptk (L, 7) is a section of §§ over X' :=XND'

As in the proof of Theorem 1.8 we get ¥y = oA v+ 9?1& in X’. From the properties
of p(¢, z) we get that @w = 0if ¢’ < nso (7.1) is exact except at the level n. If
q’ = n then the cohomology class of ¥ is represented by P Y and

=Y oA

Ptk (8, 2) AP (2).
k>0 Xz
Hence, if fX oy =0forall p € Qr (X) then @1// = 0 and the cohomology class of
¥ thus is 0. It follows that H" (% 7**(X), 8), via (7.2), is a subset of the topological
dual of 27 (X).

Let A be a continuous linear functional on £27 (X). Then A induces a continuous
functional A on £27 (D) that has to be carried by some compact K € D. By the Hahn—
Banach theorem there is an (N — p, N)-current  of order 0 in D with support in
a neighborhood U (K) € D of K such that i(f) = [ f A u forall f € 2P(D).
Now choose a weight g(¢, z) with respect to z € U(K) that is holomorphic for
z € U(K) and has compact support in D, and let p(¢,z) = Y ¢ Ptk (¢, 2) A @k (8)
be a corresponding integral kernel. We set

Pu = Zwk(C) /\/

Pie+k(€,2) A p(2)
k>0 D,

and observe that gbu e B P"(X). Let ¢ € §p(X) and set ¢ := P¢. Then
¢ € £2P(U(K)) by the choice of weight and moreover, @1,y = @1y nx- We get

)»(90)=5»(¢)=/ <l~>/\,u=/ @cp/\uzf AN
D. D. X,

and so X is given by integration against Zu € 2. " (X). For more details of the
last part of the proof see the proof of [38, Theorem 6.1]. O

7.3 Global Duality
Let us briefly recall how one can patch up the local duality to the global one of
Theorem 1.9 using Cech cohomology; cf., e.g., [38, Sect. 6.2]. Let % := {U;} be a

locally finite open covering of X such that each U; can be identified with an analytic
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subset of some pseudoconvex domain in some CV. In view of Theorem 1.3 and
Corollary 1.4 this gives us a Leray covering for F ® .Qp Recall that spaces of
sections of . ® .Qp have a standard Fréchet space stmcture Let CX(%, F ® Qr x)
be the group of formal sums

Z Pig--ig Ui() ARERRAN Uikv Pig--ip, € F ® §p(Ui() n---N Uik)3

oIk

with the product topology; Uj, A - - - A Uj, is the formal exterior product of the sym-
bols U; with the suggestive formill computation rules, e.g., Uy A Uy = —Uy A Uj.
Each element of CK(%, 7 ® .Qf;) thus has a unique representation of the form
Zi0<”_<ik ¢i0"'ikl/{i0 A -+ A U, that we will abbreviate as Zi”:kﬂprU]. Let
8: Chw, 7 @ 28) - CH\ (%, 7 ® 2%) be the coboundary operator

1) Z U = Z (p1U1/\ZU = Z ng Uinu; U[/\U

|1|=k+1 |1|=k+1 |1|=k+1 j

This operator is continuous, and we get the following complex of Fréchet spaces

0>, 700 5 ', Fo2h) . (1.3)

The cohomology of this complex is the Cech cohomology of ZR R § with respect to
the covering % . Since % is aLeray covering, the ¢ cohomology group is isomorphic
to HI(X, 7 ® .QX) The standard topology on HY(X, . ® 27 v) is defined so that
the isomorphism is also a homeomorphism.

Let B , be the precosheaf (see, e.g., [12, Sect. 3]) defined by assigning to each

open U C X the space ;‘_p(U) = H"(%?_p"(U, F*), 6_)) and for U’ C U the
inclusion map zU B_ (U’) — B;f_p(U) given by extension by 0. Let, for k > 0,
ckw, B ) be the group of formal sums

> Wig-i AUE Wigeip € Be P (Ui NN UL FY),

ik

with the suggestive computation properties and only finitely many [v;,...;, |5 non-zero.
Let 5*: k(% B_ ) = Co k(g Bi_ ») be the coboundary operator

Z [y11U} .—ZU,J Z (YU} = Z Y g, WU U,

|I|=k+1 | |=k+1 H=k+1 j

where _ is formal interior multiplication. We get the complex
0« CU%.Bi_ ) < c\u.Bi_,) & . (7.4)
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By Theorem 7.2, C’k(% . ») is the topological dual of chw, 7 §§) via the
pairing CK(% , 9‘@9 ) x CMw, B ») — Cgiven by
! /
@Wip=| Y. el > WilU; r—>/¢uw— Z /(pzmm
|T1=k+1 |T1=k+1 [1]|=k+1

(7.5)

Moreover, if g € CK"\ (%, .7 ® 28) and [y] € C7F (%, B;_,), then

8%y = a1 Ui = U: | v = S0
fxfplﬁfxw;]lﬂ fx<pA;,I/f/X<pw

and so (7.4) is the dual complex of (7.3). It follows, see, e.g., [36, Lemme 2], that

Ker(8*: ;% . B;_ ) — C*M . B;_ ) /s*C . B;_,)  (1.6)

is the topological dual of

Ker(8: CKw, 7 @ 24) — (. F @ 2)/5C (U, F @ 2%). (1.7)

If H*(X, Z ® §§) and HH (X, .7 }i) are Hausdorff, then the closure signs
in (7.6) and (7.7) are superfluous and so H *(C2 (%, Bzfp), 8*) is the topological

dual of H¥(X, Z ® S?f;), via the pairing induced by (7.5); cf., e.g., [38, Lemma 6.4].

Proof of Theorem 1.9 Consider the double complex
K~ =l B,

Here %, 7 is the precosheaf U +— ,%’Zlfp J (U, F*) with inclusion maps given by
extending by 0, the map K~/ — K~/ is §* and the map K~/ — K~/ s
2.

For each i > O the “row’f K1 s, by Theorem 7.2, exact except at the level n
where the cohomology is C.* (%, Bj‘,fp).Foreachj,O < j < n,the“column” K*/ is

exact except at the level 0 where the cohomology is %, " “J (X, F*); this follows from,
e.g., [38, Lemma 6.3] since the Zx -sheaves are fine. Hence, by standard homological
algebra, e.g., a spectral sequence argument, it follows that

H" (B "*(X,F*),0) ~H(C2(%, B;_ ), 8%). (7.8)

Explicitly, if € % 7""9(X, F*) is d-closed and {x;}; is a partition of unity
subordinate to 7, then its image in H 4 (C2(% , B;_ ), 8*) is the class of
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/
Y Dtigdxiy A Adxi, AU
[T1=g+1

In view of (7.8) and the paragraph before this proof, there is a non-degenerate
pairing

H"9(B: 77 (X, F*),8) x HI(X, 7 ® 2§) — C. (7.9)

Therefore, by Corollary 1.4, there is a non-degenerate pairing (1.2).

The pairing (7.9) is induced by (7.5) via the isomorphisms (7.8) and HY (X, # ®
§§) ~ HI(C* (%, F ® 2L, §). One can use the explicit description of (7.8) and a
similar explicitdescriptionof H?(/P*(X, F), 9) ~ HY c*(z, ﬁ@ﬁp, 8) to show
that the pairing (1.2) is given by (1.3). This is done in the proof of [38, Theorem 1.3]
in the case p = 0. It is straightforward to adapt that proof to the general situation
0 < p < n and we omit the details. O
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