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Abstract
For a Riemannian covering p : M2 → M1, we compare the spectrum of an essentially
self-adjoint differential operator D1 on a bundle E1 → M1 with the spectrum of its lift
D2 on p∗E1 → M2. We prove that if the covering is infinite sheeted and amenable,
then the spectrum of D1 is contained in the essential spectrum of any self-adjoint
extension of D2. We show that if the deck transformations group of the covering is
infinite and D2 is essentially self-adjoint (or symmetric and bounded frombelow), then
D2 (or the Friedrichs extension of D2) does not have eigenvalues of finite multiplicity
and in particular, its spectrum is essential. Moreover, we prove that if M1 is closed,
then p is amenable if and only if it preserves the bottom of the spectrum of some/any
Schrödinger operator, extending a result due to Brooks.

Keywords Spectrum of differential operator · Amenable covering · Bottom of
spectrum · Schrödinger operator

Mathematics Subject Classification 58J50 · 35P15 · 53C99

1 Introduction

A basic problem in Geometric Analysis is the investigation of relations between the
geometry of a manifold and the spectrum of a differential operator on it. In this direc-
tion, it is natural to study the behavior of the spectrumundermaps betweenRiemannian
manifolds, which respect the geometry of the manifolds to some extent. In this paper,
we deal with this problem for Riemannian coverings.

Let p : M2 → M1 be a Riemannian covering of connectedmanifoldswith (possibly
empty) smooth boundary. A Schrödinger operator S1 on M1 is an operator of the form
S1 = � + V , where � is the (non-negative definite) Laplacian and V : M1 → R is
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smooth and bounded from below. For such an operator S1 on M1, its lift on M2 is the
operator S2 = �+V ◦ p. The first results involving possibly infinite-sheeted coverings
and establishing connections between properties of the covering and the (Dirichlet)
spectra of S1 and S2 are related to the change of the bottom (that is, theminimum) of the
spectrum and were proved by Brooks [6,7]. He showed that if the underlying manifold
is complete, of finite topological type, without boundary and the covering is normal
and amenable, then the bottom of the spectrum of the Laplacian is preserved. Bérard
and Castillon [4] extended this result by showing that if the covering is amenable
and the underlying manifold is complete with finitely generated fundamental group
and without boundary, then the bottom of the spectrum of any Schrödinger operator
is preserved. Recently, it was proved in [2] that the bottom of the spectrum of a
Schrödinger operator is preserved under amenable coverings, without any topological
or geometric assumptions.

In this paper, we prove a global result about this problem in a more general con-
text. Instead of comparing the bottoms of the spectra, we prove inclusion of spectra
under some reasonable assumptions. Moreover, our context allows us to impose vari-
ous boundary conditions on Schrödinger operators (for instance, Dirichlet, Neumann,
mixed, and Robin), while the former results involve only Dirichlet conditions. Further-
more, our theorems are applicable to a broad class of differential operators, including
Schrödinger operators with magnetic potential (that is, first-order term), Dirac opera-
tors, higher-order Laplacian, and Laplace-type operators on vector bundles. It is worth
to point out that the Hodge Laplacian is a special case of the latter ones, as well as the
Jacobi (stability) operator of a minimal submanifold. Furthermore, in this context, we
may consider the Laplacian on weighted manifolds (or Laplacian with density).

In order to simplify the statements of our results, we need to set up some notation.
Consider a Riemannian or Hermitian vector bundle E1 → M1 endowed with a (not
necessarily metric) connection ∇. Let D1 be a (not necessarily elliptic) differential
operator of arbitrary order on E1.We consider the pullback bundle E2 := p∗E1 → M2
endowed with the corresponding metric and connection, and the lift D2 of D1.

If M1 has empty boundary, we consider the space of compactly supported smooth
sections of Ei as the domain of Di , i = 1, 2. If M1 has non-empty boundary, as the
domain of D1 we consider the space of compactly supported smooth sections η of E1
satisfying a number of boundary conditions of the form

k∑

j=0

a j∇( j)
n η = 0 on ∂M1,

where n is the inward pointing normal to ∂M1 and a j ’s are functions defined on
∂M1. For example, in this context, we may impose boundary conditions of the form
η = ∇nη = · · · = ∇(k)

n η = 0 on ∂M1, for some k ∈ N. As the domain of D2
we consider the space of compactly supported, smooth sections of E2 that satisfy
analogous boundary conditions to the ones imposed on the domain of D1.

Letμ1 be a measure expressed via a positive smooth density in terms of the volume
element of M1, that is, dμ1 = hd Vol. Let μ2 be the corresponding measure on M2,
that is, dμ2 = (h ◦ p)d Vol. We consider the operators Di restricted to the above
domains as densely defined operators in L2(Ei , μi ), i = 1, 2.
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For sake of simplicity, we present here special versions of ourmain results involving
self-adjoint operators. The results are stated for infinite-sheeted coverings, since this
is the interesting case of amenable coverings. However, we also prove the analogous
results for finite-sheeted coverings. Our first result provides inclusion of the spectrum
σ(D1) of the closure of D1, as long as it is self-adjoint, in the essential spectrum
σess(D′

2) of any self-adjoint extension D′
2 of D2.

Theorem 1.1 Assume that D1 is essentially self-adjoint and let D′
2 be a self-adjoint

extension of D2. If the covering is infinite sheeted and amenable, then the spectra of
the operators satisfy σ(D1) ⊂ σess(D′

2).

Recall that a Schrödinger operator on a completemanifold is essentially self-adjoint
on the space of compactly supported smooth functions vanishing on the boundary (if
it is non-empty). Therefore, in the context of Schrödinger operators, it follows that if
the underlyingmanifold is complete and the covering is infinite sheeted and amenable,
then the spectrum of S1 is contained in the essential spectrum of S2.

An important casewhere the above theorem cannot be applied is that of Schrödinger
operators on non-complete Riemannian manifolds. A Schrödinger operator on such a
manifold does not have a unique self-adjoint extension, when restricted to the above
domain, and we are interested in the spectrum of its Friedrichs extension. According to
[2], if the covering is amenable, then the bottoms of the spectra of S1 and S2 coincide.
The amenability is used only to establish λ0(S2) ≤ λ0(S1), since the inverse inequality
holds for any covering, where λ0 stands for the bottom of the spectrum. This motivates
us to establish the following theorem, which compares the bottom λ0(D

(F)
1 ) of the

spectrum of the Friedrichs extension of D1 with the bottom λess0 (D(F)
2 ) of the essential

spectrum of the Friedrichs extension of D2, when the operators are symmetric and
bounded from below.

Theorem 1.2 Assume that Di is symmetric and bounded from below, and denote by
D(F)
i its Friedrichs extension, i = 1, 2. If the covering is infinite sheeted and amenable,

then λess0 (D(F)
2 ) ≤ λ0(D

(F)
1 ).

In particular, for Schrödinger operators, it follows that if the covering is infinite
sheeted and amenable, then the bottom of the spectrum of S1 is equal to the bottom of
the essential spectrum of S2, without any topological or geometric assumptions.

The above results involve amenable coverings. However, the deck transformations
group of a (possibly non-amenable) covering provides information about the group
of isometries of the covering space. This motivates us to work in a more general con-
text than Riemannian coverings and prove that under some symmetry assumptions, an
essentially self-adjoint differential operator does not have eigenvalues of finite multi-
plicity and in particular, its spectrum is essential. Moreover, we show the analogous
result for the Friedrichs extension of a symmetric and bounded from below differential
operator. In the context of Riemannian coverings, we obtain the following immediate
consequences.

Corollary 1.3 Assume that D2 is essentially self-adjoint. If the deck transformations
group of the covering is infinite, then D2 does not have eigenvalues of finite multiplicity
and in particular, σ(D2) = σess(D2).
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Corollary 1.4 Assume that D2 is symmetric and bounded from below, and denote by
D(F)
2 its Friedrichs extension. If the deck transformations group of the covering is

infinite, then D(F)
2 does not have eigenvalues of finite multyplicity and in particular,

σ(D(F)
2 ) = σess(D

(F)
2 ).

For Schrödinger operators, it follows that if the deck transformations group of the
covering is infinite, then the spectrum of S2 is essential, without any assumptions on
the manifolds.

All the above results provide information about the spectra from properties of the
covering (amenability or infinite deck transformations group). In the converse direc-
tion, Brooks [6] proved that if a normal Riemannian covering of a closedmanifold (that
is, compact without boundary) preserves the bottom of the spectrum of the Laplacian,
then the covering is amenable. In this paper, we extend this result to Schrödinger oper-
ators and to not necessarily normal coverings. Recall that local isometries between
complete Riemannian manifolds are (not necessarily normal) Riemannian coverings.
In the following theorem, we denote by hess(M) the supremum of the Cheeger’s con-
stants over complements of compact and smoothly bounded domains of M .

Theorem 1.5 Let p : M2 → M1 be a Riemannian covering with M1 closed. Then the
following are equivalent:

(i) p is infinite sheeted and amenable,
(ii) σ(S1) ⊂ σess(S2) for some/any Schrödinger operator S1 on M1 and its lift S2,
(iii) λ0(S1) = λess0 (S2) for some/any Schrödinger operator S1 on M1 and its lift S2,
(iv) hess(M2) = 0.

It is worth to point out that Brooks proved his theorem in a quite complicated
way, relying heavily on geometric measure theory. Our proof of the above theorem is
significantly simpler and avoids the use of geometric measure theory. Moreover, this
result yields that the assumption of amenability is natural in Theorems 1.1 and 1.2.
Indeed, if we restrict ourselves to Schrödinger operators and coverings of closed
manifolds, amenability is actually equivalent to the conclusions of these theorems.

Furthermore, Brooks [7], and more recently, Roblin and Tapie [22] proved that
under some more general (but still quite restrictive) assumptions, if the bottom of the
spectrum of the Laplacian is preserved, then the covering is amenable. In particular,
these assumptions imply that the bottom of the spectrum of the Laplacian on M1 is not
in the essential spectrum.Moreover, Brooks [7] provided examples demonstrating that
without these conditions, the bottomof the spectrumof theLaplacianmay be preserved
even if the covering is non-amenable. This suggests that under some assumptions on
the geometry and the spectrum of the Laplacian on M1, the bottom of the spectrum
is preserved under a weaker assumption than amenability of the covering. In this
direction, as an application of Theorem 1.1, we prove the following result.

Corollary 1.6 Let p : M2 → M1 be a Riemannian covering with M1 complete. Let S1
be a Schrödinger operator on M1 with λ0(S1) ∈ σess(S1), and S2 its lift on M2. If
there exists a compact K ⊂ M1, such that the image of the fundamental group of any
connected component of M1 � K in π1(M1) is amenable, then λ0(S1) = λ0(S2).
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The paper is organized as follows: In Sect. 2, we give some preliminaries. In Sects. 3
and 4, we present the construction which is used in order to prove Theorem 1.2 and a
more general result (Theorem 4.1) than Theorem 1.1. The proofs are given in Sect. 4,
where we also present the analogous results for finite-sheeted coverings. In Sect. 5, we
study manifolds with high symmetry and establish Corollaries 1.3 and 1.4. In Sect. 6,
we present an alternative proof of Brooks’ Theorem [6], extending it to not necessarily
normal Riemannian coverings. In Sect. 7, we introduce the notion of renormalized
Schrödinger operators, which is used to prove Theorem 1.5. Moreover, in this section
we establish Corollary 1.6 and we present a simple example demonstrating that the
behavior of the bottom of the spectrum of the connection Laplacian under a covering
depends on the correspondingmetric connection. Therefore, amain point in our results
is the independence from the vector bundles, the connections, and the differential
operators.

2 Preliminaries

We first recall some basic facts from functional analysis. For more details, see [17].
Let A : D(A) ⊂ H → H be a closed (linear) operator on a separable Hilbert spaceH
over a field F, where F = R or F = C. The spectrum of A is given by

σ(A) := {λ ∈ F : (A − λ) : D(A) → H not bijective}.

The essential spectrum of A is defined as

σess(A) := {λ ∈ F : (A − λ) : D(A) → H not Fredholm}.

Recall that an operator is calledFredholm if its kernel is finite-dimensional and its range
is closed and of finite codimension. The discrete spectrum of A is the complement of
the essential spectrum in the spectrum of A, that is, σd(A) := σ(A) � σess(A).

The approximate point spectrum of A, denoted by σap(A), is defined as the set of
all λ ∈ F, such that there exists (vk)k∈N ⊂ D(A) with ‖vk‖ = 1 and (A − λ)vk → 0
inH. For λ ∈ F, aWeyl sequence for A and λ is a sequence (vk)k∈N ⊂ D(A), such that
‖vk‖ = 1, vk⇀0 and (A−λ)vk → 0 inH, where “⇀” denotes the weak convergence
in H. The Weyl spectrum of A, denoted by σW (A), is the set of all λ ∈ F, such that
there exists a Weyl sequence for A and λ.

The following proposition is the characterization of the spectrum of a self-adjoint
operator as the set of approximate eigenvalues and the well-known Weyl’s criterion
for the essential spectrum.

Proposition 2.1 If A is self-adjoint, then σap(A) = σ(A), σW (A) = σess(A) and
σd(A) consists of isolated eigenvalues of A of finite multiplicity. In particular, σess(A)

consists of eigenvalues of A of infinite multiplicity and accumulation points of σ(A).

Since we are interested in closures of operators, we need the following elementary
lemma, characterizing the approximate point spectrum and the Weyl spectrum of the
closure in terms of the initial operator.
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Lemma 2.2 Assume that A is the closure of an operator B : D(B) ⊂ H → H and
consider λ ∈ F. Then:

(i) λ ∈ σap(A) if and only if there exists (vk)k∈N ⊂ D(B), such that ‖vk‖ = 1 and
(B − λ)vk → 0 inH,

(ii) λ ∈ σW (A) if and only if there exists (vk)k∈N ⊂ D(B), such that ‖vk‖ = 1, vk⇀0
and (B − λ)vk → 0 inH.

