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Abstract

For a Riemannian covering p: M> — M/, we compare the spectrum of an essentially
self-adjoint differential operator D on abundle £y — M with the spectrum of its lift
D; on p*E| — M;. We prove that if the covering is infinite sheeted and amenable,
then the spectrum of D; is contained in the essential spectrum of any self-adjoint
extension of D,. We show that if the deck transformations group of the covering is
infinite and D; is essentially self-adjoint (or symmetric and bounded from below), then
D> (or the Friedrichs extension of D,) does not have eigenvalues of finite multiplicity
and in particular, its spectrum is essential. Moreover, we prove that if M is closed,
then p is amenable if and only if it preserves the bottom of the spectrum of some/any
Schrddinger operator, extending a result due to Brooks.

Keywords Spectrum of differential operator - Amenable covering - Bottom of
spectrum - Schroédinger operator

Mathematics Subject Classification 58J50 - 35P15 - 53C99

1 Introduction

A basic problem in Geometric Analysis is the investigation of relations between the
geometry of a manifold and the spectrum of a differential operator on it. In this direc-
tion, it is natural to study the behavior of the spectrum under maps between Riemannian
manifolds, which respect the geometry of the manifolds to some extent. In this paper,
we deal with this problem for Riemannian coverings.

Let p: My — M be aRiemannian covering of connected manifolds with (possibly
empty) smooth boundary. A Schrédinger operator 1 on M is an operator of the form
S1 = A + V, where A is the (non-negative definite) Laplacian and V: M| — R is
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smooth and bounded from below. For such an operator S1 on My, its lift on M5 is the
operator S = A+ V o p. The first results involving possibly infinite-sheeted coverings
and establishing connections between properties of the covering and the (Dirichlet)
spectra of S1 and S, are related to the change of the bottom (that is, the minimum) of the
spectrum and were proved by Brooks [6,7]. He showed that if the underlying manifold
is complete, of finite topological type, without boundary and the covering is normal
and amenable, then the bottom of the spectrum of the Laplacian is preserved. Bérard
and Castillon [4] extended this result by showing that if the covering is amenable
and the underlying manifold is complete with finitely generated fundamental group
and without boundary, then the bottom of the spectrum of any Schrédinger operator
is preserved. Recently, it was proved in [2] that the bottom of the spectrum of a
Schrodinger operator is preserved under amenable coverings, without any topological
or geometric assumptions.

In this paper, we prove a global result about this problem in a more general con-
text. Instead of comparing the bottoms of the spectra, we prove inclusion of spectra
under some reasonable assumptions. Moreover, our context allows us to impose vari-
ous boundary conditions on Schrodinger operators (for instance, Dirichlet, Neumann,
mixed, and Robin), while the former results involve only Dirichlet conditions. Further-
more, our theorems are applicable to a broad class of differential operators, including
Schrodinger operators with magnetic potential (that is, first-order term), Dirac opera-
tors, higher-order Laplacian, and Laplace-type operators on vector bundles. It is worth
to point out that the Hodge Laplacian is a special case of the latter ones, as well as the
Jacobi (stability) operator of a minimal submanifold. Furthermore, in this context, we
may consider the Laplacian on weighted manifolds (or Laplacian with density).

In order to simplify the statements of our results, we need to set up some notation.
Consider a Riemannian or Hermitian vector bundle E; — M; endowed with a (not
necessarily metric) connection V. Let D1 be a (not necessarily elliptic) differential
operator of arbitrary order on E. We consider the pullback bundle E» := p*E|; — M,
endowed with the corresponding metric and connection, and the lift D, of D;.

If M1 has empty boundary, we consider the space of compactly supported smooth
sections of E; as the domain of D;, i = 1, 2. If M has non-empty boundary, as the
domain of D we consider the space of compactly supported smooth sections 1 of E
satisfying a number of boundary conditions of the form

k
Zajv,gj)n =0on oM,
j=0

where n is the inward pointing normal to dM; and a;’s are functions defined on
dM;. For example, in this context, we may impose boundary conditions of the form
n=Vyun=-.= V,Ek)n = 0 on dMj, for some k € N. As the domain of D,
we consider the space of compactly supported, smooth sections of E» that satisfy
analogous boundary conditions to the ones imposed on the domain of D;.

Let 1 be a measure expressed via a positive smooth density in terms of the volume
element of M1, that is, du; = hd Vol. Let u, be the corresponding measure on M»,
that is, dur = (h o p)d Vol. We consider the operators D; restricted to the above
domains as densely defined operators in L*(E;, wi),i=1,2.
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For sake of simplicity, we present here special versions of our main results involving
self-adjoint operators. The results are stated for infinite-sheeted coverings, since this
is the interesting case of amenable coverings. However, we also prove the analogous
results for finite-sheeted coverings. Our first result provides inclusion of the spectrum
o (D) of the closure of Dy, as long as it is self-adjoint, in the essential spectrum
Oess(D5) of any self-adjoint extension D) of Dj.

Theorem 1.1 Assume that D\ is essentially self-adjoint and let D), be a self-adjoint
extension of Dy. If the covering is infinite sheeted and amenable, then the spectra of
the operators satisfy o (D1) C Oess(D5).

Recall that a Schrédinger operator on a complete manifold is essentially self-adjoint
on the space of compactly supported smooth functions vanishing on the boundary (if
it is non-empty). Therefore, in the context of Schrodinger operators, it follows that if
the underlying manifold is complete and the covering is infinite sheeted and amenable,
then the spectrum of S is contained in the essential spectrum of S;.

An important case where the above theorem cannot be applied is that of Schrédinger
operators on non-complete Riemannian manifolds. A Schrodinger operator on such a
manifold does not have a unique self-adjoint extension, when restricted to the above
domain, and we are interested in the spectrum of its Friedrichs extension. According to
[2], if the covering is amenable, then the bottoms of the spectra of S; and S coincide.
The amenability is used only to establish 1¢(S2) < A0(S1), since the inverse inequality
holds for any covering, where Aq stands for the bottom of the spectrum. This motivates
us to establish the following theorem, which compares the bottom AO(D}F) ) of the

spectrum of the Friedrichs extension of Dy with the bottom A§* (DEF)) of the essential
spectrum of the Friedrichs extension of D;, when the operators are symmetric and
bounded from below.

Theorem 1.2 Assume that D; is symmetric and bounded from below, and denote by
D,.(F) its Friedrichs extension, i = 1, 2. Ifthe covering is infinite sheeted and amenable,

then 2$5(DS™) < ag(DYP).

In particular, for Schrodinger operators, it follows that if the covering is infinite
sheeted and amenable, then the bottom of the spectrum of S is equal to the bottom of
the essential spectrum of S», without any topological or geometric assumptions.

The above results involve amenable coverings. However, the deck transformations
group of a (possibly non-amenable) covering provides information about the group
of isometries of the covering space. This motivates us to work in a more general con-
text than Riemannian coverings and prove that under some symmetry assumptions, an
essentially self-adjoint differential operator does not have eigenvalues of finite multi-
plicity and in particular, its spectrum is essential. Moreover, we show the analogous
result for the Friedrichs extension of a symmetric and bounded from below differential
operator. In the context of Riemannian coverings, we obtain the following immediate
consequences.

Corollary 1.3 Assume that D; is essentially self-adjoint. If the deck transformations
group of the covering is infinite, then D does not have eigenvalues of finite multiplicity
and in particular, 0 (D7) = 0Oess(D2).
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Corollary 1.4 Assume that D; is symmetric and bounded from below, and denote by
DéF) its Friedrichs extension. If the deck transformations group of the covering is

infinite, then DEF) does not have eigenvalues of finite multyplicity and in particular,

F F
o (D) = oess (D).

For Schrodinger operators, it follows that if the deck transformations group of the
covering is infinite, then the spectrum of S5 is essential, without any assumptions on
the manifolds.

All the above results provide information about the spectra from properties of the
covering (amenability or infinite deck transformations group). In the converse direc-
tion, Brooks [6] proved that if a normal Riemannian covering of a closed manifold (that
is, compact without boundary) preserves the bottom of the spectrum of the Laplacian,
then the covering is amenable. In this paper, we extend this result to Schrodinger oper-
ators and to not necessarily normal coverings. Recall that local isometries between
complete Riemannian manifolds are (not necessarily normal) Riemannian coverings.
In the following theorem, we denote by 4% (M) the supremum of the Cheeger’s con-
stants over complements of compact and smoothly bounded domains of M.

Theorem 1.5 Let p: My — M be a Riemannian covering with My closed. Then the
following are equivalent:

(1) p is infinite sheeted and amenable,

(11) 0 (81) C 0ess(S2) for some/any Schrodinger operator S1 on My and its lift S,
(iii) Ao(S1) = AG®(S2) for some/any Schrodinger operator Sy on My and its lift S,
(iv) h%S(M,) = 0.

It is worth to point out that Brooks proved his theorem in a quite complicated
way, relying heavily on geometric measure theory. Our proof of the above theorem is
significantly simpler and avoids the use of geometric measure theory. Moreover, this
result yields that the assumption of amenability is natural in Theorems 1.1 and 1.2.
Indeed, if we restrict ourselves to Schrodinger operators and coverings of closed
manifolds, amenability is actually equivalent to the conclusions of these theorems.

Furthermore, Brooks [7], and more recently, Roblin and Tapie [22] proved that
under some more general (but still quite restrictive) assumptions, if the bottom of the
spectrum of the Laplacian is preserved, then the covering is amenable. In particular,
these assumptions imply that the bottom of the spectrum of the Laplacian on M is not
in the essential spectrum. Moreover, Brooks [7] provided examples demonstrating that
without these conditions, the bottom of the spectrum of the Laplacian may be preserved
even if the covering is non-amenable. This suggests that under some assumptions on
the geometry and the spectrum of the Laplacian on M, the bottom of the spectrum
is preserved under a weaker assumption than amenability of the covering. In this
direction, as an application of Theorem 1.1, we prove the following result.

Corollary 1.6 Let p: My — M be a Riemannian covering with M complete. Let Sy
be a Schrodinger operator on My with Lo(S1) € 0ess(S1), and Sy its lift on My. If
there exists a compact K C My, such that the image of the fundamental group of any
connected component of M1 ~\. K in (M) is amenable, then Ao(S1) = Ao(S2).
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The paper is organized as follows: In Sect. 2, we give some preliminaries. In Sects. 3
and 4, we present the construction which is used in order to prove Theorem 1.2 and a
more general result (Theorem 4.1) than Theorem 1.1. The proofs are given in Sect. 4,
where we also present the analogous results for finite-sheeted coverings. In Sect. 5, we
study manifolds with high symmetry and establish Corollaries 1.3 and 1.4. In Sect. 6,
we present an alternative proof of Brooks” Theorem [6], extending it to not necessarily
normal Riemannian coverings. In Sect. 7, we introduce the notion of renormalized
Schrédinger operators, which is used to prove Theorem 1.5. Moreover, in this section
we establish Corollary 1.6 and we present a simple example demonstrating that the
behavior of the bottom of the spectrum of the connection Laplacian under a covering
depends on the corresponding metric connection. Therefore, a main point in our results
is the independence from the vector bundles, the connections, and the differential
operators.

2 Preliminaries

We first recall some basic facts from functional analysis. For more details, see [17].
Let A: D(A) C 'H — 'H be aclosed (linear) operator on a separable Hilbert space H
over a field F, where F = R or F = C. The spectrum of A is given by

oc(A) :={reF:(A—-1): D(A) — 'H not bijective}.
The essential spectrum of A is defined as
Oess(A) ;= {L eF: (A —A): D(A) — H not Fredholm}.

Recall that an operator is called Fredholm if its kernel is finite-dimensional and its range
is closed and of finite codimension. The discrete spectrum of A is the complement of
the essential spectrum in the spectrum of A, that is, 04 (A) 1= 0 (A) \ Oess(A).

The approximate point spectrum of A, denoted by 0,,(A), is defined as the set of
all & € IF, such that there exists (vg)ken C D(A) with |Jlvg|| = 1 and (A — A)vp — 0
in H.For A € FF, a Weyl sequence for A and A is a sequence (vx)xen C D(A), such that
o]l = 1, vg—0and (A — A)vx — 0in H, where “—” denotes the weak convergence
in H. The Weyl spectrum of A, denoted by ow (A), is the set of all A € F, such that
there exists a Weyl sequence for A and A.

The following proposition is the characterization of the spectrum of a self-adjoint
operator as the set of approximate eigenvalues and the well-known Weyl’s criterion
for the essential spectrum.

