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Abstract
The short-time heat kernel expansion of elliptic operators provides a link between local
and global features of classical geometries. For many geometric structures related to
(non-)involutive distributions, the natural differential operators tend to be Rockland,
hence hypoelliptic. In this paper, we establish a universal heat kernel expansion for
formally self-adjoint non-negative Rockland differential operators on general closed
filtered manifolds. The main ingredient is the analysis of parametrices in a recently
constructed calculus adapted to these geometric structures. The heat expansion implies
that the newcalculus, amore general version of theHeisenberg calculus, also has a non-
commutative residue.Many of thewell-known implications of the heat expansion such
as, the structure of the complex powers, the heat trace asymptotics, the continuation
of the zeta function, as well as Weyl’s law for the eigenvalue asymptotics, can be
adapted to this calculus. Other consequences include a McKean–Singer type formula
for the index of Rockland differential operators. We illustrate some of these results
by providing a more explicit description of Weyl’s law for Rumin–Seshadri operators
associated with curved BGG sequences over 5-manifolds equipped with a rank-two
distribution of Cartan type.

Keywords Filtered manifold · Hypoelliptic operator · Heat kernel expansion · Zeta
function · Non-commutative residue · Generic rank-two distribution in dimension
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1 Introduction

Many geometric structures related to (non-)involutive distributions can be described
in terms of an underlying filtered manifold. These include contact structures, Engel
manifolds, and all regular parabolic geometries. Filtered analogues of classical (ellip-
tic) operators are usually hypoelliptic [21]. It is an old dream to link local and global
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aspects of filtered geometry with the spectrum and index of hypoelliptic operators
by studying the short-time asymptotics of heat kernels, similarly to the elliptic case.
Active research in this direction started in the 1970s, see [22,25,46], and was quite
popular in 1980s, see [3,26]. The main accomplishment had been the development
of the Heisenberg calculus [3,43,52] and its application to operators in contact and
CR geometries. On graded nilpotent Lie groups, the representation theory allowed a
harmonic analysis perspective of hypoellipticity [16,34,35].

The progress on these problems has been revived by the advent of new tangent
groupoid techniques to study analysis on these manifolds [15,54–57]. When the clas-
sical (elliptic) pseudodifferential calculus was described in [23] in a coordinate-free
way using the tangent groupoid, it facilitated the construction of a pseudodifferential
calculus on general filtered manifolds [56,57]. This calculus has helped resolve two
main hitherto unsurmountable challenges in analysis. It first allowed an explicit han-
dle on the parametrix of a hypoelliptic operator similar to the one familiar from the
elliptic case or nilpotent Lie groups as in [16]. The universality of this calculus and
the existence of the parametrix [21] provide a clean way to obtain a general short-time
heat kernel expansion for a large class of differential operators. Remarkably, this heat
expansion has the same structure as the one for elliptic operators, bringing back the
old expectation that the analysis should relate local geometric properties to global
invariants.

The differential operators we consider satisfy a pointwise Rockland condition,
a condition on their non-commutative principal symbols that guarantees that these
operators are hypoelliptic. We also present here several consequences of the heat
kernel asymptotics, which are well known for elliptic operators, but are not known for
Rockland operators in this generality. These include the explicit structure of complex
powers of the operators, Weyl’s asymptotic formula for the growth of eigenvalues,
the McKean–Singer index formula, the description of a non-commutative residue
for Heisenberg calculus, and the construction of a K-homology class associated to
Rockland operators.

Let us look at the manifolds, the operators, and their heat kernel expansions in more
detail.

1.1 FilteredManifolds

Filtered manifolds provide a very general setup to study geometry [39,40]. These
geometries include foliations, contact manifolds, Engel structures on 4-manifolds,
graded nilpotent Lie groups, and all regular parabolic geometries. The equiregular
Carnot–Carathéodory spaces considered in [28] are also filtered manifolds.

A filtered manifold M has a naturally associated non-commutative tangent bundle,
that is, a simply connected nilpotent Lie group Tx M attached to each point x inM . The
harmonic analysis of this non-commutative tangent spaceTx M is related to the analysis
of differential operators on M . An effective way to exhibit this relationship uses the
so-called Heisenberg tangent groupoid [15,57]. The pseudodifferential calculus on
filtered manifolds [56] was constructed using the Heisenberg tangent groupoid. It was
further studied in [21] where we show that a pointwise Rockland condition implies
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The Heat Asymptotics on Filtered Manifolds 339

hypoellipticity.We remark that the idea of Heisenberg calculus is based on the work of
Debourd–Skandalis [23], who studied the standard pseudodifferential calculus using
Connes’ tangent groupoid construction.

The Heisenberg calculus can be globally defined on a filtered manifold M using
the Heisenberg tangent groupoid, TM . This is a groupoid that provides a deformation
of the pair groupoid M × M into the non-commutative tangent bundle T M , which is
obtained by giving

TM = (
T M × {0}) � (

M × M × R
×)

a smooth structure which makes all the groupoid maps smooth. There is an action of
R
× := R\{0} on TM called the zoom action and the calculus is defined to be those

distributions on M×M that admit an essentially homogeneous extension to TM with
respect to the zoom action.

There is an equivalent local description of the kernels in suitably chosen coordinates.
In this paper, we will mostly work with the local version; however, the global descrip-
tion allows a neater formulation of the concept of holomorphic families described
below. In the local description, the kernels are described in a tubular neighborhood of
the diagonal and the germs of diffeomorphism of these tubular neighborhood to the
normal bundle is determined by the Euler-like vector field provided by the filtration
[30]. Here, we will stick to the original Heisenberg tangent groupoid description for
global invariance of the calculus.

1.2 Rockland Differential Operators

Let us briefly recall the kind of operators studied in this article. These are hypoelliptic
operators on filtered manifolds which are elliptic in the Heisenberg calculus described
above.

Let M be a closed filtered manifold and suppose E is a complex vector bundle
over M . Let A be a differential operator acting on sections of E . In coordinates
adapted to the filtration on M , we can assign a (co)symbol to A by freezing the
coefficients at a point x ∈ M , thereby obtaining a left invariant differential operator
σx (A) on the osculating group Tx M .We require that each σx (A) satisfies the Rockland
condition and furthermore A is symmetric and non-negative on L2(E). Examples
of such operators include the sub-Laplacian for many classes of sub-Riemannian
geometries, the Rumin–Seshadri operators associated with (ungraded) BGG operators
on parabolic geometries, and the square of the Connes–Moscovici transverse signature
operator [18]. On trivially filtered manifolds, these operators are elliptic in the usual
sense, and on contact or Heisenberg manifolds they are elliptic in the Heisenberg
calculus of [3,43].

1.3 Heat Kernel Asymptotics

In this paper, we study the kernel of e−t A for t > 0 and the complex powers A−z

where z ∈ C for a differential operator A described in the paragraph above. Rather
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than using the standard approach by Seeley [50], we followBeals–Greiner–Stanton [4]
who use a Volterra–Heisenberg calculus on M ×R to describe the heat kernel on CR
manifolds, see also [43, Chapter 5]. In our general setting, however, no new calculus
has to be developed. Instead, we may regard M×R as a filtered manifold such that the
heat operator A + ∂

∂t becomes Rockland on M × R. The general Rockland theorem
established in [21, Theorem 3.13] thus yields a parametrix for the heat operator A+ ∂

∂t
in the pseudodifferential operator calculus developed by van Erp and Yuncken in [56].
The asymptotic expansion of its Schwartz kernel along the diagonal immediately yields
the heat kernel asymptotics for A.

Let us emphasize that this approach to the heat kernel asymptotics seems to only
work for Rockland differential operators. For more general pseudodifferential opera-
tors P on the filtered manifold M , the corresponding heat operator ∂

∂t + P on M ×R

is no longer pseudolocal in general and hence not in the Heisenberg pseudodifferential
calculus. This implies that we can only investigate ungraded Rockland sequences in
the sense of [21] and, in particular, the results can be applied only to ungraded BGG
sequences. For example, the BGG sequences for Cartan geometries of generic rank-2
distributions in dimension five are always ungraded, and we will study them in greater
detail here.

We mention here two prominent features of the heat asymptotics of Rockland
differential operators.

As is well known in the classical (trivially filtered) case, certain terms in the heat
kernel asymptotics of elliptic pseudodifferential operators vanish for differential oper-
ators.We show that this continues to hold forRockland differential operators onfiltered
manifolds. Their expansion takes a form similar to the expansion of classical elliptic
differential operators. In particular, there are no log terms, and every other polynomial
term vanishes. To see this, we introduce the class of projective operators, see Defini-
tion 2, which have the desired asymptotic expansion and contain the parametrices of
Rockland differential operators.

Another key feature of the heat asymptotics of a non-negative elliptic operator is
the positivity of its leading term. This term has geometric significance: for instance,
the leading term in the heat trace expansion of a Laplace operator encodes the volume
of the corresponding Riemannian metric. Let us emphasize that this positivity of the
leading term remains true for non-negative Rockland differential operators. In particu-
lar, this permits to derive a Weyl law for the eigenvalue asymptotics using a Tauberian
theorem.

1.4 Applications

The heat kernel asymptotics of an elliptic operator has many important consequences.
We present here several analogous consequences for Rockland differential operators.
This requires adapting the results in the context of the Heisenberg pseudodifferential
calculus described above.

1. The structure of the complex powers A−z follows via Mellin transform from the
heat asymptotics in the usual way. Analogous to the celebrated result of Seeley
[50], the complex powers are pseudodifferential operators in the calculus of van
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The Heat Asymptotics on Filtered Manifolds 341

Erp and Yuncken [56]. We interpret the notion of a holomorphic family of pseu-
dodifferential operators [43], in terms of an essential homogeneity criterion on the
Heisenberg tangent groupoid. As can be expected, A−z is a holomorphic family
for every non-negative Rockland differential operator A.

2. Taking the trace of a holomorphic family, whenever it is defined, produces a
holomorphic function. We will show that the various spectral zeta functions have
meromorphic continuation with simple poles. In particular, the algebra of integer-
order pseudodifferential operators on afilteredmanifold admits a non-commutative
residue.

3. Weyl’s law for the eigenvalue asymptotics also follows from the positivity of
the constant term in the heat expansion, or from the position and residue at the
first pole of the spectral zeta function as usual. We will work out Weyl’s law
more explicitly for Cartan geometries in dimension five using suitable geometric
choices. Surprisingly, the constant in Weyl’s law is universal, depending only on
the irreducible representation defining the BGG sequence.

4. Rockland operators are hypoelliptic and hence on a closed manifold they are
Fredholm. In particular, we note two consequences towards the study of their
index, namely, the description of the K-homology class associated to them, and a
generalization of the McKean–Singer formula.

1.5 Structure of the Paper

The remaining part of the paper is organized as follows. In Sect. 2 we formulate our
main results: Theorem 1 on the heat kernel asymptotics and Theorem 2 on the structure
of complex powers. Furthermore, we derive several immediate consequences: Corol-
lary 1 on the heat trace expansion, Corollary 2 on the zeta function, Corollary 3 on
Weyl’s law, Corollary 4 on the McKean–Singer formula, as well as Corollary 5 on the
K-homology class. In Sect. 3, we briefly recall some background for the calculus of
pseudodifferential operators on filtered manifolds and introduce the class of projective
pseudodifferential operators of integral Heisenberg order, see Definition 2. In Sects. 4
and 5, we present proofs of Theorems 1 and 2 , respectively. In Sect. 6 we discuss holo-
morphic families of Heisenberg pseudodifferential operators. In Sect. 7, we construct
a non-commutative residue, see Corollary 6. In Sect. 8 we will work out Weyl’s law
more explicitly for Rumin–Seshadri operators, see Corollary 7, and specialize further
to BGG operators on 5-manifolds equipped with a rank-two distribution of Cartan
type, see Corollary 8.

We would like to thank an anonymous referee for helpful remarks and another
anonymous referee for thorough reading and many useful comments.

2 Statement of theMain Results

Recall that a filtered manifold [21,39–41] is a smooth manifold M together with a
filtration of the tangent bundle T M by smooth subbundles,

T M = T−mM ⊇ · · · ⊇ T−2M ⊇ T−1M ⊇ T 0M = 0,
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which is compatible with the Lie bracket of vector fields in the following sense: If
X ∈ �∞(T pM) and Y ∈ �∞(T qM) then [X ,Y ] ∈ �∞(T p+qM). Putting tpM :=
T pM/T p+1M , theLie bracket induces a vector bundle homomorphism tpM⊗tqM →
tp+qM referred to as Levi bracket. This turns the associated graded vector bundle
tM := ⊕

p t
pM into a bundle of graded nilpotent Lie algebras called the bundle of

osculating algebras. The Lie algebra structure on the fiber tx M = ⊕
p t

p
x M depends

smoothly on the base point x ∈ M , but is not assumed to be locally trivial. In particular,
the Lie algebras tx M might be non-isomorphic for different x ∈ M .