For an operator B : D(B) ⊂ H → H and v ∈ D(B) � {0}, the Rayleigh quotient
of v with respect to B is defined as

RB(v) := 〈Bv, v〉
‖v‖2 .

If B is symmetric, then RB(v) ∈ R, for any v ∈ D(B) � {0}, and B is bounded
from below if the infimum ofRB(v), with v ∈ D(B) � {0}, is finite. In this case, this
infimum is called the lower bound of B.

The spectrum of a self-adjoint operator A is contained in R and the bottom (that
is, the minimum) of the spectrum and the bottom of the essential spectrum of A are
denoted by λ0(A) and λess0 (A), respectively. The following characterization of the
bottom of the spectrum is due to Rayleigh.

Proposition 2.3 If A : D(A) ⊂ H → H is self-adjoint, then

λ0(A) = inf
v∈D(A)�{0}

RA(v).

If, in addition, A is the closure of an operator B : D(B) ⊂ H → H, then the bottom
of the spectrum of A is given by

λ0(A) = inf
v∈D(B)�{0}

RB(v).

Throughout the paper, manifolds are connected, with possibly empty, smooth, and
not necessarily connected boundary, unless otherwise stated. Let p : M2 → M1 be
a Riemannian covering of m-dimensional manifolds, E1 → M1 a Riemannian or
Hermitian vector bundle of rank 	, and D1 : 
(E1) → 
(E1) a differential operator
of order d. Consider the pullback bundle E2 := p∗E1 on M2, y ∈ M2 and set
x := p(y). Let U2 be an open neighborhood of y, such that the restriction p|U2 is an
isometry onto its image U1. The lift D2 : 
(E2) → 
(E2) of D1 is the differential
operator defined by

D2η(z) := (p|U2)
∗(D1((p|−1

U2
)∗η)(p(z))),

for any η ∈ 
(E2) and z ∈ U2. Without loss of generality, we may assume that
U1 is contained in a coordinate neighborhood and there exists a local trivialization
E1|U1 → U1 × F

	. With respect to this coordinate system and trivialization, D1 is
expressed as
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D1 =
∑

|α|≤d

Aα ∂ |α|

∂xα
, (1)

where Aα are smooth maps defined onU1, with values 	×	matrices with entries in F.
Then, with respect to the lifted coordinate system and the corresponding trivialization
E2|U2 → U2 × F

	, D2 has the local expression

D2 =
∑

|α|≤d

(Aα ◦ p)
∂ |α|

∂ yα
.

Let M be a Riemannian manifold and E → M a Riemannian or Hermitian vector
bundle endowedwith a connection∇. Assume thatM has non-empty boundary, denote
by n the inward pointing normal to ∂M , and extend n locally as the velocity of unit
speed geodesics normal to the boundary. For η ∈ 
c(E) and k ∈ N, consider the
following sections defined in a neighborhood of the boundary

∇(k)
n η := ∇n(∇(k−1)

n η), where ∇(0)
n η := η.

Similarly, for f ∈ C∞
c (M) and k ∈ N, consider the following functions defined in a

neighborhood of the boundary

n(k)( f ) := n(n(k−1) f ), where n(0) f := f .

Lemma 2.4 Let M be a Riemannian manifold, E → M a Riemannian or Hermitian
vector bundle endowed with a connection ∇ and D : 
(E) → 
(E) a differential
operator. If M has empty boundary, setD(D) := 
c(E). If M hasnon-empty boundary,
consider ν ∈ N, and for l = 1, . . . , ν, let kl ∈ N and a j,l be real or complex-valued
functions (depending on whether E is Riemannian or Hermitian) defined on ∂M,
j = 0, . . . , kl . Let n be the inward pointing normal to ∂M and consider

D(D) := {η ∈ 
c(E) :
kl∑

j=0

a j,l∇( j)
n η = 0 on ∂M, l = 1, . . . , ν}.

Let μ be a measure on M expressed via a positive smooth density with respect to
the volume element of M; that is, there exists a positive h ∈ C∞(M), such that
dμ = hd Vol. Then the operator D : D(D) ⊂ L2(E, μ) → L2(E, μ) is closable.

Proof Consider the formal adjoint Dad of D in L2(E), defined by

〈Dη, θ〉L2(E) = 〈η, Dadθ〉L2(E),

for all η ∈ D(D) and θ ∈ 
cc(E), where 
cc(E) is the space of smooth sections,
compactly supported in the interior of M . Evidently, for η ∈ D(D) and θ ∈ 
cc(E),
we have
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〈Dη, θ〉L2(E,μ) = 〈η, D′θ〉L2(E,μ), where D′θ := 1

h
Dad(hθ).

It is clear that the operator D′ : 
cc(E) ⊂ L2(E, μ) → L2(E, μ) is densely defined
and its adjoint satisfies D ⊂ (D′)∗. Since the adjoint is closed, it follows that D is
closable. ��

A Schrödinger operator on a possibly non-connected RiemannianmanifoldM is an
operator of the form S := �+V , where� is the Laplacian and V : M → R is smooth
and bounded from below. If M is complete and without boundary, then S is essentially
self-adjoint on C∞

c (M), that is, the closure of S : C∞
c (M) ⊂ L2(M) → L2(M) is

self-adjoint. If M is complete with non-empty boundary, then S is essentially self-
adjoint on { f ∈ C∞

c (M) : f = 0 on ∂M}. If M is non-complete, then S restricted to
the above domain does not have a unique self-adjoint extension, and we are interested
in the Friedrichs extension of S. By abuse of notation, the spectrum and the essential
spectrumof the above- described self-adjoint operator are denoted byσ(S) andσess(S),
respectively, and their bottoms by λ0(S) and λess0 (S), respectively. These sets and
quantities for the Laplacian on M are denoted by σ(M), σess(M) and λ0(M), λess0 (M),
respectively.

Let p : M2 → M1 be aRiemannian covering of completemanifoldswithout bound-
ary. For x ∈ M1 and y ∈ p−1(x), the fundamental domain of p centered at y is defined
by

Dy := {z ∈ M2 : d(z, y) ≤ d(z, y′) for all y′ ∈ p−1(x)}.

Some basic properties of these fundamental domains are presented in [2]. It is clear
that Dy is closed and M2 is the union of Dy , with y ∈ p−1(x). It is worth to point out
that the intersection of different fundamental domains is of measure zero. Moreover,
∂Dy and the cut locus Cut(x) of x are of measure zero and p : Dy �∂Dy → M1 �C0
is an isometry, where C0 is a subset of Cut(x). The following two lemmas are proved
in [2]. The lemma after these is proved similarly to Lemma 2.6. In these lemmas and
in the sequel, we denote open and closed balls by B and C , respectively.

Lemma 2.5 If K ⊂ B(x, r), then p−1(K ) ∩ Dy ⊂ B(y, r). In particular, if K is
compact, then p−1(K ) ∩ Dy is compact.

Lemma 2.6 For any r > 0, there exists N (r) ∈ N, such that any z ∈ M2 is contained
in at most N (r) of the balls C(y, r), with y ∈ p−1(x).

Lemma 2.7 Consider the universal coverings pi : M̃ → Mi , i = 1, 2. For any r ,
r0 > 0, there exists Ñ (r , r0) ∈ N, such that

#{w ∈ p−1
2 (z) : B(w, r0) ∩ C(u, r) �= ∅} ≤ Ñ (r , r0),

for all u ∈ p−1
1 (x) and z ∈ M2.

It is worth to point out that the quantities N (r) and Ñ (r , r0) in the above lemmas
depend on the choice of x ∈ M1.

123



On the Spectrum of Differential Operators 3339

Finally, we recall the notions of amenable right action and amenable covering. For
more details on amenable left actions, which are completely analogous to right actions,
see [4, Sect. 2]. A right action of a countable group 
 on a countable set X is called
amenable if there exists a
-invariant mean on L∞(X). The following characterization
is due to Følner.

Proposition 2.8 The right action of a countable group
 on a non-empty, countable set
X is amenable if and only if for any finite G ⊂ 
 and ε > 0, there exists a non-empty,
finite F ⊂ X, such that

#(F � Fg) < ε#(F),

for all g ∈ G. Such a set F is called a Følner set for G and ε.

A countable group 
 is called amenable if the right action of 
 on itself is amenable.
In this case, the right action of 
 on any countable set X is amenable. Moreover, it is
clear that any right action on a non-empty, finite set is amenable.

A Riemannian covering p : M2 → M1 is called amenable if the right action of
π1(M1) on π1(M2)\π1(M1) (that is, the set of right cosets of π1(M2) in π1(M1), when
considered as deck transformations groups of the universal coverings) is amenable.
Clearly, a normal covering is amenable if and only if its deck transformations group
is amenable. Furthermore, finite-sheeted coverings are amenable.

The following criteria for amenability of groups are immediate consequences of
the definition and Proposition 2.8.

Corollary 2.9 Any finitely generated group of subexponential growth is amenable.

Corollary 2.10 A countable group 
 is amenable if and only if any finitely generated
subgroup of 
 is amenable

Corollary 2.11 Any countable solvable group is amenable.

Proof From Corollaries 2.9 and 2.10, it follows that any countable abelian group is
amenable. From the definition, it is clear that an extension of an amenable group by
an amenable group is also amenable. ��

3 Coverings of Manifolds with Boundary

The aim of this section is to show the following proposition, according to which, any
Riemannian covering of manifolds with boundary can be “extended” to a Riemannian
covering of manifolds without boundary.

Proposition 3.1 Let M be a Riemannian manifold with non-empty boundary. Then
there exists a Riemannian manifold N of the same dimension, without boundary
and an isometric embedding i : M → N, such that, after identifying M with i(M),
any Riemannian covering p : M ′ → M can be extended to a Riemannian covering
p : N ′ → N.
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In order to prove this proposition, we need to establish some auxiliary lemmas.

Lemma 3.2 Let M be a Riemannian manifold with non-empty boundary. Then there
exists aRiemannianmanifold N of the samedimension,without boundary, an isometric
embedding i : M → N, and a strong deformation retraction of N onto i(M).

Proof Consider the space ∂M × [0,+∞) and the map � : ∂M → ∂M × [0,+∞),
defined by �(x) := (x, 0). Then N := M ∪� (∂M × [0,+∞)) is a smooth manifold
and there exists a smooth embedding i : M → N . Therefore, M can be identified with
i(M). Since M is connected, so is N , and there exists a strong deformation retraction
of N onto M , obtained by considering Ft (x, r) := (x, (1 − t)r) in the glued ends
∂M × [0,+∞).

It remains to extend the Riemannian metric of M to a Riemannian metric of N . Any
x ∈ ∂M has an open neighborhoodUx in N , such that there exists a smooth frame field
{e1, . . . , em} in Ux , where m is the dimension of the manifolds. Let g jk := 〈e j , ek〉,
1 ≤ j, k ≤ m, be the components of the Riemannian metric of M . Since they are
smooth up to the boundary of M , they can be extended smoothly to a neighborhood of
x . After passing to a smaller neighborhood of x if needed, we may assume that g jk’s
are smooth in Ux and their matrix is symmetric and positive definite at any point of
Ux . Hence, they express a Riemannian metric in Ux .

Clearly, ∂M can be covered with such neighborhoods Ux . Consider the interior of
M as an open subset of N endowed with its Riemannian metric and N � M with an
arbitrary Riemannian metric. Combining these Riemannian metrics via a partition of
unity subordinate to this open cover of N , gives rise to a Riemannian metric of N ,
which is an extension of the Riemannian metric of M . ��
Lemma 3.3 Let M be a Riemannian manifold with non-empty boundary. Consider N
as in the previous lemma and identify M with i(M). Let q : Ñ → N be the universal
covering of N . Then the restriction q : q−1(M) → M is the universal covering of M.

Proof Since there exists a strong deformation retraction of N onto M , every loop in N
can be homotoped to a loop inM . This implies that for any x ∈ M and y1, y2 ∈ q−1(x),
there exists a path in q−1(M) from y1 to y2. Since M is connected, it follows that so is
q−1(M) and the restriction q : q−1(M) → M is a covering of (connected) manifolds.

Let rM : N → M be a retraction. Then the map rM ◦ q : Ñ → M is continuous
and rM ◦ q = q in q−1(M). From the Lifting Theorem, it follows that rM ◦ q has a
continuous lift r̃M : Ñ → q−1(M), with r̃M (y0) = y0, for some y0 ∈ q−1(M). Since
r̃M |q−1(M) is a deck transformation of the covering q : q−1(M) → M , it follows that

r̃M : Ñ → q−1(M) is a retraction. Since Ñ is simply connected, this yields that so is
q−1(M). ��
Proof of Proposition 3.1: Consider N and q : Ñ → N as in the above lemmas, identify
M with i(M) and set M̃ := q−1(M). Denote by 
N and 
M the deck transformations
groups of q : Ñ → N and q : M̃ → M , respectively. It is clear that for g ∈ 
N ,
we have g|M̃ ∈ 
M , and any γ ∈ 
M has a unique extension γ ′ ∈ 
N . For any
Riemannian covering p : M ′ → M , there exists a subgroup 
 ⊂ 
M , such that
M ′ = M̃/
. For 
′ := {γ ′ ∈ 
N : γ ∈ 
} and N ′ := Ñ/
′, the inclusion M̃ ↪→ Ñ
descends to an isometric embedding M ′ → N ′, which completes the proof. ��
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4 Spectrum of Operators Under Amenable Coverings

Throughout this section, we work in the following context, which is briefly described
in the Introduction.

Let p : M2 → M1 be aRiemannian covering, E1 → M1 aRiemannian orHermitian
vector bundle endowed with a connection ∇, and D1 : 
(E1) → 
(E1) a differential
operator on E1. Let E2 → M2 be the pullback bundle, endowedwith the corresponding
metric and connection ∇, and D2 : 
(E2) → 
(E2) the lift of D1. If M1 has empty
boundary, we consider the space of compactly supported smooth sections of Ei as the
domain of Di , that is, D(Di ) := 
c(Ei ), i = 1, 2.