Proposition 2.1 If A is self-adjoint, then o,,(A) = 0(A), ow(A) = 0ess(A) and
a4(A) consists of isolated eigenvalues of A of finite multiplicity. In particular, Gess(A)
consists of eigenvalues of A of infinite multiplicity and accumulation points of o (A).

Since we are interested in closures of operators, we need the following elementary
lemma, characterizing the approximate point spectrum and the Weyl spectrum of the
closure in terms of the initial operator.
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Lemma 2.2 Assume that A is the closure of an operator B: D(B) C ' H — H and
consider A € F. Then:

(i) A € oap(A) if and only if there exists (vi)ken C D(B), such that |v|| = 1 and
(B—Mv — 0inH,

(i1) A € ow(A) if and only if there exists (vi)reN C D(B), such that ||vg|| = 1, vp—0
and (B — Mvy — 0inH.

For an operator B: D(B) C ‘H — H and v € D(B) ~ {0}, the Rayleigh quotient
of v with respect to B is defined as

If B is symmetric, then Rp(v) € R, for any v € D(B) ~ {0}, and B is bounded
from below if the infimum of R g (v), with v € D(B) . {0}, is finite. In this case, this
infimum is called the lower bound of B.

The spectrum of a self-adjoint operator A is contained in R and the bottom (that
is, the minimum) of the spectrum and the bottom of the essential spectrum of A are
denoted by Ao(A) and AG*(A), respectively. The following characterization of the
bottom of the spectrum is due to Rayleigh.

Proposition 2.3 If A: D(A) C 'H — H is self-adjoint, then

A(A) =  inf  Ra().
veD(A)~ {0}

If, in addition, A is the closure of an operator B: D(B) C 'H — H, then the bottom
of the spectrum of A is given by

A(Ad) = inf  Rp).
veD(B)\{0}

Throughout the paper, manifolds are connected, with possibly empty, smooth, and
not necessarily connected boundary, unless otherwise stated. Let p: M> — M be
a Riemannian covering of m-dimensional manifolds, £y — M; a Riemannian or
Hermitian vector bundle of rank ¢, and D;: I'(E|) — I'(E) a differential operator
of order d. Consider the pullback bundle E; := p*E; on M, y € M, and set
x := p(y). Let U, be an open neighborhood of y, such that the restriction p|y, is an
isometry onto its image Uj. The lift D>: I'(E;) — I'(E») of D is the differential
operator defined by

Dyn(z) == (plu)* (D1((plp)* M (p(2))),

for any n € I'(E2) and z € U,. Without loss of generality, we may assume that
U, is contained in a coordinate neighborhood and there exists a local trivialization
Eily, = Uy x IF¢. With respect to this coordinate system and trivialization, D is
expressed as
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glel
D = Z AY (1)

a 9
w=a

where A are smooth maps defined on U1, with values £ x £ matrices with entries in .
Then, with respect to the lifted coordinate system and the corresponding trivialization
E>ly, = Uz x F¢, D, has the local expression

Dy= ) (A%op)

loe|<d

glel
aye’

Let M be a Riemannian manifold and £ — M a Riemannian or Hermitian vector
bundle endowed with a connection V. Assume that M has non-empty boundary, denote
by n the inward pointing normal to d M, and extend n locally as the velocity of unit
speed geodesics normal to the boundary. For n € I'.(E) and k € N, consider the
following sections defined in a neighborhood of the boundary

Vy(zk)ﬂ =V, (V,gk_l)ﬂ), where V,(lo)n =1.

Similarly, for f € C2°(M) and k € N, consider the following functions defined in a
neighborhood of the boundary

n®f)y :=nm* "V r), wheren®f = 1.

Lemma 2.4 Let M be a Riemannian manifold, E — M a Riemannian or Hermitian
vector bundle endowed with a connection V and D: I'(E) — T'(E) a differential
operator. If M has empty boundary, set D(D) := I'.(E). If M has non-empty boundary,
considerv € N, and forl =1, ...,v, letk; € Nand a;j; be real or complex-valued
functions (depending on whether E is Riemannian or Hermitian) defined on oM,
Jj=0,..., k. Let n be the inward pointing normal to dM and consider

ki
D(D):={neTe(E): Y aj Vi n=00ndM, I =1,.. 0}
j=0

Let u be a measure on M expressed via a positive smooth density with respect to
the volume element of M; that is, there exists a positive h € C*(M), such that
dp = hd Vol. Then the operator D: D(D) C L>(E, u) — L*(E, ) is closable.

Proof Consider the formal adjoint D of D in L2(E), defined by
(Dn, 9>L2(E) = (n, Dad9>L2(E),
for all n € D(D) and 6 € I'.((E), where I'..(E) is the space of smooth sections,

compactly supported in the interior of M. Evidently, for n € D(D) and 6 € T'¢.(E),
we have
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1
<DT], 9>L2(E,pt) = (7], D/9>L2(E,,LL)’ where D/G = EDad(hQ)

It is clear that the operator D': T'..(E) C L2(E, ) — L%(E, p) is densely defined
and its adjoint satisfies D C (D’)*. Since the adjoint is closed, it follows that D is
closable. o

A Schrodinger operator on a possibly non-connected Riemannian manifold M is an
operator of the form S := A+ V, where A is the Laplacianand V: M — R is smooth
and bounded from below. If M is complete and without boundary, then S is essentially
self-adjoint on C2°(M), that is, the closure of S: C2°(M) C L>(M) — L*(M) is
self-adjoint. If M is complete with non-empty boundary, then S is essentially self-
adjointon {f € C°(M) : f =0on dM}. If M is non-complete, then S restricted to
the above domain does not have a unique self-adjoint extension, and we are interested
in the Friedrichs extension of S. By abuse of notation, the spectrum and the essential
spectrum of the above- described self-adjoint operator are denoted by o (S) and g (S),
respectively, and their bottoms by Ao(S) and A§*(S), respectively. These sets and
quantities for the Laplacian on M are denoted by o (M), 0ess (M) and Ao(M), > (M),
respectively.

Let p: M> — M; be aRiemannian covering of complete manifolds without bound-
ary. Forx € My and y € p~!(x), the fundamental domain of p centered at y is defined
by

Dy :={ze€Mp:d(z,y) <d(z,y) forall y’ € ).

Some basic properties of these fundamental domains are presented in [2]. It is clear
that Dy is closed and M is the union of D, with y € p~1(x). It is worth to point out
that the intersection of different fundamental domains is of measure zero. Moreover,
0Dy and the cut locus Cut(x) of x are of measure zeroand p: Dy~ dD, — M1\ Co
is an isometry, where Cy is a subset of Cut(x). The following two lemmas are proved
in [2]. The lemma after these is proved similarly to Lemma 2.6. In these lemmas and
in the sequel, we denote open and closed balls by B and C, respectively.

Lemma2.5 If K C B(x,r), then p~ (K) N Dy C B(y,r). In particular, if K is
compact, then p~'(K) N Dy is compact.

Lemma 2.6 Foranyr > 0, there exists N(r) € N, such that any z € M> is contained
in at most N (r) of the balls C(y, r), with y € p~'(x).

Lemma 2.7 Considef the universal coverings p;: M — M;, i = 1,2. For any r,
ro > 0, there exists N(r, rg) € N, such that

#w e p;'(2) : B(w,ro) N Clu,r) # 0} < N(r, o),

forallu € pl_l(x) and z € M».

It is worth to point out that the quantities N (r) and N (r, ro) in the above lemmas
depend on the choice of x € M.
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Finally, we recall the notions of amenable right action and amenable covering. For
more details on amenable left actions, which are completely analogous to right actions,
see [4, Sect. 2]. A right action of a countable group I" on a countable set X is called
amenable if there exists a I'-invariant mean on L°°(X). The following characterization
is due to Fglner.

Proposition 2.8 The right action of a countable group I on a non-empty, countable set
X is amenable if and only if for any finite G C ' and & > 0, there exists a non-empty,
finite F C X, such that

#(F . Fg) < e#(F),

forall g € G. Such a set F is called a Fglner set for G and ¢.

A countable group I' is called amenable if the right action of I" on itself is amenable.
In this case, the right action of I' on any countable set X is amenable. Moreover, it is
clear that any right action on a non-empty, finite set is amenable.

A Riemannian covering p: M, — M is called amenable if the right action of
w1(My) onwy (M2)\r1 (M) (that is, the set of right cosets of 1 (M3) in 1 (M), when
considered as deck transformations groups of the universal coverings) is amenable.
Clearly, a normal covering is amenable if and only if its deck transformations group
is amenable. Furthermore, finite-sheeted coverings are amenable.

The following criteria for amenability of groups are immediate consequences of
the definition and Proposition 2.8.

Corollary 2.9 Any finitely generated group of subexponential growth is amenable.

Corollary 2.10 A countable group T is amenable if and only if any finitely generated
subgroup of I is amenable

Corollary 2.11 Any countable solvable group is amenable.

Proof From Corollaries 2.9 and 2.10, it follows that any countable abelian group is
amenable. From the definition, it is clear that an extension of an amenable group by
an amenable group is also amenable. O

3 Coverings of Manifolds with Boundary

The aim of this section is to show the following proposition, according to which, any
Riemannian covering of manifolds with boundary can be “extended” to a Riemannian
covering of manifolds without boundary.

Proposition 3.1 Let M be a Riemannian manifold with non-empty boundary. Then
there exists a Riemannian manifold N of the same dimension, without boundary
and an isometric embedding i: M — N, such that, after identifying M with i (M),
any Riemannian covering p: M’ — M can be extended to a Riemannian covering
p: N — N.
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In order to prove this proposition, we need to establish some auxiliary lemmas.

Lemma 3.2 Let M be a Riemannian manifold with non-empty boundary. Then there
exists a Riemannian manifold N of the same dimension, without boundary, an isometric
embeddingi: M — N, and a strong deformation retraction of N onto i (M).

Proof Consider the space dM x [0, +00) and the map W: 0M — dM x [0, +00),
defined by W(x) := (x,0). Then N := M Uy (dM x [0, 400)) is a smooth manifold
and there exists a smooth embedding i : M — N. Therefore, M can be identified with
i(M). Since M is connected, so is N, and there exists a strong deformation retraction
of N onto M, obtained by considering F;(x,r) := (x, (1 — #)r) in the glued ends
IM x [0, +00).

It remains to extend the Riemannian metric of M to a Riemannian metric of N. Any
x € dM has an open neighborhood U, in N, such that there exists a smooth frame field
{e1, ..., en} in Uy, where m is the dimension of the manifolds. Let g := (e}, ex),
1 < j,k < m, be the components of the Riemannian metric of M. Since they are
smooth up to the boundary of M, they can be extended smoothly to a neighborhood of
x. After passing to a smaller neighborhood of x if needed, we may assume that g j;’s
are smooth in Uy and their matrix is symmetric and positive definite at any point of
U, . Hence, they express a Riemannian metric in U,.

Clearly, d M can be covered with such neighborhoods U,. Consider the interior of
M as an open subset of N endowed with its Riemannian metric and N ~. M with an
arbitrary Riemannian metric. Combining these Riemannian metrics via a partition of
unity subordinate to this open cover of N, gives rise to a Riemannian metric of N,
which is an extension of the Riemannian metric of M. O

Lemma 3.3 Let M be a Riemannian manifold with non-empty boundary. Consider N
as in the previous lemma and identify M withi(M). Let g: N — N be the universal
covering of N. Then the restriction q: q~ (M) — M is the universal covering of M.

Proof Since there exists a strong deformation retraction of N onto M, every loop in N
can be homotoped to aloop in M. This implies that forany x € M and y1, y» € ¢~ (x),
there exists a path in ¢ ~! (M) from y; to y,. Since M is connected, it follows that so is
g~ " (M) and the restrictiong: ¢~ (M) - M isa covering of (connected) manifolds.
Let rps: N — M be a retraction. Then the map ry; o g: N — M is continuous
and ry; o g = ¢ in ¢~ (M). From the Lifting Theorem, it follows that 3 o ¢ has a
continuous lift 737 : N — g~ (M), with 7y (yo) = o, for some yo € g1 (M). Since
Ful g~ (M) is a deck transformation of the covering ¢ : ¢~' (M) — M, it follows that
Far: N — g~ ' (M) is a retraction. Since N is simply connected, this yields that so is
g " (M). o

Proof of Proposition 3.1: Consider N andg: N — N as in the above lemmas, identify
M with i (M) and set M := q_1 (M). Denote by I' y and I'j; the deck transformations
groups of ¢ : N — N and q: M — M, respectively. It is clear that for g € 'y,
we have g|;; € 'y, and any y € Iy has a unique extension y’ € I'y. For any
Riemannian covering p: M’ — M, there exists a subgroup I' C T'y, such that
M' =M/T.ForT' :={y' €y :y € T'}and N’ := N/ T, the inclusion M < N
descends to an isometric embedding M’ — N’, which completes the proof. O
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4 Spectrum of Operators Under Amenable Coverings

Throughout this section, we work in the following context, which is briefly described
in the Introduction.