Using negative degrees, we are following a convention prevalent in parabolic geom-
etry, see [11,40] for instance. The other convention, where everything is concentrated
in positive degrees, is the one that has been adopted in [56,57].

For real λ �= 0, we let δ̇λ : tM → tM denote the grading automorphism given by
multiplication with λ−p on the summand tpM . Note that δ̇λ restricts to a Lie algebra
automorphism δ̇λ,x ∈ Aut(tx M) for each x ∈ M . We will denote the homogeneous
dimension of M by

n := −
−1∑

p=−m

p · rank(tpM). (1)

Its fundamental importance stems from the fact that a 1-density μ on the vector space
tx M scales according to

(δ̇λ,x )∗μ = |λ|−nμ, λ �= 0. (2)

The filtration of the tangent bundle induces a Heisenberg filtration on differential
operators.More explicitly, if E and F are two vector bundles overM , then a differential
operator �∞(E) → �∞(F) is said to have Heisenberg order at most r if, locally,
it can be written as a finite sum of operators of the form �∇Xk · · · ∇X1 where � ∈
�∞(hom(E, F)), ∇ is a linear connection on E , and X j ∈ �∞(T p j M) such that
−(p1 + · · · + pk) ≤ r . Denoting the space of differential operators of Heisenberg
order at most r by DOr (E, F), we obtain a filtration

�∞(hom(E, F)) = DO0(E, F) ⊆ DO1(E, F) ⊆ DO2(E, F) ⊆ · · · (3)

which is compatible with composition and taking the formal adjoint. More precisely,
if A ∈ DOr (E, F) and B ∈ DOs(F,G) where G is another vector bundle, then
BA ∈ DOs+r (E,G) and A∗ ∈ DOr (F, E). As usual, the formal adjoint is with
respect to standard L2 inner products of the form

〈〈ψ1, ψ2〉〉 :=
∫

M
h(ψ1(x), ψ2(x))dx, (4)

where ψ1, ψ2 ∈ �∞
c (E). Here dx is a volume density on M and h is a fiberwise

Hermitian inner product on E . The formal adjoint can be characterized by the equation
〈〈A∗φ,ψ〉〉E = 〈〈φ, Aψ〉〉F for all ψ ∈ �∞

c (E) and φ ∈ �∞
c (F).
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The Heat Asymptotics on Filtered Manifolds 343

A differential operator A ∈ DOr (E, F) has a Heisenberg principal symbol,
σ r
x (A) ∈ U−r (tx M) ⊗ hom(Ex , Fx ) at every point x ∈ M . Here

U−r (tx M) = {
X ∈ U(tx M)

∣∣ ∀λ �= 0 : δ̇λ,x (X) = λrX
}

denotes the degree −r subspace in the universal enveloping algebra of the graded
nilpotent Lie algebra tx M . The Heisenberg principal symbol is compatible with com-
position and taking the formal adjoint, that is,

σ s+r
x (BA) = σ s

x (B)σ r
x (A) and σ r

x (A∗) = σ r
x (A)∗, (5)

for all A ∈ DOr (E, F) and B ∈ DOs(F,G). Actually, the Heisenberg principal
symbol provides a canonical short exact sequence,

0 → DOr−1(E, F) → DOr (E, F)
σ r−→ �∞(

U−r (tM) ⊗ hom(E, F)
) → 0.

In particular, the Heisenberg principal symbol provides a canonical isomorphism
between the associated graded of the filtered algebra DO(E) with the Heisenberg
filtration (3), and the graded algebra �∞(⊕

p Up(tM) ⊗ end(E)
)
. More details may

be found in [41, Sect. 1.2.5].
For x ∈ M we let Tx M denote the osculating group at x , that is, the simply con-

nected nilpotent Lie groupwith Lie algebra tx M . The individual osculating groups can
be put together to form a bundle of nilpotent Lie groups T M overM such that the fiber-
wise exponential map, exp : tM → T M , becomes a diffeomorphism of locally trivial
bundles over M . The scaling automorphisms δ̇λ,x ∈ Aut(tx M) integrate to Lie group
automorphisms δλ,x ∈ Aut(Tx M) which combine to form bundle diffeomorphisms
δλ : T M → T M such that δλ ◦ exp = exp ◦δ̇λ. The Heisenberg principal symbol
σ r
x (A) of an operator A ∈ DOr (E, F) can be regarded as a left invariant differen-

tial operator on Tx M which is homogeneous of degree r . More precisely, regarding
σ r
x (A) : C∞(Tx M, Ex ) → C∞(Tx M, Fx ), we have σ r

x (A) ◦ l∗g = l∗g ◦ σ r
x (A) and

σ r
x (A) ◦ δ∗λ,x = λrδ∗λ,x ◦ σ r

x (A) for all x ∈ M , λ �= 0 and g ∈ Tx M . Here l∗g denotes
pull back along the left translation, lg : Tx M → Tx M , lg(h) := gh, and δ∗λ,x denotes
pull back along δλ,x : Tx M → Tx M .

A differential operator A ∈ DOr (E, F) is said to satisfy the Rockland condi-
tion [44] at x ∈ M if, for every non-trivial irreducible unitary representation of
the osculating group, π : Tx M → U (H), on a Hilbert space H, the linear opera-
tor π(σ r

x (A)) : H∞ ⊗ Ex → H∞ ⊗ Fx is injective. Here H∞ denotes the subspace
of smooth vectors in H. An operator is called a Rockland operator if it satisfies the
Rockland condition at every point x ∈ M . We refer to [21, Sect. 2.3] for more details
and references.

According to [21, Theorem 3.13] every Rockland operator A ∈ DOr (E, F) admits
a properly supported left parametrix B ∈ �−r

prop(F, E) such that BA−id is a smoothing
operator. Here �−r denotes the class of pseudodifferential operators of Heisenberg
order −r which has recently been introduced by van Erp and Yuncken, see [56] and
Sect. 3. These are operators whose Schwartz kernels have a wave front set which is
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contained in the conormal of the diagonal. In particular, their kernels are smooth away
from the diagonal. Moreover, their kernels admit an asymptotic expansion along the
diagonal with respect to a tubular neighborhood which is adapted to the filtration. In
particular, the left parametrix B induces a continuous operator �∞(F) → �∞(E)

which extends continuously to a pseudolocal operator on distributional sections,
�−∞(F) → �−∞(E). Consequently, Rockland operators are hypoelliptic, that is,
if ψ is a distributional section of E such that Aψ is smooth on an open subset U of
M , then ψ was smooth on U , cf. [21, Corollary 2.10].

For the remaining part of this section, we will assume M to be closed. We consider
a Rockland differential operator A ∈ DOr (E) of Heisenberg order r ≥ 1 which is
formally self-adjoint with respect to an L2 inner product of the form (4), that is, for
all ψ1, ψ2 ∈ �∞(E) we have

〈〈Aψ1, ψ2〉〉 = 〈〈ψ1, Aψ2〉〉.

Lemma 1 With the above hypotheses, A is essentially self-adjoint with compact resol-
vent on L2(E).

Proof Indeed, A is symmetric with dense domain �∞(E) and thus closeable. By
regularity, the domain of its adjoint coincides with the Heisenberg Sobolev space
Hr (E), see [21, Corollary 3.24]. To see that this coincides with the domain of the
closure, let � ∈ �r (E) and �′ ∈ �−r (E) such that R = �′� − id is a smoothing
operator.1 Given φ ∈ Hr (E), choose φ j ∈ �∞(E) such that φ j → �φ in L2(E).
Since �′ and A�′ are both bounded on L2(E), see [21, Proposition 3.9(a)], we also
have �′φ j → �′�φ and A�′φ j → A�′�φ in L2(E). Putting ψ j := �′φ j − Rφ ∈
�∞(E), we obtain ψ j → φ and Aψ j → Aφ in L2(E), hence φ is in the domain
of the closure of A. The resolvent of A is compact, since A − z has a parametrix
in �−r (E) for every z ∈ C, and these operators are compact on L2(E), see [21,
Proposition 3.9(b)]. ��

Assuming, moreover, that A is non-negative, that is,

〈〈ψ, Aψ〉〉 ≥ 0

for all ψ ∈ �∞(E), the spectral theorem [37, Sect. VI§5.3] permits to construct a
strongly differentiable semi-group e−t A for t ≥ 0.More precisely, for eachψ ∈ L2(E)

the vector e−t Aψ is contained in the domain of A, and we have

∂
∂t e

−t Aψ = −Ae−t Aψ as well as lim
t↘0

e−t Aψ = ψ. (6)

Since A is non-negative, each e−t A is a contraction on L2(E). According to the
Schwartz kernel theorem, it thus has a distributional kernel, kt ∈ �−∞(E � E ′).

1 We could use � = A and a left parametrix �′ = B as above. Alternatively, we may assume R = 0, see
[21, Lemma 3.16].
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The Heat Asymptotics on Filtered Manifolds 345

More explicitly, we have

〈φ, e−t Aψ〉 =
∫

(x,y)∈M×M
φ(x)kt (x, y)ψ(y) (7)

for all t ≥ 0, ψ ∈ �∞(E), and φ ∈ D(E) = �∞(E ′). Here E ′ := E∗ ⊗ |�M |
where |�M | denotes the bundle of 1-densities on M and 〈−,−〉 denotes the canonical
pairing between D(E) and �−∞(E) = D′(E). This pairing will also be denoted by
〈φ, ξ 〉 = ∫

M φ ξ = ∫
x∈M φ(x)ξ(x), where φ ∈ D(E) and ξ ∈ �−∞(E). In particular,

the right-hand side in (7) denotes the canonical pairing of φ � ψ ∈ �∞(E ′ � E) =
D(E � E ′) with kt ∈ �−∞(E � E ′) = D′(E � E ′).

One main aim of this paper is to establish the following heat kernel asymptotics,
generalizing a result of Beals–Greiner–Stanton for CR manifolds [4, Theorems 5.6
and 4.5], see also [43, Theorem 5.1.26 and Proposition 5.1.15].

Theorem 1 (Heat kernel asymptotics) Let E be a vector bundle over a closed filtered
manifold M. Suppose A ∈ DOr (E) is a Rockland differential operator of even2

Heisenberg order r > 0which is formally self-adjoint and non-negativewith respect to
an L2 inner product of the form (4), that is, 〈〈Aψ1, ψ2〉〉 = 〈〈ψ1, Aψ2〉〉and 〈〈Aψ,ψ〉〉 ≥
0, for all ψ,ψ1, ψ2 ∈ �∞(E). Then e−t A is a smoothing operator for each t > 0,
and the corresponding heat kernels kt ∈ �∞(E � E ′) depend smoothly on t > 0.
Moreover, as t ↘ 0, we have an asymptotic expansion

kt (x, x) ∼
∞∑

j=0

t ( j−n)/r q j (x),

where q j ∈ �∞(
end(E) ⊗ |�M |). More precisely, for every integer N we have

kt (x, x) = ∑N−1
j=0 t ( j−n)/r q j (x) + O(t (N−n)/r ), uniformly in x as t ↘ 0. Moreover,

q j (x) = 0 for all odd j , and q0(x) > 0 in end(Ex ) ⊗ |�M,x | for each x ∈ M.

The terms q j ∈ �∞(
end(E) ⊗ |�M |) in Theorem 1 are (in principle) locally

computable, they can be read off any parametrix for the heat operator A + ∂
∂t ,

see Remark 2 for more details. The leading term q0(x) can also be obtained by
evaluating the heat kernel of the Heisenberg principle symbol σ r

x (A) at the point
(ox , 1) ∈ Tx M × (0,∞), see (65). Here ox ∈ Tx M denotes the neutral element of the
osculating group.

The spectral theorem also permits to construct complex powers Az for every z ∈ C.
These are unbounded operators on L2(E) satisfying Az1+z2 = Az1 Az2 for all z1, z2 ∈
C. The powers are defined such that Az vanishes on ker(A) and commutes with
the orthogonal projection onto ker(A). In particular, A0 is the orthogonal projection
onto the orthogonal complement of ker(A), and A−1 is the pseudoinverse of A. If
z ∈ N, then Az coincides with the ordinary power, i.e., the z-fold product of A with
itself.

