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Abstract
In Saji et al. (J Math 62:259–280, 2008; Ann Math 169:491–529, 2009; J Geom Anal
222):383–409, 2012) the Gauss–Bonnet formulas for coherent tangent bundles over
compact-oriented surfaces (without boundary) were proved. We establish the Gauss–
Bonnet theorem for coherent tangent bundles over compact-oriented surfaces with
boundary. We apply this theorem to investigate global properties of maps between
surfaces with boundary. As a corollary of our results, we obtain a special version
of Fukuda–Ishikawa’s theorem. We also study geometry of the affine-extended wave
fronts for planar-closed non-singular hedgehogs (rosettes). In particular, we find a link
between the total geodesic curvature on the boundary and the total singular curvature
of the affine-extended wave front, which leads to a relation of integrals of functions
of the width of a rosette.
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1 Introduction

The local andglobal geometry of fronts and coherent tangent bundles,which are natural
generalizations of fronts, has been recently very carefully studied in [19,29,30,35–38].
In particular in [35,36] the results of Kossowski [20,21] and Langevin et al. [24] were
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generalized to the following Gauss–Bonnet-type formulas for the singular coherent
tangent bundle E over a compact surface M whose set of singular points � admits at
most peaks:

2πχ(M) =
∫
M
KdA + 2

∫
�

κsdτ, (1.1)

1

2π

∫
M
Kd Â = χ(M+) − χ(M−) + #P+ − #P−. (1.2)

In the above formulas K is the Gaussian curvature, κs is the singular curvature, dτ
is the arc length measure on �, d Â (respectively dA) is the signed (respectively
unsigned) area form, M+ (respectively M−) is the set of regular points in M , where
d Â = dA (respectively d Â = −dA), P+ (respectively P−) is the set of positive
(respectively negative) peaks (see [35] and Sect. 2 for details). Saji et al. also found
several interesting applications of the above formulas (see especially [37]).

The classical Gauss–Bonnet theoremwas formulated for compact-oriented surfaces
with boundary. Therefore, it is natural to find the analogous Gauss–Bonnet formulas
for coherent tangent bundles over compact-oriented surfaces with boundary (see The-
orem 2.20). Coherent tangent bundles over compact oriented surfaces with boundary
also appear in many problems. In this paper, we apply the Gauss–Bonnet formulas
to study smooth maps between compact-oriented surfaces with boundary and affine-
extended wave fronts of the planar non-singular hedgehogs (rosettes). As a result, we
obtain a new proof of a special version of Fukuda–Ishikawa’s theorem [12] and we
find a link between the total geodesic curvature on the boundary and the total singu-
lar curvature of the affine-extended wave front of a rosette. This leads to a relation
between the integrals of the function of the width of the rosette, in particular of the
width of an oval (see Theorem 5.24 and Conjecture 5.28).

In Sect. 2, we briefly sketch the theory of coherent tangent bundles and state the
Gauss–Bonnet theorem for coherent tangent bundles over compact-oriented surfaces
with boundary (Theorem 2.20), which is the main result of this paper. The proof
of Theorem 2.20 is presented in Sect. 3. We apply this theorem to study the global
properties of maps between compact-oriented surfaces with boundary in Sect. 4. The
last section contains the results on the geometry of the affine-extended wave fronts of
rosettes.

2 The Gauss–Bonnet Theorem

In this section, we formulate the Gauss–Bonnet-type theorem for coherent tangent
bundles over compact-oriented surfaces with boundary. The proof of this theorem is
presented in the next section. Coherent tangent bundles are intrinsic formulation of
wave fronts. The theory of coherent tangent bundles were introduced and developed
in [35–37]. We recall basic definitions and facts of this theory (for details see [35,37]).

Definition 2.1 Let M be a 2-dimensional compact-oriented surface (possibly with
boundary). A coherent tangent bundle over M is a 5-tuple (M, E, 〈·, ·〉 , D, ψ), where
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The Gauss–Bonnet Theorem 3245

E is an orientable vector bundle over M of rank 2, 〈·, ·〉 is a metric, D is a metric
connection on (E, 〈·, ·〉) and ψ is a bundle homomorphism

ψ : T M → E,

such that for any smooth vector fields X , Y on M

DXψ(Y ) − DYψ(X) = ψ([X ,Y ]). (2.1)

The pull-back metric ds2 := ψ∗ 〈·, ·〉 is called the first fundamental form on M .
Let Ep denote the fiber of E at a point p ∈ M . If ψp := ψ |TpM : TpM → Ep is not
a bijection at a point p ∈ M , then p is called a singular point. Let � denote the set
of singular points on M . If a point p ∈ M is not a singular point, then p is called a
regular point. Let us notice that the first fundamental form on M is positive definite
at regular points and it is not positive definite at singular points.

Let μ ∈ Sec(E∗ ∧E∗) be a smooth non-vanishing skew-symmetric bilinear section
such that for any orthonormal frame {e1, e2} on E μ(e1, e2) = ±1. The existence of
such μ is a consequence of the assumption that E is orientable. A co-orientation of
the coherent tangent bundle is a choice of μ. An orthonormal frame {e1, e2} such that
μ(e1, e2) = 1 (respectively μ(e1, e2) = −1) is called positive (respectively negative)
with respect to the co-orientation μ.

From now on, we fix a co-orientation μ on the coherent tangent bundle.

Definition 2.2 Let (U ; u, v) be a positively oriented local coordinate system on M .
Then d Â := ψ∗μ = λψdu ∧ dv (respectively d A := |λψ |du ∧ dv) is called the
signed area form (respectively the unsigned area form), where

λψ := μ (ψu, ψv) , ψu := ψ

(
∂

∂u

)
, ψv := ψ

(
∂

∂v

)
.

The function λψ is called the signed area density function on U .

The set of singular points on U is expressed as

� ∩U := {p ∈ U : λψ(p) = 0
}
.

Let us notice that the signed and unsigned area forms, d Â and d A, give globally
defined 2-forms on M and they are independent of the choice of positively oriented
local coordinate system (u, v). Let us define

M+ :=
{
p ∈ M \ �

∣∣∣ d Â p = dAp

}
, M− :=

{
p ∈ M \ �

∣∣∣ d Â p = −dAp

}
.

We say that a singular point p ∈ � is non-degenerate if dλψ does not vanish at p.
Let p be a non-degenerate singular point. There exists a neighborhood U of p such
that the set � ∩U is a regular curve, which is called the singular curve. The singular
direction is the tangential direction of the singular curve. Since p is non-degenerate,
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the rank of ψp is 1. The null direction is the direction of the kernel of ψp. Let η(t) be
the smooth (non-vanishing) vector field along the singular curve σ(t) which gives the
null direction.

Let ∧ be the exterior product on T M .

Definition 2.3 Let p ∈ M be a non-degenerate singular point and let σ(t) be a singular
curve such that σ(0) = p. The point p is called an A2-point (or an intrinsic cuspidal
edge) if the null direction at p (i.e. η(0)) is transversal to the singular direction at p
(i.e. σ̇ (0) := dσ

dt

∣∣
t=0). The point p is called an A3-point (or an intrinsic swallowtail)

if the point p is not an A2-point and

d

dt
(σ̇ (t) ∧ η(t))|t=0 	= 0.

Definition 2.4 Let p be a singular point p ∈ M which is not an A2-point. The point
p is called a peak if there exists a coordinate neighborhood (U ; u, v) of p such that:

(i) if q ∈ (� ∩U ) \ {p} then q is an A2-point;
(ii) the rank of the linear map ψp : TpM → Ep at p is equal to 1;
(iii) the set � ∩U consists of finitely many C1-regular curves emanating from p.

A peak is a non-degenerate if it is a non-degenerate singular point.
From now on, we assume that the set of singular points � admits at most peaks,

i.e. � consists of A2-points and peaks.
Furthermore, let us fix a Riemannian metric g on M . Since the first fundamental

form ds2 degenerates on �, there exists a (1, 1)-tensor field I on M such that

ds2(X ,Y ) = g(I X ,Y ),

for smooth vector fields X ,Y on M . We fix a singular point p ∈ �. Since � admits at
most peaks, the point p is an A2-point or a peak. Let λ1(p), λ2(p) be the eigenvalues of
Ip := I

∣∣
TpM

: TpM → TpM . Since the kernel ofψp is one-dimensional, the only one

of λ1(p), λ2(p) vanishes. Let us assume that λ1(p) = 0. Then λ2(p) > 0. Thus, there
exists a neighborhoodV of p such that for every pointq ∈ V themap Iq has twodistinct
eigenvalues λ1(q), λ2(q), such that 0 � λ1(q) < λ2(q). Furthermore, there exists a
coordinate neighborhood (U ; u, v) of p such thatU is a subset of V and the u-curves
(respectively v-curves) give the λ1-eigendirections (respectively λ2-eigendirections),
because the eigenvectors of eigenvalues λ1(q), λ2(q) depends smoothly on q. Such a
local coordinate system (U ; u, v) is called a g-coordinate system at p.

Definition 2.5 Let γ (t) (0 ≤ t < 1) be a C1-regular curve on M such that γ (0) = p.
The E-initial vector of γ at p is the following limit

γ := lim
t→0+

ψ(γ̇ (t))

|ψ(γ̇ (t))| ∈ Ep (2.2)

if it exists.
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The Gauss–Bonnet Theorem 3247

Remark 2.6 If p is a regular point of M then the E-initial vector of γ at p is the unit
tangent vector of γ at p with respect to the first fundamental form ds2.