Let p: My — M beaRiemanniancovering, £1 — M| aRiemannian or Hermitian
vector bundle endowed with a connection V, and Dy : I'(E{) — I'(E) a differential
operatoron E1.Let Eo — M) be the pullback bundle, endowed with the corresponding
metric and connection V, and D, : I'(E;) — I'(E3) the lift of Dy. If M has empty
boundary, we consider the space of compactly supported smooth sections of E; as the
domain of D;, thatis, D(D;) :=T'.(E;),i =1, 2.

If M has non-empty boundary, consider v € N, and for/ = 1,...,v,letk; € N
and aﬁ.{l) be real or complex-valued functions (depending on whether E is Riemannian
or Hermitian) defined on My, j = 0, ..., k;. It is worth to point out that we do not
impose any assumptions on the functions ajll) Let n; be the inward pointing normal

to 0 M;, set 0521) = a;II) o p, and consider

ki
D(D;) = {n € T(E;) : Zaj{}v,ﬁf)n —OondM;, I=1,...,v},i=1,2.
i=0

Let w1 be a measure on M| expressed via a positive smooth density with respect
to the volume element of M7; that is, there exists a positive h € C°° (M), such that
du1 = hd Vol. Let u; be the corresponding measure on M, i.e.,duy = (ho p)d Vol.
We consider the operator D; as a densely defined operator

Di: D(Dy) C L*(E;, i) — L*(Ei, i), 2)

i = 1, 2. When we refer to closability, symmetry, or essential self-adjointness of D;,
we consider the operator as in (2), i = 1,2. From Lemma 2.4, the operator D; is
closable and we denote by D; its closure, i = 1, 2.

Our aim in this section is to prove Theorem 1.2 and the following more general
version of Theorem 1.1.

Theorem 4.1 Let D) be a closed extension of Ds. If the covering is infinite sheeted
and amenable, then oap(51) C ow (D).

For convenience of the reader, we briefly describe the outline of the proof of this
theorem. Given n € D(Dy) with |0l 2g, ) = 1. A € F, and ¢ > 0, we want to
prove that there exists ¢ € D(D;), such that

(D2 = M)E N 2By, 10)

1S L2 (B, 10

= 1D1 = Ml L2y ) & 3

First consider the case where the manifolds are complete without boundary. Then
there exists » > 0, such that suppn C B(x, r), for some x € M. Fory € p~!(x),
we consider a function ¢, € CZ°(M3) centered at y, whose profile is essentially
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independent from y. For a finite subset P of p~!(x), we consider the test section
x6 € D(D>), where 6 is the lift of n and x = Zyep @y. For such a section we
establish pointwise estimates of the form ||(Dy — A)(x60)|| < C in M3, where C is a
constant independent from P.

Consider p~!(x) as adiscrete graph, where two points are connected if their distance
islessthan2r+2.Forapointy € P~ 0 P,itfollowsthat x0 = 6 in B(y, r). Moreover,
x 0 is supported in the union of the balls B(y, r), with y in P or y connected to some
point in d P. From Lemma 2.6, there are at most N (2r + 2)#(0 P) many y € p‘1 (x)
that are connected to some point in 9 P.

Since the covering is amenable, it follows that there exist finite subsets P of p~!(x)
with arbitrarily small isoperimetric ratio. Hence, the corresponding sections x 6 coin-
cide with 6 in a relatively large part of their supports, while in the rest of their supports
they satisfy the aforementioned estimates, which are independent from P. Therefore,
the corresponding test sections x 6 satisfy (3). Moreover, since p is infinite sheeted,
given a compact K C M,, we may choose a finite P C p~!(x), so that x6 satisfies
(3) and supp(x0) does not intersect K. This completes the proof of the theorem in
case the manifolds are complete without boundary.

If the manifolds are non-complete without boundary, then we consider confor-
mal Riemannian metrics that make the manifolds complete, and exploit the method
described above.

If the manifolds have non-empty boundary, then we extend the given Rieman-
nian covering to a Riemannian covering of manifolds without boundary, according
to Proposition 3.1. Then we consider conformal Riemannian metrics that make the
manifolds complete and exploit a slight variation of the above method. In this case, it
is important to require that this new Riemannian metric on M coincides with the orig-
inal Riemannian metric in a compact neighborhood of supp 7, so that this construction
respects the imposed boundary conditions; that is, if n € D(Dy), then x6 € D(D,),
for any finite subset P of ().

4.1 Partition of Unity

In this subsection, we construct a special partition of unity, which is used in the sequel
to obtain cut-off functions on M.

Let K be a compact subset of M. Consider the universal coverings p; : M — M,;
and denote by I'; the deck transformations group of p;, i = 1,2. If M| has empty
boundary, consider a Riemannian metric h, conformal to the original metric g, such
that (M1, ) is complete. Such a metric exists according to [21].

If M; has non-empty boundary, let n; be the inward pointing normal to dM;,
i = 1,2, and n the inward pointing normal to 9 M. Consider a Riemannian manifold
(N1, g1) containing M1, as in Proposition 3.1, and a Riemannian metric 1, conformal
to the original metric g1, such that (Ny, h;) is complete. Since K is compact, we may
assume that h; coincides with g; in a compact neighborhood of K¢. From Proposi-
tion 3.1, it follows that the Riemannian covering p: My — M can be extended to a
Riemannian covering p: N — N;. Moreover, according to Lemma 3.3, M can be
identified with a domain of the simply connected covering space N of Ny.
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From now on, geodesics are considered with respect to f; and its lifts. If M| has
empty boundary, distances are considered with respect to  or its lifts. In this case,
we denote the open (respectively, closed) ball of radius r around a point z by B(z, r)
(respectively, C(z, r)).If M1 has non-empty boundary, the distance between two points
is considered in (Ny, h1) or its corresponding covering space. In this case, B(z, r) and
C(z, r) stand for the corresponding balls in M, M>, or M. For example, for u € M
and r > 0, we have

B(u,r)={ze M :d(z,u) <r},

where d(-, -) is the distance function of N induced by the lift of b.
Fixx € My,u € pl_l(x), and r > 0, such that Ko C B(x, r). If M| has non-empty
boundary, consider r large enough, so that B(u, r) N M # .

Lemma 4.2 There exists a non-negative Vr, € C°°(1\7[) with supp ¥, C C(u,r + 1)
and Y, = lin C(u,r + 1/2). Moreover, lfM] has non-empty boundary, \r,, can be
chosen such that iy, = 0 on aM N 123 (KO) foranyi € N.

Proof 1t is clear that there exists a non-negative ¥, € C2°(M) with supp ¥, C
C(u,r+1)and ¥, = 1in C(u, r+1/2). If M| has empty boundary, this is the desired
function. Otherwise, let K := M N C (u, r +2) and denote by n the inward pointing
normal to d M with respect to the lift of ;. Since K is compact, there exists ¢ > 0, with
e < 1/8, such that the map ®: K x [0, 2¢) — M, defined by ®(z,1) := exp,(tn)
is a diffeomorphism onto its image K,. Let K| := M N C(u,r + 1/2 + 2¢) and
K, = oM N C(u,r + 1 — 2¢). Clearly, there exists a non-negative 7 € C?O(HM),
with suppt C K; and T = 1 in K. Extend it to ’ in K, by 7/(®(z, 1)) = 7(2),
for all (z,7) € K x [0, 2¢). Consider a smooth f: R — R, with0 < f < 1,
f@) =1fort <e,and f(¢t) = 0 fort > 3¢/2, and the function v defined in K by
v(P(z,t)) = f(2), forall (z,1) € K x [0, 2¢). Extend v by zero outside K, and set

Yy = vt + (1 — )y,

Since supp(vt’) C C(u,r + 1), supp ¢, C C(u,r + 1), it follows that supp ¥, C
C(u,r +1). Since ¢ < 1/8, the points where v is not smooth are not in C (u, r + 1),
which yields that ¥, € C?O(IVI). Since ¥, = 1in C(u,r +1/2) and t" = 1 in
C(u,r+1/2)N K, it follows that ¥, = 1in C(u,r +1/2). In ®(K x [0, ¢)), which
is a neighborhood of supp v, Nd M, we have 1, = t’. In particular, in a neighborhood
of the boundary, v, is constant along geodesics (with respect to the lift of h;) that
are normal to the boundary. This yields that n)v,, = 0 on dM, for any i € N. Since
b1 coincides with g; in a compact neighborhood of Ky, it follows that i)+, = 0 on
aM N pl_l(Ko), forany i € N. O

Let v, be a function as in the above lemma and for any y € p~!(x), consider
u(y) € pz_l(y) and g(y) € I'1, such that u(y) = g(y)u. Consider the functions

Yu(y) = Yu 0 g(y)""in M and ¥, in M defined by
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V@ i= Y Y w). €

wep, ' (2)

Itis clear that ¥, € C2°(M>), supp ¥, C C(y,r +1),and y > 1in C(y,r + 1/2),
for any y € p~!(x). Moreover, if M| has non-empty boundary, then ng)wy =0
on dM;, N p_l (Kp), forany y € p_1 (x) and i € N. From Lemma 2.6, there exists
N(r 4+ 2) € N, such that for any z € M», the ball B(z, 1) intersects at most N (r + 2)
of the supports of ¥, with y € p~1(x). Therefore, Zyep*l(x) Yy is locally a finite
sum and hence, well defined and smooth.

If M; is compact, we choose r large enough, so that Zye 10 Yy > 1in Ms.
In this case, set ¥ := 0 in M. If M, is non-compact, consider f; € C°(M) with
0<fi<l fi=1inC(x,r),supp f1 C B(x,r + 1/2), and let i; be the lift of
1 — f1 on M;. Then ¢y € C*®(M3), Y1 > 0in M, and ¢ = 0 in C(y, r), for all
y € p~1(x). Evidently, ¥ + Zye;rl(x) Yy > 1in Mo.

Consider the smooth partition of unity consisting of the functions

Vi ) vy
and ¢, := ,
Y1+ Zy’ep—l(x) l/fy’

o1 )

S it Zy’él)"(x) Yy
with y € p~1(x).

Remark 4.3 Tt is evident that supp ¢; = supp ¥, and for any y € p~!(x), we have
SUPp @y = SUPP ¥y, D yep-i(r) ¥y = 1in C(y,r), and ¢y > 0inC(y,r + 1/2).
Since Ko C B(x, r), it follows that ¥; = 0 in a neighborhood of p’] (Kp). If M| has
non-empty boundary, then n(zi)lffy =0on oM, N p_l(Ko), for any y € p‘l(x) and
i € N. This yields that n’ ¢, = 0 on 9M, N p~'(Ko), forall y € p~'(x) and i € N.

Letn € D(D1) and 6 € I'(E3) be the liftof n. Fixx € M{,u € pl_l(x), andr > 0,
such that Ko := suppn C B(x, r). If M| has non-empty boundary, we choose r large
enough, so that B(u, r) N oM # (). Consider a partition of unity associated with Ky,
x, u and r as in (5) and for a finite P C p_l(x), set x = ZyeP ®y.

Remark 4.4 Since P is finite, it follows that x € C°(M>) and x0 € I'(E2). If M,
has empty boundary, this yields that x6 € D(D,). If M has non-empty boundary,
from Remark 4.3, we have that n(zl)(py = 0on dM, Nsuppé, forany y € p~'(x) and
i € N. In particular, if n satisfies a boundary condition of the form

k
ZajV,(,jl)n =0on dM;,

j=0
then for x6 we have
k ) k )
> @jop)Vil () = DY ¢y(aj o p)Vi)'6 = 0on dMy.
Jj=0 yep j=0
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Hence, x 6 satisfies analogous boundary conditions to 1. Since n € D(Dy), it follows
that x6 € D(Dy).

Proposition 4.5 There exists a constant C, independent from P, such that for any
Z € M>, we have || D2(x0)(2)|| < C.