2 Note that there are no non-trivial formally self-adjoint and non-negative differential operators of odd
Heisenberg order.

123



346 S. Dave, S. Haller

Anothermain goal of this paper is the following result about the structure of complex
powers generalizing [43, Theorems 5.3.1 and 5.3.4].

Theorem 2 (Complex powers) In the situation of Theorem 1, the complex power A−z

is a pseudodifferential operator of Heisenberg order −zr for every z ∈ C, and these
powers constitute a holomorphic family of pseudodifferential operators, see Sect. 6.
In particular, the kernel kA−z (x, y) is smooth on {x �= y} × C and depends holo-
morphically on the variable z ∈ C. If �(z) > n/r , then A−z has a continuous
kernel and its restriction to the diagonal, kA−z (x, x), provides a holomorphic family
in�∞(

end(E)⊗|�M |) for�(z) > n/r . This family can be extendedmeromorphically
to the entire complex plane with at most simple poles located at the arithmetic pro-
gression (n− j)/r where j ∈ N0. If (n− j)/r /∈ −N0, then the residue of kA−z (x, x)
at (n − j)/r can be expressed as

resz=(n− j)/r
(
kA−z (x, x)

) = q j (x)

�((n − j)/r)
, j ∈ N0, (8)

where q j ∈ �∞(
end(E) ⊗ |�M |) are as in Theorem 1. Moreover, kA−z (x, x) is

holomorphic at the points in −N0, taking the values

kAl (x, x) = (−1)l l! q ′n+rl(x), l ∈ N0.

Here q ′j (x) := q j (x) for j �= n and q ′n(x) := qn(x)− p(x, x), where p ∈ �∞(E�E ′)
denotes the Schwartz kernel of the orthogonal projection onto ker(A).

Before turning to the proof of Theorems 1 and 2, we will now formulate several
immediate corollaries. The next one generalizes [4, Theorem 5.6], see also [43, Propo-
sition 6.1.1].

Corollary 1 (Heat trace asymptotics) In the situation of Theorem 1, the heat trace
admits an asymptotic expansion as t ↘ 0,

tr
(
e−t A) ∼

∞∑

j=0

t ( j−n)/r a j .

More precisely, for each integer N we have tr(e−t A) = ∑N−1
j=0 t ( j−n)/r a j +

O(t (N−n)/r ) as t ↘ 0. Moreover, a j =
∫
M trE (q j ) where q j ∈ �∞(

end(E)⊗ |�M |)
is as in Theorem 1, a j = 0 for all odd j , and a0 > 0.

Proof Since e−t A is a smoothing operator, its trace can be expressed as

tr
(
e−t A) =

∫

x∈M
trE (kt (x, x)), t > 0.

The asymptotic expansion of tr(e−t A) thus follows from the asymptotic expansion for
kt (x, x) in Theorem 1. Clearly, a0 > 0 since q0(x) > 0 at each x ∈ M . ��
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Corollary 2 (Zeta function) In the situation of Theorem 1, the complex power A−z

is trace class for �(z) > n/r , and ζ(z) := tr(A−z) is a holomorphic function on
{�(z) > n/r}. This zeta function can be extended to a meromorphic function on the
entire complex plane with at most simple poles located at the arithmetic progression
(n − j)/r where j ∈ N0. If (n − j)/r /∈ −N0, then the residue of ζ(z) at (n − j)/r
can be expressed as

resz=(n− j)/r
(
ζ(z)

) = a j

�((n − j)/r)
, j ∈ N0,

where a j are the constants from Corollary 1. Moreover, ζ(z) is holomorphic at the
points in −N0, taking the values

ζ(−l) = (−1)l l! a′n+rl , l ∈ N0.

Here a′j := a j for j �= n and a′n := an − dim ker(A).

Proof For �(z) > n/r the operator A−z is trace class since it has a continuous kernel
according to Theorem 2. Moreover,

ζ(z) =
∫

x∈M
trE

(
kA−z (x, x)

)

depends holomorphically on z since the kernel kA−z (x, x), considered as a family
in �∞(end(E) ⊗ |�M |), is holomorphic for �(z) > n/r . Since kA−z (x, x) can be
extended meromorphically to the entire complex plane, the same holds true for ζ(z).
The pole structure, residues, and special values follow immediately from the corre-
sponding statements in Theorem 2. ��

The next corollary generalizes [43, Proposition 6.1.2].

Corollary 3 (Weyl’s eigenvalue asymptotics) In the situation of Theorem 1, the oper-
ator A is essentially self-adjoint on L2(E) with compact resolvent. There exists a
complete orthonormal system of smooth eigenvectorsψ j ∈ �∞(E)with non-negative
eigenvalues λ j ≥ 0, that is, Aψ j = λ jψ j for all j ∈ N. Moreover,

tr
(
e−t A) =

∞∑

j=1

e−tλ j and ζ(z) =
∞∑

j=1

λ−z
j , (9)

for t > 0 and �(z) > n/r , respectively. Furthermore,

�{ j ∈ N | λ j ≤ λ} ∼ a0 λn/r

�(1+ n/r)
as λ → ∞,

where a0 > 0 is the constant from Corollary 1.
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Proof Wehave already shown that A is essentially self-adjoint with compact resolvent,
see Lemma 1. It is well known that the spectrum of these operators is discrete [37,
Theorem 6.29 in Chapter III§6.8] and real [37, Chapter V§3.5]. Since A is non-
negative, each eigenvalue has to be non-negative. By hypoellipticity, its eigenfunctions
are smooth, see [21, Corollary 2.10]. Since e−t A and A−z are trace class for t >

0 and �(z) > n/r , respectively, the expressions (9) follow immediately, see [37,
Chapter X§1.4]. Using the Tauberian theorem of Karamata, see [33, Theorem 108] or
[51, Problem 14.2], Weyl’s law for the asymptotics of eigenvalues follows from the
heat trace asymptotics in Corollary 1. ��

To formulate the next corollary, suppose E and F are two vector bundles over
a closed filtered manifold M and let D ∈ DOk(E, F) be a differential operator of
Heisenberg order atmost k ≥ 1 such that D and D∗ are bothRockland. Then D induces
a Fredholm operator between Heisenberg Sobolev spaces, D : Hs(E) → Hs−k(F),
for every real s, see [21, Corollary 3.28]. Moreover, its index does not depend on s
and can be expressed as

ind(D) = dim ker(D) − dim ker(D∗). (10)

By hypoellipticity, we have ker(D) ⊆ �∞(E) and ker(D∗) ⊆ �∞(F), see [21,
Corollary 2.10].

Using (5) one readily checks that D∗D and DD∗ are differential operators of
Heisenberg order at most 2k which satisfy the Rockland condition. Clearly, they are
formally self-adjoint and non-negative. According to Theorem 1, their heat kernels
admit asymptotic expansions as t ↘ 0,

kD
∗D

t (x, x) ∼
∞∑

j=0

t (n− j)/2kqD∗D
j (x)

and

kDD∗
t (x, x) ∼

∞∑

j=0

t (n− j)/2kqDD∗
j (x),

respectively. Here qD∗D
j ∈ �∞(end(E) ⊗ |�M |) and qDD∗

j ∈ �∞(end(F) ⊗ |�M |)
denote the local quantities from Theorem 1 for the operators D∗D and DD∗, respec-
tively.

Corollary 4 (McKean–Singer index formula)Let E and F be two vector bundles over a
closed filtered manifold M. Moreover, let D ∈ DOk(E, F) be a differential operator
of Heisenberg order at most k ≥ 1 such that D and D∗ both satisfy the Rockland
condition. Then

ind(D) = aD∗D
n − aDD∗

n (11)
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where aD∗D
n = ∫

M trE (qD∗D
n ) and aDD∗

n = ∫
M trF (qDD∗

n ). In particular, we have
ind(D) = 0 whenever the homogeneous dimension n is odd.

Proof The argument is the same as in the classical case. As usual,

∂
∂t

(
tr
(
e−t D∗D) − tr

(
e−t DD∗)) = tr

(
D∗De−t D∗D) − tr

(
DD∗e−t DD∗) = 0,

for we have De−t D∗D = e−t DD∗
D and thus tr(D∗De−t D∗D) = tr(DD∗e−t DD∗

).
Hence, tr

(
e−t D∗D) − tr

(
e−t DD∗)

is constant in t and Corollary 1 yields

tr
(
e−t D∗D) − tr

(
e−t DD∗) = aD∗D

n − aDD∗
n , (12)

for all t > 0. On the other hand, e−t D∗D converges to the orthogonal projection onto
ker(D∗D) with respect to the trace norm, as t → ∞. This follows from Weyl’s law
in Corollary 3 or, more directly, from Lemma 5. Hence,

lim
t→∞ tr

(
e−t D∗D) = dim ker(D∗D) = dim ker(D). (13)

Analogously, e−t DD∗
converges to the orthogonal projection onto ker(DD∗) and

lim
t→∞ tr

(
e−t DD∗) = dim ker(DD∗) = dim ker(D∗). (14)

Combining (13) and (14) with (10), we obtain

lim
t→∞

(
tr
(
e−t D∗D) − tr

(
e−t DD∗)) = ind(D).

Combining this with (12), we obtain the McKean–Singer index formula (11). If n is
odd, then aD∗D

n = 0 = aDD∗
n according to Corollary 1, whence ind(D) = 0. ��

According toAtiyah [2] elliptic differential operators representK-homology classes
of the underlying manifold, see also [36], [6, Sect. 17], or [45, Sect. 5]. We have the
following generalization for Rockland differential operators.

Corollary 5 (K-homology class) Let E and F be two vector bundles over a closed
filtered manifold M. Moreover, let D ∈ DOk(E, F) be a differential operator of
Heisenberg order at most k ≥ 1 such that D and D∗ both satisfy the Rockland
condition. Then the following holds true:

(a) P := D(idE +D∗D)−1/2 = (idF +DD∗)−1/2D is bounded from L2(E) to
L2(F).

(b) P∗P − idE is compact on L2(E).
(c) PP∗ − idF is compact on L2(F).
(d) [ f , P] is compact from L2(E) to L2(F), for each f ∈ C∞(M,C).
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Hence, the operator

(
0 P∗
P 0

)
acting on L2(E) ⊕ L2(F) together with the action

of the C∗-algebra C(M) by multiplication constitutes a graded Fredholm module,
representing a K-homology class in K0(M) = KK (C(M),C).

Proof According to Theorem 2 we have (idE +D∗D)−1/2 ∈ �−k(E), and thus
P ∈ �0(E, F). Hence, P represents a bounded operator L2(E) → L2(F), see
[21, Proposition 3.9(a)]. This shows (a).

Clearly, P∗P−idE = −(idE +D∗D)−1 ∈ �−2k(E). Hence, P∗P−idE represents
a compact operator on L2(E), see [21, Proposition 3.9(b)]. This shows (b), and (c)
can be proved analogously.

To see (d), we write

[ f , P] = [ f , D](idE +D∗D)−1/2 + D[ f , (idE +D∗D)−1/2].

The first summand is contained in �−1(E, F), for we have [ f , D] ∈ �k−1(E, F)

and (idE +D∗D)−1/2 ∈ �−k(E). The second summand is in �−1(E, F) too, for
[ f , (idE +D∗D)−1/2] ∈ �−k−1(E). Hence [ f , P] ∈ �−1(E, F), and thus [ f , P] is
compact, see [21, Proposition 3.9(b)]. ��

3 Pseudodifferential Operators on FilteredManifolds

In this section, we will briefly recall van Erp and Yuncken’s pseudodifferential oper-
ator calculus on filtered manifolds, see [56] and [21]. Moreover, we will introduce a
subclass of operators of integral order, characterized by an additional symmetry, and
containing all differential operators. This class will be used to show that the heat ker-
nel expansion for a differential operator has no log terms, and every other polynomial
term vanishes.