If M1 has non-empty boundary, consider ν ∈ N, and for l = 1, . . . , ν, let kl ∈ N

and a(1)
j,l be real or complex-valued functions (depending onwhether E1 is Riemannian

or Hermitian) defined on ∂M1, j = 0, . . . , kl . It is worth to point out that we do not
impose any assumptions on the functions a(1)

j,l . Let ni be the inward pointing normal

to ∂Mi , set a
(2)
j,l := a(1)

j,l ◦ p, and consider

D(Di ) := {η ∈ 
c(Ei ) :
kl∑

j=0

a(i)
j,l∇( j)

ni η = 0 on ∂Mi , l = 1, . . . , ν}, i = 1, 2.

Let μ1 be a measure on M1 expressed via a positive smooth density with respect
to the volume element of M1; that is, there exists a positive h ∈ C∞(M1), such that
dμ1 = hd Vol. Let μ2 be the corresponding measure on M2, i.e., dμ2 = (h ◦ p)d Vol.
We consider the operator Di as a densely defined operator

Di : D(Di ) ⊂ L2(Ei , μi ) → L2(Ei , μi ), (2)

i = 1, 2. When we refer to closability, symmetry, or essential self-adjointness of Di ,
we consider the operator as in (2), i = 1, 2. From Lemma 2.4, the operator Di is
closable and we denote by Di its closure, i = 1, 2.

Our aim in this section is to prove Theorem 1.2 and the following more general
version of Theorem 1.1.

Theorem 4.1 Let D′
2 be a closed extension of D2. If the covering is infinite sheeted

and amenable, then σap(D1) ⊂ σW (D′
2).

For convenience of the reader, we briefly describe the outline of the proof of this
theorem. Given η ∈ D(D1) with ‖η‖L2(E1,μ1)

= 1, λ ∈ F, and ε > 0, we want to
prove that there exists ζ ∈ D(D2), such that

‖(D2 − λ)ζ‖L2(E2,μ2)

‖ζ‖L2(E2,μ2)

≤ ‖(D1 − λ)η‖L2(E1,μ1)
+ ε. (3)

First consider the case where the manifolds are complete without boundary. Then
there exists r > 0, such that supp η ⊂ B(x, r), for some x ∈ M1. For y ∈ p−1(x),
we consider a function ϕy ∈ C∞

c (M2) centered at y, whose profile is essentially
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independent from y. For a finite subset P of p−1(x), we consider the test section
χθ ∈ D(D2), where θ is the lift of η and χ = ∑

y∈P ϕy . For such a section we
establish pointwise estimates of the form ‖(D2 − λ)(χθ)‖ ≤ C in M2, where C is a
constant independent from P .

Consider p−1(x) as a discrete graph,where twopoints are connected if their distance
is less than 2r+2. For a point y ∈ P�∂P , it follows thatχθ = θ in B(y, r).Moreover,
χθ is supported in the union of the balls B(y, r), with y in P or y connected to some
point in ∂P . From Lemma 2.6, there are at most N (2r + 2)#(∂P) many y ∈ p−1(x)
that are connected to some point in ∂P .

Since the covering is amenable, it follows that there exist finite subsets P of p−1(x)
with arbitrarily small isoperimetric ratio. Hence, the corresponding sections χθ coin-
cide with θ in a relatively large part of their supports, while in the rest of their supports
they satisfy the aforementioned estimates, which are independent from P . Therefore,
the corresponding test sections χθ satisfy (3). Moreover, since p is infinite sheeted,
given a compact K ⊂ M2, we may choose a finite P ⊂ p−1(x), so that χθ satisfies
(3) and supp(χθ) does not intersect K . This completes the proof of the theorem in
case the manifolds are complete without boundary.

If the manifolds are non-complete without boundary, then we consider confor-
mal Riemannian metrics that make the manifolds complete, and exploit the method
described above.

If the manifolds have non-empty boundary, then we extend the given Rieman-
nian covering to a Riemannian covering of manifolds without boundary, according
to Proposition 3.1. Then we consider conformal Riemannian metrics that make the
manifolds complete and exploit a slight variation of the above method. In this case, it
is important to require that this new Riemannian metric on M1 coincides with the orig-
inal Riemannian metric in a compact neighborhood of supp η, so that this construction
respects the imposed boundary conditions; that is, if η ∈ D(D1), then χθ ∈ D(D2),
for any finite subset P of p−1(x).

4.1 Partition of Unity

In this subsection, we construct a special partition of unity, which is used in the sequel
to obtain cut-off functions on M2.

Let K0 be a compact subset of M1. Consider the universal coverings pi : M̃ → Mi

and denote by 
i the deck transformations group of pi , i = 1, 2. If M1 has empty
boundary, consider a Riemannian metric h1, conformal to the original metric g1, such
that (M1, h1) is complete. Such a metric exists according to [21].

If M1 has non-empty boundary, let ni be the inward pointing normal to ∂Mi ,
i = 1, 2, and ñ the inward pointing normal to ∂ M̃ . Consider a Riemannian manifold
(N1, g1) containing M1, as in Proposition 3.1, and a Riemannian metric h1, conformal
to the original metric g1, such that (N1, h1) is complete. Since K0 is compact, we may
assume that h1 coincides with g1 in a compact neighborhood of K0. From Proposi-
tion 3.1, it follows that the Riemannian covering p : M2 → M1 can be extended to a
Riemannian covering p : N2 → N1. Moreover, according to Lemma 3.3, M̃ can be
identified with a domain of the simply connected covering space Ñ of N1.
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From now on, geodesics are considered with respect to h1 and its lifts. If M1 has
empty boundary, distances are considered with respect to h1 or its lifts. In this case,
we denote the open (respectively, closed) ball of radius r around a point z by B(z, r)
(respectively,C(z, r)). IfM1 has non-empty boundary, the distance between twopoints
is considered in (N1, h1) or its corresponding covering space. In this case, B(z, r) and
C(z, r) stand for the corresponding balls in M1, M2, or M̃ . For example, for u ∈ M̃
and r > 0, we have

B(u, r) = {z ∈ M̃ : d(z, u) < r},

where d(·, ·) is the distance function of Ñ induced by the lift of h1.
Fix x ∈ M1, u ∈ p−1

1 (x), and r > 0, such that K0 ⊂ B(x, r). If M1 has non-empty
boundary, consider r large enough, so that B(u, r) ∩ ∂ M̃ �= ∅.
Lemma 4.2 There exists a non-negative ψu ∈ C∞

c (M̃), with suppψu ⊂ C(u, r + 1)
and ψu = 1 in C(u, r + 1/2). Moreover, if M1 has non-empty boundary, ψu can be
chosen such that ñ(i)ψu = 0 on ∂ M̃ ∩ p−1

1 (K0), for any i ∈ N.

Proof It is clear that there exists a non-negative ψ ′
u ∈ C∞

c (M̃) with suppψ ′
u ⊂

C(u, r+1) andψ ′
u = 1 inC(u, r+1/2). If M1 has empty boundary, this is the desired

function. Otherwise, let K := ∂ M̃ ∩C(u, r + 2) and denote by n the inward pointing
normal to ∂ M̃ with respect to the lift of h1. Since K is compact, there exists ε > 0, with
ε < 1/8, such that the map � : K × [0, 2ε) → M̃ , defined by �(z, t) := expz(tn)

is a diffeomorphism onto its image Kε. Let K1 := ∂ M̃ ∩ C(u, r + 1/2 + 2ε) and
K2 := ∂ M̃ ∩ C(u, r + 1 − 2ε). Clearly, there exists a non-negative τ ∈ C∞

c (∂ M̃),
with supp τ ⊂ K2 and τ = 1 in K1. Extend it to τ ′ in Kε by τ ′(�(z, t)) := τ(z),
for all (z, t) ∈ K × [0, 2ε). Consider a smooth f : R → R, with 0 ≤ f ≤ 1,
f (t) = 1 for t ≤ ε, and f (t) = 0 for t ≥ 3ε/2, and the function v defined in Kε by
v(�(z, t)) = f (t), for all (z, t) ∈ K × [0, 2ε). Extend v by zero outside Kε and set

ψu := vτ ′ + (1 − v)ψ ′
u .

Since supp(vτ ′) ⊂ C(u, r + 1), suppψ ′
u ⊂ C(u, r + 1), it follows that suppψu ⊂

C(u, r + 1). Since ε < 1/8, the points where v is not smooth are not in C(u, r + 1),
which yields that ψu ∈ C∞

c (M̃). Since ψ ′
u = 1 in C(u, r + 1/2) and τ ′ = 1 in

C(u, r + 1/2)∩ Kε, it follows that ψu = 1 in C(u, r + 1/2). In �(K ×[0, ε)), which
is a neighborhood of suppψu ∩∂ M̃ , we haveψu = τ ′. In particular, in a neighborhood
of the boundary, ψu is constant along geodesics (with respect to the lift of h1) that
are normal to the boundary. This yields that n(i)ψu = 0 on ∂ M̃ , for any i ∈ N. Since
h1 coincides with g1 in a compact neighborhood of K0, it follows that ñ(i)ψu = 0 on
∂ M̃ ∩ p−1

1 (K0), for any i ∈ N. ��
Let ψu be a function as in the above lemma and for any y ∈ p−1(x), consider

u(y) ∈ p−1
2 (y) and g(y) ∈ 
1, such that u(y) = g(y)u. Consider the functions

ψu(y) := ψu ◦ g(y)−1 in M̃ and ψy in M2 defined by
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ψy(z) :=
∑

w∈p−1
2 (z)

ψu(y)(w). (4)

It is clear that ψy ∈ C∞
c (M2), suppψy ⊂ C(y, r + 1), and ψy ≥ 1 in C(y, r + 1/2),

for any y ∈ p−1(x). Moreover, if M1 has non-empty boundary, then n(i)
2 ψy = 0

on ∂M2 ∩ p−1(K0), for any y ∈ p−1(x) and i ∈ N. From Lemma 2.6, there exists
N (r + 2) ∈ N, such that for any z ∈ M2, the ball B(z, 1) intersects at most N (r + 2)
of the supports of ψy , with y ∈ p−1(x). Therefore,

∑
y∈p−1(x) ψy is locally a finite

sum and hence, well defined and smooth.
If M1 is compact, we choose r large enough, so that

∑
y∈p−1(x) ψy ≥ 1 in M2.

In this case, set ψ1 := 0 in M2. If M1 is non-compact, consider f1 ∈ C∞
c (M1) with

0 ≤ f1 ≤ 1, f1 = 1 in C(x, r), supp f1 ⊂ B(x, r + 1/2), and let ψ1 be the lift of
1 − f1 on M2. Then ψ1 ∈ C∞(M2), ψ1 ≥ 0 in M2 and ψ1 = 0 in C(y, r), for all
y ∈ p−1(x). Evidently, ψ1 + ∑

y∈p−1(x) ψy ≥ 1 in M2.
Consider the smooth partition of unity consisting of the functions

ϕ1 := ψ1

ψ1 + ∑
y′∈p−1(x) ψy′

and ϕy := ψy

ψ1 + ∑
y′∈p−1(x) ψy′

, (5)

with y ∈ p−1(x).

Remark 4.3 It is evident that suppϕ1 = suppψ1, and for any y ∈ p−1(x), we have
suppϕy = suppψy,

∑
y′∈p−1(x) ϕy′ = 1 in C(y, r), and ϕy > 0 inC(y, r + 1/2).

Since K0 ⊂ B(x, r), it follows that ψ1 = 0 in a neighborhood of p−1(K0). If M1 has
non-empty boundary, then n(i)

2 ψy = 0 on ∂M2 ∩ p−1(K0), for any y ∈ p−1(x) and

i ∈ N. This yields that n(i)
2 ϕy = 0 on ∂M2 ∩ p−1(K0), for all y ∈ p−1(x) and i ∈ N.

Let η ∈ D(D1) and θ ∈ 
(E2) be the lift of η. Fix x ∈ M1, u ∈ p−1
1 (x), and r > 0,

such that K0 := supp η ⊂ B(x, r). If M1 has non-empty boundary, we choose r large
enough, so that B(u, r) ∩ ∂ M̃ �= ∅. Consider a partition of unity associated with K0,
x , u and r as in (5) and for a finite P ⊂ p−1(x), set χ := ∑

y∈P ϕy .

Remark 4.4 Since P is finite, it follows that χ ∈ C∞
c (M2) and χθ ∈ 
c(E2). If M1

has empty boundary, this yields that χθ ∈ D(D2). If M1 has non-empty boundary,
from Remark 4.3, we have that n(i)

2 ϕy = 0 on ∂M2 ∩ supp θ , for any y ∈ p−1(x) and
i ∈ N. In particular, if η satisfies a boundary condition of the form

k∑

j=0

a j∇( j)
n1 η = 0 on ∂M1,

then for χθ we have

k∑

j=0

(a j ◦ p)∇( j)
n2 (χθ) =

∑

y∈P

k∑

j=0

ϕy(a j ◦ p)∇( j)
n2 θ = 0 on ∂M2.
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Hence, χθ satisfies analogous boundary conditions to η. Since η ∈ D(D1), it follows
that χθ ∈ D(D2).

Proposition 4.5 There exists a constant C, independent from P, such that for any
z ∈ M2, we have ‖D2(χθ)(z)‖ ≤ C.

It is worth to point out that the constant in this proposition, as well as the estimates
in the sequel, depend on various choices we made in this construction. For instance,
they depend on the conformal Riemannian metric h1, on r and on the choice of ψu .
The main point of this proposition is that there is no dependence on P .

Proof Consider δ > 0, such that for any x ′ ∈ C(x, r + 1), the ball B(x ′, 2δ) is
evenly covered and contained in a coordinate neighborhood, and E1|B(x ′,2δ) is trivial.
Let x1, . . . , xk ∈ C(x, r + 1), such that the balls B(xi , δ), with 1 ≤ i ≤ k, cover
C(x, r + 1). In any ball B(xi , 2δ), D1 has a local expression of the form (1), with Aα

smooth. This yields that in B(xi , δ), D1 is expressed in the form (1), with Aα smooth
and bounded. For any such ball, we fix a coordinate system (which can be extended to
the corresponding ball of radius 2δ) and a trivialization. Since C(x, r + 1) is covered
by finitely many such balls, it follows that there exists C1 > 0, such that in any of
these balls, we have ‖Aα‖ ≤ C1, for all multi-indices α of absolute value less or equal
to the order d of D1.