It is worth to point out that the constant in this proposition, as well as the estimates
in the sequel, depend on various choices we made in this construction. For instance,
they depend on the conformal Riemannian metric b1, on » and on the choice of .
The main point of this proposition is that there is no dependence on P.

Proof Consider § > 0, such that for any x’ € C(x,r + 1), the ball B(x’, 25) is
evenly covered and contained in a coordinate neighborhood, and E| gy 2s) is trivial.
Let x1,...,xx € C(x,r + 1), such that the balls B(x;, §), with 1 < i < k, cover
C(x,r + 1). In any ball B(x;, 25), D has a local expression of the form (1), with A*
smooth. This yields that in B(x;, §), D is expressed in the form (1), with A% smooth
and bounded. For any such ball, we fix a coordinate system (which can be extended to
the corresponding ball of radius 2§) and a trivialization. Since C(x, r + 1) is covered
by finitely many such balls, it follows that there exists C; > 0, such that in any of
these balls, we have || A% || < Cy, for all multi-indices « of absolute value less or equal
to the order d of Dy.

Since 7 is smooth and compactly supported in B(x, r), there exists C2 > 0, such

that in any of these balls, denoting by (17(1), el 77(0) the local expression of 1, we
have that
glel
— W, .. D <c
‘axa(n s )| = Gy,

for all multi-indices o of absolute value less or equal to d, that is, we have uniform
estimates up to order d for n (with respect to this system of trivializations). We lift
these balls and the corresponding coordinate systems and trivializations to M5 and M.
Similarly, if ¢/; # 0, we obtain uniform estimates up to order d for fj, which yield
uniform estimates up to order d for v (with respect to the lifted system on M5).
Since ¥, is smooth and compactly supported in C (u, » + 1), which intersects finitely
many balls of the lifted system on M, there exist uniform estimates up to order d for
Y. Since ¥y (y) is a composition of v, with an element of I', we obtain the same
uniform estimates up to order d for (), for all u(y). Recall the definition of ¥, in
(4). Consider a ball B(z', 8) of the lifted system on M>, which intersects supp ¥, and
the corresponding coordinate system. It is clear that for any w € p, 1(2), the lifted
system on M contains the ball B(w), 8) and the corresponding coordinate system. From
Lemma 2.7, there exists N (r +1,68) € N, independent from y and z’, such that at
most N (r + 1, 8) such balls intersect the support of ¥,(yy. Since we have uniform
estimates up to order d for v, (y), which are independent from y € p_l (x), we obtain
the same uniform estimates up to order d for ¥, forall y € p~!(x). From Lemma 2.6,
it follows that at most N (r + 1 + §) of the supports of yr,, with y € p~ 1 (x), intersect
the open ball B(z, §), for any z € M. This yields that there exist uniform estimates

up to order d for Y1 + 3\ c -1 (o) Vy-
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Recall the definition of ¢, in (5). Since the denominator is greater or equal to 1
and we have uniform estimates (independent from y) up to order d for the numerator
and the denominator, we obtain the same uniform estimates up to order d for ¢y, for
all y € p~!(x). From Lemma 2.6, at most N (r + 1 + &) of the supports of @y, with
y € p~1(x), intersect the ball B(z, 8), for any z € M,. Therefore, we obtain uniform
estimates up to order d for x, which are independent from P.

Clearly, for z € supp(x6), we have that z € B(y, r), for some y € p~!(x), and
in particular, z is contained in a ball of the system. With respect to the corresponding
coordinate system and trivialization, denoting by (81, ..., 8(®9) the local expression
of 0, we have

glel
Dry(x0) @)l = A% 0 (D) — (x (0D, ..., 00
1D2(x0) D)l l(;d( p)(Z)aya(x( N @)

||

< Y Gz, ... 690

lee|<d

< Ci1CC3CWd, 0),

ay“

where C3 is the uniform bound up to order d for x (which is independent from P) and
C(d, £) is a constant depending only on d and ¢. O

Corollary 4.6 There exists a constant C', independent from P, such that for any point
7 € My, we have |[(D2(x0)(2), (x0)(2))] < C".

Proof Follows immediately from Proposition 4.5. O

4.2 Amenable Coverings

In this subsection, we continue to work in the setting of the previous subsection; that
is, we consider the Riemannian covering p: My — M and a fixed compact subset
Ko of M. Consider the universal coverings p; : M — M; and denote by I'; the deck
transformations group of p;,i =1, 2.

If M has empty boundary, we consider a Riemannian metric f; conformal to
the original metric g,, such that (M1, b,) is complete. Distances are considered with
respectto b orits lift h> on M. Similarly, the distance on M is considered with respect
tothe liftof h;. Forx € Mjandy € p~!(x), we denote by Dy, the fundamental domain
of the Riemannian covering p: (M>, h2) — (M1, h,) centered at y.

If M has non-empty boundary, we extend the Riemannian covering p: M>» — M
to a Riemannian covering p: N» — Nj, according to Proposition 3.1. We consider
a Riemannian metric 1 on Nj conformal to original Riemannian metric g;, that
coincides with g; in a compact neighborhood of Ky, such that (Ny, ) is complete.
From Lemma 3.3, M can be identified with a domain of the simply connected covering
space N of Ni. Denote by b, and b the lift of h; on N> and N, respectively. As distance
function on My, M,, and M , we consider the restriction of the distance function of
(N1, b1), (N2, h2), and (1(7, 6), respectively. For x € Mj and y € p‘l(x), we denote
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by D, the part of the fundamental domain of p: (N2, h2) — (N, by) centered at y
that lies in M»; that is,

Dy={z€ M:d(z,y) <d(z,y) forany y € p~'(x)},

where d (-, -) is the distance function of N> induced by bhs,.

Fixx € Myandu € pl_l(x). It is quite convenient to identify I',\I"; with (),
that is, I'> y is identified with p,(yu), and study induced right action of 'y on p’1 (x).
Clearly, if y = pa(yu), forsome y € I'1, then y - g = pa(ygu), forany g € I'y. It is
worth to point out that p is amenable if and only if this right action of I'; on p~!(x)
is amenable.

For r > 0, consider the finite set

Gr:={gel:d(u,gu) <r}

and the subgroup (G,) of I'; generated by G,. We are interested in the right action of
(G,) on p_1 (x). The next remark is a simple description of the orbits of this action.

Remark 4.7 Let y € p~'(x) and g € G,. Then there exists y € 'y, with y = p2(yu)
and y - g = p2(ygu). Clearly, we have

d(y,y-g) =d(p2(yu), p2(ygu)) <d(yu,ygu) =d(u, gu) <r.

Conversely, let y;, y» € p‘l(x) with d(y1, y2) < r. Then there exist y;, y» € I'y,
such that y; = pa(y;u), fori = 1, 2, and there exists o € I'2, such that

d(oyiu, you) = d(p2(y1u), p2(y2u)) =d(y1, y2) <r.

This yields that yl_lo"yz =: g € G,.Itfollows that'yy» =Tay18,i.€, 2 = y1-g.

Hence, two points z1, z> € p‘l (x) are in the same orbit of the action of (G,) on
p~L(x) if and only if there exist k € Nand y1, ..., yx € p~'(x), such that y; = zy,
Yk = 22, and d(yi, yi+1) <r,fori=1,...,k— 1.

Lemma4.8 If p: My — M, is infinite sheeted, then there exists R > 0, such that one
of the following holds:

(i) either for any r > R, the action of (G,) on p~'(x) has only infinite orbits,
(ii) orforany r > R, the action of (G,) on p~'(x) has infinitely many finite orbits.

Proof Assume to the contrary that the statement does not hold. Then there exists
ro > 0, such that the action of (G,,) on p~!(x) has only finitely many finite orbits
Oi, ..., O, for some k € N. Since p is infinite sheeted, there exists also an infinite
orbit . Since the action of I'; on p_l(x) is transitive, for y; € O;, there exists
gi € I'y,such that y; - g; € O, fori = 1,...,k. Then there exists R > 0, such
that G, U {g1, ..., &} C Gg and the action of (Gg) on p~1(x) has only infinite
orbits. It is clear that so does the action of (G, ) on p’1 (x), for any » > R, which is a
contradiction. O
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Let r > 0, such that Ko C B(x, r). If M has non-empty boundary, consider r
large enough, so that B(u, r) N dM # @. If p is infinite sheeted, we choose r > R,
where R is the constant from Lemma 4.8. Consider a partition of unity consisting of
the functions ¢; and ¢y, with y € p_l(x), associated with Kq, x, u, and r as in (5).
For a finite P C p~!(x), let x := Zyep ¢y and consider the sets

Q4 :={yep'(x):x=1inB(y,n)
0_:={ye p_l(x) 10 < x(2) < 1 forsome z € B(y,r)},
Q:=0:UQ_={yep '(x):x) #0forsomez e B(y,r)}. (6

Clearly, x = 0in B(y,r), forany y € p~'(x) \ Q. Since x is compactly supported,
it follows that Q is finite. The proof of the following lemma is essentially presented
in [2], but since we are in a different situation here, we repeat it.

Lemma 4.9 If p is amenable, then for any ¢ > 0, there exists a non-empty, finite
P C p~Y(x), such that

#O-) _ |
#(Q+)

Proof From Proposition 2.8, since p is amenable, for any § > 0, there exists a non-
empty, finite P C p~!(x), such that

#(P \ Pg) < 6#(P),

for all g € G, 2. From Remark 4.3, we have that supp ¢y, C C(yo, 7 + 1), ¢y, > 0
in B(yo, r +1/2),and } -1,y ¢y = Lin B(yo, r), for any yo € p~ 1 (x). Clearly,
P is contained in Q, which implies that #(P) < #(Q).

For y € Q_, there exists z € B(y,r), such that 0 < x(z) < 1. Therefore,
there exist y; € P and y, € p~!'(x) \ P, such that @y; (z) > 0, which yields that
d(yi,z) <r+1,fori =1, 2. It follows that d(y;, y2) < 2r +2 and from Remark 4.7,
there exists g € Ga,42, such that yj = y; - g. In particular, y; € P ~ Pg. Since
d(y, y1) < 2r+1,from Lemma 2.6, for a fixed y;, there exist at most N (2r 4 1) such
y.Since y; € P \. Pg,for some g € Go,42, there exist at most §#(P)#(G242) such
y1. Hence, it follows that

#(0-) < S#(P)#(Gor42)N(Q2r + 1) < S#(Q)#(G2r42)N(Q2r + 1).
Since Q is the disjoint union of Q4 and Q_, for §#(G2,42) N(2r + 1) < 1, we have

#Q-) _ (G NCr + 1)
#(04) T 1= 8#(Goy2)NQr + 1)

This completes the proof, since § > 0 is arbitrarily small. O
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Proposition 4.10 If p: My — M| is infinite sheeted and amenable, then for any ¢ > 0
and K C M» compact, there exists a non-empty, finite P C p~'(x), such that supp x
does not intersect K and

#(Q-)
#(Q+)

<€

Proof First assume that the second statement of Lemma 4.8 holds. Then the action
of (Ga,42) on p~!(x) has infinitely many finite orbits O,, with n € N. Clearly, for
P := O, we have that Q_ is empty. Indeed, if there exists yp € Q_, then there
exist z € B(yo,r), y1 € P,and y, € p_l(x) N\ P,suchthat ¢y, (z) > 0,i =1,2. It
follows that d(z, y;) < r + 1,i = 1,2, which yields that d(y1, y2) < 2r + 2. From
Remark 4.7, there exists g € Go,42, such that yo = y; - g, which is a contradiction,
since P is an orbit of the action of (G2,42) on p~!(x).

For a compact K C M», the set Px := p~'(x) N B(K,r + 2) is finite and in
particular, intersects only finitely many orbits O,. Let P be an orbit that does not
intersect Pk . Since suppgy, C C(y,r + 1), forany y € p~L(x), it is clear that for
such P, the support of x does not intersect K.

Assume now that the first statement of Lemma 4.8 holds, that is, the action of (G, )
on p~!(x) has only infinite orbits. For a compact subset K of Ma, consider the finite
set Px := p*] (x) N B(K,r 4 2). From Lemma 4.9, for any ¢ > 0, there exists a
non-empty, finite P C p~!(x), such that

O 5. d
#04) T 1+ (1 +oNQr + D#PR)’

where N (2r + 1) is the constant from Lemma 2.6.