Proposition 2.7 (Proposition 2.6 in [35]). Let γ be a C1-regular curve emanating from
an A2-point or a peak p such that γ̇ (0) is a not a null vector or γ is a singular curve.
Then, the E-initial vector of γ at p exists.

Since, we study coherent tangent bundles over surfaces with boundary, we also
consider a curve γ on the boundary which is tangent to the null direction at a singular
point p on the boundary. We prove that in this case the E-initial vector of γ at p exists
if the singular direction is transversal to the boundary at p.

Proposition 2.8 Let (E, 〈·, ·〉 , D, ψ) be a coherent tangent bundle over an compact
oriented surface M with boundary. Let p be an A2-point in the boundary ∂M. If the
boundary ∂M is transversal to � at p and γ : (−ε, ε) → ∂M is a C2-regular curve
such that γ (0) = p, γ

(
(−ε, ε)

) ∩ � = {p} and γ̇ (0) is the null vector at p, then the
E-initial vector γ of γ at p exists, D d

dt

(
ψ
(
γ̇ (t)
))∣∣

t=0 	= 0, and

γ =
D d

dt

(
ψ
(
γ̇ (t)
))∣∣

t=0∣∣∣D d
dt

(
ψ
(
γ̇ (t)
))∣∣

t=0

∣∣∣
∈ Ep. (2.3)

Proof Let σ : [0, ε) → � be a singular curve such that σ(0) = p. Let (U ; u, v)

be a g-coordinate system at p i.e. the null direction at σ(t) is spanned by ∂
∂u . Since

λψ(σ(t)) = 0, we get that

d

dt

(
λψ

(
σ(t)
))∣∣

t=0 = dλψ

∣∣
p · σ̇ (0) = 0. (2.4)

Let us notice that

d

dt

(
λψ

(
γ (t)
))∣∣

t=0 = dλψ

∣∣
p · γ̇ (0) 	= 0 (2.5)

since the vectors σ̇ (0) and γ̇ (0) span the space TpM and dλψ

∣∣
p 	= 0.

On the other hand, since λψ

(
γ (t)
) = μ

(
ψu
(
γ (t)
)
, ψv

(
γ (t)
))

and ψu
(
γ (0)
) = 0,

we get the following:

d

dt

(
λψ

(
γ (t)
))∣∣

t=0 = d

dt
μ
(
ψu
(
γ (t)
)
, ψv

(
γ (t)
))∣∣

t=0

= μ
(
D d

dt

(
ψu
(
γ (t)
)∣∣∣
t=0

)
, ψv

(
γ (0)
))

(2.6)

By (2.5) and (2.6)we get that D d
dt

(
ψu
(
γ (t)
)∣∣∣
t=0

)
,ψv

(
γ (0)
)
are linearly independent.

The vector field γ̇ can be written in the following form γ̇ (t) = u̇(t) ∂
∂u + v̇(t) ∂

∂v
,

where u(t) = t(a+ h(t)), v(t) = t2g(t), a 	= 0 and h, g are some functions such that
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h(0) = 0. Similarly, since ψu
(
γ (0)
) = 0 and D d

dt

(
ψu
(
γ (t)
))∣∣

t=0 	= 0 we can write

ψu
(
γ (t)
) = tξ(t), where ξ(t) ∈ Eγ (t) and ξ(0) 	= 0.

Now, we will prove the formula (2.3).

lim
t→0+

ψ
(
γ̇ (t)
)

∣∣ψ(γ̇ (t)
)∣∣ = lim

t→0+
u̇(t)ψu

(
γ (t)
)+ v̇(t)ψv

(
γ (t)
)

∣∣u̇(t)ψu
(
γ (t)
)+ v̇(t)ψv

(
γ (t)
)∣∣

= lim
t→0+

t
((
a + h(t) + t ḣ(t)

)
ξ(t) + (2g(t) + t ġ(t)

)
ψv

(
γ (t)
))

t
∣∣(a + h(t) + t ḣ(t)

)
ξ(t) + (2g(t) + t ġ(t)

)
ψv

(
γ (t)
)∣∣

= aξ(0) + 2g(0)ψv

(
γ (0)
)

|aξ(0) + 2g(0)ψv

(
γ (0)
)| ,

where the expression aξ(0) + 2g(0)ψv

(
γ (0)
)
is non-zero since the vectors ξ(0) =

D d
dt

(
ψu
(
γ (t)
))∣∣

t=0 and ψv

(
γ (0)
)
are linearly independent.

Since D d
dt

(
ψ
(
γ̇ (t)
))∣∣

t=0 = aξ(0) + 2g(0)ψv

(
γ (0)
)
, the equality (2.3) holds. ��

Proposition 2.9 Under the assumptions of Proposition 2.8, if γ (t) := γ (−t), then

γ = γ . (2.7)

Proof Since γ (t) = γ (−t), we get that γ̇ (t) = −γ̇ (−t) and in particular γ̇ (0) =
−γ̇ (0). Since

D d
dt

(
ψ
(
γ̇ (t)
)) = D d

dt
(−ψ (γ̇ (−t))) = −D d

dt
(ψ (γ̇ (−t))) = D− d

dt
(ψ (γ̇ (−t))) ,

the equality (2.7) holds. ��
Definition 2.10 Let γ1 and γ2 be two C1-regular curves emanating from p such that
E-initial vectors of γ1 and γ2 at p exist. Then the angle

arccos(
〈
γ1 , γ2

〉
) ∈ [0, π ]

is called the angle between the initial vectors of γ1 and γ2 at p.

We generalize the definition of singular sectors from [35] to the case of coherent
tangent bundles over surfaces with boundary.

Let U be a (sufficiently small) neighborhood of a singular point p. Let σ1 and σ2
be curves in U starting at p such that both are singular curves or one of them is a
singular curve and the other one is in ∂M . A domain � is called a singular sector at
p if it satisfies the following conditions

(i) the boundary of � ∩U consists of σ1, σ2 and the boundary of U .
(ii) � ∩ � = ∅.
If the peak p ∈ M \ ∂M is an isolated singular point than the domain U \ {p} is a
singular sector at p, where U is a neighborhood of p such that U ∩ � = {p}. We
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The Gauss–Bonnet Theorem 3249

assume that singular direction is transversal to the boundary of M . Therefore, there
are no isolated singular points on the boundary.

We define the interior angle of a singular sector. If p is in ∂M , then the interior
angle of a singular sector at p is the angle of the initial vectors of σ1 and σ2 at p.

While the interior angle of a singular sector may take value greater than π if
p ∈ M \ ∂M , we can choose γ j for j = 0, . . . , n inside the singular sector in a such
way that the angel between γ j−1 and γ j is not greater than π .

Let � be a singular sector at the peak p. Then, there exists a positive integer n and
C1-regular curves starting at p γ0 = σ0, γ1, · · · , γn = σ1 satisfying the assumptions
of Proposition 2.7 and the following conditions:

(i) if i 	= j then γi ∩ γ j = ∅ in �,
(ii) for each j = 1, . . . , n there exists a sector domain ω j ⊂ � such that ω j is

bounded by γ j−1 and γ j and ω j ∩ γi = ∅ for i 	= j − 1, j ,
(iii) if n � 2 the vectors γ̇ j−1(0), γ̇ j (0)) are linearly independent and form a positively

oriented frame for j = 1, . . . , n.

If the peak p is an isolated singular point then there exist curves γ0, γ1, γ2 satisfying
the above assumptions and conditions (i)–(iii). We also put γ3 = γ0.

The interior angle of the singular sector � is

n∑
j=1

arccos
(〈γ j−1 , γ j 〉

)
.

If� is a singular sector at a singular point p then� is contained in M+ or M−. The
singular sector � is called positive (respectively negative) if � ⊂ M+ (respectively
� ⊂ M− ).

Definition 2.11 Let p be a singular point. Then, α+(p) (respectively α−(p)) is the
sum of all interior angles of positive (respectively negative) singular sectors at p.

Proposition 2.12 (Theorem A in [35]) Let p ∈ M \ ∂M be a peak. The sum α+(p) of
all interior angles of positive singular sectors at p and the sum α−(p) of all interior
angles of negative singular sectors at p satisfy

α+(p) + α−(p) = 2π,

α+(p) − α−(p) ∈ {− 2π, 0, 2π
}
.

Theorem 2.13 Let p ∈ ∂M be a singular point. We assume that the singular direction
is transversal to the boundary ∂M at p.

If the null direction is transversal to the boundary ∂M at p, then

α+(p) + α−(p) = π,

α+(p) − α−(p) ∈ {− π, π
}
.
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If the null direction is tangent to the boundary ∂M at p, then

α+(p) = α−(p).

Proof The first part of this theorem follows from Proposition 2.15 in [35]. By Propo-
sition 2.9, we get the second part. ��
Definition 2.14 A peak p in M \ ∂M is called positive (null, negative, respectively)
if α+(p) − α−(p) > 0 (α+(p) − α−(p) = 0, α+(p) − α−(p) < 0, respectively).

Definition 2.15 A singular point p in ∂M is called positive (null, negative, respec-
tively) ifα+(p)−α−(p) > 0 (α+(p)−α−(p) = 0,α+(p)−α−(p) < 0, respectively).