Let M be a filtered manifold. For any two complex vector bundles E and F over
M , and every complex number s, there is a class of operators called pseudodiffer-
ential operators of Heisenberg order s and denoted by �s(E, F), mapping sections
of E to sections of F . Every A ∈ �s(E, F) has a distributional Schwartz kernel
k ∈ �−∞(F � E ′) with wave front set contained in the conormal of the diagonal.
In particular, k is smooth away from the diagonal and A induces a continuous oper-
ator �∞

c (E) → �∞(F) which extends continuously to a pseudolocal operator on
distributional sections, �−∞

c (E) → �−∞(F). Here E ′ := E∗ ⊗ |�M | where E∗
denotes the dual bundle and |�M | is the line bundle of 1-densities on M . Moreover,
F � E ′ = p∗1F ⊗ p∗2E ′ where pi : M × M → M denote the canonical projections,
i = 1, 2. As usual,

〈φ, Aψ〉 =
∫

(x,y)∈M×M
φ(x)k(x, y)ψ(y)

for all ψ ∈ �∞
c (E) and φ ∈ D(F) = �∞

c (F ′) where 〈−,−〉 denotes the canonical
pairing between D(F) = �∞

c (F ′) and �∞(F). We will denote the space of these
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conormal kernels byK(M×M; E, F). Moreover, we introduce the notationK∞(M×
M; E, F) := �∞(F � E ′) for the subspace of smooth kernels corresponding to
smoothing operators, denoted byO−∞(E, F). The operators in the class�s(E, F) can
be characterized by having a conormal kernel which admits an asymptotic expansion
along the diagonal in carefully chosen coordinates.

The asymptotic expansion of the kernels can be formulated using tubular neigh-
borhoods of the diagonal adapted to the filtration of M . These are constructed using
two geometrical choices: (1) a splitting of the filtration on T M , i.e., a vector bundle
isomorphism S : tM → T M mapping tpM into T pM such that the composition with
the canonical projection T pM → T pM/T p+1M = tpM is the identity on tpM ; and
(2) a linear connection ∇ on T M preserving the decomposition T M = ⊕

p S(tpM).

Denoting the corresponding exponential map by exp∇ : T M → M , we obtain a com-
mutative diagram:

T M

π

��

tM
exp

∼=
�� −S

∼=
��

π tM

��

T M
(πT M ,exp∇ ) ��

πT M

��

M × M

pr1
��

M

o

��

M

otM

��

M

oTM

��

M .

�

��
(15)

Here exp : tM → T M denotes the fiberwise exponential map, all downwards heading
vertical arrows indicate canonical bundle projections, and the upwards pointingvertical
arrows denote the corresponding zero (neutral) sections. In particular, �(x) = (x, x)
denotes the diagonal mapping, and pr1(x, y) = x . Using−S to identify tM with T M ,
mediates between two common, yet conflicting, conventions we have adopted: The
Lie algebra of a Lie group is defined using left invariant vector fields, while the Lie
algebroid of a smooth Lie groupoid is defined using right invariant vector fields.

Restricting the composition in the top row of diagram (15) to a sufficiently small
neighborhoodU of the zero section in T M , it gives rise to a diffeomorphism ϕ : U →
V onto an open neighborhood V of the diagonal in M × M such that the rectangle at
the bottom of diagram (16) commutes:

(
hom(π∗E, π∗F) ⊗ �π

)|U

��

φ

∼=
�� (F � E ′)|V

��
T M ⊇ U

ϕ

∼=
��

π |U
��

V ⊆ M × M

pr1 |V
��

M

o

��

M .

�

��
(16)

Possibly shrinkingU , there exists a vector bundle isomorphismφ overϕwhich restricts
to the tautological identification over the diagonal/zero section,

o∗
(
hom(π∗E, π∗F) ⊗ �π

) = hom(E, F) ⊗ |�M | = �∗(F � E ′), (17)
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and such that the upper rectangle in diagram (16) commutes. Here�π is the line bundle
over T M obtained by applying the representation |det| to the frame bundle of the
vertical bundle ker(Tπ). Note that the restriction �π |Tx M is canonically isomorphic
to the 1-density bundle |�Tx M |overTx M .Moreover,wehave a canonical identification
o∗�π = |�tM | = |�T M | used in (17). Every pair (ϕ, φ) as above will be referred to
as exponential coordinates adapted to the filtration.Only the germ of (ϕ, φ) along the
zero section is relevant for formulating the asymptotic expansion.Wewill occasionally
suppress the restriction to the neighborhoods U or V in our notation.

Put K∞(T M; E, F) := �∞(
hom(π∗E, π∗F) ⊗ �π

)
, and let K(T M; E, F)

denote the space of distributional sections of hom(π∗E, π∗F)⊗�π with wave front
set contained in the conormal of the zero section o(M). In particular, elements in
K(T M; E, F) are assumed to be smooth away from the zero section. Equivalently,
these can be characterized as families ax ∈ �−∞(|�Tx M |)⊗ hom(Ex , Fx ) which are
smooth away from the origin (regular) and depend smoothly on x ∈ M .

Let s be a complex number. An element a ∈ K(T M; E, F) is called essentially
homogeneous of order s if (δλ)∗a = λsa mod K∞(T M; E, F), for all λ > 0. The
space of principal cosymbols of order s will be denoted by

�s(E, F) :=
{
a ∈ K(T M; E, F)

K∞(T M; E, F)
: (δλ)∗a = λsa for all λ > 0

}
,

cf. [56, Definition 34]. Our notation will often not distinguish between elements in
�s(E, F) and the distributions in K(T M; E, F) representing them. Operators in
�s(E, F) can be characterized as those having a conormal Schwartz kernel k ∈
K(M × M; E, F) which admits an asymptotic expansion of the form

φ∗(k|V ) ∼
∞∑

j=0

k j , (18)

where k j ∈ �s− j (E, F). More precisely, for every integer N there exists an integer

jN such that φ∗(k|V )−∑ jN
j=0 k j is of class C

N . Strictly speaking, the right-hand side

of (18) involves distributions representing the classes k j ∈ �s− j (E, F), restricted to
U . Clearly, the condition expressed in (18) does not depend on the choice of these
representatives. We will continue to suppress this in our notation in similar formulas
below.

It is a non-trivial fact that a kernel which admits an asymptotic expansion as above,
alsohas an asymptotic expansionof the same formwith respect to anyother exponential
coordinates adapted to the filtration, see [56] and [21, Remark 3.7]. Moreover, the
leading term, σ s(A) := k0 ∈ �s(E, F), is independent of the exponential coordinates
and referred to as Heisenberg principal symbol of A ∈ �s(E, F). It provides a short
exact sequence

0 → �s−1(E, F) → �s(E, F)
σ s−→ �s(E, F) → 0.
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The basic properties of the class �s(E, F) and the Heisenberg principal symbol
have been established in [56] and are summarized in [21, Proposition 3.4]. Let us
mention a few. If A ∈ �s(E, F) and B ∈ �r (F,G), then BA ∈ �r+s(E,G) and
σ r+s(BA) = σ r (B)σ s(A), provided one of the two operators is properly supported.
Here the multiplication of cosymbols, �r (F,G) × �s(E, F) → �r+s(E,G) is by
fiberwise convolution on T M . Moreover, At ∈ �s(F ′, E ′) and σ s(At ) = σ s(A)t

where At denotes the formal transposed operator, and the transposed of σ s(A) is
defined using the (fiberwise) inversion on T M . Assuming r ∈ N0, a differential
operator is contained in �r (E, F) if and only if it has Heisenberg order at most r in
the sense of Sect. 2, and in this case the Heisenberg principal symbol discussed in
Sect. 2 is related to the one introduced in the preceding paragraph by the canonical
inclusion

�∞(
U−r (tM) ⊗ hom(E, F)

) ⊆ �r (E, F).

We have
⋂∞

j=0 �s− j (E, F) = O−∞(E, F), where the right-hand side denotes the
smoothing operators. The calculus is asymptotically complete. Hence, an operator
A ∈ �s(E, F) admits a left parametrix B ∈ �−s

prop(F, E), that is to say, BA− id is a
smoothing operator, if and only if σ s(A) admits a left inverse b ∈ �−s(F, E), that is,
bσ s(A) = 1 in�0(E, E), see [56, Theorem60]. The general Rockland theorem in [21,
Theorem 3.13] asserts that such a left inverse b for the principal symbol exists if and
only if σ s

x (A) satisfies the Rockland condition at each point x ∈ M . The operator class
�s gives rise to a Heisenberg Sobolev scale with the expected mapping properties,
see [21, Proposition 3.21] for details.

A more intrinsic characterization of �s(E, F) can be given in terms of the tangent
groupoid associatedwith a filteredmanifold, see [15,56,57]. This is a smooth groupoid
with space of units M × R and arrows

TM = (
T opM × {0}) � (

M × M × R
×)

,

defined such that the inclusions inc0 : T opM → TM and inct : M × M → TM
for t �= 0 are smooth maps of groupoids. Here we use the notation R

× := R\{0}.
As with −S in diagram (15), the opposite groupoid T opM resolves two conflicting,
yet common, conventions we are following, one for Lie algebras of Lie groups, and
another for Lie algebroids of smooth groupoids. The smooth structure on TM can be
characterized using adapted exponential coordinates, see [57, Theorem 16]. Indeed,
if ϕ : U → V is as above, then

T opM × R ⊇ U
�−→ V ⊆ TM, �(g, t) :=

{
(g, 0) if t = 0, and
(
ϕ(δt (ν(g))), t

)
if t �= 0,

is a diffeomorphism from the open subset

U := (
T opM × {0}) ∪ {

(g, t) ∈ T opM × R
× : δt (ν(g)) ∈ U

}
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onto the open subset V := (
T opM × {0}) ∪ (

V × R
×)

. Here ν denotes the inversion
on the osculating groupoid, i.e., the fiberwise inversion on T M , and may be regarded
as an isomorphism of smooth groupoids, ν : T opM → T M , which intertwines the
dilation δ

op
λ on T opM with the dilation δλ on T M . The group of automorphisms δ

op
λ

of T opM extends to a group of automorphisms of the tangent groupoid called the
zoom action by putting δTMλ (g, 0) := (δ

op
λ (g), 0) and δTMλ (x, y, t) := (x, y, t/λ) for

t ∈ R
× and all λ �= 0, see [56, Definition 17].

For two vector bundles E and F over M , we consider the vector bundle

hom
(
σ ∗(E × R), τ ∗(F × R)

) ⊗ �τ (19)

over TM , where σ, τ : TM → M × R denote the source and target maps given by
σ(g, 0) = (π(g), 0) = τ(g, 0), σ(x, y, t) = (y, t), and τ(x, y, t) = (x, t) where
g ∈ T opM , t ∈ R

×, and x, y ∈ M . Moreover, �τ denotes the line bundle obtained by
applying the representation |det| to the frame bundle of the vertical bundle of τ . We let
K∞(TM; E, F) denote the space of smooth sections of the vector bundle (19), and we
letK(TM; E, F) denote the space of distributional sections of (19)withwave front set
conormal to the space of units in TM . The inclusions and the scaling automorphisms
give rise to a commutative diagram, t ∈ R

× and λ �= 0,

K(T opM; E, F)

(δ
op
λ )∗

��

K(TM; E, F)
ev0�� evt ��

(δTMλ )∗
��

K(M × M; E, F)

K(T opM; E, F) K(TM; E, F)
ev0�� evt/λ �� K(M × M; E, F)

(20)

in which all maps are multiplicative, that is to say, compatible with the convolution
and transposition induced by the groupoid structures on T opM , TM , and M × M ,
respectively.

A conormal kernel k ∈ K(M × M; E, F) corresponds to an operator in �s(E, F)

if and only if it admits an extension across the tangent groupoid which is essentially
homogeneous of order s. More precisely, iff there exists K ∈ K(TM; E, F) such
that ev1(K) = k and (δTMλ )∗K = λsK mod K∞(TM; E, F) for all λ > 0, see [56,
Definition 19] or [21, Definition 3.2]. In this case, we have σ s(A) = ν∗(ev0(K)).

To express this more succinctly, let us introduce the notation

�s(TM; E, F) :=
{
K ∈ K(TM; E, F)

K∞(TM; E, F)
: (δTMλ )∗K = λsK for all λ > 0

}

and

�s(T opM; E, F) :=
{
a ∈ K(T opM; E, F)

K∞(T opM; E, F)
: (δ

op
λ )∗a = λsa for all λ > 0

}
.
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Then we have the following commutative diagram:

0 �� �s−1(E, F)

��

� � �� �s(E, F)

��

σ s
�� �s(E, F) �� 0

�s−1(E,F)
O−∞(E,F)

� � �� �s (E,F)
O−∞(E,F)

0 �� �s−1(TM; E, F)

ev1 ∼=
		

t �� �s(TM; E, F)

ev1 ∼=
		

ev0 �� �s(T opM; E, F) ��

ν∗∼=

		

0

(21)

The bottom row in (21) is exact in view of [56, Lemma 36 and Proposition 37]. The
vertical arrow labeled ev1 is onto by definition of the class �s(E, F). It follows from
[56, Lemma 32 and Proposition 37] that these vertical arrows are injective too. The
arrow labeled t in (21) is induced by multiplication with the function t : TM → R

given by the composition of the source (or target) map TM → M × R with the
canonical projection onto R. Note that

ev1(tK) = ev1(K) and
(
δTMλ

)
∗(tK) = λt

(
δTMλ

)
∗K (22)

for all λ �= 0 andK ∈ K(TM; E, F). These facts permit to define the principal symbol
map σ s such that the diagram becomes commutative. Moreover, the exactness of the
sequence in the top row of (21) follows from the exactness of the sequence at the
bottom.