Since the action of (G,) on p~!(x) has only infinite orbits, it follows that Q_ is
non-empty. Indeed, since P is non-empty and this action has only infinite orbits, there
exists an infinite orbit @ and z; € P N O. Since P is finite, there exists zo € O \ P,
and from Remark 4.7, there exist k € N and yy, ...,y € p’l(x), with y; = z1,
Vi = 22, and d(y;, yi+1) <r,fori =1,...,k — 1. Since y; € P and y; ¢ P, there
exists 1 < j < k,suchthat y; € P and y;;1 ¢ P. Since d(y;, yj+1) < r, it follows
that 0 < x(y;j+1) < 1 and in particular, y; € Q.

Evidently, Q. is contained in P. Since Q_ is non-empty, it is clear that

=#(Q+) = #(P),

[SPRREY

which yields that #(P) > #(Px), from the choice of §. In particular, the finite set
P’ := P ~ Px is non-empty. Consider the function x" and the sets Q’,, Q”_, and Q'
corresponding to P’ as in (6). Clearly, the support of x’ does not intersect K, since
supppy C C(y,r + 1), forany y € pl(x).
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From Lemma 2.6, it follows that for any yo € p~!(x), the support of @y, intersects
at most N(2r + 1) open balls B(y, r), with y € p’1 (x). Hence, we have that

#(0") < #(Q-) + NQr + D#(Pk),
#(Q') = #(Q4) — NQ2r + D#(Px).

Therefore, we obtain

#(QL) _ #(Q) + N(@r + D)#(Px)
#(Q%) T #(Q4) — NQ2r + D#(Px)

’

from the choice of §. O

Remark 4.11 After endowing M or Nj with b (depending on whether M| has empty
boundary or not) and the covering space with its lift b, we have that p: Dy, — M is
an isometry up to sets of measure zero, for any y € p~!(x). Thus, for f € C.(M)),
we have

/ qopmwmzzf fdvoly,, %
D, M

where Voly, (respectively, Volg,) is the volume element of M; induced by b; (respec-
tively, g;), i = 1, 2. Since g; and b are conformal, it is clear that there exists a positive
@y € C®(M)), such that

dVolg, = ¢,dVoly, and dVolg, = (¢, o p)dVolp,.

In particular, forany f € C.(M) and y € p_1 (x), from (7), we obtain that

(fopduz= [ (fop)hop)gyo p)dvVoly, = / FheudVoly,
Dy Dy M,

= Sfdur.
M,

Similarly, for a compact K C Mj, we have u1(K) = ux(p~"(K) N Dy), for any
—1
yep ().

Proposition4.12 Let p: My — M be an infinite sheeted, amenable Riemannian
covering. Let n € D(Dy) with |0l 2, u,) = 1 and A € F. Then for any ¢ > 0 and
K C M; compact, there exists ¢ € D(Dz), with |$|l12g,y ) = 1, suppe N K =

@, supp s C p~'(suppn), and (D2 — M\l 12(g, 10y < 1(D1 = D0l 208, 0y + &-

Proof Let Ky := suppn. If M| has non-empty boundary, extend the Riemannian
covering p: M, — M according to Proposition 3.1. Consider conformal Riemannian
metrics and distance functions as described in the beginning of this subsection.
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Letp;: M — M be the universal covering of My and fixx € M, u € pl_l(x),and
r > R (from Lemma 4.8), such that Ky C B(x, r). If M| has non-empty boundary,
consider r large enough, so that B(u,r) N oM # (). Consider a partition of unity
consisting of the functions ¢; and ¢, with y € p_l (x), associated with Ko, x, u, and
r as in (5), and let 6 be the lift of 5. From Remark 4.4, for any finite set P’ C p~!(x)
and x" 1= 3_ p ¢y, we have that x'0 € D(D>). From Proposition 4.5, there exists
C > 0, independent from P’, such that || D2(x'6)(z)|| < C, for any z € M;. Hence,
we obtain that

max [ (D2 = M (('0)@)| < € + A max [n(w)| =: Co.
zEMy weM;

From Proposition 4.10, there exists a non-empty, finite P C p~!(x), such that the
support of x := Zye p @y does not intersect K and

#Q) _ &
#(04)  C3ui(suppm)’

where O, O_, and Q are the sets corresponding to P as in (6).
Since x6 is in the domain of D;, so is the normalized section

¢ = (1/1 %01l 12(y. up)) X O- Evidently, [ ]| 12¢, 0 = 1 and supp& C p~' (suppn).
From Lemma 2.5, we have that supp¢ N Dy C B(y,r), forany y € p~1(x), which
yields that supp ¢ is contained in the union of the fundamental domains Dy, with
y € Q. Clearly, we have

10612 g, 0y > Zf 1612z = Z/ 1617du> = #(0+),
yeQ+ yeQ4
from the definition of Q4 and Remark 4.11. Therefore, we obtain that

> / 1(D2 = M) (xO)[1Pdpz

yeQ4+
D> — 1)(x6)|*d
#(Q ) Zf (D2 = M) (xO)IPdpa.

Dy —)¢|7d
/1\42”( 2 — M MS#(Q)

For y € O, we have x = 1in B(y, r), which is a neighborhood of supp & N D,.
This implies that

> / 1(D2 = 2)(xO)Pdpa =
yeQy

> f 1(D2 = )61 *duz

ye0+

#(Q ) #(Q )

= / (D1 — M)nll*dp.
M,
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Since [|[(Dy — A)(x0)(2) || < Co, for any z € M», it follows that

2

PR Z/ (D2 = ) (x6) Ptz = 2 Z pa(supp® N Dy)
#Q1) F T #Op)
#(Q0-)
= #(Q+)C§u1(supp n < e.
Hence, [|(D2 = ME17a 5, ) < 121 = M1l70 5, e O

Proposition4.13 Let p: My — M, be an infinite sheeted, amenable Riemannian
covering, and assume that the operators D; are symmetric, i = 1,2. Then for any
sectionn € D(D1) {0}, ¢ > 0, and K C M; compact, there exists { € D(D») {0},
such that supp ¢ C p~'(suppn), supp¢ N K =, and Rp, () < Rp,(n) + &.

Proof The proof is similar to the proof of Proposition 4.12, using Corollary 4.6 instead
of Proposition 4.5. O

Proof of Theorem 4.1: Consider A € oy (D). From Lemma 2.2, it follows that there
exists (Mx)ren C D(Dy), such that ||’7k||L2(E1,M1) = land (D; — M) — 0O in
L2(E;, u1). Consider an exhausting sequence (K )ren of M5. From Proposition 4.12,
for any k € N, there exists {x € D(Dy), with |5kl z2(g,,,) = 1. such that [[(D2 —
Mkl 2By un) = ID1 = Ml 2, uyy + 1/k and supp & N K = . Therefore,
(D2 — M) — Oin L2(E2, w2) and for any compact K C M, there exists kg € N,
such that supp {x N K = @, for all k > k. It follows that (£ )xen is @ Weyl sequence
for D), and A, and in particular, A € ow (D5). O

Proof of Theorem 1.1: Follows immediately from Theorem 4.1 and Proposition 2.1. O

Assume now that the operator D;: D(D;) C L2(E;, wi) — L%(E;, Wi) is sym-
metric and bounded from below, and let Dl.(F) be its Friedrichs extension, i = 1, 2.
For more details on the Friedrichs extension of a symmetric, bounded from below
and densely defined linear operator on a Hilbert space, see [25]. It is well known that
the Friedrichs extension of an operator preserves its lower bound. In particular, for
i =1,2, we have

(F) .
r(D:) = f  Rp, (). 8
o(D;" ") neD(lgl-)\{O} p; (M) (8)

Recall the following proposition for the essential spectrum of a self-adjoint operator.

Proposition 4.14 ([13, Proposition 2.1]) Let A: D(A) C 'H — H be a bounded from
below, self-adjoint operator on a separable Hilbert space H over R or C, and consider
A € R. Then the interval (—oo, A] intersects the essential spectrum of A if and only
if for any ¢ > 0, there exists an infinite-dimensional subspace H, C D(A), such that
Ra(w) < A+eg, forallv e He ~ {0}
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Proof of Theorem 1.2: From (8), it follows that there exists (x)xen C D(Dy) ~ {0},
such that Rp, () < Ao(D\") + 1/k, for any k € N. Proposition 4.13 yields that
there exists ({i)ken C D(Da) ~ {0}, such that Rp, (2x) < ro(DY) + 2/k and
supp &x Nsupp & = @, for all k, k' € N, with k # k. Evidently, for any ¢ > 0, there
exists ko € N, suchthat R p, (&) < AO(D}F))-l—s,forallk > ko. Consider the subspace
‘He of D(D3) spanned by {¢r : k > ko}. Since the sections ¢, with k € N, have
disjoint supports, the space H, is infinite-dimensional. Clearly, any 6 € H, is of the
form6 := ngg m;¢;, forsome k € Nand myy, ..., mgy+k € . Therefore, we have

ko+k
Ziiko Im; |>(Dag;, i) L2(Es,j10) -

(F)
R0y 6) = =k < max  Rp,(&) <ro(Dy) +e.
S Imi P16,y KoSishotk
From Proposition 4.14, it follows that A5 (DS™) < 4o(D{™). g

Remark 4.15 1In the proof of Theorem 1.2, the only properties of the Friedrichs exten-
sion used are self-adjointness and the preservation of the lower bound of D1. Therefore,
this proof establishes the analogous result for any self-adjoint extensions of the oper-
ators, as long as the extension of D preserves its lower bound.

The next proposition provides the analogous result in case the operators are sym-
metric and Dj is not bounded from below.

Proposition 4.16 Assume that the operator D; is symmetric, i = 1, 2. If the covering
is infinite sheeted and amenable, and D1 is not bounded from below, then D; is not
bounded from below.

Proof Since D; is not bounded from below, for any C € R, there exists a non-
zero n € D(Dy), with Rp,(n) < C. From Proposition 4.13, it follows that there
exists ¢ € D(Dy) \ {0}, with Rp,(¢) < C + 1. Therefore, D, is not bounded from
below. O

For sake of completeness, we also present the analogous results for finite-sheeted
coverings. Itis clear that they cannot be improved in order to obtain as strong statements
as in the case of infinite- sheeted amenable coverings.

Proposition 4.17 Let D), be a closed extension of Dy. If p is a finite-sheeted Rieman-
nian covering, then oap(ﬁl) C 04p(D)) and ow (D)) C ow (D5).

Proof 1If n is in the domain of D1, then its lift is in the domain of D,. For A € ow (Dy),
from Lemma 2.2, there exists a Weyl sequence (;)xen C D(D1) for D1 and A. Then,
the sequence consisting of the normalized (in L2(E,, u2)) lifts of ng, k € N, is a
Weyl sequence for D), and A. Hence, ow (D)) C ow (D}). Similarly, it follows that

O—ap(ﬁl) C O’ap(Dé)- O

Proposition 4.18 Assume that D; is symmetric and bounded from below, and denote
by Di(F) its Friedrichs extension, i = 1, 2. If p is afinite-sheeted Riemannian covering,
then 1o(DSF)) < 2o(DF).
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Proof 1If n is in the domain of Dy, then its lift 6 is in the domain of D,. If n # 0, it is
easy to see that Rp, (n) = Rp,(#), and the statement follows from (8). O

In the rest of this section, we give applications of our results in the case of
Schrodinger operators. Recall that on manifolds with boundary, we are interested
in the Dirichlet spectrum of Schroédinger operators. The following proposition char-
acterizes the bottom of the spectrum of a Schrodinger operator as the maximum of its
positive spectrum.

Proposition 4.19 Let S be a Schrodinger operator on a Riemannian manifold M. Then
the bottom of the spectrum of S is the maximum of all . € R, such that there exists
@ € C®(M ~ IM) with Sp = Lo, which is positive in M ~. dM.

Proof If M has empty boundary, then the statement may be found in [11, Theorem
7], [14, Theorem 1], and [23, Theorem 2.1]. If M has non-empty boundary, it is clear
that Ao(S) = Ao(S, M ~ M), where Ao(S, M ~. dM) stands for the bottom of the
spectrum of S on the interior of M. Hence, in this case, the claim follows from the
corresponding statement for manifolds without boundary. O

In particular, there exists ¢ € C*°(M ~ dM) with Sp = A¢(S)¢e, which is positive
in the interior of M. It is worth to point out that the smooth eigenfunctions of the
preceding proposition do not have to be square-integrable. The following corollary is
a consequence of Proposition 4.19 (an alternative proof can be found in [2]).

Corollary 4.20 Let p: My — M be a Riemannian covering. Let S| be a Schridinger
operator on My and Sy its lift on M. Then Ag(S1) < Lo(S52).