Remark 2.16 It is easy to see that a peak p in ∂M is not null if ∂M is transversal to
the singular direction at p and an A2-singular point p in ∂M is null if the null vector
at p is tangent to ∂M .

Definition 2.17 Let p be a peak in ∂M . We say that p is in the positive boundary
(respectively in the negative boundary) if there exists a neighborhood U in M of p
such that (U \ {p}) ∩ ∂M ⊂ M+ (respectively (U \ {p}) ∩ ∂M ⊂ M−).

Let σ(t) (t ∈ (a; b)) be a C2-regular curve on M . We assume that if σ(t) ∈ �

then σ̇ (t) is transversal to the null direction at σ(t). Then, the image ψ (σ̇ (t)) does
not vanish. Thus, we take a parameter τ of σ such that

〈
ψ

(
d

dτ
σ (τ)

)
, ψ

(
d

dτ
σ (τ)

)〉
≡ 1.

Definition 2.18 Let n(τ ) be a section of E along σ(τ) such that {ψ( d
dτ σ (τ )), n(τ )} is

a positive orthonormal frame. Then

κ̂g(τ ) :=
〈
D d

dτ
ψ

(
d

dτ
σ (τ)

)
, n(τ )

〉
= μ

(
ψ

(
d

dτ
σ (τ)

)
, D d

dτ
ψ

(
d

dτ
σ (τ)

))

is called the E-geodesic curvature of σ , which gives the geodesic curvature of the
curve σ with respect to the orientation of E .

We assume that the curve σ is a singular curve consisting of A2-points. Take a null
vector field η(τ) along σ(τ) such that { d

dτ σ (τ ), η(τ )} is a positively oriented field
along σ(τ) for each τ . Then, the singular curvature function is defined by

κs(τ ) := sgn(dλψ(η(τ))) · κ̂g(τ ),

where sgn(dλψ(η(τ))) denotes the sign of the function dλψ(η) at τ . In a general
parameterization of σ = σ(t), the singular curvature function is defined as follows

κs(t) = sgn
(
dλψ (η(t))

) · μ
(
ψ (σ̇ (t)) , D d

dt
ψ (σ̇ (t))

)

|ψ(σ̇ (t))|3 ,
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The Gauss–Bonnet Theorem 3251

where ˙ := d
dt , |ξ | := √〈ξ, ξ 〉.

By Proposition 1.7 in [35] the singular curvature function does not depend on the
orientation of M , the orientation on E , nor the parameter t of the singular curve σ(t).

By Proposition 2.11 in [35] the singular curvature measure κsdτ is bounded on any
singular curve, where dτ is the arclength measure of this curve with respect to the
first fundamental form ds2. Now, we prove the following proposition concerning the
geodesic curvature measure on the boundary of M .

Proposition 2.19 Let γ : [0, ε) → ∂M be a C2-regular curve such that � ∩
γ ([0, ε)) = {γ (0)} is an A2-point and the vector γ̇ (0) is the null vector at γ (0).
Then, the geodesic curvature measure κ̂gdτ is continuous on [0, ε) , where dτ is the
arclength measure with respect to the first fundamental form ds2.

Proof The point γ (0) ∈ ∂M is a null A2-point. By Proposition 2.8 we can write that
(γ̇ (t)) = tζ(t) for t ∈ [0, ε̃) for sufficiently small ε̃ ≤ ε, where ζ(t) ∈ Eγ (t) and
ζ(0) = D d

dt
ψ (γ̇ (t)) |t=0 	= 0. The geodesic curvature in a general parameterization

has the following form

κ̂g(t) =
μ
(
ψ (γ̇ (t)) , D d

dt
ψ (γ̇ (t))

)

|ψ(γ̇ (t))|3 .

Thus, the geodesic curvature measure

κ̂g(τ )dτ = κ̂g(t) |ψ(γ̇ (t))| dt =
μ
(
ζ(t), D d

dt
ζ(t)
)

|ζ(t)|2 dt

is bounded and continuous on [0, ε̃). It implies that the geodesic curvature measure is
continuous on [0, ε) since � ∩ γ ([0, ε)) = {γ (0)}. ��

Let U ⊂ M be a domain and let {e1, e2} be a positive orthonormal frame field on
E defined on U . Since D is a metric connection, there exists a unique 1-form ω on U
such that

DXe1 = −ω(X)e2, DXe2 = ω(X)e1,

for any smooth vector field X on U . The form ω is called the connection form with
respect to the frame {e1, e2}. It is easy to check that dω does not depend on the choice
of a frame {e1, e2} and gives a globally defined 2-form on M . Since D is a metric
connection and it satisfies (2.1) we have

dω = Kd Â =
{
KdA on M+,

−KdA on M−,

where K is the Gaussian curvature of the first fundamental form ds2 (see [35,36]).
The next theorem is a generalization of the Gauss–Bonnet theorem for coherent

tangent bundles over smooth compact-oriented surfaces with boundary.
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Theorem 2.20 (The Gauss–Bonnet type formulas) Let E be a coherent tangent bundle
on a smooth compact-oriented surface M with boundary whose set of singular points
� admits at most peaks. If the set of singular points � is transversal to the boundary
∂M, then

2πχ(M) =
∫
M
KdA + 2

∫
�

κsdτ

+
∫

∂M∩M+
κ̂gdτ −

∫
∂M∩M−

κ̂gdτ

−
∑

p∈null(�∩∂M)

(2α+(p) − π), (2.8)

∫
M
Kd Â +

∫
∂M

κ̂gdτ = 2π
(
χ(M+) − χ(M−)

)+ 2π
(
#P+ − #P−)

+ π
(
#(� ∩ ∂M)+ − #(� ∩ ∂M)−

)
+ π (#P∂M+ − #P∂M−) , (2.9)

where dτ is the arc length measure, P+ (respectively P−) is the set of positive (respec-
tively negative) peaks in M \∂M, (�∩∂M)+ (respectively (�∩∂M)−, null(�∩∂M))
is the set of positive (respectively negative, null) singular points in � ∩ ∂M, P∂M+
(respectively P∂M− ) is the set of peaks in the positive (respectively negative) boundary.

3 The Proof of Theorem 2.20

We use the method presented in the proof of Theorem B in [35]. First, we formulate
the local Gauss–Bonnet theorem for admissible triangles.

Definition 3.1 A curve σ(t) (t ∈ [a, b]) is admissible on the surface with boundary if
it satisfies one of the following conditions:

(1) σ is aC2-regular curve such thatσ((a, b)) does not contain a peak, and the tangent
vector σ̇ (t) (t ∈ [a, b]) is transversal to the singular direction, the null direction
if σ(t) ∈ � and σ̇ (t) is transversal to the boundary if σ(t) ∈ ∂M .

(2) σ is aC1-regular curve such that the set σ([a, b]) is contained in the set of singular
points � and the set σ((a, b)) does not contain a peak.

(3) σ isC2-regular curve such that the set σ([a, b]) is contained in the boundary ∂M ,
the set σ((a, b)) does not contain a singular point and the tangent vector σ̇ (t)
(t ∈ {a, b}) is transversal to the singular direction if σ(t) ∈ �.

Remark 3.2 A curve σ(t) is admissible in the sense of Definition 2.12 in [35] if it
satisfies conditions (1) or (2) in Definition 3.1. For the purpose of this paper we add
(3) in Definition 3.1 and the transversality of the admissible curve to the boundary in
(1).

Let U be a domain in M .
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Definition 3.3 (See Definition 3.1 in [35]) Let T ⊂ U be the closure of a simply
connected domain T which is bounded by three admissible arcs γ1, γ2, γ3. Let A,
B and C be the distinct three boundary points of T which are intersections of these
three arcs. Then T is called an admissible triangle on the surface with boundary if it
satisfies the following conditions:

(1) T admits at most one peak on {A, B,C}.
(2) the three interior angles at A, B and C with respect to the metric g are all less

than π .
(3) ifγ j for j = 1, 2, 3 is not a singular curve, it isC2-regular, namely it is a restriction

of a certain open C2-regular arc.

We write �ABC := T and we denote by

BC := γ1, CA := γ2, AB := γ3

the regular arcs whose boundary points are {B,C}, {C, A}, {A, B}, respectively.
We give the orientation of ∂�ABC compatible with respect to the orientation ofM .

We denote by ∠A,∠B,∠C the interior angles (with respect to the first fundamental
form ds2) of the piecewise smooth boundary of �ABC at A, B and C , respectively
if A, B and C are regular points.

If A ∈ M \ ∂M is a singular point and (U ; u, v) is a g-coordinate system at A, then
we set (see Proposition 2.15 in [35])

∠A :=
{

π if the u-curve passing through A separates AB and AC,

0 otherwise.

Let σ(t) be an admissible curve. We define a geometric curvature κ̃g(t) in the
following way:

κ̃g(t) =
⎧⎨
⎩

κ̂g(t) if σ(t) ∈ M+,

−κ̂g(t) if σ(t) ∈ M−,

κs(t) it σ(t) ∈ �,

where κ̂g is the geodesic curvature with respect to the orientation of M and κs is the
singular curvature.