By conormality, K has a Taylor expansion along T opM × {0}

�∗(
K|V

) ∼
∞∑

j=0

K j t
j (23)

whereK j ∈ �s− j (T opM; E, F) andK j t j is considered as a distribution on T opM×
R. More precisely, for each integer N there exists an integer jN such that �∗(

K|V
)−

∑ jN
j=0 K j t j is of class CN . The coefficients are related to the terms in the asymptotic

expansion (18) of k = ev1(K) via

k j = ν∗(K j ). (24)

Let us now turn to the aforementioned subclass of �r (E, F) for integral r .

Definition 1 Suppose r ∈ Z. A principal cosymbol a ∈ K(T M; E, F) is said to be
essentially projectively homogeneous of order r if (δλ)∗a = λr amodK∞(T M; E, F)

holds for all λ �= 0. Correspondingly, we put

�r
2(E, F) :=

{
a ∈ K(T M; E, F)

K∞(T M; E, F)
: (δλ)∗a = λr a for all λ �= 0

}
,
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using the subscript 2 to indicate this additional Z2 symmetry. Note that

�r
2(E, F) = {

a ∈ �r (E, F) : (δ−1)∗a = (−1)r a
}
. (25)

Let us also introduce the notation

Pr (T M; E, F) := {
a ∈ K∞(T M; E, F) : (δλ)∗a = λr a for all λ > 0

}
. (26)

Clearly, Pr (T M; E, F) = 0 if −r − n /∈ N0. For −r − n ∈ N0 these are smooth
kernels which are polynomial along each fiber Tx M . In particular, the homogeneity
in (26) remains true for all λ �= 0. As in [21, Lemma 3.8] one can show:

Lemma 2 Suppose a ∈ K(T M; E, F) and r ∈ Z. Then a is essentially projectively
homogeneous of order r , i.e., represents an element in �r

2(E, F), if and only if there
exist a∞ ∈ K∞(T M; E, F), q ∈ K(T M; E, F) and p ∈ Pr (T M; E, F) such that
a = a∞ + q and

(δλ)∗q = λr q + λr log |λ|p, for all λ �= 0.

Here q is only unique mod Pr (T M; E, F), but p is without ambiguity.

Definition 2 An operator A ∈ �r (E, F) of integral order r ∈ Z is called pro-
jective if its Schwartz kernel k admits an extension across the tangent groupoid,
K ∈ K(TM; E, F), which is essentially projectively homogeneous of order r , that is,
ev1(K) = k, and for all λ �= 0 we have (δTMλ )∗K = λrK mod K∞(TM; E, F). We
will denote these operators by �r

2(E, F).

Proposition 1 The class �r
2 has the following properties:

(a) If A ∈ �r
2(E, F) and B ∈ �l

2(F,G) then BA ∈ �l+r
2 (E,G), provided at least

one of A and B is properly supported.
(b) If A ∈ �r

2(E, F), then At ∈ �r
2(F

′, E ′).
(c) If A ∈ �r

2(E, F), then σ r (A) ∈ �r
2(E, F). Moreover,

0 → �r−1
2 (E, F) → �r

2(E, F)
σ r−→ �r

2(E, F) → 0

is a natural short exact sequence.
(d)

⋂
r∈Z �r

2(E, F) = O−∞(E, F), the smoothing operators.
(e) For r ∈ N0 we have DOr (E, F) = DO(E, F) ∩ �r

2(E, F).
(f) If an operator in �r

2(E, F) admits a left parametrix in �−r (F, E), then it also
admits a left parametrix �−r

2 (F, E). An analogous statement holds true for right
parametrices.

(g) Suppose A ∈ �r (E, F) and let φ∗(k|V ) ∼ ∑∞
j=0 k j with k j ∈ �r− j (E, F)

denote the asymptotic expansion of its kernel along the diagonal with respect
to adapted exponential coordinates. Then A ∈ �r

2(E, F) if and only if k j ∈
�

r− j
2 (E, F) for all j ∈ N0.
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Proof Parts (a) and (b) can be proved exactly as in [56], see also [21, Proposition 3.4].
Indeed, all maps in the commutative diagram (20) are multiplicative.

To see (c) put

�r
2(TM; E, F) :=

{
K ∈ K(TM; E, F)

K∞(TM; E, F)
: (δTMλ )∗K = λrK for all λ �= 0

}

and note that

�r
2(TM; E, F) = {

K ∈ �r (TM; E, F) : (δTM−1 )∗K = (−1)rK
}
. (27)

Moreover, introduce

�r
2(T opM; E, F) :=

{
a ∈ K(T opM; E, F)

K∞(T opM; E, F)
: (δ

op
λ )∗a = λr a for all λ �= 0

}
,

and note that

�r
2(T opM; E, F) = {

a ∈ �r (T opM; E, F) : (δ
op
−1)∗a = (−1)r a

}
. (28)

Using the commutativity of the left square in (20) and (22) we see that (21) restricts
to a commutative diagram:

0 �� �r−1
2 (E, F)

��

� � �� �r
2(E, F)

��

σ r
�� �r

2(E, F) �� 0

�r−1
2 (E,F)

O−∞(E,F)

� � �� �r
2 (E,F)

O−∞(E,F)

0 �� �r−1
2 (TM; E, F)

ev1 ∼=
		

t �� �r
2(TM; E, F)

ev1 ∼=
		

ev0 �� �r
2(T opM; E, F) ��

ν∗∼=

		

0

(29)

Using (28), (27), and the averaging operator 1
2

(
id+(−1)−r (δTM−1 )∗

)
, one readily sees

that the bottom row in the diagram above is exact, for the same is true in (21). Conse-
quently, the top row in (29) is also exact, whence (c).

Part (d) follows immediately from
⋂

r∈Z �r (E, F) = O−∞(E, F), see [56, Corol-
lary 53] or [21, Proposition 3.4(c)], for we have the obvious inclusionsO−∞(E, F) ⊆
�r

2(E, F) ⊆ �r (E, F).
The proof of [21, Proposition 3.4(f)] actually shows (e), see also [56, Sect. 10.3].
To see (f), consider A ∈ �r

2(E, F) and B ∈ �−r (F, E) such that BA − id is a
smoothing operator. Choose K ∈ �r

2(TM; E, F) such that ev1(K) represents A mod
smoothing operators. Moreover, choose L ∈ �−r (TM; F, E) such that ev1(L) rep-
resents B mod smoothing operators. Since ev1 induces a multiplicative isomorphism
as indicated in (21), we conclude LK = 1 in �0(TM; E, E). Consider L̃ := 1

2

(
L+
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(−1)r (δTM−1 )∗L
) ∈ �−r

2 (TM;F,E). In view of 1 = (δTM−1 )∗1 = (δTM−1 )∗(LK) =(
(δTM−1 )∗L

)(
(δTM−1 )∗K

) = (
(δTM−1 )∗L

)(
(−1)rK

) = (
(−1)r (δTM−1 )∗L

)
K, we con-

clude L̃K = 1 in �0
2(TM; E, E). Hence, ev1(L̃) gives rise to a left parametrix

B̃ ∈ �−r
2 (F, E) such that B̃ A − id is a smoothing operator.

To see (g), consider K ∈ �r (TM; E, F) and suppose the kernel k = ev1(K)

represents the operator A ∈ �r (E, F). From (23) we get

�∗((δTM−1 )∗K|V
) ∼

∞∑

j=0

(−1) j (δop−1)∗(K j )t
j , (30)

since we have δTMλ (�(g, t)) = �
(
δ
op
λ (g), t/λ

)
for all λ �= 0. Now, A ∈ �r

2(E, F)

iff (δTM−1 )∗K = (−1)rK in �r (TM; E, F), see (27). Comparing (23) with (30), we
conclude that this is the case iff (δ

op
−1)∗K j = (−1)r− j

K j in �r− j (T opM; E, F), for

all j . Using (28), we see that this holds iff K j ∈ �
r− j
2 (T opM; E, F), for all j . In

view of (24), this is in turn equivalent to k j ∈ �
r− j
2 (E, F), for all j . ��

Remark 1 Proposition 1(b) implies that the class �r
2 is invariant under taking formal

adjoints too. More precisely, if A ∈ �r
2(E, F), then A∗ ∈ �r

2(F, E)where the formal
adjoint is with respect to inner products of the form (4).

4 Heat Kernel Asymptotics

The aim of this section is to prove Theorem 1. To this end let E be a vector bundle over
a closed filtered manifold M , and suppose A ∈ DOr (E) is a differential Rockland
operator of even Heisenberg order r > 0 which is formally self-adjoint and non-
negative with respect to the L2 inner product induced by a volume density dx on M
and a fiberwise Hermitian metric h on E , see (4).

We turn M × R into a filtered manifold by putting

T p(M × R) :=
{

π∗
1 T

pM if p > −r , and

π∗
1 T

pM ⊕ π∗
2 TR if p ≤ −r .

Here π1 : M × R → M and π2 : M × R → R denote the canonical projections, and
we identify T (M ×R) = π∗

1 T M⊕π∗
2 TR. We will regard A and ∂

∂t as operators over

M×R acting on sections of the pull back bundle Ẽ := π∗
1 E . The fiberwise Hermitian

metric h on E induces a fiberwise Hermitian metric h̃ := π∗
1 h on Ẽ . Furthermore, the

volume density dx on M and the standard volume density dt on R provide a volume
density dxdt on M × R. We will use the L2 inner product on sections of Ẽ induced
by dxdt and h̃, see (4).

This filtration on M × R is motivated by the fact that the heat operator A + ∂
∂t

becomes a Rockland operator. More precisely, we have:
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Lemma 3 The differential operator A+ ∂
∂t is a Rockland operator of Heisenberg order

r . The same is true for (A + ∂
∂t )

∗ = A − ∂
∂t .

Proof Clearly, ∂
∂t ∈ �∞(T−r (M ×R)), hence ∂

∂t is a differential operator of Heisen-
berg order at most r on M × R. Since π∗

1 T
pM ⊆ T p(M × R), the operator A has

Heisenberg order at most r when considered on M × R. Consequently, A + ∂
∂t has

Heisenberg order at most r .
For (x, t) ∈ M × R, the canonical projections induce a canonical isomorphism of

osculating algebras,

t(x,t)(M × R) = tx M ⊕ R, (31)

where R is a central ideal in homogeneous degree −r . Correspondingly, we obtain a
canonical isomorphism of osculating groups,

T(x,t)(M × R) = Tx M × R, (32)

such that the parabolic dilation becomes

δ
T (M×R)
λ,(x,t) (g, τ ) = (

δT M
λ,x (g), λrτ

)
, (33)

where g ∈ Tx M , τ ∈ R, and λ �= 0.
Let σ r

x (A) ∈ U−r (tx M) ⊗ end(Ex ) denote the Heisenberg principal symbol of A.
For the Heisenberg principal symbol of A + ∂

∂t we clearly have

σ r
(x,t)

(
A + ∂

∂t

) = σ r
x (A) + T , (34)

via the canonical isomorphism induced by (31),

U−r
(
t(x,t)(M × R)

) ⊗ end
(
Ẽ(x,t)

) = (
U(tx M) ⊗ R[T ])−r ⊗ end(Ex ).

HereR[T ] = U(R) denotes the polynomial algebra in one variable T of homogeneous
degree −r .