Since η is smooth and compactly supported in B(x, r), there exists C2 > 0, such
that in any of these balls, denoting by (η(1), . . . , η(	)) the local expression of η, we
have that

∥∥∥∥
∂ |α|

∂xα
(η(1), . . . , η(	))

∥∥∥∥ ≤ C2,

for all multi-indices α of absolute value less or equal to d, that is, we have uniform
estimates up to order d for η (with respect to this system of trivializations). We lift
these balls and the corresponding coordinate systems and trivializations to M2 and M̃ .
Similarly, if ψ1 �= 0, we obtain uniform estimates up to order d for f1, which yield
uniform estimates up to order d for ψ1 (with respect to the lifted system on M2).

Sinceψu is smooth and compactly supported inC(u, r+1), which intersects finitely
many balls of the lifted system on M̃ , there exist uniform estimates up to order d for
ψu . Since ψu(y) is a composition of ψu with an element of 
1, we obtain the same
uniform estimates up to order d for ψu(y), for all u(y). Recall the definition of ψy in
(4). Consider a ball B(z′, δ) of the lifted system on M2, which intersects suppψy , and
the corresponding coordinate system. It is clear that for any w ∈ p−1

2 (z′), the lifted
system on M̃ contains the ball B(w, δ) and the corresponding coordinate system. From
Lemma 2.7, there exists Ñ (r + 1, δ) ∈ N, independent from y and z′, such that at
most Ñ (r + 1, δ) such balls intersect the support of ψu(y). Since we have uniform
estimates up to order d for ψu(y), which are independent from y ∈ p−1(x), we obtain
the same uniform estimates up to order d forψy , for all y ∈ p−1(x). FromLemma 2.6,
it follows that at most N (r + 1+ δ) of the supports of ψy , with y ∈ p−1(x), intersect
the open ball B(z, δ), for any z ∈ M2. This yields that there exist uniform estimates
up to order d for ψ1 + ∑

y∈p−1(x) ψy .
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Recall the definition of ϕy in (5). Since the denominator is greater or equal to 1
and we have uniform estimates (independent from y) up to order d for the numerator
and the denominator, we obtain the same uniform estimates up to order d for ϕy , for
all y ∈ p−1(x). From Lemma 2.6, at most N (r + 1 + δ) of the supports of ϕy , with
y ∈ p−1(x), intersect the ball B(z, δ), for any z ∈ M2. Therefore, we obtain uniform
estimates up to order d for χ , which are independent from P .

Clearly, for z ∈ supp(χθ), we have that z ∈ B(y, r), for some y ∈ p−1(x), and
in particular, z is contained in a ball of the system. With respect to the corresponding
coordinate system and trivialization, denoting by (θ(1), . . . , θ (	)) the local expression
of θ , we have

‖D2(χθ)(z)‖ =
∥∥∥∥∥∥

∑

|α|≤d

(Aα ◦ p)(z)
∂ |α|

∂ yα
(χ(θ(1), . . . , θ (	)))(z)

∥∥∥∥∥∥

≤
∑

|α|≤d

C1

∥∥∥∥
∂ |α|

∂ yα
(χ(θ(1), . . . , θ (	)))(z)

∥∥∥∥

≤ C1C2C3C(d, 	),

where C3 is the uniform bound up to order d for χ (which is independent from P) and
C(d, 	) is a constant depending only on d and 	. ��
Corollary 4.6 There exists a constant C ′, independent from P, such that for any point
z ∈ M2, we have |〈D2(χθ)(z), (χθ)(z)〉| ≤ C ′.

Proof Follows immediately from Proposition 4.5. ��

4.2 Amenable Coverings

In this subsection, we continue to work in the setting of the previous subsection; that
is, we consider the Riemannian covering p : M2 → M1 and a fixed compact subset
K0 of M1. Consider the universal coverings pi : M̃ → Mi and denote by 
i the deck
transformations group of pi , i = 1, 2.

If M1 has empty boundary, we consider a Riemannian metric h1 conformal to
the original metric g1, such that (M1, h1) is complete. Distances are considered with
respect to h1 or its lift h2 onM2. Similarly, the distance on M̃ is consideredwith respect
to the lift of h1. For x ∈ M1 and y ∈ p−1(x), we denote by Dy the fundamental domain
of the Riemannian covering p : (M2, h2) → (M1, h1) centered at y.

If M1 has non-empty boundary, we extend the Riemannian covering p : M2 → M1
to a Riemannian covering p : N2 → N1, according to Proposition 3.1. We consider
a Riemannian metric h1 on N1 conformal to original Riemannian metric g1, that
coincides with g1 in a compact neighborhood of K0, such that (N1, h1) is complete.
FromLemma 3.3, M̃ can be identified with a domain of the simply connected covering
space Ñ of N1. Denote by h2 and h̃ the lift of h1 on N2 and Ñ , respectively. As distance
function on M1, M2, and M̃ , we consider the restriction of the distance function of
(N1, h1), (N2, h2), and (Ñ , h̃), respectively. For x ∈ M1 and y ∈ p−1(x), we denote
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by Dy the part of the fundamental domain of p : (N2, h2) → (N1, h1) centered at y
that lies in M2; that is,

Dy = {z ∈ M2 : d(z, y) ≤ d(z, y′) for any y′ ∈ p−1(x)},

where d(·, ·) is the distance function of N2 induced by h2.
Fix x ∈ M1 and u ∈ p−1

1 (x). It is quite convenient to identify 
2\
1 with p−1(x),
that is, 
2γ is identified with p2(γ u), and study induced right action of 
1 on p−1(x).
Clearly, if y = p2(γ u), for some γ ∈ 
1, then y · g = p2(γ gu), for any g ∈ 
1. It is
worth to point out that p is amenable if and only if this right action of 
1 on p−1(x)
is amenable.

For r > 0, consider the finite set

Gr := {g ∈ 
1 : d(u, gu) < r}

and the subgroup 〈Gr 〉 of 
1 generated by Gr . We are interested in the right action of
〈Gr 〉 on p−1(x). The next remark is a simple description of the orbits of this action.

Remark 4.7 Let y ∈ p−1(x) and g ∈ Gr . Then there exists γ ∈ 
1, with y = p2(γ u)

and y · g = p2(γ gu). Clearly, we have

d(y, y · g) = d(p2(γ u), p2(γ gu)) ≤ d(γ u, γ gu) = d(u, gu) < r .

Conversely, let y1, y2 ∈ p−1(x) with d(y1, y2) < r . Then there exist γ1, γ2 ∈ 
1,
such that yi = p2(γi u), for i = 1, 2, and there exists σ ∈ 
2, such that

d(σγ1u, γ2u) = d(p2(γ1u), p2(γ2u)) = d(y1, y2) < r .

This yields that γ −1
1 σ−1γ2 =: g ∈ Gr . It follows that 
2γ2 = 
2γ1g, i.e., y2 = y1 ·g.

Hence, two points z1, z2 ∈ p−1(x) are in the same orbit of the action of 〈Gr 〉 on
p−1(x) if and only if there exist k ∈ N and y1, . . . , yk ∈ p−1(x), such that y1 = z1,
yk = z2, and d(yi , yi+1) < r , for i = 1, . . . , k − 1.

Lemma 4.8 If p : M2 → M1 is infinite sheeted, then there exists R > 0, such that one
of the following holds:

(i) either for any r ≥ R, the action of 〈Gr 〉 on p−1(x) has only infinite orbits,
(ii) or for any r ≥ R, the action of 〈Gr 〉 on p−1(x) has infinitely many finite orbits.

Proof Assume to the contrary that the statement does not hold. Then there exists
r0 > 0, such that the action of 〈Gr0〉 on p−1(x) has only finitely many finite orbits
O1, . . . ,Ok , for some k ∈ N. Since p is infinite sheeted, there exists also an infinite
orbit O. Since the action of 
1 on p−1(x) is transitive, for yi ∈ Oi , there exists
gi ∈ 
1, such that yi · gi ∈ O, for i = 1, . . . , k. Then there exists R > 0, such
that Gr0 ∪ {g1, . . . , gk} ⊂ GR and the action of 〈GR〉 on p−1(x) has only infinite
orbits. It is clear that so does the action of 〈Gr 〉 on p−1(x), for any r ≥ R, which is a
contradiction. ��
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Let r > 0, such that K0 ⊂ B(x, r). If M1 has non-empty boundary, consider r
large enough, so that B(u, r) ∩ ∂ M̃ �= ∅. If p is infinite sheeted, we choose r ≥ R,
where R is the constant from Lemma 4.8. Consider a partition of unity consisting of
the functions ϕ1 and ϕy , with y ∈ p−1(x), associated with K0, x , u, and r as in (5).
For a finite P ⊂ p−1(x), let χ := ∑

y∈P ϕy and consider the sets

Q+ := {y ∈ p−1(x) : χ = 1 in B(y, r)}
Q− := {y ∈ p−1(x) : 0 < χ(z) < 1 for some z ∈ B(y, r)},
Q := Q+ ∪ Q− = {y ∈ p−1(x) : χ(z) �= 0 for some z ∈ B(y, r)}. (6)

Clearly, χ = 0 in B(y, r), for any y ∈ p−1(x) � Q. Since χ is compactly supported,
it follows that Q is finite. The proof of the following lemma is essentially presented
in [2], but since we are in a different situation here, we repeat it.

Lemma 4.9 If p is amenable, then for any ε > 0, there exists a non-empty, finite
P ⊂ p−1(x), such that

#(Q−)

#(Q+)
< ε.

Proof From Proposition 2.8, since p is amenable, for any δ > 0, there exists a non-
empty, finite P ⊂ p−1(x), such that

#(P � Pg) < δ#(P),

for all g ∈ G2r+2. From Remark 4.3, we have that suppϕy0 ⊂ C(y0, r + 1), ϕy0 > 0
in B(y0, r + 1/2), and

∑
y∈p−1(x) ϕy = 1 in B(y0, r), for any y0 ∈ p−1(x). Clearly,

P is contained in Q, which implies that #(P) ≤ #(Q).
For y ∈ Q−, there exists z ∈ B(y, r), such that 0 < χ(z) < 1. Therefore,

there exist y1 ∈ P and y2 ∈ p−1(x) � P , such that ϕyi (z) > 0, which yields that
d(yi , z) < r +1, for i = 1, 2. It follows that d(y1, y2) < 2r +2 and from Remark 4.7,
there exists g ∈ G2r+2, such that y1 = y2 · g. In particular, y1 ∈ P � Pg. Since
d(y, y1) < 2r +1, from Lemma 2.6, for a fixed y1, there exist at most N (2r +1) such
y. Since y1 ∈ P � Pg, for some g ∈ G2r+2, there exist at most δ#(P)#(G2r+2) such
y1. Hence, it follows that

#(Q−) ≤ δ#(P)#(G2r+2)N (2r + 1) ≤ δ#(Q)#(G2r+2)N (2r + 1).

Since Q is the disjoint union of Q+ and Q−, for δ#(G2r+2)N (2r + 1) < 1, we have

#(Q−)

#(Q+)
≤ δ#(G2r+2)N (2r + 1)

1 − δ#(G2r+2)N (2r + 1)
.

This completes the proof, since δ > 0 is arbitrarily small. ��

123



On the Spectrum of Differential Operators 3349

Proposition 4.10 If p : M2 → M1 is infinite sheeted and amenable, then for any ε > 0
and K ⊂ M2 compact, there exists a non-empty, finite P ⊂ p−1(x), such that suppχ

does not intersect K and

#(Q−)

#(Q+)
< ε.

Proof First assume that the second statement of Lemma 4.8 holds. Then the action
of 〈G2r+2〉 on p−1(x) has infinitely many finite orbits On , with n ∈ N. Clearly, for
P := On , we have that Q− is empty. Indeed, if there exists y0 ∈ Q−, then there
exist z ∈ B(y0, r), y1 ∈ P , and y2 ∈ p−1(x) � P , such that ϕyi (z) > 0, i = 1, 2. It
follows that d(z, yi ) < r + 1, i = 1, 2, which yields that d(y1, y2) < 2r + 2. From
Remark 4.7, there exists g ∈ G2r+2, such that y2 = y1 · g, which is a contradiction,
since P is an orbit of the action of 〈G2r+2〉 on p−1(x).

For a compact K ⊂ M2, the set PK := p−1(x) ∩ B(K , r + 2) is finite and in
particular, intersects only finitely many orbits On . Let P be an orbit that does not
intersect PK . Since suppϕy ⊂ C(y, r + 1), for any y ∈ p−1(x), it is clear that for
such P , the support of χ does not intersect K .

Assume now that the first statement of Lemma 4.8 holds, that is, the action of 〈Gr 〉
on p−1(x) has only infinite orbits. For a compact subset K of M2, consider the finite
set PK := p−1(x) ∩ B(K , r + 2). From Lemma 4.9, for any ε > 0, there exists a
non-empty, finite P ⊂ p−1(x), such that

#(Q−)

#(Q+)
< δ := ε

1 + (1 + ε)N (2r + 1)#(PK )
,

where N (2r + 1) is the constant from Lemma 2.6.
Since the action of 〈Gr 〉 on p−1(x) has only infinite orbits, it follows that Q− is

non-empty. Indeed, since P is non-empty and this action has only infinite orbits, there
exists an infinite orbit O and z1 ∈ P ∩ O. Since P is finite, there exists z2 ∈ O � P ,
and from Remark 4.7, there exist k ∈ N and y1, . . . , yk ∈ p−1(x), with y1 = z1,
yk = z2, and d(yi , yi+1) < r , for i = 1, . . . , k − 1. Since y1 ∈ P and yk /∈ P , there
exists 1 ≤ j < k, such that y j ∈ P and y j+1 /∈ P . Since d(y j , y j+1) < r , it follows
that 0 < χ(y j+1) < 1 and in particular, y j ∈ Q−.