Proposition 3.4 Let �ABC be an admissible triangle on the surface with boundary
such that A is an A2-point, AB ⊂ ∂M and�ABC \AC lies in M+ or in M−. Suppose
that the boundary ∂M is transversal to � at A and let TA∂M be a null direction at A.
Then

∠A + ∠B + ∠C − π =
∫

∂�ABC
κ̃gdτ +

∫
�ABC

KdA. (3.1)

Proof Without loss of generality, let us assume that �ABC \ AC lies in M+. If the
arc AC ⊂ � or the interior angle ∠BAC with respect to the metric g is greater than

123



3254 W. Domitrz, M. Zwierzyński

Fig. 1 A decomposition of the
triangle ABC into admissible
triangles

π
2 , we decompose the triangle �ABC into admissible triangles �ABD and �ADC
such that the interior angle∠BAD with respect to the metric g is in the interval (0, π

2 )

and the arc AD is transversal to the arc BC at D, see Fig. 1. The formula (3.1) for
�ADC follows from Theorem 3.3 in [35], so it is enough to prove the formula (3.1)
for the triangle �ABD.

We can take the arc AD and rotate it around D with respect to the canonical metric
du2 + dv2 on the uv-plane. Then, we obtain a smooth one-parameter family of C2-
regular arcs starting at D. Since the interior angle ∠BAD is in (0, π

2 ) and BD, AD
are transversal at D, restricting the image of this family to the triangle �ABD, we
obtain a family of C2-regular curves

γε : [0, 1] → �ABD,

where ε ∈ [0, 1] and:
(i) γ0 parameterizes AD and γ0(0) = A, γ0(1) = D,
(ii) γε(1) = D for all ε ∈ [0, 1],
(iii) the correspondence σ : ε �→ γε(0) gives a subarc of AB. We set Aε = γε(0),

where A0 = A.

Since �AεBD for ε > 0 is an admissible triangle, then by Theorem 3.3 in [35] we
get that

∠Aε + ∠B + ∠AεDB − π =
∫

∂�AεBD
κ̃gdτ +

∫
�AεBD

KdA.

Since �ABD is admissible and κ̃g is bounded on both AB and AD, by taking the
limit as ε → 0+, we have that

lim
ε→0+ ∠Aε + ∠B + ∠D − π =

∫
∂�ABD

κ̃gdτ +
∫

�ABD
KdA.
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By Proposition 2.8 we have

lim
ε→0+ ∠Aε = lim

ε→0+ arccos

〈
ψ
(
dγε(t)
dt

) ∣∣
t=0, ψ

(
dσ(ε)
dε

)〉
∣∣∣ψ
(
dγε(t)
dt

) ∣∣
t=0

∣∣∣ ·
∣∣∣ψ
(
dσ(ε)
dε

)∣∣∣
= arccos

〈
γ0 , σ

〉
.

(3.2)

This completes the proof. ��
Remark 3.5 By Theorem 3.3 in [35] and Proposition 3.4 the equality (3.1) holds for
any admissible triangle on a surface with boundary.

Let X , X◦, ∂X , respectively, denote the closure of a subset X of M , the interior of
X and the boundary of X , respectively.

Let us triangulate M by admissible triangles such that each point in the set P ∪
(� ∩ ∂M) =: P� is a vertex, where P is the set all peaks in M◦. Let T , E and V ,
respectively, denote the set of all triangles, the set of all edges and the set all of vertices
in the given triangulation, respectively.

Lemma 3.6 The following relation holds:

#
{
v ∈ V | v ∈ (M+)◦

} = χ(M
+
) + 1

2
#
{
� ∈ T | � ⊂ M

+}

+ 1

2
#
{
e ∈ E | e ⊂ ∂M+}

− #
{
v ∈ V | v ∈ ∂M+ \ P�

}− #P�.

Proof By the definition of Euler’s characteristic we get that

#
{
v ∈ V | v ∈ M

+} = χ(M
+
) − #
{
� ∈ T | � ⊂ M

+}+ #
{
e ∈ E | e ⊂ M

+}
.

(3.3)

Furthermore, it is easy to verify that

#
{
e ∈ E | e ⊂ M

+} = 3

2
#
{
� ∈ F | � ⊂ M

+}+ 1

2
#
{
e ∈ E | e ⊂ ∂M+} (3.4)

and

#
{
v ∈ V | v ∈ (M+)◦

} = #
{
v ∈ V | v ∈ M

+}

− #
{
v ∈ V | v ∈ ∂M+ \ P�

}− #
{
p ∈ V | p ∈ P�

}
.

(3.5)

Combining together (3.3), (3.4) and (3.5) we end the proof. ��
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Let us define the sum
∑

�ABC∈T ,�⊂M
+(∠A + ∠B + ∠C − π) by S+.

Then,

S+ = 2π#
{
v ∈ V | v ∈ (M+)◦

}+ π#
{
v ∈ V | v ∈ ∂M+ \ P�

}
+
∑
p∈P�

α+(p) − π#
{
� ∈ T | � ⊂ M

+}
.

By Lemma 3.6 we get that

S+ = 2πχ(M
+
) + π#

{
e ∈ E | e ∈ ∂M+}− π#

{
v ∈ V | v ∈ ∂M+ \ P�

}
− 2π#P� +

∑
p∈P�

α+(p)

= 2πχ(M
+
) + π

2

∑
v∈V ,v∈∂M+

deg∂M+(v) − π#
{
v ∈ V | v ∈ ∂M+}

− π#P� +
∑
p∈P�

α+(p),

where degX (v) = # {e ∈ E | e ⊂ X , v ∈ e}, where X is a subset of M . Since
∂M+ is an Eulerian graph, the number deg∂M+(v) is even and let us write that
m+(v) := 1

2 deg∂M+(v). Furthermore, if v ∈ (V ∩ ∂M+) \ P� then deg∂M+(v) = 2
and we get the relation

1

2

∑
v∈V∩∂M+

deg∂M+(v) − #
{
v ∈ V | v ∈ ∂M+} =

∑
p∈P�

(m+(p) − 1).

Hence we get the following:

S+ = 2πχ(M
+
) +
∑
p∈P�

(α+(p) + πm+(p)) − 2π#P�. (3.6)

Similarly we get that

S− = 2πχ(M
−
) +
∑
p∈P�

(α−(p) + πm−(p)) − 2π#P�, (3.7)

where S− =∑
�ABC∈T ,�⊂M

−(∠A + ∠B + ∠C − π) and m−(v) := 1
2deg∂M−(v).

It is easy to see that

m+(p) = m−(p) for p ∈ P� \ ∂M, (3.8)

m+(p) + m−(p) = deg�(p) for p ∈ P� \ ∂M, (3.9)

m+(p) + m−(p) = deg�∪∂M (p) − 1 for p ∈ � ∩ ∂M . (3.10)
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Furthermore if p ∈ � ∩ ∂M , then

m+(p) − m−(p) =
⎧⎨
⎩
1 if p is a peak in the positive boundary,
−1 if p is a peak in the negative boundary,
0 otherwise.

(3.11)

Lemma 3.7 The Euler characteristic of � is equal to

χ(�) = #P� − 1

2

∑
p∈P�

(m+(p) + m−(p)) + 1

2
#(� ∩ ∂M).

Proof We know that

χ(�) = # {v ∈ V | v ∈ �} − # {e ∈ E | e ⊂ �}
= # {v ∈ V | v ∈ �} − 1

2

∑
v∈V∩�

deg� v.

If p ∈ P \ ∂M then deg�(p) = deg�∪∂M (p) and if p ∈ � ∩ ∂M then deg�(p) =
deg�∪∂M (p) − 2. By (3.9) and (3.10) we get that

χ(�) = #P� − 1

2

∑
p∈P\∂M

(m+(p) + m−(p)) − 1

2

∑
p∈�∩∂M

(m+(p) + m−(p) − 1)

= #P� − 1

2

∑
p∈P�

(m+(p) + m−(p)) + 1

2
#(� ∩ ∂M).

��
Lemma 3.8 The following equality holds:

S+ + S− = 2πχ(M) +
∑

p∈null(�∩∂M)

(2α+(p) − π).

Proof Since χ(M
+
) + χ(M

−
) = χ(M) + χ(�), by (3.6), (3.7), Lemma 3.7 and

Theorem 2.13 we get that:

S+ + S− = 2πχ(M) + 2πχ(�) +
∑
p∈P�

(α+(p) + α−(p))

+ π
∑
p∈P�

(m+(p) + m−(p)) − 4π#P�

= 2πχ(M) + π#(� ∩ ∂M) +
∑
p∈P�

(α+(p) + α−(p)) − 2π#P�

= 2πχ(M) + π#(� ∩ ∂M) +
∑

p∈(�∩∂M)+∪(�∩∂M)−
(α+(p) + α−(p))
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+
∑

p∈P\∂M
(α+(p) + α−(p)) +

∑
p∈null(�∩∂M)

(α+(p) + α−(p))

− 2π#(� ∩ ∂M) − 2π#(P \ ∂M)

= 2πχ(M) +
∑

p∈(�∩∂M)+∪(�∩∂M)−
π +

∑
p∈P\∂M

2π

+
∑

p∈null(�∩∂M)

2α+(p) − π#(� ∩ ∂M) − 2π#(P \ ∂M)

= 2πχ(M) +
∑

p∈null(�∩∂M)

(2α+(p) − π).