To verify the Rockland condition, consider a non-trivial irreducible unitary repre-
sentation of the osculating group, π : T(x,t)(M × R) → U (H), on a Hilbert space
H. Since the factor R in (31) is central, b := π(T ) acts by a scalar on H, see [38,
Theorem 5 in Appendix V]. Hence, restricting π via (32), we obtain an irreducible
representation π̄ : Tx M → U (H). Putting a := π̄(σ r

x (A)), (34) gives

π
(
σ r
x

(
A + ∂

∂t

)) = a + b. (35)

LetH∞ denote the space of smooth vectors for the representation π , and note that this
coincides with the space of smooth vectors of π̄ . By unitarity, and since A is assumed
to be formally self-adjoint, we have a∗ = a and b∗ = −b, see (5), hence

(a − b)(a + b) = a∗a + b∗b.
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By positivity, it thus suffices to show that a or b acts injectively on H∞, see (35).
If π̄ is non-trivial, then a acts injectively for A is assumed to satisfy the Rockland
condition. If π̄ is trivial, then b acts injectively, for it has to be a non-trivial scalar.3 ��

In view of [21, Theorem 3.13] and Lemma 3, the operator A+ ∂
∂t admits a properly

supported parametrix Q̃ ∈ �−r
prop(Ẽ), see also [21, Remarks 3.18 and 3.19]. Hence,

there exist smoothing operators R1 and R2 over M × R such that

Q̃
(
A + ∂

∂t

) = id+R1 and
(
A + ∂

∂t

)
Q̃ = id+R2. (36)

By the definition of the class �−r
prop(Ẽ), see Sect. 3 or [21, Definition 3.2], Q̃ has a

properly supported Schwartz kernel, kQ̃ ∈ �−∞
prop(Ẽ � Ẽ ′), whose wave front set is

contained in the conormal of the diagonal. In particular, kQ̃ is smooth away from the
diagonal. Moreover, kQ̃ admits an asymptotic expansion along the diagonal.

To describe the asymptotic expansion of the kernel kQ̃ , we will use adapted expo-
nential coordinates for M × R which are compatible with the product structure and
the translational invariance of the operator A+ ∂

∂t . We start with adapted exponential
coordinates forM as described in Sect. 3 and summarized in the commutative diagram
(16). The exponential coordinates on M × R will be defined such that the following
diagram commutes:

(
end(π̃∗ Ẽ) ⊗ �π̃

)|Ũ

��

φ̃ �� (Ẽ � Ẽ ′)|Ṽ

��
T (M × R) ⊇ Ũ

ϕ̃ ��

π̃ |Ũ
��

Ṽ ⊆ (M × R) × (M × R)

pr1
��

M × R

õ

��

M × R.

�̃

��

Here π̃ : T (M × R) → M × R denotes the bundle projection, õ is the zero section,
and �̃ denotes the diagonal mapping. Moreover,

Ṽ := {(x, s; y, t) ∈ (M × R) × (M × R) : (x, y) ∈ V }
Ũ(x,s) := {(g, t) ∈ T(x,s)(M × R) = Tx M × R : g ∈ U }

ϕ̃(x,s)(g, t) := (x, s;ϕx (g), s − t) (37)

φ̃(x,s)(g, t) := φx (g) (38)

where (x, s) ∈ M × R and (g, t) ∈ T(x,s)(M × R) = Tx M × R. Note that these
are exponential coordinates as described in Sect. 3 associated with the splitting of the
filtration T (M × R) ∼= t(M × R) induced by the splitting T M ∼= tM and the linear
connection on T (M × R) = π∗

1 T M ⊕ π∗
2 TR induced from the linear connection on

T M and the trivial connection on TR.

3 H has to be one-dimensional in this case.
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The Heat Asymptotics on Filtered Manifolds 361

Pulling back the Schwartz kernel of Q̃ with φ̃, we obtain a distributional section
φ̃∗(kQ̃ |Ṽ ) of the vector bundle end(π̃∗ Ẽ)⊗�π̃ over Ũ . According to Proposition 1(e)

and (f) , the parametrix Q̃ may be assumed to be in the class �−r
2 (Ẽ). Hence, see

Proposition 1(g), we have an asymptotic expansion of the form

φ̃∗(kQ̃ |Ṽ
) ∼

∞∑

j=0

q̃ j (39)

where q̃ j ∈ �
−r− j
2 (Ẽ). More precisely, for every integer N there exists an integer jN

such that φ̃∗(kQ̃ |Ṽ )−∑ jN
j=0 q̃ j is of class CN on Ũ . According to Lemma 2, we may

fix representatives q̃ j ∈ K
(
T (M × R); Ẽ)

satisfying

(
δ
T (M×R)
λ

)
∗q̃ j = λ−r− j q̃ j − λ−r− j log |λ| p̃ j , λ �= 0, (40)

where p̃ j ∈ P−r− j
(
T (M × R); Ẽ)

is smooth and strictly homogeneous,

(
δ
T (M×R)
λ

)
∗ p̃ j = λ−r− j p̃ j , λ �= 0.

The representative q̃ j satisfying (40) is unique mod P−r− j
(
T (M × R); Ẽ)

. The
logarithmic terms p̃ j , however, are without ambiguity.

The heat semi-group e−t A permits to invert the heat operator A+ ∂
∂t over M ×R.

Following [4, Sect. 5] we let C+(R, L2(E)) denote the space of continuous functions
ψ : R → L2(E) for which there exists t0 ∈ R such that ψ(t) = 0 for all t ≤ t0. We
consider the operator Q : C+(R, L2(E)) → C+(R, L2(E)) defined by

(Qψ)(s) :=
∫ s

−∞
e−(s−t)Aψ(t) dt, ψ ∈ C+(R, L2(E)). (41)

Since e−t A is strongly continuous, the integrand e−(s−t)Aψ(t) depends continu-
ously on t ∈ (−∞, s], hence the integral converges and Qψ ∈ C+(R, L2(E)),
cf. [37, Lemma 3.7 in Sect. III§3.1]. Since e−t A is a contraction, the estimate
‖(Qψ)(s)‖ ≤ |s − t0| supt∈[t0,s] ‖ψ(t)‖ holds for all ψ ∈ C+(R, L2(E)) which
are supported on [t0,∞). This shows that Q is continuous, when C+(R, L2(E)) =
lim−→C[t0,∞)(R, L2(E)) is equipped with the inductive limit topology over t0 ∈ R, and

C[t0,∞)(R, L2(E)) denotes the subspace of continuous maps which are supported on
[t0,∞) carrying the topology of uniform convergence on compact subsets. Compos-
ing Q with the continuous inclusions �∞

c (Ẽ) ⊆ C+(R, L2(E)) andC+(R, L2(E)) ⊆
�−∞(Ẽ), we may thus regard it as a continuous operator, Q : �∞

c (Ẽ) → �−∞(Ẽ).
By the Schwartz kernel theorem, Q has a distributional kernel, kQ ∈ �−∞(Ẽ � Ẽ ′),
that is,

〈φ, Qψ〉 =
∫

(x,s;y,t)∈(M×R)×(M×R)

φ(x, s)kQ(x, s; y, t)ψ(y, t) (42)
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for ψ ∈ �∞
c (Ẽ) and φ ∈ D(Ẽ) = �∞

c (Ẽ ′). From (6) and (41) we get

(
A + ∂

∂t

)
Qψ = ψ = Q

(
A + ∂

∂t

)
ψ (43)

in the distributional sense, for all ψ ∈ �∞
c (Ẽ), cf. [4, Eq. (5.12)].

Comparing (43) with (36) we obtain, as in [4, Sect. 5],

(id+R1)Qψ = Q̃ψ = Q(id+R2)ψ (44)

for allψ ∈ �∞
c (Ẽ). Note here, that Q̃ is properly supported, defining continuous oper-

ators on�−∞(Ẽ) and�∞
c (Ẽ).Moreover, R1 and R2 are properly supported smoothing

operators, defining continuous operators �−∞
c (Ẽ) → �∞

c (Ẽ) and �−∞(Ẽ) →
�∞(Ẽ). The equality on the left-hand side in (44) implies that Q maps �∞

c (Ẽ) con-
tinuously into �∞(Ẽ). Hence, QR2 is a smoothing operator, for it maps �−∞

c (Ẽ)

continuously into �∞(Ẽ). Using the equality on the right-hand side of (44), we con-
clude that Q̃ − Q is a smoothing operator.

Since Q differs from Q̃ by a smoothing operator, kQ is smooth away from the
diagonal and (39) gives an asymptotic expansion

φ̃∗(kQ |Ṽ
) ∼

∞∑

j=0

q̃ j . (45)

Using Taylor’s theorem, we may, by adding terms in P−r− j
(
T (M × R); Ẽ)

to q̃ j ,
assume that for every integer N there exists an integer jN such that

⎛

⎝φ̃∗(kQ |Ṽ
) −

jN∑

j=0

q̃ j

⎞

⎠

(x,s)

(g̃) = O
(|g̃|N )

, (46)

as g̃ → õ(x,s) ∈ T(x,s)(M × R), uniformly for (x, s) in compact subsets of M × R.
Here |−| denotes a fiberwise homogeneous norm on T (M×R). Comparing (7), (41),
and (42), we find

kQ(x, s; y, s − t) =
{
kt (x, y)dt for t > 0, and

0 for t < 0.
(47)

In particular, kt (x, y) is smooth on M × M × (0,∞). Furthermore, φ̃∗
(x,s)(kQ |Ṽ )

vanishes on Tx M × (−∞, 0) ⊆ Tx M × R = T(x,s)(M × R) and does not depend on
s, see (37) and (38). Combining this with (46) and (40), we conclude that

q̃ j,x := q̃ j,(x,s) vanishes on Tx M × (−∞, 0) ⊆ T(x,s)(M × R) (48)

and does not depend on s ∈ R, for every j ∈ N0 and all x ∈ M . Note here that
Tx M × (−∞, 0) is invariant under scaling, see (33). Using (48) and (40), we see
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that p̃ j,(x,s) vanishes on Tx M × (−∞, 0). Since p̃ j,(x,s) is polynomial, we conclude
p̃ j,(x,s) = 0 for every j ∈ N0 and all (x, s) ∈ M × R. This shows that there are no
log terms in the asymptotic expansion (45). In other words,

(
δ
T (M×R)
λ

)
∗q̃ j = λ−r− j q̃ j , λ �= 0. (49)

Restricting (46) we obtain, using (37) and (33),

kQ(x, s; x, s − t) =
jN∑

j=0

φ̃(x,s)
(
q̃ j,(x,s)(ox , t)

) + O
(|t |N/r ), (50)

as |t | → 0, uniformly in x . Using (49), (38), (33), and (2), where n has to be replaced
by the homogeneous dimension n + r of M × R, we obtain

φ̃(x,s)
(
q̃ j,(x,s)(ox , t)

) = t ( j−n)/r φ̃(x,s)
(
q̃ j,(x,s)(ox , 1)

)
(51)

for all x ∈ M , s ∈ R, and t > 0. In Eq. (51) we are using (left) trivialization of
the 1-density bundle of the osculating group T(x,s)(M × R) to identify the two sides.
Hence, defining q j ∈ �∞(

end(E) ⊗ |�M |) by

q j (x)dt := φ̃(x,s)
(
q̃ j,(x,s)(ox , 1)

)
, (52)

we obtain from (47), (50), (51), and (52)

kt (x, x) =
N−1∑

j=0

t ( j−n)/r q j (x) + O
(
t (N−n)/r ),

as t ↘ 0, uniformly in x .
Using λ = −1 in (49) we see that q̃ j,(x,s)(ox , t) = 0 for all odd j and t �= 0, see

(33) and (2). Hence, q j (x) = 0 for all odd j , see (52).

Remark 2 The asymptotic term q j ∈ �∞(
end(E)⊗ |�M |) in Theorem 1 can be read

off the homogeneous term q̃ j ∈ �−r− j (Ẽ) in the asymptotic expansion (39) of any
parametrix Q̃ for the heat operator A + ∂

∂t on M × R. Indeed, the representative

q̃ j ∈ K(T (M ×R); Ẽ) used in (52) is uniquely characterized by (51) and (48). Note
that these representatives are also translation invariant, corresponding precisely to the
homogeneous terms on which the Volterra–Heisenberg calculus is based on, see [4,
Sect. 3] and [43, Sect. 5.1].