Evidently, Q+ is contained in P . Since Q− is non-empty, it is clear that

1

δ
≤ #(Q+) ≤ #(P),

which yields that #(P) > #(PK ), from the choice of δ. In particular, the finite set
P ′ := P � PK is non-empty. Consider the function χ ′ and the sets Q′+, Q′−, and Q′
corresponding to P ′ as in (6). Clearly, the support of χ ′ does not intersect K , since
suppϕy ⊂ C(y, r + 1), for any y ∈ p−1(x).
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From Lemma 2.6, it follows that for any y0 ∈ p−1(x), the support of ϕy0 intersects
at most N (2r + 1) open balls B(y, r), with y ∈ p−1(x). Hence, we have that

#(Q′−) ≤ #(Q−) + N (2r + 1)#(PK ),

#(Q′+) ≥ #(Q+) − N (2r + 1)#(PK ).

Therefore, we obtain

#(Q′−)

#(Q′+)
≤ #(Q−) + N (2r + 1)#(PK )

#(Q+) − N (2r + 1)#(PK )
< ε,

from the choice of δ. ��
Remark 4.11 After endowing M1 or N1 with h1 (depending on whether M1 has empty
boundary or not) and the covering space with its lift h2, we have that p : Dy → M1 is
an isometry up to sets of measure zero, for any y ∈ p−1(x). Thus, for f ∈ Cc(M1),
we have

∫

Dy

( f ◦ p)dVolh2 =
∫

M1

f dVolh1 , (7)

where Volhi (respectively, Volgi ) is the volume element of Mi induced by hi (respec-
tively, gi ), i = 1, 2. Since g1 and h1 are conformal, it is clear that there exists a positive
ϕv ∈ C∞(M1), such that

dVolg1 = ϕvdVolh1 and dVolg2 = (ϕv ◦ p)dVolh2 .

In particular, for any f ∈ Cc(M1) and y ∈ p−1(x), from (7), we obtain that

∫

Dy

( f ◦ p)dμ2 =
∫

Dy

( f ◦ p)(h ◦ p)(ϕv ◦ p)dVolh2 =
∫

M1

f hϕvdVolh1

=
∫

M1

f dμ1.

Similarly, for a compact K ⊂ M1, we have μ1(K ) = μ2(p−1(K ) ∩ Dy), for any
y ∈ p−1(x).

Proposition 4.12 Let p : M2 → M1 be an infinite sheeted, amenable Riemannian
covering. Let η ∈ D(D1) with ‖η‖L2(E1,μ1)

= 1 and λ ∈ F. Then for any ε > 0 and
K ⊂ M2 compact, there exists ζ ∈ D(D2), with ‖ζ‖L2(E2,μ2)

= 1, supp ζ ∩ K =
∅, supp ζ ⊂ p−1(supp η), and ‖(D2 − λ)ζ‖L2(E2,μ2)

≤ ‖(D1 − λ)η‖L2(E1,μ1)
+ ε.

Proof Let K0 := supp η. If M1 has non-empty boundary, extend the Riemannian
covering p : M2 → M1 according to Proposition 3.1. Consider conformal Riemannian
metrics and distance functions as described in the beginning of this subsection.
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Let p1 : M̃ → M1 be the universal covering ofM1 and fix x ∈ M1, u ∈ p−1
1 (x), and

r ≥ R (from Lemma 4.8), such that K0 ⊂ B(x, r). If M1 has non-empty boundary,
consider r large enough, so that B(u, r) ∩ ∂ M̃ �= ∅. Consider a partition of unity
consisting of the functions ϕ1 and ϕy , with y ∈ p−1(x), associated with K0, x , u, and
r as in (5), and let θ be the lift of η. From Remark 4.4, for any finite set P ′ ⊂ p−1(x)
and χ ′ := ∑

y∈P ′ ϕy , we have that χ ′θ ∈ D(D2). From Proposition 4.5, there exists
C > 0, independent from P ′, such that ‖D2(χ

′θ)(z)‖ ≤ C , for any z ∈ M2. Hence,
we obtain that

max
z∈M2

∥∥(D2 − λ)(χ ′θ)(z)
∥∥ ≤ C + |λ| max

w∈M1
‖η(w)‖ =: C0.

From Proposition 4.10, there exists a non-empty, finite P ⊂ p−1(x), such that the
support of χ := ∑

y∈P ϕy does not intersect K and

#(Q−)

#(Q+)
<

ε

C2
0μ1(supp η)

,

where Q+, Q−, and Q are the sets corresponding to P as in (6).
Since χθ is in the domain of D2, so is the normalized section

ζ := (1/‖χθ‖L2(E2,μ2)
)χθ . Evidently, ‖ζ‖L2(E2,μ2)

= 1 and supp ζ ⊂ p−1(supp η).
From Lemma 2.5, we have that supp ζ ∩ Dy ⊂ B(y, r), for any y ∈ p−1(x), which
yields that supp ζ is contained in the union of the fundamental domains Dy , with
y ∈ Q. Clearly, we have

‖χθ‖2L2(E2,μ2)
≥

∑

y∈Q+

∫

Dy

‖χθ‖2dμ2 =
∑

y∈Q+

∫

Dy

‖θ‖2dμ2 = #(Q+),

from the definition of Q+ and Remark 4.11. Therefore, we obtain that

∫

M2

‖(D2 − λ)ζ‖2dμ2 ≤ 1

#(Q+)

∑

y∈Q+

∫

Dy

‖(D2 − λ)(χθ)‖2dμ2

+ 1

#(Q+)

∑

y∈Q−

∫

Dy

‖(D2 − λ)(χθ)‖2dμ2.

For y ∈ Q+, we have χ = 1 in B(y, r), which is a neighborhood of supp θ ∩ Dy .
This implies that

1

#(Q+)

∑

y∈Q+

∫

Dy

‖(D2 − λ)(χθ)‖2dμ2 = 1

#(Q+)

∑

y∈Q+

∫

Dy

‖(D2 − λ)θ‖2dμ2

=
∫

M1

‖(D1 − λ)η‖2dμ1.
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Since ‖(D2 − λ)(χθ)(z)‖ ≤ C0, for any z ∈ M2, it follows that

1

#(Q+)

∑

y∈Q−

∫

Dy

‖(D2 − λ)(χθ)‖2dμ2 ≤ C2
0

#(Q+)

∑

y∈Q−
μ2(supp θ ∩ Dy)

= #(Q−)

#(Q+)
C2
0μ1(supp η) ≤ ε.

Hence, ‖(D2 − λ)ζ‖2
L2(E2,μ2)

≤ ‖(D1 − λ)η‖2
L2(E1,μ1)

+ ε. ��

Proposition 4.13 Let p : M2 → M1 be an infinite sheeted, amenable Riemannian
covering, and assume that the operators Di are symmetric, i = 1, 2. Then for any
section η ∈ D(D1)�{0}, ε > 0, and K ⊂ M2 compact, there exists ζ ∈ D(D2)�{0},
such that supp ζ ⊂ p−1(supp η), supp ζ ∩ K = ∅, and RD2(ζ ) ≤ RD1(η) + ε.

Proof The proof is similar to the proof of Proposition 4.12, using Corollary 4.6 instead
of Proposition 4.5. ��
Proof of Theorem 4.1: Consider λ ∈ σap(D1). From Lemma 2.2, it follows that there
exists (ηk)k∈N ⊂ D(D1), such that ‖ηk‖L2(E1,μ1)

= 1 and (D1 − λ)ηk → 0 in
L2(E1, μ1). Consider an exhausting sequence (Kk)k∈N ofM2. From Proposition 4.12,
for any k ∈ N, there exists ζk ∈ D(D2), with ‖ζk‖L2(E2,μ2)

= 1, such that ‖(D2 −
λ)ζk‖L2(E2,μ2)

≤ ‖(D1 − λ)ηk‖L2(E1,μ1)
+ 1/k and supp ζk ∩ Kk = ∅. Therefore,

(D2 − λ)ζk → 0 in L2(E2, μ2) and for any compact K ⊂ M2, there exists k0 ∈ N,
such that supp ζk ∩ K = ∅, for all k ≥ k0. It follows that (ζk)k∈N is a Weyl sequence
for D′

2 and λ, and in particular, λ ∈ σW (D′
2). ��

Proof of Theorem 1.1: Follows immediately from Theorem 4.1 and Proposition 2.1. ��
Assume now that the operator Di : D(Di ) ⊂ L2(Ei , μi ) → L2(Ei , μi ) is sym-

metric and bounded from below, and let D(F)
i be its Friedrichs extension, i = 1, 2.

For more details on the Friedrichs extension of a symmetric, bounded from below
and densely defined linear operator on a Hilbert space, see [25]. It is well known that
the Friedrichs extension of an operator preserves its lower bound. In particular, for
i = 1, 2, we have

λ0(D
(F)
i ) = inf

η∈D(Di )�{0}
RDi (η). (8)

Recall the following proposition for the essential spectrum of a self-adjoint operator.

Proposition 4.14 ([13, Proposition 2.1]) Let A : D(A) ⊂ H → H be a bounded from
below, self-adjoint operator on a separable Hilbert spaceH overR orC, and consider
λ ∈ R. Then the interval (−∞, λ] intersects the essential spectrum of A if and only
if for any ε > 0, there exists an infinite-dimensional subspace Hε ⊂ D(A), such that
RA(v) < λ + ε, for all v ∈ Hε � {0}.
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Proof of Theorem 1.2: From (8), it follows that there exists (ηk)k∈N ⊂ D(D1) � {0},
such that RD1(ηk) ≤ λ0(D

(F)
1 ) + 1/k, for any k ∈ N. Proposition 4.13 yields that

there exists (ζk)k∈N ⊂ D(D2) � {0}, such that RD2(ζk) ≤ λ0(D
(F)
1 ) + 2/k and

supp ζk ∩ supp ζk′ = ∅, for all k, k′ ∈ N, with k �= k′. Evidently, for any ε > 0, there
exists k0 ∈ N, such thatRD2(ζk) < λ0(D

(F)
1 )+ε, for all k ≥ k0. Consider the subspace

Hε of D(D2) spanned by {ζk : k ≥ k0}. Since the sections ζk , with k ∈ N, have
disjoint supports, the space Hε is infinite-dimensional. Clearly, any θ ∈ Hε is of the
form θ := ∑k0+k

i=k0
miζi , for some k ∈ N andmk0 , . . . ,mk0+k ∈ F. Therefore, we have

RD2(θ) =
∑k0+k

i=k0
|mi |2〈D2ζi , ζi 〉L2(E2,μ2)∑k0+k

i=k0
|mi |2‖ζi‖2L2(E2,μ2)

≤ max
k0≤i≤k0+k

RD2(ζi ) < λ0(D
(F)
1 ) + ε.

From Proposition 4.14, it follows that λess0 (D(F)
2 ) ≤ λ0(D

(F)
1 ). ��

Remark 4.15 In the proof of Theorem 1.2, the only properties of the Friedrichs exten-
sion used are self-adjointness and the preservation of the lower bound of D1. Therefore,
this proof establishes the analogous result for any self-adjoint extensions of the oper-
ators, as long as the extension of D1 preserves its lower bound.

The next proposition provides the analogous result in case the operators are sym-
metric and D1 is not bounded from below.

Proposition 4.16 Assume that the operator Di is symmetric, i = 1, 2. If the covering
is infinite sheeted and amenable, and D1 is not bounded from below, then D2 is not
bounded from below.

Proof Since D1 is not bounded from below, for any C ∈ R, there exists a non-
zero η ∈ D(D1), with RD1(η) ≤ C . From Proposition 4.13, it follows that there
exists ζ ∈ D(D2) � {0}, with RD2(ζ ) < C + 1. Therefore, D2 is not bounded from
below. ��

For sake of completeness, we also present the analogous results for finite-sheeted
coverings. It is clear that they cannot be improved in order to obtain as strong statements
as in the case of infinite- sheeted amenable coverings.

Proposition 4.17 Let D′
2 be a closed extension of D2. If p is a finite-sheeted Rieman-

nian covering, then σap(D1) ⊂ σap(D′
2) and σW (D1) ⊂ σW (D′

2).

Proof If η is in the domain of D1, then its lift is in the domain of D2. For λ ∈ σW (D1),
from Lemma 2.2, there exists a Weyl sequence (ηk)k∈N ⊂ D(D1) for D1 and λ. Then,
the sequence consisting of the normalized (in L2(E2, μ2)) lifts of ηk , k ∈ N, is a
Weyl sequence for D′

2 and λ. Hence, σW (D1) ⊂ σW (D′
2). Similarly, it follows that

σap(D1) ⊂ σap(D′
2). ��

Proposition 4.18 Assume that Di is symmetric and bounded from below, and denote
by D(F)

i its Friedrichs extension, i = 1, 2. If p is a finite-sheeted Riemannian covering,

then λ0(D
(F)
2 ) ≤ λ0(D

(F)
1 ).
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Proof If η is in the domain of D1, then its lift θ is in the domain of D2. If η �= 0, it is
easy to see that RD1(η) = RD2(θ), and the statement follows from (8). ��

In the rest of this section, we give applications of our results in the case of
Schrödinger operators. Recall that on manifolds with boundary, we are interested
in the Dirichlet spectrum of Schrödinger operators. The following proposition char-
acterizes the bottom of the spectrum of a Schrödinger operator as the maximum of its
positive spectrum.

Proposition 4.19 Let S be a Schrödinger operator on a Riemannian manifold M. Then
the bottom of the spectrum of S is the maximum of all λ ∈ R, such that there exists
ϕ ∈ C∞(M � ∂M) with Sϕ = λϕ, which is positive in M � ∂M.

Proof If M has empty boundary, then the statement may be found in [11, Theorem
7], [14, Theorem 1], and [23, Theorem 2.1]. If M has non-empty boundary, it is clear
that λ0(S) = λ0(S, M � ∂M), where λ0(S, M � ∂M) stands for the bottom of the
spectrum of S on the interior of M . Hence, in this case, the claim follows from the
corresponding statement for manifolds without boundary. ��

In particular, there exists ϕ ∈ C∞(M � ∂M) with Sϕ = λ0(S)ϕ, which is positive
in the interior of M . It is worth to point out that the smooth eigenfunctions of the
preceding proposition do not have to be square-integrable. The following corollary is
a consequence of Proposition 4.19 (an alternative proof can be found in [2]).