��

Lemma 3.9 The following equality holds:

S+ − S− = 2π
(
χ(M+) − χ(M−)

)+ 2π
(
#P+ − #P−)

+ π
(
#(� ∩ ∂M)+ − #(� ∩ ∂M)−

)+ π (#P∂M+ − #P∂M−) ,

where P+ (respectively P−) is the set of positive (respectively negative) peaks in
M \ ∂M, (� ∩ ∂M)+ (respectively (� ∩ ∂M)−) is the set of positive (respectively
negative) singular points in � ∩ ∂M, P∂M+ (respectively P∂M− ) is the set of peaks in
the positive (respectively negative) boundary.

Proof It is a consequence of (3.6), (3.7), Lemma 3.7 and Theorem 2.13 and the fact
that χ(M

+
) − χ(M

−
) = χ(M+) − χ(M−). ��

Since the integration of the geometric curvature on curves which are not included
in � ∪ ∂M are canceled by opposite integrations and the singular curvature does not
depend on the orientation of the singular curve, by Proposition 3.4 and Theorem 3.3
in [35] we get that

S± =
∫
M±

KdA +
∫

∂M±
κ̃gdτ =

∫
M±

KdA +
∫

�

κsdτ ±
∫

∂M∩M±
κ̂gdτ.

Hence

S+ + S− =
∫
M
KdA + 2

∫
�

κsdτ +
∫

∂M∩M+
κ̂gdτ −

∫
∂M∩M−

κ̂gdτ, (3.12)

S+ − S− =
∫
M
Kd Â +

∫
∂M

κ̂gdτ. (3.13)

By Lemma 3.8, Lemma 3.9, (3.12) and (3.13) we complete the proof of Theo-
rem 2.20.

123



The Gauss–Bonnet Theorem 3259

4 Applications of the Gauss–Bonnet Formulas to Maps

As a corollary of Theorem2.20we get a special version of Fukuda–Ishikawa’s theorem
(Theorem 1.1 in [12], see also [22]), which is the generalization of Quine’s formula
(Theorem 1 in [33]) for surfaces with boundary (see also Proposition 3.6 in [37]). We
assume that the set of singular points of a map is transversal to the boundary of a
surface.

Proposition 4.1 Let M and N both be compact oriented connected surfaces with
boundary. Let f : M → N be a C∞-smooth map such that f (∂M) ⊂ ∂N and
f −1(∂N ) = ∂M and whose set of singular points consists of folds and cusps. If the
set of singular points of f is transversal to ∂M then the topological degree of f
satisfies

deg( f )χ(N ) = χ(M+
f ) − χ(M−

f ) + S+
f − S−

f , (4.1)

where M+
f (respectively M−

f ) is the set of regular points at which f preserves (respec-

tively reverses) the orientation, S+
f (respectively S−

f ) is the number of positive cusps
(respectively the number of negative cusps).

Proof Let h be a Riemannian metric on N and let D be the Levi–Civita connection
on (N , h). Then, the tuple ( f ∗T N , h, D, d f ) is a coherent tangent bundle on M (see
[37]). Since f (∂M) ⊂ ∂N and the set of singular points of f is transversal to ∂M ,
there are no cusps in ∂M and all folds in ∂M are null singular points. Therefore, by
Theorem 2.20 we get that:

∫
M
Kd Â +

∫
∂M

κ̂gdτ = 2π
(
χ(M+

f ) − χ(M−
f )
)

+ 2π
(
S+
f − S−

f

)
. (4.2)

The following identity holds

∫
M
Kd Â =

∫
M

f ∗�12,

where �12 is a curvature 2-form.
Furthermore, it is well known that

∫
M f ∗�12 = deg( f )

∫
N �12 (see for instance

Remark 1 in [11] page 111). On the other hand, we have
∫
N �12 = ∫N KNd A, where

KN is the Gaussian curvature of N . By the Gauss–Bonnet theorem for N we get∫
N KNd A = 2πχ(N ) − ∫

∂N κgdτ , where κg is the geodesic curvature of ∂N in N .
Thus,

∫
M
Kd Â = deg( f )

(
2πχ(N ) −

∫
∂N

κgdτ

)
. (4.3)
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Since f (∂M) ⊂ ∂N and f −1(∂N ) = ∂M and 〈·, ·〉p = h f (p)(·, ·) for p in M , we
obtain that

∫
∂M

κ̂gdτ = deg
(
f
∣∣
∂M

) ∫
∂N

κgdτ. (4.4)

By Theorem 13.2.1 [11, p. 105] we get deg( f ) = deg
(
f
∣∣
∂M

)
.

By (4.2)–(4.4) we obtain the formula (4.1). ��

We can also get easily the generalization of Proposition 3.7 in [37] by the Gauss–
Bonnet formulas.

Proposition 4.2 Let (N , h) be an oriented Riemannian 2-manifold, let M be a compact
oriented 2-manifold with boundary. Let f : M → N be a C∞-smooth map whose set
of singular points consists of folds and cusps and is transversal to ∂M. Then the total
singular curvature

∫
�

κsdτ with respect to the length element dτ (with respect to h)
on the set of singular points � is bounded, and satisfies the following identity

2πχ(M) =
∫
M

(
K̃ ◦ f
) ∣∣ f ∗dAh

∣∣+ 2
∫

�

κsdτ

+
∫

∂M∩M+
f

κ̂gdτ −
∫

∂M∩M−
f

κ̂gdτ −
∑

p∈null(�∩∂M)

(2α+(p) − π).

where M+
f (respectively M−

f ) is the set of regular points at which f preserves

(respectively reverses) the orientation, K̃ is theGaussian curvature function on (N , h),
κ̂g is a geodesic curvature, | f ∗dAh | is the pull-back of the Riemannian measure of
(N , h) and

α+(p) = arccos

⎛
⎝h
⎛
⎝ D d

dt

( d
dt ( f ◦ γ ) (t)

)
∣∣∣D d

dt

( d
dt ( f ◦ γ ) (t)

)∣∣∣
,
d

dτ
( f ◦ σ)(τ )

⎞
⎠
⎞
⎠ ,

where D is the Levi–Civita connection on N, γ is a C2-regular parameterization of
the boundary ∂M in the neighborhood of p and σ is a parameterization of � in the
neighborhood of p.

5 Geometry of the Affine-ExtendedWave Front

In this section, we apply Theorem 2.20 to an affine-extended wave front of a planar
non-singular hedgehog. Fronts are examples of coherent tangent bundles (see [35]).

Planar hedgehogs are curves which can be parameterized using their Gauss map. A
hedgehog can be also viewed as the Minkowski difference of convex bodies (see [23,
25–28]). The non-singular hedgehogs are also known as the rosettes (see [2,31,44]).
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The singularities and the geometry of affineλ-equidistantswere verywidely studied
in many papers [1,7–9,16,18,34,41]. The envelope of affine diameters (the centre
symmetry set) was studied in [5,13–15,17].

Let C be a smooth parameterized curve on the affine plane R
2, i.e. the image of

the C∞-smooth map from an interval to R
2. We say that a smooth curve is closed if

it is the image of a C∞-smooth map from S1 to R
2. A smooth curve is regular if its

velocity does not vanish. A closed regular curve is called an m-rosette if its signed
curvature is positive and its rotation number is m. A convex curve is a 1-rosette.

Definition 5.1 A pair of points a, b ∈ C (a 	= b) is called a parallel pair if the tangent
lines to C at a and b are parallel.

Definition 5.2 An affine λ-equidistant is the following set:

Eλ(C) =
{
λa + (1 − λ)b

∣∣∣ a, b is a parallel pair of C
}
.

The set E 1
2
(C) will be called the Wigner caustic of C.

A chord passing through a parallel pair a, b ∈ C is the following set:

{
λa + (1 − λ)b

∣∣∣ λ ∈ [0, 1]
}
.

Definition 5.3 The centre symmetry set of C, which we will denote as CSS(C), is the
envelope of all chords passing through parallel pairs of C.

If C is a generic convex curve, then the Wigner caustic of C, Eλ(C), for a generic
λ, and CSS(C) are smooth closed curves with at most cusp singularities [1,13,15,17],
the number of cusps of the Wigner caustic and the centre symmetry set of C are odd
and not smaller than 3 [1,13], the number of cusps of CSS(C) is not smaller than the
number of cusps of E 1

2
(C) [5] and the number of cusps of Eλ(C) is even for a generic

λ 	= 1
2 [10]. Moreover, cusp singularities of all Eλ(C) are lying on smooth parts of

CSS(C) [15]. In addition, if C is a convex curve, then the Wigner caustic is contained
in a closure of the region bounded by the centre symmetry set ([3], see Fig. 2). The
Wigner caustic also appears in one of the two constructions of bi-dimensional improper
affine spheres. This construction can be generalized to higher even dimensions [4].
The oriented area of the Wigner caustic improves the classical planar isoperimetric
inequality and gives the relation between the area and the perimeter of smooth convex
bodies of constant width [42–44]. Recently, the properties of the middle hedgehog,
which is a generalization of the Wigner caustic in the case of non-smooth convex
bodies, were studied in [39,40].