Proof Follows immediately from Proposition 4.19, since the lift of an eigenfunction
of S is an eigenfunction of S. O

Corollary4.21 Let p : My — M be an infinite-sheeted, amenable Riemannian
covering. Let S| be a Schrodinger operator on My and S its lift on M,. Then
Ao(S1) = A$¥(S2). If, in addition, My is complete, then o (S1) C 0Oess(S2).

Proof Follows from Theorems 1.1, 1.2 and Corollary 4.20. O

The following results describe the behavior of the spectrum of Schrodinger opera-
tors under finite-sheeted coverings.

Corollary 4.22 Let p: My, — M) be a finite-sheeted Riemannian covering. Let S| be
a Schrodinger operator on My and Sy its lift on M>. Then Lo(S1) = Ao(S2). If; in
addition, My is complete, then o (S1) C 0(82) and 0egs(S1) C Oess (52).

Proof Follows from Propositions 2.1, 4.17, 4.18 and Corollary 4.20. O

The following characterization of the bottom of the essential spectrum of a
Schrodinger operator follows from the Decomposition Principle ([3, Proposition 1])
and Propositions 2.3 and 4.14. Recall that this quantity is infinite when the spectrum
is discrete.
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Proposition 4.23 ([5, Proposition 3.2]) Let S be a Schrodinger operator on a complete
manifold M and let (Ky)ren be an exhausting sequence of M. Then

1§°(8) = lim 2o(S. M ~ Ki).

where Ao(S, M . Ky) is the bottom of the spectrum of S on M ~ K.

Corollary 4.24 Let p: My — M| be a finite-sheeted Riemannian covering of complete
manifolds. Consider a Schrodinger operator Sy on My and its lift S» on M. Then
A (S1) = AgP(S2) and in particular, 0ess(S1) # O if and only if 0ess(S2) # V.

Proof Follows from Corollary 4.22 and Proposition 4.23. O

5 Infinite Deck Transformations Group

Let M be a Riemannian manifold, E — M a Riemannian or Hermitian vector bundle,
endowed with a connection V and D: I'(E) — I'(E) a differential operator on E.
If M has empty boundary, set D(D) := I'c(E). If M has non-empty boundary,

consider v € N,and for/ =1, ..., v, let k; € N and a;; be real or complex-valued
functions (depending on whether E is Riemannian or Hermitian) defined on dM,
Jj =0,..., k. Itis worth to point out that we do not impose any assumptions on the

functions a; ;. Let n be the inward pointing normal to M and consider

ki
D(D):={neTe(E): Y a;Vi'n=00ndM, [=1,.. 0}
j=0

Let i be a measure on M expressed via a positive smooth density with respect
to the volume element of M; that is, there exists a positive h € C°°(M), such that
dp = hd Vol. Consider D as a densely defined operator

D: D(D) C L>(M, ) — L*(M, ). )

When we refer to closability or symmetry of D, we consider it as in (9). From
Lemma 2.4, the operator D is closable and denote by D its closure.

Theorem 5.1 Let I be a group of automorphisms of E preserving the metric of E,
such that the induced action on M is isometric and D(g.n) = g«Dn, forany g € T
and n € I'(E). Moreover, assume that the density function h of j is I -invariant. If M
has non-empty boundary, assume that V and the functions aj; are I'-invariant along
the boundary. If for any compact K C M, there exists g € I', such that gK N K = (),
then ogp (D) = ow (D) and D does not have eigenvalues of finite multiplicity.

Proof Let A € oap(ﬁ). From Lemma 2.2, there exists (nx)xen C D(D), such that
Inkllz 2,y = 1 and (D — A)ng — Oin L%(E, ). Since n is compactly supported,
there exists an exhausting sequence (Kj)ren of M, such that suppnxy C Ky, for
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all k € N. For any k € N, consider gx € T, such that gy Ky N K; = @, and set
Ck = (gk)«Nk. Then & € T'(E) and if M has non-empty boundary, then ¢ satisfies
the same boundary conditions with 7y, since via isometries unit speed geodesics normal
to the boundary are mapped to unit speed geodesics normal to the boundary. It follows
that & € D(D), ¢kl 2g,y) = 1, and (D — A)g — O'in L2(E, p). It is clear that
supp & = gk (supp nx), which yields that for any compact K C M, there exists kg € N,
such that supp &y N K = @, for all k > ko. This implies that £x—0 in L2(E, ), that
is, ($x)keN is @ Weyl sequence for D and A. Hence, A € ow (D).

Assume that there exists an eigenvalue A of D of finite multiplicity, and consider
6 € D(D) with [|6]| 2,y = 1 and D6 = A6. Then there exists (ni)xen C D(D),
such that n; — 6 and Dn; — D@. It is clear that for any g € I" and k € N, we have
8«1k € D(D), guni — 80, and D(g4mi) — g+(DO), which yields that g,6 € D(D)
and D(g+0) = A(g«0).

Let (Ki)ren be an exhausting sequence of M and consider (gx)ken C T, such
that gx Kx N Ky = @, for any k € N. It is clear that the sections 6 := (gx)«0 satisfy
D6, = A0 and ||6; || 12, = L, forallk € N. Since the eigenspace corresponding to
A is finite-dimensional, after passing to a subsequence, we may assume that 6y — 6
in L2(E, p), for some 6, with 60l z2(£, ) = 1. Consider a non-zero ¢ € I'c(E) and

set &y 1= (gk_l)*g. Then

6 )72 = O 820 < 11720 f 1617 d .
supp &k

Lete > 0and consider acompact K C M, suchthath\K leN?du < 82/||§'||i2(E W

Since supp ¢ and K are eventually subsets of K, there exists ko € N, such that
supp & N K = @, for all k > ko. Therefore, for k > ko, we have supp ¢y C M \ K,
and in particular, (6, ¢)72(g )| < €. This yields that 6x—0 in L?*(E, i), which is a
contradiction, since 6y — 6y in L%(E, u) and ||90||L2(E’M) =1. O

Theorem 5.2 Assume that D is symmetric and bounded from below, and denote by
D) its Friedrichs extension. Under the assumptions of Theorem 5.1, the spectrum
of DY) is essential and DY) does not have eigenvalues of finite multiplicity.

Proof Let n € D(DY)) and g € I'. From the invariance of D(D) and D under
the action of I, it follows that g, € D(DY) and D) (g.n) = g.(D¥p). As in
the proof of Theorem 5.1, it follows that D) does not have eigenvalues of finite
multiplicity. From Proposition 2.1, we obtain that o (D)) = goss (D), O

The above theorems can be applied to Riemannian coverings with infinite deck
transformations group. In the context of the previous section, we obtain the following
consequences.

Corollary 5.3 If the deck transformations group of the covering is infinite, then D>
does not have eigenvalues of finite multiplicity and o,p(D3) = ow (D2).

Proof Follows immediately from Theorem 5.1, for I' being the deck transformations
group of the covering. O
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Proof of Corollary 1.3: Follows from Corollary 5.3 and Proposition 2.1. O

Proof of Corollary 1.4: Follows from Theorem 5.2, for I' being the deck transformations
group of the covering. O

Corollary 5.4 Let T" be an infinite, discrete group acting properly discontinuously on
a complete Riemannian manifold M via isometries. Then there exists no non-zero,
square-integrable, Ao(M)-harmonic function on M. Moreover, Ag(M) is an accumu-
lation point of o (M).

Proof For any complete (and connected) Riemannian manifold M, the space of square-
integrable, Ao(M)-harmonic functions is either trivial or one-dimensional. Therefore,
Corollary 1.3 yields the first statement and that Ag(M) € oess(M). The second state-
ment follows from Proposition 2.1, since oess (M) consists of eigenvalues of infinite
multiplicity and accumulation points of the spectrum. O

Besides Riemannian coverings, the above theorems can be applied to manifolds
with high symmetry. For instance, it follows that the spectrum of the Laplacian on
a non-compact homogeneous space is essential. Moreover, we obtain the analogous
statement, if there exists a non-compact Lie group acting on the manifold properly
discontinuously via isometries.

6 Coverings of Closed Manifolds

The Cheeger’s constant of a Riemannian manifold M is defined by

h(M) = inf 2Xe30OK)
X Vol(K)

where the infimum is taken over all compact and smoothly bounded domains K of M
which do not intersect d M. It is related to Lo(M) via Cheeger’s inequality (cf. [10]):

ho(M) > %h(M)2.

Brooks [6] actually proved that a normal Riemannian covering of a closed manifold
is amenable if and only if the Cheeger’s constant of the covering space is zero. The
following result is an extension of that of Brooks, to not necessarily normal coverings.

Theorem 6.1 Let p: My — M| be a Riemannian covering of a closed manifold M.
If h(M>) = 0, then p is amenable.

In order to prove this theorem, we need the following proposition. In the sequel,
for a subset W of M, we denote by B(W, r) the tubular neighborhood

BW,r)={zeM:d(z, W) <r}.
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Proposition 6.2 ([9, Lemma 7.2]) Let M be a non-compact, complete Riemannian
manifold, without boundary and with Ricci curvature bounded from below. Then there
exists a constant ¢ depending only on the dimension of M, such that for any compact
and smoothly bounded domain K of M, with Area(0K)/ Vol(K) =: H, and any
0 <r <1/2cmin{l, 1/H}, there exists a bounded, open U C M, such that

Vol(B(3U, r))

Vol () =CnH,

where C(r) is a constant depending on r, the dimension of M, and the lower bound
of the Ricci curvature.

Corollary 6.3 Let M be a non-compact, complete Riemannian manifold, without
boundary and with Ricci curvature bounded from below. If h(M) = 0, then for any
e, r > 0, there exists a bounded, open U C M, such that

Vol(B(QU, r))
Vol(U ~. B(dU, r))

Proof Letr > 0 and 0 < ro < 1/2¢, where c is the constant from Proposition 6.2.
Denote by g the original Riemannian metric and consider the metric h := Cg, where
C := ro/r. For any compact and smoothly bounded domain K of M, we have

Areap(0K) C_l/zAreag(aK)
Voly(K) Volg (K)

Since the Cheeger’s constant of M with respect to g is zero, it follows that so is the
Cheeger’s constant of M with respect to ). From Proposition 6.2, for any § > 0, there
exists a bounded, open U C M, such that

Voly, (By (90U, r9))
Voly, (U)

It follows that

Volg(Bg(0U,r)) _ Voly(Bg(dU,r))  Voly(By (39U, o))
Volg (U) N Voly (U) - Vol (U)

This completes the proof, since Volg(U) < Volg(U \ Bg(3U, r))+Volg(Byz(0U, r)).
O

Proof of Theorem 6.1: Evidently, if M, is closed, then p is finite sheeted and in par-
ticular, amenable. Therefore, it remains to prove the statement for M, non-compact.
Consider the universal covering p; : M — M, fixx e Mj,u e pfl(x), and iden-
tify 71 (M) \7r1 (M1) with p~1(x), as in the beginning of Subsect.4.2. Denote by D,
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the fundamental domain of p centered at y, with y € p*l(x), It is clear that for
y € p~'(x) and z, w € D, we have

d(z,w) =d(y,2) +d(y, w) =d(x, p(z)) +d(x, p(w)) < 2diam(M),

which yields that diam(Dy) < 2diam(My), forall y € p_l(x). Let r > 2diam(M))
and

G, ={gem (M) :d(u, gu) <r}.

From Corollary 6.3, for any ¢ > 0, there exists a bounded, open U C M3, such
that

Vol(B(3U, 2r))
Vol(U ~ B(3U, 2r))

(10)

Consider the finite sets

F:={yep lx):yeU~B@OU,r)},
F':={yep'(x):yeBOU,nr).

Recall thatr > 2diam(M;) > diam(D,),forall y € p~'(x), and M, is covered by the
fundamental domains Dy, with y € p‘l(x). Evidently, U \. B(dU, 2r) is contained
in the union of Dy, with y € F. Furthermore, B(dU, 2r) contains the union of Dy,
with y € F’. From (10), since the intersection of different fundamental domains is of
measure zero, and Vol(Dy) = Vol(My), forany y € p~1(x), it follows that

#(F')
—_— < &
#(F)

Letg € Goandy € F~ Fg.Theny € U,d(y,dU) > randy-g~! ¢ F.
From Remark 4.7, it follows that d(y,y - g~!) < r. Therefore, y - g~' € U and
d(y-g~',dU) < r, which yields that y - g~! € F’. Hence, F ~. Fg C F'g and in
particular, we obtain that

#(F N Fg) <#(F') < e#(F).