Corollary 4.20 Let p : M2 → M1 be a Riemannian covering. Let S1 be a Schrödinger
operator on M1 and S2 its lift on M2. Then λ0(S1) ≤ λ0(S2).

Proof Follows immediately from Proposition 4.19, since the lift of an eigenfunction
of S1 is an eigenfunction of S2. ��
Corollary 4.21 Let p : M2 → M1 be an infinite-sheeted, amenable Riemannian
covering. Let S1 be a Schrödinger operator on M1 and S2 its lift on M2. Then
λ0(S1) = λess0 (S2). If, in addition, M1 is complete, then σ(S1) ⊂ σess(S2).

Proof Follows from Theorems 1.1, 1.2 and Corollary 4.20. ��
The following results describe the behavior of the spectrum of Schrödinger opera-

tors under finite-sheeted coverings.

Corollary 4.22 Let p : M2 → M1 be a finite-sheeted Riemannian covering. Let S1 be
a Schrödinger operator on M1 and S2 its lift on M2. Then λ0(S1) = λ0(S2). If, in
addition, M1 is complete, then σ(S1) ⊂ σ(S2) and σess(S1) ⊂ σess(S2).

Proof Follows from Propositions 2.1, 4.17, 4.18 and Corollary 4.20. ��
The following characterization of the bottom of the essential spectrum of a

Schrödinger operator follows from the Decomposition Principle ([3, Proposition 1])
and Propositions 2.3 and 4.14. Recall that this quantity is infinite when the spectrum
is discrete.
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Proposition 4.23 ([5, Proposition 3.2]) Let S be a Schrödinger operator on a complete
manifold M and let (Kk)k∈N be an exhausting sequence of M. Then

λess0 (S) = lim
k

λ0(S, M � Kk),

where λ0(S, M � Kk) is the bottom of the spectrum of S on M � Kk.

Corollary 4.24 Let p : M2 → M1 be a finite-sheeted Riemannian covering of complete
manifolds. Consider a Schrödinger operator S1 on M1 and its lift S2 on M2. Then
λess0 (S1) = λess0 (S2) and in particular, σess(S1) �= ∅ if and only if σess(S2) �= ∅.
Proof Follows from Corollary 4.22 and Proposition 4.23. ��

5 Infinite Deck Transformations Group

Let M be a Riemannian manifold, E → M a Riemannian or Hermitian vector bundle,
endowed with a connection ∇ and D : 
(E) → 
(E) a differential operator on E .

If M has empty boundary, set D(D) := 
c(E). If M has non-empty boundary,
consider ν ∈ N, and for l = 1, . . . , ν, let kl ∈ N and a j,l be real or complex-valued
functions (depending on whether E is Riemannian or Hermitian) defined on ∂M ,
j = 0, . . . , kl . It is worth to point out that we do not impose any assumptions on the
functions a j,l . Let n be the inward pointing normal to ∂M and consider

D(D) := {η ∈ 
c(E) :
kl∑

j=0

a j,l∇( j)
n η = 0 on ∂M, l = 1, . . . , ν}.

Let μ be a measure on M expressed via a positive smooth density with respect
to the volume element of M ; that is, there exists a positive h ∈ C∞(M), such that
dμ = hd Vol. Consider D as a densely defined operator

D : D(D) ⊂ L2(M, μ) → L2(M, μ). (9)

When we refer to closability or symmetry of D, we consider it as in (9). From
Lemma 2.4, the operator D is closable and denote by D its closure.

Theorem 5.1 Let 
 be a group of automorphisms of E preserving the metric of E,
such that the induced action on M is isometric and D(g∗η) = g∗Dη, for any g ∈ 


and η ∈ 
(E). Moreover, assume that the density function h of μ is 
-invariant. If M
has non-empty boundary, assume that ∇ and the functions a j .l are 
-invariant along
the boundary. If for any compact K ⊂ M, there exists g ∈ 
, such that gK ∩ K = ∅,
then σap(D) = σW (D) and D does not have eigenvalues of finite multiplicity.

Proof Let λ ∈ σap(D). From Lemma 2.2, there exists (ηk)k∈N ⊂ D(D), such that
‖ηk‖L2(E,μ) = 1 and (D − λ)ηk → 0 in L2(E, μ). Since ηk is compactly supported,
there exists an exhausting sequence (Kk)k∈N of M , such that supp ηk ⊂ Kk , for
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all k ∈ N. For any k ∈ N, consider gk ∈ 
, such that gkKk ∩ Kk = ∅, and set
ζk := (gk)�ηk . Then ζk ∈ 
c(E) and if M has non-empty boundary, then ζk satisfies
the sameboundary conditionswithηk , since via isometries unit speedgeodesics normal
to the boundary are mapped to unit speed geodesics normal to the boundary. It follows
that ζk ∈ D(D), ‖ζk‖L2(E,μ) = 1, and (D − λ)ζk → 0 in L2(E, μ). It is clear that
supp ζk = gk(supp ηk), which yields that for any compact K ⊂ M , there exists k0 ∈ N,
such that supp ζk ∩ K = ∅, for all k ≥ k0. This implies that ζk⇀0 in L2(E, μ), that
is, (ζk)k∈N is a Weyl sequence for D and λ. Hence, λ ∈ σW (D).

Assume that there exists an eigenvalue λ of D of finite multiplicity, and consider
θ ∈ D(D) with ‖θ‖L2(E,μ) = 1 and Dθ = λθ . Then there exists (ηk)k∈N ⊂ D(D),
such that ηk → θ and Dηk → Dθ . It is clear that for any g ∈ 
 and k ∈ N, we have
g∗ηk ∈ D(D), g∗ηk → g∗θ , and D(g∗ηk) → g∗(Dθ), which yields that g∗θ ∈ D(D)

and D(g∗θ) = λ(g∗θ).
Let (Kk)k∈N be an exhausting sequence of M and consider (gk)k∈N ⊂ 
, such

that gkKk ∩ Kk = ∅, for any k ∈ N. It is clear that the sections θk := (gk)∗θ satisfy
Dθk = λθk and ‖θk‖L2(E,μ) = 1, for all k ∈ N. Since the eigenspace corresponding to
λ is finite-dimensional, after passing to a subsequence, we may assume that θk → θ0
in L2(E, μ), for some θ0, with ‖θ0‖L2(E,μ) = 1. Consider a non-zero ζ ∈ 
c(E) and

set ζk := (g−1
k )∗ζ . Then

〈θk, ζ 〉2L2(E,μ)
= 〈θ, ζk〉2L2(E,μ)

≤ ‖ζ‖2L2(E,μ)

∫

supp ζk

‖θ‖2dμ.

Let ε > 0 and consider a compact K ⊂ M , such that
∫
M�K ‖θ‖2dμ < ε2/‖ζ‖2

L2(E,μ)
.

Since supp ζ and K are eventually subsets of Kk , there exists k0 ∈ N, such that
supp ζk ∩ K = ∅, for all k ≥ k0. Therefore, for k ≥ k0, we have supp ζk ⊂ M � K ,
and in particular, |〈θk, ζ 〉L2(E,μ)| < ε. This yields that θk⇀0 in L2(E, μ), which is a
contradiction, since θk → θ0 in L2(E, μ) and ‖θ0‖L2(E,μ) = 1. ��
Theorem 5.2 Assume that D is symmetric and bounded from below, and denote by
D(F) its Friedrichs extension. Under the assumptions of Theorem 5.1, the spectrum
of D(F) is essential and D(F) does not have eigenvalues of finite multiplicity.

Proof Let η ∈ D(D(F)) and g ∈ 
. From the invariance of D(D) and D under
the action of 
, it follows that g∗η ∈ D(D(F)) and D(F)(g∗η) = g∗(D(F)η). As in
the proof of Theorem 5.1, it follows that D(F) does not have eigenvalues of finite
multiplicity. From Proposition 2.1, we obtain that σ(D(F)) = σess(D(F)). ��

The above theorems can be applied to Riemannian coverings with infinite deck
transformations group. In the context of the previous section, we obtain the following
consequences.

Corollary 5.3 If the deck transformations group of the covering is infinite, then D2
does not have eigenvalues of finite multiplicity and σap(D2) = σW (D2).

Proof Follows immediately from Theorem 5.1, for 
 being the deck transformations
group of the covering. ��
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Proof of Corollary 1.3: Follows from Corollary 5.3 and Proposition 2.1. ��
Proof of Corollary 1.4: Follows fromTheorem5.2, for
 being thedeck transformations
group of the covering. ��
Corollary 5.4 Let 
 be an infinite, discrete group acting properly discontinuously on
a complete Riemannian manifold M via isometries. Then there exists no non-zero,
square-integrable, λ0(M)-harmonic function on M. Moreover, λ0(M) is an accumu-
lation point of σ(M).

Proof For any complete (and connected)RiemannianmanifoldM , the space of square-
integrable, λ0(M)-harmonic functions is either trivial or one-dimensional. Therefore,
Corollary 1.3 yields the first statement and that λ0(M) ∈ σess(M). The second state-
ment follows from Proposition 2.1, since σess(M) consists of eigenvalues of infinite
multiplicity and accumulation points of the spectrum. ��

Besides Riemannian coverings, the above theorems can be applied to manifolds
with high symmetry. For instance, it follows that the spectrum of the Laplacian on
a non-compact homogeneous space is essential. Moreover, we obtain the analogous
statement, if there exists a non-compact Lie group acting on the manifold properly
discontinuously via isometries.

6 Coverings of ClosedManifolds

The Cheeger’s constant of a Riemannian manifold M is defined by

h(M) := inf
K

Area(∂K )

Vol(K )
,

where the infimum is taken over all compact and smoothly bounded domains K of M
which do not intersect ∂M . It is related to λ0(M) via Cheeger’s inequality (cf. [10]):

λ0(M) ≥ 1

4
h(M)2.

Brooks [6] actually proved that a normal Riemannian covering of a closed manifold
is amenable if and only if the Cheeger’s constant of the covering space is zero. The
following result is an extension of that of Brooks, to not necessarily normal coverings.

Theorem 6.1 Let p : M2 → M1 be a Riemannian covering of a closed manifold M1.
If h(M2) = 0, then p is amenable.

In order to prove this theorem, we need the following proposition. In the sequel,
for a subset W of M , we denote by B(W , r) the tubular neighborhood

B(W , r) := {z ∈ M : d(z,W ) < r}.
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Proposition 6.2 ([9, Lemma 7.2]) Let M be a non-compact, complete Riemannian
manifold, without boundary and with Ricci curvature bounded from below. Then there
exists a constant c depending only on the dimension of M, such that for any compact
and smoothly bounded domain K of M, with Area(∂K )/Vol(K ) =: H, and any
0 < r ≤ 1/2cmin{1, 1/H}, there exists a bounded, open U ⊂ M, such that

Vol(B(∂U , r))

Vol(U )
≤ C(r)H ,

where C(r) is a constant depending on r, the dimension of M, and the lower bound
of the Ricci curvature.

Corollary 6.3 Let M be a non-compact, complete Riemannian manifold, without
boundary and with Ricci curvature bounded from below. If h(M) = 0, then for any
ε, r > 0, there exists a bounded, open U ⊂ M, such that

Vol(B(∂U , r))

Vol(U � B(∂U , r))
< ε.

Proof Let r > 0 and 0 < r0 ≤ 1/2c, where c is the constant from Proposition 6.2.
Denote by g the original Riemannian metric and consider the metric h := Cg, where
C := r0/r . For any compact and smoothly bounded domain K of M , we have

Areah(∂K )

Volh(K )
= C−1/2 Areag(∂K )

Volg(K )
.

Since the Cheeger’s constant of M with respect to g is zero, it follows that so is the
Cheeger’s constant of M with respect to h. From Proposition 6.2, for any δ > 0, there
exists a bounded, open U ⊂ M , such that

Volh(Bh(∂U , r0))

Volh(U )
< δ.

It follows that

Volg(Bg(∂U , r))

Volg(U )
= Volh(Bg(∂U , r))

Volh(U )
= Volh(Bh(∂U , r0))

Volh(U )
< δ.

This completes the proof, since Volg(U ) ≤ Volg(U�Bg(∂U , r))+Volg(Bg(∂U , r)).
��

Proof of Theorem 6.1: Evidently, if M2 is closed, then p is finite sheeted and in par-
ticular, amenable. Therefore, it remains to prove the statement for M2 non-compact.
Consider the universal covering p1 : M̃ → M1, fix x ∈ M1, u ∈ p−1

1 (x), and iden-
tify π1(M2)\π1(M1) with p−1(x), as in the beginning of Subsect. 4.2. Denote by Dy
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the fundamental domain of p centered at y, with y ∈ p−1(x). It is clear that for
y ∈ p−1(x) and z, w ∈ Dy , we have

d(z, w) ≤ d(y, z) + d(y, w) = d(x, p(z)) + d(x, p(w)) ≤ 2diam(M1),

which yields that diam(Dy) ≤ 2diam(M1), for all y ∈ p−1(x). Let r > 2diam(M1)

and

Gr := {g ∈ π1(M1) : d(u, gu) < r}.

From Corollary 6.3, for any ε > 0, there exists a bounded, open U ⊂ M2, such
that

Vol(B(∂U , 2r))

Vol(U � B(∂U , 2r))
< ε. (10)

Consider the finite sets

F := {y ∈ p−1(x) : y ∈ U � B(∂U , r)},
F ′ := {y ∈ p−1(x) : y ∈ B(∂U , r)}.

Recall that r > 2diam(M1) ≥ diam(Dy), for all y ∈ p−1(x), andM2 is covered by the
fundamental domains Dy , with y ∈ p−1(x). Evidently, U � B(∂U , 2r) is contained
in the union of Dy , with y ∈ F . Furthermore, B(∂U , 2r) contains the union of Dy ,
with y ∈ F ′. From (10), since the intersection of different fundamental domains is of
measure zero, and Vol(Dy) = Vol(M1), for any y ∈ p−1(x), it follows that

#(F ′)
#(F)

< ε.