Definition 5.4 The extended affine space is the space R3
e = R × R

2 with coordinate
λ ∈ R (called the affine time) on the first factor and a projection on the second factor
denoted by π : R3

e � (λ, x) �→ x ∈ R
2.
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Fig. 2 An oval C and E 1
2
(C),

E 2
5
(C), CSS(C). The support

function of C is equal to
p(θ) = 31 + 2 cos 2θ + sin 5θ

Definition 5.5 Let Rm be an m-rosette. The affine extended wave front of Rm is the
following set:

E(Rm) =
⋃

λ∈[0,1]
{λ} × Eλ(Rm) ⊂ R

3
e .

E(Rm) is the union of all Eλ(Rm) for λ ∈ [0, 1], each embedded into its own slice of
the extended affine space.

Note that, when Rm is a circle on the plane, then E(Rm) is the double cone, which
is a smooth manifold with the nonsingular projection π everywhere, but at its singular
point, which projects to the center of the circle (the center of symmetry).

We will study the geometry of E(Rm) through the support function of Rm [2,44].
Take a point O as the origin of our frame. Let θ be the oriented angle from the positive
x1-axis. Let p(θ) be the oriented perpendicular distance from O to the tangent line
at a point on Rm and let this ray and x1-axis form an angle θ . The function p is a
single valued periodic function of θ with period 2mπ and the parameterization of Rm

in terms of θ and p(θ) is as follows

[0, 2mπ) � θ �→ γ (θ) = (p(θ) cos θ − p′(θ) sin θ, p(θ) sin θ + p′(θ) cos θ
) ∈ R

2.

(5.1)

Then, the radius of curvature ρ of Rm is in the following form

ρ(θ) = ds

dθ
= p(θ) + p′′(θ) > 0, (5.2)

or equivalently, the curvature κ of Rm is given by

κ(θ) = dθ

ds
= 1

p(θ) + p′′(θ)
> 0. (5.3)

In Fig. 3 we illustrate (with different opacities) the surface E(R1), where R1 is an
oval represented by the support function p(θ) = 11 − 1

2 cos 2θ + sin 3θ . We also
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Fig. 3 The affine extended wave front of an oval

present the following curves: {0} × R1, {1} × R1, { 12 } × E 1
2
(R1), {0} × E 1

2
(R1) and

{0} × CSS(R1).
Let� be a set of singular points ofE. It iswell known thatπ(�(E(R1))) = CSS(R1)

and the map �(E(R1)) � p �→ π(p) ∈ CSS(R1) is the double covering of CSS(R1).
Let Ek(Rm) for k = 1, . . . ,m be a branch of E(Rm) which has the following

parameterization

fk(λ, θ) = (λ, λγ (θ) + (1 − λ)γ (θ + kπ)) . (5.4)

We use the following notation:

( fk)λ := ∂

∂λ
fk(λ, θ), ( fk)θ := ∂

∂θ
fk(λ, θ). (5.5)

In Figs. 4 and 5 we illustrate (with different opacities) the branches E1(R2) and
E2(R2), respectively, where R2 is a 2-rosette represented by the support function
p(θ) = 11 + sin θ

2 − 7 cos 3θ
2 − 1

2 sin 2θ .
Directly by Definition 5.5 we get the following proposition.

Proposition 5.6 Every branch of E(Rm) is a ruled surface.

It is well known that the Gaussian curvature of a ruled surface at a non-singular
point is non-positive. By direct calculation we get the following proposition.

Fig. 4 A singular branch of the affine extended wave front of a 2-rosette
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Fig. 5 A non-singular branch of the affine extended wave front of a 2-rosette

Proposition 5.7 Let Rm be an m-rosette.

(i) A point (λ, θ) is a singular point of Ek(Rm) if and only if

κ(θ)

κ(θ + kπ)
= (−1)k+1 λ

1 − λ
. (5.6)

(ii) A singular point (λ0, θ0) is a cuspidal edge if and only if

(
κ(θ + kπ)

κ(θ)

)′ ∣∣∣
(λ0,θ0)

	= 0. (5.7)

(iii) A singular point (λ0, θ0) is a swallowtail if and only if

(
κ(θ + kπ)

κ(θ)

)′ ∣∣∣
(λ0,θ0)

= 0 and

(
κ(θ + kπ)

κ(θ)

)′′ ∣∣∣
(λ0,θ0)

	= 0. (5.8)

Proof We use (5.4) as the parameterization ofEk(Rm). Let us notice that fk is singular
if and only if ( fk)λ × ( fk)θ = 0. This condition is equivalent to (5.6). By Fact 1.5 in
[36] we get (5.7) and (5.8). ��
Remark 5.8 By Theorem 3.3 in [15] there exists an open and dense subset of the
space of rosettes such that the affine extended wave front E(Rm) has only A2 and
A3 singularities (cuspidal edges and swallowtails) for any rosette Rm in this subset.
Thus, by Proposition 5.7 a rosette Rm is called generic if there do not exist θ and
k ∈ {1, · · · ,m} such that

(
κ(θ + kπ)

κ(θ)

)′
=
(

κ(θ + kπ)

κ(θ)

)′′
= 0. (5.9)

By direct calculation we get the following proposition (see also Definition 2.2).

Proposition 5.9 If Rm is generic then every singular point ofE(Rm) is non-degenerate.

Remark 5.10 In [6,10,44] we study in details the geometry of affine λ-equidistants of
rosettes. We show among other things that there exist m branches of E 1

2
(Rm) and
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2m − 1 branches of Eλ(Rm) for λ 	= 0, 1
2 , 1. Let E 1

2 ,k(Rm) for k = 1, 2, . . . ,m
denote different branches of E 1

2
(Rm) and let Eλ,k(Rm) for k = 1, 2, . . . , 2m − 1

denote different branches of Eλ(Rm) for λ 	= 0, 1
2 , 1. Then, the support function of

E 1
2 ,k(Rm) for k = 1, . . . ,m is in the form (5.10), the support function of Eλ,k(Rm)

for k = 1, 2, . . . ,m (respectively k = m + 1,m + 2, . . . , 2m − 1) in the form (5.11)
(respectively in the form (5.12)), where

p 1
2 ,k(θ) = 1

2

(
p(θ) + (−1)k p(θ + kπ)

)
, (5.10)

pλ,k(θ) = λp(θ) + (−1)k(1 − λ)p(θ + kπ), (5.11)

pλ,k(θ) = (1 − λ)p(θ) + (−1)kλp(θ + (k − m)π). (5.12)

Let γλ,k denote the parameterization of Eλ,k in terms of the support function accord-
ingly to (5.10), (5.11) and (5.12), respectively. Furthermore each branch of Eλ(Rm),
except E 1

2 ,m(Rm), has the rotation number equal to m. The rotation number of

E 1
2 ,m(Rm) is equal to m

2 . If Rm is a generic m-rosette then for λ ∈ (0, 1) − { 12 } only
branches Eλ,k(Rm) for k = 1, 3, . . . , 2� 1

2m� − 1,m + 1,m + 3, . . . ,m + 2� 1
2m� − 1

can admit cusp singularities and branches E 1
2 ,k(Rm) for k = 1, 3, . . . , 2� 1

2m� − 1
has cusp singularities. By [13] we known that if a, b is parallel pair of Rm and Rm

is parameterized at a and b in different directions and κ(a), κ(b) denote the signed
curvatures of Rm at a and b, respectively, then the point aκ1+bκ2

κ1+κ2
, which is lying on

the line between a and b, belongs to CSS(Rm).

Corollary 5.11 Let Rm be a generic m-rosette. Then, CSS(Rm) which is created from
singular points of Eλ(Rm) for λ ∈ [0, 1] consists of exactly 2� 1

2m� − 1 branches.

Proof It is a consequence of Remark 5.10. ��
Let CSSk(Rm) for k = 1, 3, . . . , 2� 1

2m� − 1 denote a branch of CSS(Rm). Then,
the parameterization of CSSk(Rm) is in the following form

γCSSk (Rm )(θ) = κ(θ)

κ(θ) + κ(θ + kπ)
γ (θ) + κ(θ + kπ)

κ(θ) + κ(θ + kπ)
γ (θ + kπ), (5.13)

where if k < m then θ ∈ [0, 2mπ ] and if k = m then θ ∈ [0,mπ ].
Lemma 5.12 Let C be a closed smooth curve with at most cusp singularities and let
the rotation number of C be m. If m is an integer, then the number of cusp singularities
is even. If m is the form 1

2d, where d is an odd integer, then the number of cusp
singularities is odd.

Proof Acontinuous normal vector field to the germ of a curvewith the cusp singularity
is directed outside the cusp on the one of two connected regular components and is
directed inside the cusp on the other component as it is shown in Fig. 6. If m is an
integer, then the number of cusps of C is even, otherwise is odd. ��
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Fig. 6 A continuous normal
vector field to the germ of a
curve with the cusp singularity

Proposition 5.13 Let Rm be a generic m-rosette. If k = m and m is an odd number,
then the number of cusp singularities of CSSk(Rm) is odd and not smaller than the
number of cusp singularities of E 1

2 ,k(Rm), otherwise the number of cusp singular-

ities of CSSk(Rm) is even and not smaller than the number of cusp singularities of
E 1

2 ,k(Rm), which is even and positive.

Proof The parity of the number of cusp singularities of CSSk(Rm) is a consequence
of (5.13) and Lemma 5.12.