For any finite G C 71(M}), there exists r > 2diam(M), such that G C G,. The
above arguments imply that for any finite G C m1(M1) and ¢ > 0, there exists a
Fglner set for G and ¢. From Proposition 2.8, it follows that p is amenable. O

7 Applications and Examples

We begin with some examples of operators for which our main results can be applied.
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Examples 7.1 In the following examples, we consider a Riemannian manifold M. If
M has non-empty boundary, we denote by n the inward pointing normal to oM.

(1) Schrodinger operators. A Schrodinger operator on M is an operator of the form
S = A+ V, where A is the Laplacian and V € C*°(M) is bounded from below.
If M has empty boundary, then the operator

S: C®(M) C L*(M) — L*(M)

is symmetric and bounded from below. If, in addition, M is complete, then this
operator is essentially self-adjoint.
If M has non-empty boundary, then one may consider S as a symmetric, densely
defined operator in L?(M), by restricting S on the space of f € C (M) satisty-
ing Dirichlet (f = 0), Neumann (n( f) = 0), Robin (n(f) + bf = 0), or mixed
boundary conditions (thatis, f = 0 on a subset of M and n(f) = 0 on the rest
of aM).

(1) Laplacian with density. Let u be a measure on M which is expressed by a positive
smooth density in terms of the volume element, dju = h*d Vol. The Laplacian
with respect to this density is defined by

2
Apf=Af— E(gradh, grad f),
for any f € C°°(M). If M has empty boundary, then the operator
Ap: CX(M) C L*(M, p) — L*(M, p)

is symmetric and non-negative definite. If, in addition, M is complete, then this
operator is essentially self-adjoint (see, for instance [16, Theorem 2.2]).

(iii) Higher-order Laplacian. If M has empty boundary, then for any k € N, the
operator

A*: CX(M) € LA(M) — L*(M)

is symmetric and non-negative definite, which yields that it admits Friedrichs
extension. If, in addition, M is complete, then this operator is essentially self-
adjoint (see for instance, [12]).

If M has non-empty boundary, then we may consider the operator AX on the
space of compactly supported, smooth functions satisfying Dirichlet boundary
conditions (according to the terminology of [15])

A fec®My: f=n(f)=---=n*D(f)=00ndM)
C L>(M) — L*(M).

For k = 1, 2, this operator is symmetric and non-negative definite, which yields
that it admits Friedrichs extension. For k > 3, this operator is not symmetric.
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(iv)

However, according to Lemma 2.4, this operator is closable and Theorem 4.1
can be applied.

Laplace-type operators. Let E — M a Riemannian vector bundle endowed with
a metric connection V. The (corresponding) connection Laplacian is defined as
A = V*V. A Laplace-type operator is an operator of the form § = A + V,
where V € I'(EndE) and V(x): Ey — E, is symmetric forany x € M. If M
has empty boundary, then the operator

S:T.(E) C L*(E) - L*(E)

is symmetric. If, in addition, the lowest eigenvalue of V (x) is bounded from
below, then this operator admits Friedrichs extension. If M is closed, then this
operator is essentially self-adjoint (see [18]).

It is worth to point out that the Hodge Laplacian Ay := d*d + dd* acting on
k-forms, for some 0 < k < dim(M), is a Laplace-type operator. If we consider
it as

Ar: ToAT*MY ¢ LE(ANT*M) — L2 (A T* M),

then it is symmetric and non-negative definite. If, in addition, M is complete,
then this operator is essentially self-adjoint (see [12]).

Another example of Laplace-type operator that is of interest in spectral theory is
the Jacobi (stability) operator of a minimal submanifold. Let ®: M — N¥bea
minimal isometric immersion. The Jacobi operator J is a Laplace-type operator
acting on sections of the normal bundle 7M. Locally, if n € I'(T+M) and
{e1, ..., em}is alocal orthonormal frame of M, the Jacoby operator is given by

m m
In=An= ale. Age) — Y (R, een)’,
i=1 i=1
where AL is the connection Laplacian corresponding to the normal connection,

«a is the second fundamental form of ®, A, is the Weingarten operator with
respect to n, and R is the curvature tensor of N. If M is closed, then the operator

J:T(T*M) c L2(T*M) - L*(T*+M)

is essentially self-adjoint.

In the following corollary, we denote by Ao(Ag, M) the bottom of the spectrum of
the Friedrichs extension of the Hodge Laplacian (considered as in Examples 7.1 (iv))
acting on k-forms on a Riemannian manifold M.

Corollary7.2 Let p: My — Mj be an amenable Riemannian covering of mani-
folds without boundary. If Lo(Akx, M1) = O, for some 0 < k < dim(M), then
ho(Ag, M2) = 0.
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Proof Follows from Theorem 1.2 and Proposition 4.18, since the Hodge Laplacian is
non-negative definite. O

We now introduce the notion of renormalized Schrodinger operators, which is
required in order to establish Theorem 1.5. This notion was introduced by Brooks in
[7] for the Laplacian on complete manifolds without boundary.

Let S be a Schrodinger operator on a possibly non-connected Riemannian manifold
M without boundary, and let ¢ € C°(M) be a positive A-eigenfunction of S. It
is worth to point out that we do not require ¢ to be square-integrable or M to be
complete. Let  be the measure expressed by diu = ¢*d Vol in terms of the volume
element of M. Consider the separable Hilbert space L?(M, ). Evidently, the map
My L*(M, n) — LX(M), given by m,v := vg is an isometric isomorphism.

The renormalized Schrodinger operator Sy,: D(Sy) C L*(M, ) — L*(M, )
is defined by Syv := m;l(S(F) — M) (myv), for all v € D(S,), where SF) is the
Friedrichs extension of S and D(S,) := m;l (D(SF)y). Clearly, the following diagram
is commutative

D(Sy) D(SH)

S| lS(F)‘
2 e 2
LM, p) —=— L*(M)

In particular, S, is self-adjoint and o (Sy,) = o (S§) —A. From Proposition 2.3, it follows
that

(Sofs ez, w

ro(Sy) < inf Rs, (f) = inf —’,
Y17 reczan~oy Fec (im0} 1122010

Consider (fi)ken C C°(M) \ {0}, such that Rs(fx) — 1o(S). It is evident that for
hy = m;l(fk) € CX (M), we have Rs, (hi) = 1o(Sy). Hence, the bottom of the
spectrum of S, can be approximated with Rayleigh quotients of compactly supported
smooth functions in M. With a simple computation of the Rayleigh quotient of such a
function (as in [7, Sect. 2], using the Divergence Theorem, instead of the x-operator),
we obtain the following expression for Ag(S) —

Proposition 7.3 Let S be a Schridinger operator on M and let ¢ € C®°(M) be a
positive \-eigenfunction of S. Then

Ju I grad f11°¢°

A(S) — A= in
o) fecem~or [, f20?

The modified Cheeger’s constant of M is defined by

@ Springer



On the Spectrum of Differential Operators 3363

where the infimum is taken over all compact and smoothly bounded domains K of
M. From the preceding proposition, it is easy to establish an analog of Cheeger’s
inequality.

Corollary 7.4 Let S be a Schrodinger operator on M and let ¢ € C*° (M) be a positive
M-eigenfunction of S. Then

1 2
ho($) =& = Zhy(M)?.

Proof By virtue of Proposition 7.3, the proof is the same as that of [7, Lemma 3]. O

Moreover, consider the quantity

h;SS(M) = szph(p(M ~ K),
where the supremum is taken over all compact and smoothly bounded domains K of
M. For ¢ = 1, this quantity is denoted by 4% (M).
Corollary 7.5 Let S be a Schridinger operator on a complete manifold M and consider
a positive A-eigenfunction ¢ € C*°(M) of S. Then

s 1 s
AGHS) = & = JhgH(M)*.

Proof Let (Kj)ren be an exhausting sequence of M, consisting of smoothly bounded
domains. It is easy to see that

hZSS(M) = h/inh(p(M ~ Kp).
From Corollary 7.4, we have that
1
M S, M N Kp) —A> Zh(p(M ~ Kp),

for any k € N. After taking the limit with respect to &, the statement follows from
Proposition 4.23. O

Remark 7.6 The above arguments can be easily modified in order to obtain anal-
ogous results for manifolds with boundary. In that case, it suffices to consider a
A-eigenfunction of S which is positive and smooth only in the interior of M. Then, in
Proposition 7.3, the infimum is taken over smooth functions with compact support in
the interior of M.

Proof of Theorem 1.5: From Corollary 4.21, the first statement implies the second.
From Corollary 4.20, the third statement follows from the second.

Assume that 19(S1) = A§*(S2), for some Schrodinger operator S on Mj. From
Proposition 4.19, there exists a positive Ag(S1)-eigenfunction ¢ € C*(M;) of Sy,
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and its lift ¢ € C°°(M>) is a positive Ao(S])-eigenfunction of Sp. From Corollary 7.5,
it follows that h%SS(Mz) = 0. Since ¢ is positive and M| is closed, this yields that
hes$(Mp) = 0.

Assume that h%5(M3) = 0. Then A(M3) = 0 and Theorem 6.1 yields that p is
amenable. Assume that p is finite sheeted. Then M is closed. Consider a smoothly
bounded domain U of M>, such that M, ~\ U is connected. Evidently, M \ U is a
compact manifold with boundary. It is clear that h(My ~ U) = h(M> ~ U). From
[10], it follows that h%$(M>) > h(M, ~. U) > 0, which is a contradiction. Hence, p
is infinite sheeted. O

Remark 7.7 In Theorem 1.5, if the covering is normal, then o (S1) # 0ess(S2). Indeed,
if the equality holds, according to Corollary 1.3, we have o(S1) = o(S2). Recall
that the space of square-integrable, Ag(Sz)-eigenfunctions of §; is either trivial or
one-dimensional. From Corollary 1.3, it follows that A¢(S2) is not an eigenvalue of
the closure of S>. From Proposition 2.1, oes(S2) consists of eigenvalues of infinite
multiplicity and accumulation points of o (S>). Therefore, it follows that Ao (.S>) is an
accumulation point of o (S>). This is a contradiction, since o (S;) = o (S7) is discrete.

For sake of completeness, we also prove the following corollary, describing the
analogous properties for finite-sheeted coverings.

Corollary 7.8 Let p: My — M| be a Riemannian covering with M closed. Let S| be
a Schrodinger operator on M and Sy its lift on M. Then the following are equivalent:

(1) p is finite sheeted,

(i) o(81) C 0(82) and oess(S2) =Y,
(i) Ao(S1) = A0(52) ¢ Oess(S2),
@iv) h(My) = 0 and h®S(My) # 0.

Proof If the covering is finite sheeted, the inclusion of spectra follows from Corol-
lary 4.22. In this case, M3 is closed, which yields that the spectrum of §; is discrete.
From Corollary 4.20, the second statement implies the third.

Assume that the third statement holds. Since 1o(S1) = A0(S2), as in the proof of
Theorem 1.5, from Corollary 7.4, it follows that h(M>) = 0. From Theorem 1.5, it is
clear that %% (M>) # 0.

Assume that the fourth statement holds. Since #(M3) = 0, from Theorem 6.1, p is
amenable. Since h%*(M;) # 0, from Theorem 1.5, it follows that p is finite sheeted.

O

The following characterization for points of the essential spectrum of a Schrédinger
operator is an immediate consequence of the Decomposition Principle.

Proposition 7.9 Let S be a Schrodinger operator on a complete Riemannian manifold
M and let . € R. Then A € 0ess(S) if and only if there exists ( fi)ren C CZ°(M), with
fi =0o0n oM, ||fk||L2(M) =1L —-MNfkr > 0in L2(M), and for every compact
K C M, there exists kg € N, such that supp fr N K = @, for all k > ky.

Our second application is motivated by [1, Corollary 3.8].
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Theorem 7.10 Let p: My — M| be a Riemannian covering with M, simply connected
and complete. Let S| be a Schrodinger operator on M| and S its lift on M. If there
exists a compact K C M, such that the image of the fundamental group of any
connected component of M1 \ K in w1 (M) is amenable, then oess(S1) C Oess(52).

Proof Let A € 0¢ss(S1). From Proposition 7.9, there exists (fx)ren C C°(M), such
that fx = 0 on My, || fillL2guy = 1. (S — A fk = Oin L%(M)), and for every
compact Ky C M, there exists kg € N, such that supp fr N Ko = @, for all k > k.