Let g ∈ Gr and y ∈ F � Fg. Then y ∈ U , d(y, ∂U ) ≥ r and y · g−1 /∈ F .
From Remark 4.7, it follows that d(y, y · g−1) < r . Therefore, y · g−1 ∈ U and
d(y · g−1, ∂U ) < r , which yields that y · g−1 ∈ F ′. Hence, F � Fg ⊂ F ′g and in
particular, we obtain that

#(F � Fg) ≤ #(F ′) < ε#(F).

For any finite G ⊂ π1(M1), there exists r > 2diam(M1), such that G ⊂ Gr . The
above arguments imply that for any finite G ⊂ π1(M1) and ε > 0, there exists a
Følner set for G and ε. From Proposition 2.8, it follows that p is amenable. ��

7 Applications and Examples

We begin with some examples of operators for which our main results can be applied.
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Examples 7.1 In the following examples, we consider a Riemannian manifold M . If
M has non-empty boundary, we denote by n the inward pointing normal to ∂M .

(i) Schrödinger operators. A Schrödinger operator on M is an operator of the form
S = �+V , where � is the Laplacian and V ∈ C∞(M) is bounded from below.
If M has empty boundary, then the operator

S : C∞
c (M) ⊂ L2(M) → L2(M)

is symmetric and bounded from below. If, in addition, M is complete, then this
operator is essentially self-adjoint.
If M has non-empty boundary, then one may consider S as a symmetric, densely
defined operator in L2(M), by restricting S on the space of f ∈ C∞

c (M) satisfy-
ing Dirichlet ( f = 0), Neumann (n( f ) = 0), Robin (n( f ) + b f = 0), or mixed
boundary conditions (that is, f = 0 on a subset of ∂M and n( f ) = 0 on the rest
of ∂M).

(ii) Laplacian with density.Letμ be ameasure onM which is expressed by a positive
smooth density in terms of the volume element, dμ = h2d Vol. The Laplacian
with respect to this density is defined by

�μ f = � f − 2

h
〈grad h, grad f 〉,

for any f ∈ C∞(M). If M has empty boundary, then the operator

�μ : C∞
c (M) ⊂ L2(M, μ) → L2(M, μ)

is symmetric and non-negative definite. If, in addition, M is complete, then this
operator is essentially self-adjoint (see, for instance [16, Theorem 2.2]).

(iii) Higher-order Laplacian. If M has empty boundary, then for any k ∈ N, the
operator

�k : C∞
c (M) ⊂ L2(M) → L2(M)

is symmetric and non-negative definite, which yields that it admits Friedrichs
extension. If, in addition, M is complete, then this operator is essentially self-
adjoint (see for instance, [12]).
If M has non-empty boundary, then we may consider the operator �k on the
space of compactly supported, smooth functions satisfying Dirichlet boundary
conditions (according to the terminology of [15])

�k : { f ∈ C∞
c (M) : f = n( f ) = · · · = n(k−1)( f ) = 0 on ∂M}

⊂ L2(M) → L2(M).

For k = 1, 2, this operator is symmetric and non-negative definite, which yields
that it admits Friedrichs extension. For k ≥ 3, this operator is not symmetric.
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However, according to Lemma 2.4, this operator is closable and Theorem 4.1
can be applied.

(iv) Laplace-type operators. Let E → M a Riemannian vector bundle endowed with
a metric connection ∇. The (corresponding) connection Laplacian is defined as
� = ∇∗∇. A Laplace-type operator is an operator of the form S = � + V ,
where V ∈ 
(EndE) and V (x) : Ex → Ex is symmetric for any x ∈ M . If M
has empty boundary, then the operator

S : 
c(E) ⊂ L2(E) → L2(E)

is symmetric. If, in addition, the lowest eigenvalue of V (x) is bounded from
below, then this operator admits Friedrichs extension. If M is closed, then this
operator is essentially self-adjoint (see [18]).
It is worth to point out that the Hodge Laplacian �k := d∗d + dd∗ acting on
k-forms, for some 0 ≤ k ≤ dim(M), is a Laplace-type operator. If we consider
it as

�k : 
c(∧kT ∗M) ⊂ L2(∧kT ∗M) → L2(∧kT ∗M),

then it is symmetric and non-negative definite. If, in addition, M is complete,
then this operator is essentially self-adjoint (see [12]).
Another example of Laplace-type operator that is of interest in spectral theory is
the Jacobi (stability) operator of aminimal submanifold. Let� : Mm → Nk be a
minimal isometric immersion. The Jacobi operator J is a Laplace-type operator
acting on sections of the normal bundle T⊥M . Locally, if η ∈ 
(T⊥M) and
{e1, . . . , em} is a local orthonormal frame of M , the Jacoby operator is given by

Jη = �⊥η −
m∑

i=1

α(ei , Aηei ) −
m∑

i=1

(R(η, ei )ei )
⊥,

where �⊥ is the connection Laplacian corresponding to the normal connection,
α is the second fundamental form of �, Aη is the Weingarten operator with
respect to η, and R is the curvature tensor of N . If M is closed, then the operator

J : 
(T⊥M) ⊂ L2(T⊥M) → L2(T⊥M)

is essentially self-adjoint.

In the following corollary, we denote by λ0(�k, M) the bottom of the spectrum of
the Friedrichs extension of the Hodge Laplacian (considered as in Examples 7.1 (iv))
acting on k-forms on a Riemannian manifold M .

Corollary 7.2 Let p : M2 → M1 be an amenable Riemannian covering of mani-
folds without boundary. If λ0(�k, M1) = 0, for some 0 ≤ k ≤ dim(M1), then
λ0(�k, M2) = 0.
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Proof Follows from Theorem 1.2 and Proposition 4.18, since the Hodge Laplacian is
non-negative definite. ��

We now introduce the notion of renormalized Schrödinger operators, which is
required in order to establish Theorem 1.5. This notion was introduced by Brooks in
[7] for the Laplacian on complete manifolds without boundary.

Let S be a Schrödinger operator on a possibly non-connected Riemannian manifold
M without boundary, and let ϕ ∈ C∞(M) be a positive λ-eigenfunction of S. It
is worth to point out that we do not require ϕ to be square-integrable or M to be
complete. Let μ be the measure expressed by dμ = ϕ2d Vol in terms of the volume
element of M . Consider the separable Hilbert space L2(M, μ). Evidently, the map
mϕ : L2(M, μ) → L2(M), given by mϕv := vϕ is an isometric isomorphism.

The renormalized Schrödinger operator Sϕ : D(Sϕ) ⊂ L2(M, μ) → L2(M, μ)

is defined by Sϕv := m−1
ϕ (S(F) − λ)(mϕv), for all v ∈ D(Sϕ), where S(F) is the

Friedrichs extensionof S andD(Sϕ) := m−1
ϕ (D(S(F))). Clearly, the followingdiagram

is commutative

D(Sϕ) D(S(F))

L2(M, μ) L2(M)

Sϕ

mϕ

�

�
mϕ

S(F) − λ

In particular, Sϕ is self-adjoint and σ(Sϕ) = σ(S)−λ. From Proposition 2.3, it follows
that

λ0(Sϕ) ≤ inf
f ∈C∞

c (M)�{0}RSϕ ( f ) = inf
f ∈C∞

c (M)�{0}
〈Sϕ f , f 〉L2(M,μ)

‖ f ‖2
L2(M,μ)

,

Consider ( fk)k∈N ⊂ C∞
c (M) � {0}, such thatRS( fk) → λ0(S). It is evident that for

hk := m−1
ϕ ( fk) ∈ C∞

c (M), we have RSϕ (hk) → λ0(Sϕ). Hence, the bottom of the
spectrum of Sϕ can be approximated with Rayleigh quotients of compactly supported
smooth functions in M . With a simple computation of the Rayleigh quotient of such a
function (as in [7, Sect. 2], using the Divergence Theorem, instead of the ∗-operator),
we obtain the following expression for λ0(S) − λ.

Proposition 7.3 Let S be a Schrödinger operator on M and let ϕ ∈ C∞(M) be a
positive λ-eigenfunction of S. Then

λ0(S) − λ = inf
f ∈C∞

c (M)�{0}

∫
M ‖ grad f ‖2ϕ2

∫
M f 2ϕ2

.

The modified Cheeger’s constant of M is defined by

hϕ(M) := inf
K

∫
∂K ϕ2
∫
K ϕ2

,
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where the infimum is taken over all compact and smoothly bounded domains K of
M . From the preceding proposition, it is easy to establish an analog of Cheeger’s
inequality.

Corollary 7.4 Let S be a Schrödinger operator on M and let ϕ ∈ C∞(M) be a positive
λ-eigenfunction of S. Then

λ0(S) − λ ≥ 1

4
hϕ(M)2.

Proof By virtue of Proposition 7.3, the proof is the same as that of [7, Lemma 3]. ��
Moreover, consider the quantity

hessϕ (M) := sup
K

hϕ(M � K ),

where the supremum is taken over all compact and smoothly bounded domains K of
M . For ϕ = 1, this quantity is denoted by hess(M).

Corollary 7.5 Let S be a Schrödinger operator on a complete manifold M and consider
a positive λ-eigenfunction ϕ ∈ C∞(M) of S. Then

λess0 (S) − λ ≥ 1

4
hessϕ (M)2.

Proof Let (Kk)k∈N be an exhausting sequence of M , consisting of smoothly bounded
domains. It is easy to see that

hessϕ (M) = lim
k

hϕ(M � Kk).

From Corollary 7.4, we have that

λ0(S, M � Kk) − λ ≥ 1

4
hϕ(M � Kk),

for any k ∈ N. After taking the limit with respect to k, the statement follows from
Proposition 4.23. ��
Remark 7.6 The above arguments can be easily modified in order to obtain anal-
ogous results for manifolds with boundary. In that case, it suffices to consider a
λ-eigenfunction of S which is positive and smooth only in the interior of M . Then, in
Proposition 7.3, the infimum is taken over smooth functions with compact support in
the interior of M .

Proof of Theorem 1.5: From Corollary 4.21, the first statement implies the second.
From Corollary 4.20, the third statement follows from the second.

Assume that λ0(S1) = λess0 (S2), for some Schrödinger operator S1 on M1. From
Proposition 4.19, there exists a positive λ0(S1)-eigenfunction ϕ ∈ C∞(M1) of S1,
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and its lift ϕ̂ ∈ C∞(M2) is a positive λ0(S1)-eigenfunction of S2. From Corollary 7.5,
it follows that hess

ϕ̂
(M2) = 0. Since ϕ is positive and M1 is closed, this yields that

hess(M2) = 0.
Assume that hess(M2) = 0. Then h(M2) = 0 and Theorem 6.1 yields that p is

amenable. Assume that p is finite sheeted. Then M2 is closed. Consider a smoothly
bounded domain U of M2, such that M2 � U is connected. Evidently, M2 � U is a
compact manifold with boundary. It is clear that h(M2 � U ) = h(M2 � U ). From
[10], it follows that hess(M2) ≥ h(M2 � U ) > 0, which is a contradiction. Hence, p
is infinite sheeted. ��
Remark 7.7 In Theorem 1.5, if the covering is normal, then σ(S1) �= σess(S2). Indeed,
if the equality holds, according to Corollary 1.3, we have σ(S1) = σ(S2). Recall
that the space of square-integrable, λ0(S2)-eigenfunctions of S2 is either trivial or
one-dimensional. From Corollary 1.3, it follows that λ0(S2) is not an eigenvalue of
the closure of S2. From Proposition 2.1, σess(S2) consists of eigenvalues of infinite
multiplicity and accumulation points of σ(S2). Therefore, it follows that λ0(S2) is an
accumulation point of σ(S2). This is a contradiction, since σ(S2) = σ(S1) is discrete.

For sake of completeness, we also prove the following corollary, describing the
analogous properties for finite-sheeted coverings.

Corollary 7.8 Let p : M2 → M1 be a Riemannian covering with M1 closed. Let S1 be
a Schrödinger operator on M1 and S2 its lift on M2. Then the following are equivalent:

(i) p is finite sheeted,
(ii) σ(S1) ⊂ σ(S2) and σess(S2) = ∅,
(iii) λ0(S1) = λ0(S2) /∈ σess(S2),
(iv) h(M2) = 0 and hess(M2) �= 0.

Proof If the covering is finite sheeted, the inclusion of spectra follows from Corol-
lary 4.22. In this case, M2 is closed, which yields that the spectrum of S2 is discrete.
From Corollary 4.20, the second statement implies the third.

Assume that the third statement holds. Since λ0(S1) = λ0(S2), as in the proof of
Theorem 1.5, from Corollary 7.4, it follows that h(M2) = 0. From Theorem 1.5, it is
clear that hess(M2) �= 0.

Assume that the fourth statement holds. Since h(M2) = 0, from Theorem 6.1, p is
amenable. Since hess(M2) �= 0, from Theorem 1.5, it follows that p is finite sheeted.

��
The following characterization for points of the essential spectrum of a Schrödinger

operator is an immediate consequence of the Decomposition Principle.

Proposition 7.9 Let S be a Schrödinger operator on a complete Riemannian manifold
M and let λ ∈ R. Then λ ∈ σess(S) if and only if there exists ( fk)k∈N ⊂ C∞

c (M), with
fk = 0 on ∂M, ‖ fk‖L2(M) = 1, (S − λ) fk → 0 in L2(M), and for every compact
K ⊂ M, there exists k0 ∈ N, such that supp fk ∩ K = ∅, for all k ≥ k0.

Our second application is motivated by [1, Corollary 3.8].
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Theorem 7.10 Let p : M2 → M1 be aRiemannian coveringwith M2 simply connected
and complete. Let S1 be a Schrödinger operator on M1 and S2 its lift on M2. If there
exists a compact K ⊂ M1, such that the image of the fundamental group of any
connected component of M1 � K in π1(M1) is amenable, then σess(S1) ⊂ σess(S2).