Let m be even and k � m or m be odd and k < m. By Theorem 2.9 in [44] we
know that E 1

2 ,k(Rm) has at least 2 cusp singularities. Because the cusp in E 1
2
appears

when κ(a)
κ(b) = 1 and cusp in CSS appears when

(
κ(a)
κ(b)

)′ = 0 [5,13], where a, b is a

parallel pair and ′ is used to denote the derivative with respect to the parameter along
the corresponding segment of a curve. Therefore, by Roll’s theorem we get that the
number of cusp singularities of CSSk(Rm) is not smaller than the number of cusp
singularities of E 1

2 ,k(Rm). The same arguments works when m is odd and k = m. ��

Corollary 5.14 Let Rm be an m-rosette. Then, the number of branches of E(Rm) is
equal to m and a branch Ek(Rm) is singular if and only if k is odd.

In Figs. 4 and 5wepresent twobranches ofE(R2):E1(R2) andE2(R2), respectively.

Proposition 5.15 Let Rm be an m-rosette and let p be a non-singular point ofEk(Rm).
Then, the Gaussian curvature of Ek(Rm) at p is equal to 0.

Proof The surface is parameterized by (5.4).
At a non-singular point (λ, θ) the Gaussian curvature K of Ek is equal to

Kk(λ, θ)

= det
(
( fk)λλ , ( fk)λ , ( fk)θ

) · det (( fk)θθ , ( fk)λ , ( fk)θ
)− det2

(
( fk)λθ , ( fk)λ , ( fk)θ

)
(| ( fk)λ |2| ( fk)θ |2 − (( fk)λ · ( fk)θ )2

)2 .

(5.14)

Since ( fk)λλ = 0 and vectors ( fk)θ and ( fk)λθ are linearly dependent, the Gaussian
curvature Kk at a non-singular point of Ek is equal to zero. ��
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Fig. 7 A singular curve with a
null vector η

Definition 5.16 Let Rm be an m-rosette. Let k ∈ {1, 2, . . . ,m}. Then, the k-width of
Rm for an oriented angle θ is the following

wk(θ) = p(θ) − (−1)k p(θ + kπ). (5.15)

Remark 5.17 Let Rm be a generic m-rosette and k � m be an odd number. From now
on we set

M := [0, 1] × S1,

M � (λ, θ) �→ fk(λ, θ) ∈ Ek(Rm) ⊂ R
3,

M � (λ, θ) �→ νk(λ, θ) := (wk(θ),n(θ))√
1 + w2

k (θ)

∈ S2.

The map ( fk, νk) is a front. Then, the coherent tangent bundle E fk over M has the
following fiber at p ∈ M

E fk
p :=
{
X ∈ T fk (p)R

3 | 〈X , νk(p)〉 = 0
}

.

The set of singular points �k is parameterized by (λk(θ), θ), where
λk(θ) = κ(θ)

κ(θ)+κ(θ+kπ)
. Let us notice that

M− = {(λ, θ) ∈ M
∣∣ λ < λk(θ)

}
, M+ = {(λ, θ) ∈ M

∣∣ λ > λk(θ)
}
.

Furthermore, if the function λk(θ) has a local minimum, then the point (λk(θ), θ) is
a negative peak and if λk(θ) has a local maximum, then this point is a positive peak.
See Fig. 7.

Proposition 5.18 Let Rm be a generic m-rosette. Let k be an odd number and let
λ ∈ [0, 1]. Then, the E fk -geodesic curvature of a curve {λ} × S1 in M at a non-
singular point is equal to

κ̂k,g(θ) := wk(θ)

|λρ(θ) − (1 − λ)ρ(θ + kπ)|
√
1 + w2

k (θ)

. (5.16)
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Proof Let sk(λ, θ) := λρ(θ)−(1−λ)ρ(θ+kπ). Then (5.16) follows from the formula

κ̂k,g(θ) = det(γ ′
k,λ(θ), γ ′′

k,λ(θ), νk(λ, θ))

|γ ′
k,λ(θ)|3 .

��
Proposition 5.19 Let Rm be a generic m-rosette. Let k be an odd number. Then the

singular curvature on a cuspidal edge at a point
(

κ(θ)
κ(θ)+κ(θ+kπ)

, θ
)
is equal to

κk,s(θ) = κCSSk (θ) ·
√
1 + w2

k (θ)

wk(θ)
·
(

w2
k (θ) + w′2

k (θ)

1 + w2
k (θ) + w′2

k (θ)

) 3
2

, (5.17)

where κCSSk (θ) is a the curvature of CSSk(Rm), which is given by the following for-
mula:

κCSSk (θ) = −(κ(θ) + κ(θ + kπ)
)3

κ(θ)κ(θ + kπ)
∣∣κ ′(θ + kπ)κ(θ) − κ ′(θ)κ(θ + kπ)

∣∣ ·
wk(θ)(

w2
k (θ) + w′2

k (θ)
) 3
2

.

(5.18)

Proof It is a direct consequence of the formula of the singular curvature and the formula
of the curvature of the centre symmetry set (see Lemma 2.6 in [10]). ��

By Theorem 1.6 in [36] we know that the singular curvature does not depend on the
orientation of the parameter θ , the orientation ofM , the choice of ν, nor the orientation
of the singular curve. The sign of the singular curvature have a geometric interpretation,
if the singular curvature is positive (respectively negative) then the cuspidal edge is
positively (respectively negatively) curved. See Fig. 8.

We find a formula which gives us the relation between the total singular curvature
on set of singular points and the total geodesic curvature on the boundary of M . The
integrals in (5.19)–(5.22) can be seen as integrals on fk(�k) and fk({λ} × S1) =
{λ} × Ek,λ(Rm) since the arclength measure, the singular curvature and E fk -geodesic
curvature are defined with respect to the first fundamental form ds2 which is the
pullback of metric 〈·, ·〉 on Ek(Rm) ⊂ R

3.

Fig. 8 Examples of positively
(on the left) and negatively (on
the right) curved cuspidal edges
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Theorem 5.20 Let k be an odd number. Let Rm be a generic m-rosette. Then

∫
�k

κk,sdτ +
∫

{1}×S1
κ̂k,gdτ = 0, (5.19)

where dτ denote the arc length measure and the orientation of {1} × S1 is compatible
with the orientation of M.

Proof By Remark 5.17 we get that ( fk, νk) : M → R
3 × S2 is a front. The boundary

of M does not intersect the set of singular points �. By genericity of Rm this front
satisfies the assumptions of Theorem 2.20. Since λk(θ)+λk(θ +kπ) = 1, we get that
M+ and M− are symmetric. Hence χ(M+) = χ(M−) and #P− = #P+.

By Proposition 5.15 and Theorem 2.20 we get that

∫
{1}×S1

κ̂k,gdτ = −
∫

{0}×S1
κ̂k,gdτ

and then we get (5.19). ��
Theorem 5.21 Let k be an odd number, Rm be a generic m-rosette and λ ∈ [0, 1). If
Ek,λ(Rm) admits at most cusp singularities, then

∫
{λ}×S1

κ̂k,gdτ = −
∫

{1}×S1
κ̂k,gdτ, (5.20)

∫
({ 12 }×S1)∩M+

κ̂k,gdτ =
∑
p∈C

α+(p) − 1

2
π#C − 1

2

∫
{1}×S1

κ̂k,gdτ, (5.21)

∫
({ 12 }×S1)∩M−

κ̂k,gdτ = −
∑
p∈C

α+(p) + 1

2
π#C − 1

2

∫
{1}×S1

κ̂k,gdτ, (5.22)

where the orientations of S1 in the integrals on the left hand sides and the right-hand
sides are opposite in the above formulas, C = �k ∩ ({ 12 } × S1), dτ is the arclength
measure and

α+(p) := arccos

(√
w2
k (θ) + w′2

k (θ)

1 + w2
k (θ) + w′2

k (θ)
cos(β(θ))

)
, (5.23)

where p = ( 12 , θ) and β(θ) is the angle between the tangent vector to Rm at γ (θ) and
the vector γ (θ + kπ) − γ (θ).

Proof LetMλ := [λ, 1]×S1. ByRemark 5.17weget that ( fk , νk)
∣∣
Mλ

: Mλ → R
3×S2

is a front. It is easy to see that χ(M+
λ ) = 0 and χ(M−

λ ) = #P+ − #P− is the number
of cusps of E fk

∣∣
Mλ

(that is #
(
�k ∩ ({λ} × S1)

)
). Since every point p ∈ �k ∩ ∂Mλ is

a null singular point, by Theorem 2.20 (see (2.9)) we get (5.20).
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By the genericity of Rm the front ( fk, νk)
∣∣
M 1

2

satisfies the assumptions of Theo-

rem 2.20. Since
∫
�k

κsdτ = 2
∫
�k∩M 1

2

κsdτ , we get (5.21) and (5.22).

The angle between initial vectors (see Definition 2.5) of the singular curve at p
and of the boundary curve at p is α+(p) (see Theorem 2.20). By Proposition 2.7 and
Proposition 2.8 we get (5.23). ��

Furthermore, directly by (2.9) we get the following proposition.

Proposition 5.22 Let k be an odd number. Let Rm be a generic m-rosette. Let C+
(respectivelyC−) be a simple regular curve in M+ (respectively M−)which is smoothly
homotopic to {1}×S1 (respectively {0}×S1). If the orientations of C+, C− are opposite
then

∫
C+

κk,gdτ +
∫
C−

κk,gdτ = 0,

where dτ denote the arc length measure.