To complete the proof of Theorem 1 it remains to show q0(x) > 0. This will be
accomplished using the subsequent lemmaconcerning the heat kernel on the osculating
groups, cf. [43, Lemma 6.1.4].
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Lemma 4 Consider theHeisenbergprincipal symbolσ r
x (A)asa left invariant homoge-

neous differential operator acting onC∞(Tx M, Ex ). The corresponding heat equation
admits a kernel (fundamental solution) in the Schwartz space of end(Ex )-valued 1-
densities on Tx M. More precisely, there exists a family

k
σ r
x (A)

t ∈ S
(|�Tx M |) ⊗ end(Ex ), (53)

depending smoothly on t > 0, which satisfies the heat equation, i.e.,

∂
∂t k

σ r
x (A)

t = −σ r
x (A)k

σ r
x (A)

t , (54)

and the initial condition

lim
t↘0

k
σ r
x (A)

t ψ = ψ, (55)

for all ψ ∈ S(Tx M) ⊗ Ex . Moreover, this kernel is homogeneous, that is,

(δ
Tx M
λ,x )∗k

σ r
x (A)

t = k
σ r
x (A)

λr t , (56)

for all t > 0 and λ �= 0. Furthermore, k
σ r
x (A)

t (ox ) > 0 in |�Tx M,ox | ⊗ end(Ex ), for

each t > 0. The heat kernel k
σ r
x (A)

t is uniquely characterized by (54) in the following
sense: Every family of tempered distributions k′′t ∈ S ′(Tx M) ⊗ end(Ex ) which is
continuously differentiable in t > 0, satisfies the heat equation (54) and the initial

condition limt↘0 k′′t = δox in S ′(Tx M) ⊗ end(Ex ), coincides with k
σ r
x (A)

t .

Proof Since Q̃ is a parametrix for A + ∂
∂t , we have σ r

(x,s)(A + ∂
∂t )σ

−r
(x,s)(Q̃) = 1

in �0
(x,s)(Ẽ), for any fixed s ∈ R. As σ r

(x,s)(A + ∂
∂t ) = σ r

x (A) + ∂
∂t and q̃0,x =

q̃0,(x,s) = σ−r
(x,s)(Q̃), we get

(
σ r
x (A)+ ∂

∂t

)
q̃0,x = δ(ox ,0) modK∞(

Tx M ×R; Ẽx
)
. By

homogeneity, see (49), we actually have

(
σ r
x (A) + ∂

∂t

)
q̃0,x = δ(ox ,0). (57)

Hence, restricting q̃0,x to Tx M×(0,∞) ⊆ Tx M×R = T(x,s)(M×R), more precisely,
defining

k
σ r
x (A)

t dt := q̃0,x |Tx M×{t}, t > 0, (58)

we obtain a smooth kernel satisfying the differential equation in (54). As Q̃ is also a
left parametrix for A + ∂

∂t , a similar argument shows

∂
∂t k

σ r
x (A)

t = −k
σ r
x (A)

t σ r
x (A), (59)
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where the right-hand side involves the convolution of the (smooth) kernel k
σ r
x (A)

t with
the (distributional) kernel of σ r

x (A), a distribution on Tx M which is supported at the
unit element ox . The homogeneity formulated in (56) follows from (49), see also (33).

To show that k
σ r
x (A)

t is in the Schwartz class, we fix a homogeneous norm | − |
and translation invariant volume density dg on Tx M . Writing k

σ r
x (A)

t = k′t dg and
q̃0,x = q ′dgdt , homogeneity implies

k′t (g) = |g|−nq ′
(
δ−1
|g| (g), |g|−r t

)
, (60)

for all t > 0 and ox �= g ∈ Tx M . Since q ′ is smooth away from the origin in Tx M×R

and vanishes onTx M×(−∞, 0), see (48), it vanishes to infinite order alongTx M×{0}.
Combining this with (60), we see that |g|mk′t (g) tends to 0, as |g| → ∞, for each
m ∈ N. The same argument shows that this remains true if k′t is replaced with Bk′t
where B is some left invariant homogeneous differential operator on Tx M . This shows
that k′t is indeed in the Schwartz space S(Tx M) ⊗ end(Ex ), whence (53).

By homogeneity, see (56), the integral
∫
Tx M

k
σ r
x (A)

t is independent of t . Testing (57)
with χ ∈ �∞

c (R, Ex ), considered as function on Tx M ×R which is constant in Tx M ,
we obtain

χ(0) = 〈δ(ox ,0), χ〉 =
〈(
σ r
x (A) + ∂

∂t

)
q̃0,x , χ

〉 = −〈q̃0,x , χ ′〉
= −

∫

Tx M
k
σ r
x (A)

t

∫ ∞

0
χ ′(t)dt =

(∫

Tx M
k
σ r
x (A)

t

)
χ(0),

see (48) and (58). Consequently,

∫

Tx M
k
σ r
x (A)

t = idEx , (61)

for all t > 0. Using (56), this readily implies the initial condition (55).
Let us now turn to the uniqueness of the heat kernel. The heat equation for k′′t and

(59) imply that for fixed t > 0 the expression k
σ r
x (A)

s k′′t−s is independent of s ∈ (0, t).

Moreover, the initial condition for k′′t gives lims↗t k
σ r
x (A)

s k′′t−s = k
σ r
x (A)

t , while the

initial condition (55) for k
σ r
x (A)

t implies lims↘0 k
σ r
x (A)

s k′′t−s = k′′t . Combining these

observations, we obtain k′′t = k
σ r
x (A)

t , as well as the semi-group property

k
σ r
x (A)

s k
σ r
x (A)

t = k
σ r
x (A)

s+t , s, t > 0. (62)

Since A is formally self-adjoint, we also have
(
k
σ r
x (A)

t
)∗ = k

σ r
x (A)

t , that is,

k
σ r
x (A)

t (g−1) = (
k
σ r
x (A)

t (g)
)∗

, (63)

123



366 S. Dave, S. Haller

for g ∈ Tx M and t > 0. Combining (62) and (63), we obtain

k
σ r
x (A)

2t (ox ) =
∫

g∈Tx M

(
k
σ r
x (A)

t (g)
)∗
k
σ r
x (A)

t (g). (64)

Using (61), we conclude k
σ r
x (A)

2t (ox ) > 0 in |�Tx M,ox | ⊗ end(Ex ). ��
From (52) and (58) we get, up to the canonical identification |�M,x | = |�Tx M,ox |,

q0(x) = k
σ r
x (A)

1 (ox ). (65)

Hence, q0(x) > 0 in |�M,x | ⊗ end(Ex ), for we have k
σ r
x (A)

t (ox ) > 0 according to
Lemma 4. This completes the proof of Theorem 1.

5 Complex Powers

In this section, we will present a proof of Theorem 2 following the approach in [43,
Sect. 5.3]. Throughout this section E denotes a vector bundle over a closed filtered
manifold M , and A ∈ DOr (E) is a Rockland differential operator of even Heisenberg
order r > 0 which is formally self-adjoint and non-negative as in Theorem 1.

Recall that by hypoellipticity, ker(A) is a finite dimensional subspace of �∞(E),
see [21, Corollary 2.10]. Let P denote the orthogonal projection onto ker(A). To
express the complex powers using the Mellin formula,

A−z = 1

�(z)

∫ ∞

0
t z−1(e−t A − P)dt, �(z) > 0, (66)

we need the following standard estimate for the heat kernel for large time.

Lemma 5 Let p ∈ �∞(E � E ′) denote the Schwartz kernel of the orthogonal projec-
tion P onto ker(A). Then there exists ε > 0 such that

kt (x, y) = p(x, y) + O
(
e−tε) (67)

as t → ∞, uniformly with all derivatives in x and y.

Proof Since A is self-adjoint and non-negative, its spectrum is contained in [0,∞).
Moreover, since A has compact resolvent, zero is isolated in its spectrum. Hence, by
functional calculus, there exists ε > 0 such that

e−t A = P + O
(
e−tε)

as t → ∞ with respect to the operator norm topology on B
(
L2(E)

)
. Writing

e−t A = e−A/2e−(t−1)Ae−A/2
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and using the fact that e−A/2 is a smoothing operator, we conclude

e−t A = P + O
(
e−tε) (68)

in L
(
�−∞(E), �∞(E)

)
with respect to the topology of uniform convergence on

bounded subsets of �−∞(E), as t → ∞. By nuclearity, and since �−∞(E) is the
strong dual of �∞(E ′), we have canonical topological isomorphisms

L
(
�−∞(E), �∞(E)

) = �∞(E)⊗̂�∞(E ′) = �∞(E � E ′),

see [53, Eqs. (50.17) and (51.4)]. Hence, (68) is equivalent to (67). ��

Suppose �(z) > 0. In view of the remarks on the spectrum at the beginning of
the proof of Lemma 5, the integral on the right-hand side of the Mellin formula (66)
converges to A−z with respect to the operator norm topology on L2(E). In particular,
A−z is a bounded operator on L2(E) and its distributional kernel can be expressed in
the form

kA−z (x, y) = 1

�(z)

∫ ∞

0
t z−1(kt (x, y) − p(x, y)

)
dt, �(z) > 0,

where the integral on the right-hand side converges in the distributional sense. Splitting
the integral as usual, we may rewrite this as

kA−z (x, y) = 1

�(z)

∫ 1

0
t z−1kt (x, y)dt − 1

�(z)

p(x, y)

z

+ 1

�(z)

∫ ∞

1
t z−1(kt (x, y) − p(x, y)

)
dt, �(z) > 0. (69)

In view of (67) the second integral converges with respect to the C∞-topology and
defines a smooth function on M × M × C which depends holomorphically on z. If
x �= y, then kt (x, y) vanishes to infinite order at t = 0, see (47), hence the first integral
in (69) converges in the C∞-topology and defines a smooth function on {x �= y} ×C

which depends holomorphically on z.
To study the behavior of

Kz(x, y) :=
∫ 1

0
t z−1kt (x, y)dt, �(z) > 0, (70)

near the diagonal,wefixa real number s, use (47), andmove to exponential coordinates,
see (37) and (38),

(φ∗Kz)x (g) =
∫

t∈[0,1]
t z−1(φ̃∗(kQ |Ṽ )

)
(x,s)(g, t), �(z) > 0, (71)

123



368 S. Dave, S. Haller

where x ∈ M , g ∈ Tx M . Given an integer N , we choose an integer jN such that
φ̃∗(kQ |Ṽ ) − ∑ jN

j=0 q̃ j is of class CN , see (46), and rewrite (71) in the form

(φ∗Kz)x (g)=
∫

t∈[0,1]
t z−1

⎛

⎝φ̃∗(kQ |Ṽ )−
jN∑

j=0

q̃ j

⎞

⎠

(x,s)

(g, t)+
jN∑

j=0

(Kz, j )x (g) (72)

where Kz, j the distributional section of end(π∗E) ⊗ �π defined by

(Kz, j )x (g) :=
∫

t∈[0,1]
t z−1q̃ j,(x,s)(g, t), �(z) > − j/r . (73)

In view of (49) and (33) we have

((
δT M
λ

)
∗Kz, j − λ−zr− j Kz, j

)
x (g) = λ−zr− j

∫

t∈[1,λr ]
t z−1q̃ j,(x,s)(g, t) (74)

for all λ ≥ 1, and a similar formula holds for 0 < λ ≤ 1. Since the integral on the right-
hand side defines a smooth section of end(E)⊗�π , we conclude Kz, j ∈ �−zr− j (E).
Since the integral term in (72) is of class CN , we have an asymptotic expansion
φ∗Kz ∼ ∑∞

j=0 Kz, j , provided �(z) > 0. Combining this with (69) and (70) we
obtain an asymptotic expansion

φ∗(kA−z ) ∼
∞∑

j=0

Kz, j

�(z)
. (75)

This shows A−z ∈ �−zr (E), provided �(z) > 0. Using Ak−z = Ak A−z and Ak ∈
�kr (E) for k ∈ N, we see that this remains true for all complex z.

For �(z) > n/r , the Heisenberg order of A−z has real part smaller than−n, hence
this power has a continuous kernel, see [21, Proposition 3.9(d)], and theMellin formula
(66) gives

kA−z (x, x) = 1

�(z)

∫ ∞

0
t z−1(kt (x, x) − p(x, x)

)
dt, �(z) > n/r . (76)

Splitting the integral as usual, we may write

∫ ∞

0
t z−1(kt (x, x) − p(x, x)

)
dt =

∫ ∞

1
t z−1(kt (x, x) − p(x, x)

)
dt − p(x, x)

z

+
∫ 1

0
t z−1

⎛

⎝kt (x, x) −
N−1∑

j=0

t ( j−n)/r q j (x)

⎞

⎠ dt

+
N−1∑

j=0

q j (x)

z − (n − j)/r
, (77)
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where q j ∈ �∞(
end(E) ⊗ |�M |) are as in Theorem 1. In view of the estimate (67),

the first integral on the right-hand side of (77) converges for all complex z and defines
an entire function. In view of Theorem 1, the second integral on the right-hand side
of (77) converges for �(z) > (n − N )/r and defines a holomorphic function on
{�(z) > (n − N )/r}. Note that these considerations are all uniform in x . Combining
this with (76), we see that kA−z (x, x) can be extended meromorphically to all complex
zwith poles and special values as specified in Theorem2.Herewe also use the classical
fact that 1/�(z) is an entire function with zero set −N0 and (1/�)′(−l) = (−1)l l!
for all l ∈ N0.