Without loss of generality, we may assume that the supports of f; are connected,
since we may restrict each fj to a connected component of its support and obtain a
sequence with the same properties. Indeed, let K;, with 1 < i < £(k) be the connected
components of supp f. Since they are disjoint, it is clear that

2 £(k) 2
||(Sl _)\')fk”LZ(M]) _ Zi:l ”(Sl _k)(f|K1)||L2(M1)
2 - £(k) 2
”‘fk”Lz(Ml) Zizl ”f'KL ||L2(M1)
= min 2 :

1<i<t(k) 1A kil 7201,

Let i; be index for which the right-hand side minimum is achieved. Evidently, con-
sidering the normalization (in L?(M))) of the restriction of f; on K. ir» instead of fi,
we obtain a sequence with the same properties as ( fx)xenN, such that the supports are
connected.

Consider a compact K C M1, such that the image of the fundamental group of any
connected component of M \ K in 71 (M7) is amenable. Clearly, after passing to a
subsequence, we may assume that the functions fj are supported in M; ~\ K. Since
for any k € N, the support of f; is connected, it follows that supp fx C Uy, where
Uy is a connected component of M \ K. From the Lifting Theorem, it follows that
the inclusion Uy <> M) can be lifted to the covering space M, := M,/ Ty, where
Iy is the image of w1 (Uy) in m1(M7). In particular, any f; can be lifted to some
fi € C(Mp).

Since the covering gi : M2 — M is normal with deck transformations group Iy,
it follows that it is amenable. If g is finite sheeted, let f; be the normalized (in
L2(M>)) lift of fi on My If gy is infinite sheeted, from Proposition 4.12, there exists

fk € C°(M>), such that ||f~k||L2(M2) =1, suppfk C qlzl(supp f), and

- 1 1
1082 = 2) fillL2(my) < (S, — )x)fk/“LZ(M]:) + P 1CS1 = 2) fiell 2oy + A
where S, is the lift of S| on Mj. In particular, (S — 1) fv = 0in L%(M>) and supp fi
is contained in p_1 (supp fx). From Proposition 7.9, it follows that A € gess(S2). O

Remark 7.11 In the proof of Theorem 7.10, the only properties of Schrodinger oper-
ators used are essential self-adjointness and Proposition 7.9, which follows from the
Decomposition Principle. Therefore, this proof establishes the analogous result for
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essentially self-adjoint differential operators, for which the Decomposition Principle
holds (cf. [3]). For instance, if M| has empty boundary, then the statement of The-
orem 7.10 holds for any elliptic differential operator D1, such that D; and D, are
essentially self-adjoint on the spaces of compactly supported smooth sections.

Proof of Corollary 1.6: Follows immediately from Theorem 7.10 and Corollary 4.20.
]

Let p: M, — M; be a Riemannian covering of complete manifolds, without
boundary. As stated in the Introduction, there are examples where p is non-amenable
and Lg(M1) = Ao(M>).From Theorem 1.1, Propositions4.17 and 2.1, if p is amenable,
then o (M) C o (M>). It is natural to examine if this inclusion implies amenability of
the covering. From Theorem 7.10, it is easy to construct an example of a non-amenable,
normal Riemannian covering p: M>» — M; with M| complete, with bounded geom-
etry and of finite topological type (that is, M admits a finite triangulation, where the
simplices are defined on the standard simplex with possibly some lower-dimensional
faces removed), such that o (M) = o (M>).

Example 7.12 Let M| be a 2-dimensional torus with a cusp, endowed with a Rieman-
nian metric, such that M; is complete and outside a compact set the metric is the
standard metric of the flat cylinder. It is clear that M| is of finite topological type and
has bounded geometry. From [19, Theorem 1], it follows that oess(M1) = [0, +00).
Clearly, there exists a compact subset K of My, such that 71 (M; \ K) = Z. From
Theorem 7.10, it follows that for the simply connected covering space M» of My,
we have oess(M>) = [0, +00). However, 1 (M) is the free group in two generators,
which is non-amenable (cf. [4, Sect. 2]).

For our next application, we need the following standard lemma for the spectrum
of self-adjoint operators (see, for instance, [17]).

Lemma7.13 Let A: D(A) C 'H — 'H be a self-adjoint operator on a separable
Hilbert space over R or C. Assume that for some A € R and ¢ > 0, there exists
v € D(A), with ||v|| = 1 and ||(A — M)v| < &. Then there exists ) € o (A), such that
A — A <e.

Proposition 7.14 Let M be a closed manifold with infinite, amenable, and residually
finite fundamental group. Then the spectrum of the Laplacian on the universal covering
space M of M is given by

(M) = Oess(M) = Ug0 (Ma),
where the union is taken over all finite-sheeted covering spaces My of M.
Proof Sinc~e m1(M) is infinite, from Corollary 1.3, it follows that o(]l71 ) = oess(M ).

Since )& M — M is infinite sheeted and amenable, from Theorem 1.5, it follows that
A (M) = 0. Let My, be a finite-sheeted covering space of M. Since My, is closed and
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ASSS(M) = 0, from Theorem 1.5 (applied to the covering py : M — M,), it follows
that 0 (M) C 0ess(M). Since o (M) is closed, this yields that

Ugo (My) C o(M),

where the union is taken over all finite-sheeted covering spaces M, of M.

Consider A € o (M) and & > 0. From Proposition 2.1 and Lemma 2.2, there exists
f e C(M), with Ifll 27y = 1 and [[(A = A) fll2¢7, < €. Since w1 (My) is
residually finite, for any compact K C M, there exists a finite-sheeted covering space
M,, of M, such that the covering py : M — M, restricted on K is injective (see for
instance [8]). In particular, there exists a finite-sheeted covering space M, of M, such
that the covering py: M — M, restricted in a compact neighborhood K of supp f is
an isometry onto its image. Consider the function f, := f o pa|;(l extended by zero
outside p,(K). Evidently, f, € C°°(M,) and satisfies

||fa||L2(Ma) = land [[(A — )»)fa”LZ(Ma) < €.

From Lemma 7.13, it follows that there exists A" € o (M) with | — A/| < ¢. Since
& > 0 1is arbitrary, this establishes the asserted equality. O

Recall that the spectrum of the Laplacian on a closed Riemannian manifold M is
discrete; that is, it consists of isolated eigenvalues

O0=AM) <M (M) < (M) <...,

of finite multiplicity. From the above proposition, we can easily recover the following
observation of Sunada [24], which was also established by Brooks [8, Theorem 2].

Corollary 7.15 Let M be a closed manifold with infinite, amenable, and residually finite
fundamental group. Then there exists a sequence (M;);eN of finite-sheeted covering
spaces of M, such that A1 (M;) — 0, as i — +o0.

Proof From Proposition 7.14, it follows that A?)SS(M ) = 0, where M is the universal
covering space of M. Since p: M — M has infinite deck transformations group, from
Corollary 5.4, we obtain that zero is an accumulation point of & (M).From Proposition
7.14, it follows that there exist finite-sheeted covering spaces M; of M, with i € N,
and k; € N, such that A4, (M;) — 0, asi — 4o0. Since 0 < A1 (M;) < A, (M;), for
any i € N, this completes the proof. O

We now present some examples of amenable coverings. The following observation,
provides a sufficient geometric condition for amenability of coverings.

Proposition 7.16 Let M be a complete Riemannian manifold, without boundary and
with non-negative Ricci curvature. Then any covering p: My — My is amenable.

Proof Let M be the simply connected covering space of M. From the Bishop-Gromov
Comparison Theorem, it follows that M has polynomial growth and hence, every
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finitely generated subgroup of 71 (M) has polynomial growth (cf. [20]). From Corol-
lary 2.9, it follows that every finitely generated subgroup of 71 (M1) is amenable and
Corollary 2.10 yields that so is w1 (M7). Therefore, any covering p: M, — M is
amenable. ]

Example 7.17 Let M be a Riemannian manifold and denote by M its universal covering
space. The homology cover of M is defined by

My = M /[m1(M), 71 (M)].

Evidently, the Riemannian covering p: My — M is normal with deck transforma-
tions group

I'=m(M)/[m (M), 1 (M)] = Hi (M).

Since Hj (M) is abelian, from Corollary 2.11, itfollows that p: My — M isamenable.

Next, we present an example of an infinite-sheeted amenable covering with trivial
deck transformations group. In particular, this implies that the results of Sect. 5 cannot
be applied to arbitrary infinite-sheeted amenable coverings.

Example 7.18 Let I'; be the countable group of invertible, upper triangular 2 x 2
matrices with entries in QQ and let M be a Riemannian manifold with 71 (M) = I';
(cf. [2, Sect. 5]). Let I'> be the subgroup of I'; consisting of diagonal matrices. Denote
by M the simply connected covering space of M and consider M, := M /o It
is easy to see that the covering p: My — M is infinite sheeted and does not have
non-trivial deck transformations. However, I'j is solvable and in particular, amenable
(from Corollary 2.11), which yields that p is an amenable covering.

Recall that in our main results there are no assumptions on the vector bundles,
the connections, and the differential operators. The next example demonstrates that
these play a crucial role in the behavior of the spectrum even under finite-sheeted
coverings. Namely, this example shows that whether or not the bottom of the spectrum
of the connection Laplacian is preserved under a Riemannian covering depends on
the corresponding metric connection. Moreover, this example demonstrates that the
inequality of Corollary 4.20, which holds for Schrodinger operators, is not true (in
general) for the connection Laplacian.

Let M be a complete Riemannian manifold and E — M a Riemannian vector
bundle endowed with a metric connection V. The corresponding connection Laplacian
A (considered as in Examples 7.1(iv)) is essentially self-adjoint (cf. [18]). In the
following example, we denote by Ag(A, E) the bottom of the spectrum of its closure.
It is worth to point out that if M is closed, then the spectrum of this operator is discrete
(cf. [18]).

Example 7.19 Consider S| := R/Z and the trivial bundle E| := §; x R? with the
standard metric. We can identify smooth sections of E1 with smooth maps f: R — R?
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with f(x) = f(x 4+ 1), for all x € R. For ¢ € R, consider the metric connection Ve,
defined by

V‘f; fx) = (COS(X¢) —sin(x¢)) d ( cos(x¢) sin(xqb)) <f1(x))’
I*

sin(x¢) cos(x¢) ) dx \—sin(x¢) cos(xp) ) \ f2(x)

for any smooth section f = (fi, f2) of E1. Since the spectrum of the connection
Laplacian A? is discrete for any ¢ € R, it is clear that Ao(A?, E) = 0 if and only if
there exists a parallel section of E with respect to V%, or equivalently, ¢ = 2k, for
some k € Z.

For k € N ~\ {1}, consider a k-sheeted Riemannian covering py : Sl(k) — S1 and
the pullback bundle E> of E| endowed with the standard metric and the pullback
connection V. It is clear that Ag(A27, E;) = Ao(A2™, E1) = 0. However, the above
arguments imply that Ag(A2"/%| E>) = 0 < xo(AZ/% | Ey).

This is an example of a finite-sheeted covering which shows that the inequality of
Corollary 4.20 does not hold for the connection Laplacian. Based on this example, it is
easy to construct an analogous example of an infinite-sheeted covering. Consider the
covering p: R — S}k) and the pullback bundle E of E; endowed with the standard
metric and the pullback connection V>*/¥_ Since p is infinite sheeted and amenable,
from Theorem 1.2, since the connection Laplacian is non-negative definite, it follows
that Ag(AP/K E) = A& (AP E) = 0 < Ao(AZ/K, Ey).

A natural question arising from our results is whether it is possible to obtain an
analog of Theorem 1.1 for Friedrichs extensions of operators (that is, in the context of
Theorem 1.2). It is worth to point out that this holds the Laplacian on manifolds which
are isometric to the interior of complete manifolds with boundary. Indeed, in such case,
the spectrum of the Friedrichs extension of the Laplacian in the interior coincides with
the Dirichlet spectrum of the Laplacian on the manifold with boundary. Since the latter
one is essentially self-adjoint, the inclusion of the spectra follows from Theorem 1.1.

Moreover, during the last years, there is a lot of progress in the study of the Dirichlet-
to-Neumann spectrum. Although the Dirichlet-to-Neumann map is not a differential
operator, there are interesting relations between its spectrum and the geometry and
topology of the underlying manifold. Therefore, it is natural to ask whether similar
results hold for its behavior under Riemannian coverings. This is indeed the case.
However, the methods to establish them are quite different. Therefore, we will deal
with this in a forthcoming paper.
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