By Theorem 5.20 we can get the relation between integrals of the curvature of the
centre symmetry set, the curvature of the rosette and the width of the rosette.

Corollary 5.23 Let k be an odd number and let Rm be a generic m-rosette. Then

∫
Rm

κ(θ(s)) · wk(θ(s))√
1 + w2

k (θ(s))
ds

=
∫
CSSk (Rm )

κCSSk (Rm)(θ(�)) ·
(
ρ(θ(�)) + ρ(θ(�) + kπ)

)√
1 + w2

k (θ(�))

(
1 + w2

k (θ(�)) + w′2
k (θ(�))

) 3
2

d�,

(5.24)

where s (respectively �) is the arc length parameter on Rm (respectively onCSSm(Rm)).

Theorem 5.24 Let k be an odd number and let Rm be a generic m-rosette. Then

∫ 2mπ

0

wk(θ)√
1 + w2

k (θ)

dθ =
∫ 2mπ

0

(
wk(θ) + w′′

k (θ)
) ·

√
1 + w2

k (θ)

1 + w2
k (θ) + w′2

k (θ)
dθ.

(5.25)

Proof The proof is a straightforward use of (5.16), (5.17) and the fact that
ρ(θ) + ρ(θ + kπ) = wk(θ) + w′′

k (θ). ��
Remark 5.25 Since wk(θ) = sinh(C1θ + C2) for C1,C2 ∈ R is the general solution
of

wk(θ)√
1 + w2

k (θ)

= (wk(θ) + w′′
k (θ)
) ·

√
1 + w2

k (θ)

1 + w2
k (θ) + w′2

k (θ)
, (5.26)
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the only periodic solution of (5.26) is a constant function. Therefore, the relation (5.25)
is naively fulfilled only for rosettes of constant k-width.

Remark 5.26 The condition that w is C2-smooth cannot be omitted. We can consider
the functionw(θ) = 1+|x − π |3 and the interval [0, 2π ]. One can check that relation
(5.25) does not hold.

Remark 5.27 By (5.15) the odd coefficients of the Fourier series of a width of an oval
vanish. Thus, a function w(θ) = 2 + sin 3θ is not a width of any oval but it satisfies
the relation (5.25).

Conjecture 5.28 Let w : R → R be a 2π -periodic C2-smooth function. Then, w

satisfies the relation

∫ 2π

0

w(θ)√
1 + w2(θ)

dθ =
∫ 2π

0

(
w(θ) + w′′(θ)

) ·
√
1 + w2(θ)

1 + w2(θ) + w′2(θ)
dθ. (5.27)

In [29,30] other invariants of cuspidal edges of fronts are introduced. Let ( f , ν) :
M �→ R

3 × S2 be a front. Let γ be a singular curve near an A2-point (a cuspidal
edge) and η be a null direction along γ such that the singular direction γ ′ and the
null direction η form a positively oriented frame. We put γ̂ = f ◦ γ , fη = d f (η),
fη,η = d( fη)(η), fη,η,η = d( fη,η)(η). Then, the limiting normal curvature along γ

is defined in the following way

κν(t) =
〈
γ̂ ′′(t), ν (γ (t))

〉
|γ̂ ′(t)|2 . (5.28)

The cuspidal curvature along γ is defined as follows:

κc(t) = |γ̂ (t)| 32 det (γ̂ (t), fηη(γ (t)), fηηη(γ (t))
)

∣∣γ̂ (t) × fηη(γ (t))
∣∣ 52 . (5.29)

The cusp-directional torsion is defined by the formula

κt (t) = det
(
γ̂ ′, fηη(γ ), ( fηη(γ ))′

)
∣∣γ̂ ′ × fηη(γ )

∣∣2 (t) − det
(
γ̂ ′, fηη(γ ), γ̂ ′′) · 〈γ̂ ′, fηη(γ )

〉
|γ̂ ′|2|γ̂ ′ × fηη(γ )|2 (t).

(5.30)

In [36], it was shown that a point p is a generic cuspidal edge if and only if κν(p)
does not vanish. The curvature κc is exactly the cuspidal curvature of the cusp of
the plane curve obtained as the intersection of the surface by the plane H , where
H is orthogonal to the tangential direction at a given cuspidal edge [30]. For the
geometrical meaning of the cusp-directional torsion (5.30) see Proposition 5.2 in [29]
and for global properties see Appendix A in [29]. By straightforward calculations we
obtain the following lemma.
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Lemma 5.29 Let Rm be a generic m-rosette. Let k be an odd number. Then the normal
curvature κk,ν , the cuspidal curvature κk,c and the cusp-directional torsion κk,t of

the cuspidal edge of Ek(Rm) at a point
(

κ(θ)
κ(θ)+κ(θ+kπ)

, θ
)
are given by the following

formulas

κk,ν(θ) ≡ 0, (5.31)

κk,c(θ) =
2
√

κ(θ)κ(θ + kπ)
(
κ(θ) + κ(θ + kπ)

)
√∣∣∣∣
(

κ(θ+kπ)
κ(θ)

)′∣∣∣∣
·
(
1 + w2

k (θ) + w′2
k (θ)
) 3
4

(
1 + w2

k (θ)
) 5
4

,

(5.32)

κk,t (θ) = −
(
κ(θ) + κ(θ + kπ)

)2
κ2(θ) ·

(
κ(θ+kπ)

κ(θ)

)′ · 1

1 + w2
k (θ)

. (5.33)

Proposition 5.30 Let Rm be a generic m-rosette. Let k be an odd number. Then

(i) cuspidal edges of Ek(Rm) are not generic,
(ii) the mean curvature of Ek(Rm) is not bounded,
(iii) the total torsion of the image of singular curve γ̂k(θ) for θ ∈ [0, 2kπ ] is equal

to 2nπ for some integer n, i.e.

∫
γk

τk(s)ds = 2nπ, (5.34)

where γk is the singular curve, τk is a torsion of γ̂k and s is the arc length
parameter of γ̂k .

Proof (i) It is a consequence of (5.31).
(ii) Since κk,c(p) 	= 0 for any cuspidal edge p ∈ �, then by Proposition 2.8 in [30]

we get that the mean curvature of CSSk(Rm) is not bounded.
(iii) FromAppendix A in [29] we know that in our case there is the following equality

∫
γk

κk,t (s)ds =
∫

γk

τk(s)ds − 2nπ.

It is easy to see that
∫
γk

κk,t (s)ds = 0. Hence (5.34) holds.
��

Remark 5.31 For the geometrical meaning of the number n in Corollary 5.30(iii) see
Appendix A in [29]. In [32], authors show that the total torsion of a closed line of
curvature on a surface (i.e. a closed curve on a surface whose tangents are always in
the direction of a principal curvature) is lπ , where l is an integer. Furthermore, they
show that if the total torsion of a closed curve is lπ for an integer l, then this curve
can appear as a line of curvature on a surface and if l is even, then it can appear as a
line of curvature on a surface of genus 1.
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10. Domitrz, W., Zwierzyński, M.: The geometry of the Wigner caustic and affine equidistants of planar

curves. arXiv:1605.05361v4
11. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern Geometry—Methods and Applications. Part

II, The Geometry and Topology ofManifolds. Graduate Texts inMathematics, vol. 104, Springer, New
York

12. Fukuda, T., Ishikawa, G.: On the number of cusps of stable perturbations of a plane-to-plane singularity.
Tokyo J. Math. 10(2), 375–384 (1987)

13. Giblin, P.J., Holtom, P.A.: The Centre Symmetry Set, Geometry and Topology of Caustics, vol. 50, pp.
91–105. Banach Center Publications, Warsaw (1999)

14. Giblin, P.J., Reeve, G.M.: Centre symmetry sets of families of plane curves. Demonstr. Math. 48,
167–192 (2015)

15. Giblin, P.J., Zakalyukin, V.M.: Singularities of centre symmetry sets. Proc. Lond. Math. Soc. (3) 90,
132–166 (2005)

16. Giblin, P.J., Warder, J.P., Zakalyukin, V.M.: Bifurcations of affine equidistants. Proc. Steklov Inst.
Math. 267, 57–75 (2009)

17. Janeczko, S.: Bifurcations of the center of symmetry. Geom. Dedicata 60, 9–16 (1996)
18. Janeczko, S., Jelonek, Z., Ruas, M.A.S.: Symmetry defect of algebraic varieties. Asian J. Math. 18(3),

525–544 (2014)
19. Kokubu, M., Rossman, W., Saji, K., Umehara, M., Yamada, K.: Singularities flat fronts in hyperbolic

3-space. Pac. J. Math. 221, 265–299 (2005)
20. Kossowski, M.: The Boy–Gauss–Bonnet theorems for C1-singular surfaces with limiting tangent

bundle. Ann. Glob. Anal. Geom. 21, 19–29 (2002)
21. Kossowski, M.: Realizing a singular first fundamental form as a nonimmersed surface in Euclidean

3-space. J. Geom. 81, 101–113 (2004)
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42. Zwierzyński, M.: The improved isoperimetric inequality and the Wigner caustic of planar ovals. J.
Math. Anal. Appl. 442(2), 726–739 (2016)

43. Zwierzyński, M.: The Constant Width Measure Set, the Spherical Measure Set and isoperimetric
equalities for planar ovals. arXiv:1605.02930
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