Proof Let λ ∈ σess(S1). From Proposition 7.9, there exists ( fk)k∈N ⊂ C∞
c (M), such

that fk = 0 on ∂M1, ‖ fk‖L2(M1)
= 1, (S − λ) fk → 0 in L2(M1), and for every

compact K0 ⊂ M1, there exists k0 ∈ N, such that supp fk ∩ K0 = ∅, for all k ≥ k0.
Without loss of generality, we may assume that the supports of fk are connected,

since we may restrict each fk to a connected component of its support and obtain a
sequence with the same properties. Indeed, let Ki , with 1 ≤ i ≤ 	(k) be the connected
components of supp fk . Since they are disjoint, it is clear that

‖(S1 − λ) fk‖2L2(M1)

‖ fk‖2L2(M1)

=
∑	(k)

i=1 ‖(S1 − λ)( f |Ki )‖2L2(M1)∑	(k)
i=1 ‖ f |Ki ‖2L2(M1)

≥ min
1≤i≤	(k)

‖(S1 − λ)( f |Ki )‖2L2(M1)

‖ f |Ki ‖2L2(M1)

.

Let ik be index for which the right-hand side minimum is achieved. Evidently, con-
sidering the normalization (in L2(M1)) of the restriction of fk on Kik , instead of fk ,
we obtain a sequence with the same properties as ( fk)k∈N, such that the supports are
connected.

Consider a compact K ⊂ M1, such that the image of the fundamental group of any
connected component of M1 � K in π1(M1) is amenable. Clearly, after passing to a
subsequence, we may assume that the functions fk are supported in M1 � K . Since
for any k ∈ N, the support of fk is connected, it follows that supp fk ⊂ Uk , where
Uk is a connected component of M1 � K . From the Lifting Theorem, it follows that
the inclusion Uk ↪→ M1 can be lifted to the covering space M ′

k := M2/
k , where

k is the image of π1(Uk) in π1(M1). In particular, any fk can be lifted to some
f ′
k ∈ C∞

c (M ′
k).

Since the covering qk : M2 → M ′
k is normal with deck transformations group 
k ,

it follows that it is amenable. If qk is finite sheeted, let f̃k be the normalized (in
L2(M2)) lift of f ′

k on M2. If qk is infinite sheeted, from Proposition 4.12, there exists
f̃k ∈ C∞

c (M2), such that ‖ f̃k‖L2(M2)
= 1, supp f̃k ⊂ q−1

k (supp f ′
k), and

‖(S2 − λ) f̃k‖L2(M2)
≤ ‖(S′

k − λ) f ′
k‖L2(M ′

k )
+ 1

k
= ‖(S1 − λ) fk‖L2(M1)

+ 1

k
,

where S′
k is the lift of S1 on M ′

k . In particular, (S2 −λ) f̃k → 0 in L2(M2) and supp f̃k
is contained in p−1(supp fk). From Proposition 7.9, it follows that λ ∈ σess(S2). ��
Remark 7.11 In the proof of Theorem 7.10, the only properties of Schrödinger oper-
ators used are essential self-adjointness and Proposition 7.9, which follows from the
Decomposition Principle. Therefore, this proof establishes the analogous result for
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essentially self-adjoint differential operators, for which the Decomposition Principle
holds (cf. [3]). For instance, if M1 has empty boundary, then the statement of The-
orem 7.10 holds for any elliptic differential operator D1, such that D1 and D2 are
essentially self-adjoint on the spaces of compactly supported smooth sections.

Proof of Corollary 1.6: Follows immediately from Theorem 7.10 and Corollary 4.20.
��

Let p : M2 → M1 be a Riemannian covering of complete manifolds, without
boundary. As stated in the Introduction, there are examples where p is non-amenable
andλ0(M1) = λ0(M2). FromTheorem1.1, Propositions 4.17 and2.1, if p is amenable,
then σ(M1) ⊂ σ(M2). It is natural to examine if this inclusion implies amenability of
the covering. FromTheorem7.10, it is easy to construct an example of a non-amenable,
normal Riemannian covering p : M2 → M1 with M1 complete, with bounded geom-
etry and of finite topological type (that is, M1 admits a finite triangulation, where the
simplices are defined on the standard simplex with possibly some lower-dimensional
faces removed), such that σ(M1) = σ(M2).

Example 7.12 Let M1 be a 2-dimensional torus with a cusp, endowed with a Rieman-
nian metric, such that M1 is complete and outside a compact set the metric is the
standard metric of the flat cylinder. It is clear that M1 is of finite topological type and
has bounded geometry. From [19, Theorem 1], it follows that σess(M1) = [0,+∞).
Clearly, there exists a compact subset K of M1, such that π1(M1 � K ) = Z. From
Theorem 7.10, it follows that for the simply connected covering space M2 of M1,
we have σess(M2) = [0,+∞). However, π1(M1) is the free group in two generators,
which is non-amenable (cf. [4, Sect. 2]).

For our next application, we need the following standard lemma for the spectrum
of self-adjoint operators (see, for instance, [17]).

Lemma 7.13 Let A : D(A) ⊂ H → H be a self-adjoint operator on a separable
Hilbert space over R or C. Assume that for some λ ∈ R and ε > 0, there exists
v ∈ D(A), with ‖v‖ = 1 and ‖(A− λ)v‖ < ε. Then there exists λ′ ∈ σ(A), such that
|λ − λ′| < ε.

Proposition 7.14 Let M be a closed manifold with infinite, amenable, and residually
finite fundamental group. Then the spectrumof the Laplacian on the universal covering
space M̃ of M is given by

σ(M̃) = σess(M̃) = ∪ασ (Mα),

where the union is taken over all finite-sheeted covering spaces Mα of M.

Proof Since π1(M) is infinite, from Corollary 1.3, it follows that σ(M̃) = σess(M̃).
Since p : M̃ → M is infinite sheeted and amenable, from Theorem 1.5, it follows that
λess0 (M̃) = 0. Let Mα be a finite-sheeted covering space of M . Since Mα is closed and
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λess0 (M̃) = 0, from Theorem 1.5 (applied to the covering pα : M̃ → Mα), it follows
that σ(Mα) ⊂ σess(M̃). Since σ(M̃) is closed, this yields that

∪ασ (Mα) ⊂ σ(M),

where the union is taken over all finite-sheeted covering spaces Mα of M .
Consider λ ∈ σ(M̃) and ε > 0. From Proposition 2.1 and Lemma 2.2, there exists

f ∈ C∞
c (M̃), with ‖ f ‖L2(M̃)

= 1 and ‖(� − λ) f ‖L2(M̃)
< ε. Since π1(M1) is

residually finite, for any compact K ⊂ M̃ , there exists a finite-sheeted covering space
Mα of M , such that the covering pα : M̃ → Mα restricted on K is injective (see for
instance [8]). In particular, there exists a finite-sheeted covering space Mα of M , such
that the covering pα : M̃ → Mα restricted in a compact neighborhood K of supp f is
an isometry onto its image. Consider the function fα := f ◦ pα|−1

K extended by zero
outside pα(K ). Evidently, fα ∈ C∞(Mα) and satisfies

‖ fα‖L2(Mα) = 1 and ‖(� − λ) fα‖L2(Mα) < ε.

From Lemma 7.13, it follows that there exists λ′ ∈ σ(Mα) with |λ − λ′| < ε. Since
ε > 0 is arbitrary, this establishes the asserted equality. ��

Recall that the spectrum of the Laplacian on a closed Riemannian manifold M is
discrete; that is, it consists of isolated eigenvalues

0 = λ0(M) < λ1(M) < λ2(M) < . . . ,

of finite multiplicity. From the above proposition, we can easily recover the following
observation of Sunada [24], which was also established by Brooks [8, Theorem 2].

Corollary 7.15 Let M bea closedmanifoldwith infinite, amenable, and residually finite
fundamental group. Then there exists a sequence (Mi )i∈N of finite-sheeted covering
spaces of M, such that λ1(Mi ) → 0, as i → +∞.

Proof From Proposition 7.14, it follows that λess0 (M̃) = 0, where M̃ is the universal
covering space of M . Since p : M̃ → M has infinite deck transformations group, from
Corollary 5.4, we obtain that zero is an accumulation point of σ(M̃). From Proposition
7.14, it follows that there exist finite-sheeted covering spaces Mi of M , with i ∈ N,
and ki ∈ N, such that λki (Mi ) → 0, as i → +∞. Since 0 < λ1(Mi ) ≤ λki (Mi ), for
any i ∈ N, this completes the proof. ��

We now present some examples of amenable coverings. The following observation,
provides a sufficient geometric condition for amenability of coverings.

Proposition 7.16 Let M1 be a complete Riemannian manifold, without boundary and
with non-negative Ricci curvature. Then any covering p : M2 → M1 is amenable.

Proof Let M̃ be the simply connected covering space ofM1. From theBishop–Gromov
Comparison Theorem, it follows that M̃ has polynomial growth and hence, every
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finitely generated subgroup of π1(M1) has polynomial growth (cf. [20]). From Corol-
lary 2.9, it follows that every finitely generated subgroup of π1(M1) is amenable and
Corollary 2.10 yields that so is π1(M1). Therefore, any covering p : M2 → M1 is
amenable. ��
Example 7.17 LetM be aRiemannianmanifold and denote by M̃ its universal covering
space. The homology cover of M is defined by

MH := M̃/[π1(M), π1(M)].

Evidently, the Riemannian covering p : MH → M is normal with deck transforma-
tions group


 = π1(M)/[π1(M), π1(M)] = H1(M).

SinceH1(M) is abelian, fromCorollary 2.11, it follows that p : MH → M is amenable.

Next, we present an example of an infinite-sheeted amenable covering with trivial
deck transformations group. In particular, this implies that the results of Sect. 5 cannot
be applied to arbitrary infinite-sheeted amenable coverings.

Example 7.18 Let 
1 be the countable group of invertible, upper triangular 2 × 2
matrices with entries in Q and let M1 be a Riemannian manifold with π1(M1) = 
1
(cf. [2, Sect. 5]). Let 
2 be the subgroup of 
1 consisting of diagonal matrices. Denote
by M̃ the simply connected covering space of M1 and consider M2 := M̃/
2. It
is easy to see that the covering p : M2 → M1 is infinite sheeted and does not have
non-trivial deck transformations. However, 
1 is solvable and in particular, amenable
(from Corollary 2.11), which yields that p is an amenable covering.

Recall that in our main results there are no assumptions on the vector bundles,
the connections, and the differential operators. The next example demonstrates that
these play a crucial role in the behavior of the spectrum even under finite-sheeted
coverings. Namely, this example shows that whether or not the bottom of the spectrum
of the connection Laplacian is preserved under a Riemannian covering depends on
the corresponding metric connection. Moreover, this example demonstrates that the
inequality of Corollary 4.20, which holds for Schrödinger operators, is not true (in
general) for the connection Laplacian.

Let M be a complete Riemannian manifold and E → M a Riemannian vector
bundle endowedwith ametric connection∇. The corresponding connection Laplacian
� (considered as in Examples 7.1(iv)) is essentially self-adjoint (cf. [18]). In the
following example, we denote by λ0(�, E) the bottom of the spectrum of its closure.
It is worth to point out that if M is closed, then the spectrum of this operator is discrete
(cf. [18]).

Example 7.19 Consider S1 := R/Z and the trivial bundle E1 := S1 × R
2 with the

standardmetric.We can identify smooth sections of E1 with smoothmaps f : R → R
2
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with f (x) = f (x + 1), for all x ∈ R. For φ ∈ R, consider the metric connection ∇φ ,
defined by

∇φ
d
dx

f (x) :=
(
cos(xφ) − sin(xφ)

sin(xφ) cos(xφ)

)
d

dx

(
cos(xφ) sin(xφ)

− sin(xφ) cos(xφ)

) (
f1(x)
f2(x)

)
,

for any smooth section f = ( f1, f2) of E1. Since the spectrum of the connection
Laplacian �φ is discrete for any φ ∈ R, it is clear that λ0(�φ, E1) = 0 if and only if
there exists a parallel section of E1 with respect to ∇φ , or equivalently, φ = 2kπ , for
some k ∈ Z.

For k ∈ N � {1}, consider a k-sheeted Riemannian covering pk : S(k)
1 → S1 and

the pullback bundle E2 of E1 endowed with the standard metric and the pullback
connection ∇φ . It is clear that λ0(�2π , E2) = λ0(�

2π , E1) = 0. However, the above
arguments imply that λ0(�2π/k, E2) = 0 < λ0(�

2π/k, E1).
This is an example of a finite-sheeted covering which shows that the inequality of

Corollary 4.20 does not hold for the connection Laplacian. Based on this example, it is
easy to construct an analogous example of an infinite-sheeted covering. Consider the
covering p : R → S(k)

1 and the pullback bundle E of E2 endowed with the standard
metric and the pullback connection ∇2π/k . Since p is infinite sheeted and amenable,
from Theorem 1.2, since the connection Laplacian is non-negative definite, it follows
that λ0(�2π/k, E) = λess0 (�2π/k, E) = 0 < λ0(�

2π/k, E1).

A natural question arising from our results is whether it is possible to obtain an
analog of Theorem 1.1 for Friedrichs extensions of operators (that is, in the context of
Theorem 1.2). It is worth to point out that this holds the Laplacian on manifolds which
are isometric to the interior of completemanifoldswith boundary. Indeed, in such case,
the spectrum of the Friedrichs extension of the Laplacian in the interior coincides with
the Dirichlet spectrum of the Laplacian on themanifold with boundary. Since the latter
one is essentially self-adjoint, the inclusion of the spectra follows from Theorem 1.1.

Moreover, during the last years, there is a lot of progress in the study of theDirichlet-
to-Neumann spectrum. Although the Dirichlet-to-Neumann map is not a differential
operator, there are interesting relations between its spectrum and the geometry and
topology of the underlying manifold. Therefore, it is natural to ask whether similar
results hold for its behavior under Riemannian coverings. This is indeed the case.
However, the methods to establish them are quite different. Therefore, we will deal
with this in a forthcoming paper.
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