To complete the proof of Theorem 2, it remains to show that the powers A−z form a
holomorphic family of Heisenberg pseudodifferential operators in a sense analogous
to [43, Sect. 4]. This will be established in Sect. 6.

6 Holomorphic Families of Heisenberg Pseudodifferential Operators

In this section, we will extend the concept of a holomorphic family of pseudodifferen-
tial operators [43, Chapter 4] to the Heisenberg calculus on general filtered manifolds.
We will show that the complex powers discussed above do indeed form a holomorphic
family as stated in Theorem 2. Holomorphic families will also be used to construct a
non-commutative residue in Sect. 7.

Remark 3 Below we will use several spaces of distributions which are conormal to
certain closed submanifolds. It will be convenient to equip theses spaces with the
structure of a complete locally convex vector space. To describe this topology, suppose
ξ is a vector bundle over a smooth manifold N , and suppose S is a closed submanifold
of N . We let K ⊆ �−∞(ξ) denote the vector space of all distributional sections of ξ

whosewave front set is contained in the conormal of S. In particular, these distributions
are smooth on N\S, hence we have a canonical map

K → �∞(ξ |N\S). (78)

We let π : T⊥S → S denote the normal bundle of S in N , that is, T⊥S := T N |S/T S.
Suppose ϕ : T⊥S → W ⊆ N is a tubular neighborhood, i.e., a diffeomorphism onto
an open neighborhoodW of S in N , which restricts to the identity along S. Moreover,
let φ be a vector bundle isomorphism π∗(ξ |S) ∼= ϕ∗(ξ |W ). If a ∈ K, then φ∗a is a
distributional sections of π∗(ξ |S)whose wave front set is conormal to the zero section
S ⊆ T⊥S. In particular, φ∗a is π -fibered. Hence, we obtain a map

φ∗ : K → �−∞
π (π∗(ξ |S)), (79)

where the right-hand side denotes the space of all π -fibered distributional sections
of π∗(ξ |S). Recall that elements a ∈ �−∞

π (π∗(ξ |S)) can be considered as families
of distributions ax ∈ C−∞(T⊥

x S, ξx ) on the fibers T⊥
x S with values in ξx which

depend smoothly on x ∈ S. Every χ ∈ �∞
c (�π) provides a map �−∞

π (π∗(ξ |S)) →
�∞(ξ |S), a  → π∗(aχ), where π∗ denotes integration along the fibers of π . We equip
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�−∞
π (π∗(ξ |S)) with the weakest locally convex topology such that these maps are

all continuous. Finally, we equip K with the coarsest locally convex topology such
that the maps (78) and (79) become continuous. It is well known that K is complete.
Moreover, the topology does not depend on the choice of a tubular neighborhood.

Suppose E and F are two vector bundles over a filtered manifold M . Moreover,
let � be a domain in the complex plane and suppose s : � → C is a holomorphic
function. We intend to make precise when a family of operators Az ∈ �s(z)(E, F),
parametrized by z ∈ �, is considered to be a holomorphic family.

Recall from Sect. 3 that K(TM; E, F) denotes the space of all distributional sec-
tions of the vector bundle (19) whose wave front set is contained in the conormal
of the units, M × R ⊆ TM . We equip K(TM; E, F) with the topology described in
Remark 3, and letK�(TM; E, F) denote the space of holomorphic curves from� into
K(TM; E, F). Moreover, we let K∞

� (TM; E, F) denote the space of holomorphic
curves from � into K∞(TM; E, F) where the latter space carries the C∞-topology.

Definition 3 Let � be a domain in the complex plane and suppose s : � → C is
a holomorphic function. A family of operators Az ∈ �s(z)(E, F), parametrized by
z ∈ �, is called a holomorphic family of Heisenberg pseudodifferential operators if
there exists a family Kz ∈ K�(TM; E, F) such that ev1(Kz) is the Schwartz kernel
of Az for all z ∈ �, and Kz is essentially homogeneous of order s(z) in the sense that
(δTMλ )∗Kz − λs(z)Kz is a family in K∞

� (TM; E, F), for all λ > 0.

Lemma 6 Suppose Az ∈ �s(z)(E, F) and Bz ∈ � t(z)(F,G) are two holomorphic
families of Heisenberg pseudodifferential operators, where z ∈ � and s, t : � → C.
Then Bz Az ∈ �(t+s)(z)(E,G) is a holomorphic family of Heisenberg pseudodifferen-
tial operators, provided at least one of the two families is properly supported (locally
uniformly in z). Moreover, the transpose At

z ∈ �s(z)(F ′, E ′) is a holomorphic family
of Heisenberg pseudodifferential operators.

Proof Convolution and transposition induce bounded (bi)linear maps:

K(TM; F,G) ×Kprop(TM; E, F) → K(TM; E,G)

K∞(TM; F,G) ×Kprop(TM; E, F) → K∞(TM; E,G)

K(TM; F,G) ×K∞
prop(TM; E, F) → K∞(TM; E,G)

K∞(TM; F,G) ×K∞
prop(TM; E, F) → K∞(TM; E,G)

K(TM; E, F) → K(TM; F ′, E ′)
K∞(TM; E, F) → K∞(TM; F ′, E ′).

Since holomorphic curves remain holomorphic when composed with bounded
(bi)linear mappings, convolution, and transposition thus induce maps:

K�(TM; F,G) ×K�,prop(TM; E, F) → K�(TM; E,G)

K∞
� (TM; F,G) ×K�,prop(TM; E, F) → K∞

� (TM; E,G)

K�(TM; F,G) ×K∞
�,prop(TM; E, F) → K∞

� (TM; E,G)
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K∞
� (TM; F,G) ×K∞

�,prop(TM; E, F) → K∞
� (TM; E,G)

K�(TM; E, F) → K�(TM; F ′, E ′)
K∞

� (TM; E, F) → K∞
� (TM; F ′, E ′).

The lemma follows at once. ��
Recall from Sect. 3 that K(T M; E, F) denotes the space of all distributional sec-

tions of the vector bundle hom(π∗E, π∗F) ⊗ �π over T M whose wave front set is
contained in the conormal of the units, M ⊆ T M . We equip K(T M; E, F) with the
topology described in Remark 3, and let K�(T M; E, F) denote the space of holo-
morphic curves from� intoK(T M; E, F). Moreover, we letK∞

� (T M; E, F) denote
the space of holomorphic curves from � into K∞(T M; E, F) where the latter space
carries the C∞-topology.

Definition 4 Let � be a domain in the complex plane, and suppose s : � → C is
a holomorphic function. A family kz ∈ K�(T M; E, F) is called essentially homo-
geneous of order s(z) if (δλ)∗kz − λs(z)kz ∈ K∞

� (T M; E, F), for all λ > 0. This
generalizes [43, Definition 4.4.1] where the term almost homogeneous is used.

Lemma 7 Let s : � → C be a holomorphic function, consider a family of operators
Az ∈ �s(z)(E, F) parametrized by z ∈ �, and let kz denote the Schwartz kernel of
Az. Then the following are equivalent:

(a) Az is a holomorphic family of Heisenberg pseudodifferential operators.
(b) Away from the diagonal, the Schwartz kernels kz are smooth and depend holomor-

phically on z ∈ �. Moreover, with respect to some (and then every) exponential
coordinates adapted to the filtration as in Sect. 3, see (16), we have an asymptotic
expansion of the form

φ∗(kz|V ) ∼
∞∑

j=0

k j,z (80)

where k j,z ∈ K�(T M; E, F) is an essentially homogeneous family of order
s(z) − j , cf. Definition 4. More precisely, for every z0 ∈ � and every integer N
there exists a neighborhood W of z0 in � such that, for sufficiently large J ∈ N,
the expression φ∗(kz|V ) − ∑J−1

j=0 k j,z restricts to a holomorphic curve from W

into the space of CN -sections of hom(π∗E, π∗F) ⊗ �π over U.
(c) Away from the diagonal, the Schwartz kernels kz are smooth and depend holomor-

phically on z ∈ �. Moreover, with respect to some (and then every) exponential
coordinates adapted to the filtration as in Sect. 3, see (16), and for some (and then
any) properly supported bump function χ ∈ C∞

prop(T M) with supp(χ) ⊆ U and
χ ≡ 1 in a neighborhood of the zero section, the fiber wise Fourier transform,

F
(
χ · φ∗(kz|V )

)
(ξ) =

∫

X∈tx M
e−2π i〈ξ,X〉(χ · φ∗(kz |V )

)
(exp(X)), ξ ∈ t∗x M,
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is smooth on � × t∗M, depends holomorphically on z, and admits a uniform
asymptotic expansion of the form

F
(
χ · φ∗(kz|V )

) ∼
∞∑

j=0

k̂ j,z, (81)

where k̂ j,z ∈ �∞(hom(p∗E, p∗F)|t∗M\M ) are homogeneous of order s(z) − j ,
i.e., (δ̇′λ)∗k̂ j,z = λs(z)− j k̂ j,z for all λ > 0. Here δ̇′λ denotes the grading automor-
phism on t∗M dual to δ̇λ on tM, and p : t∗M → M denotes the vector bundle
projection. More precisely, for all a, N ∈ N, and for every homogeneous differen-
tial operator D acting on �∞(hom(p∗E, p∗F)), i.e., (δ̇′λ)∗D = λaD, for every
compact K ⊆ �, and for some (and then every) fiberwise homogeneous norm on
t∗M, and for some (and then every) fiberwise Hermitian metric on hom(E, F),
there exists a constant C ≥ 0 such that

∣∣∣∣∣∣
D

⎛

⎝F
(
χ · φ∗(kz|V )

) −
N−1∑

j=0

k̂ j,z

⎞

⎠ (ξ)

∣∣∣∣∣∣
≤ C |ξ |s(z)−N−a (82)

holds for all z ∈ K and all ξ ∈ t∗M with |ξ | ≥ 1.

Proof To see (a)⇒(b) assume Az is a holomorphic family of Heisenberg pseudod-
ifferential operators with Schwartz kernels kz . Choose K ∈ K�(TM; E, F) as in
Definition 3, i.e., ev1(Kz) = kz and (δTMλ )∗Kz − λs(z)Kz ∈ K∞

� (TM; E, F) for all
λ > 0. Away from the units, Kz is smooth and depends holomorphically on z ∈ �.
Clearly, this implies that the same is true for kz , i.e., away from the diagonal kz is
smooth and depends holomorphically on z ∈ �. Now consider adapted exponential
coordinates as in Sect. 3. By conormality,K has a Taylor expansion along T opM×{0},

�∗(
Kz |V

) ∼
∞∑

j=0

K j,z t
j (83)

where K j,z ∈ K�(T opM; E, F). By essential homogeneity of K, the family K j,z

is essentially homogeneous of order s(z) − j , that is, (δλ)∗K j,z − λs(z)− j
K j,z ∈

K∞
� (T opM; E, F). For each J ∈ N we have �∗(

Kz |V
) − ∑J−1

j=0 K j,z t j = t JLJ ,z

where LJ ,z ∈ K�(U; E, F) is essentially homogeneous of order s(z) − J on U. Let
W be an open subset with compact closure in �, and suppose N ∈ N. Then, for
sufficiently large J , the family LJ ,z restricts to a holomorphic curve from W into the
space of CN -sections overU. Indeed, this follows from a parametrized version of [56,
Theorem 52]. We conclude that �∗(

Kz |V
)−∑J−1

j=0 K j,z t j restricts to a holomorphic

curve from W into the space of CN -sections over U. Evaluating at t = 1, we obtain
the asymptotic expansion (80) with k j,z = ν∗(K j,z).

To see (b)⇒(a) we observe that t j k j,z ∈ K�(U; E, F) is essentially homogeneous
of order s(z). Parametrizing the proof of [56, Theorem 59], we obtain a holomor-
phic family Lz ∈ K�(U; E, F) which is essentially homogeneous of order s(z) and
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such that ev1(Lz) ∼ ∑∞
j=0 k j,z in the same sense as (80). Clearly, this implies that

φ∗(kz|V )− ev1(Lz) is a holomorphic curve into the space of smooth sections over U.
Adding a term inK∞

� (U; E, F) toLz , wemay,moreover, assumeφ∗(kz |V ) = ev1(Lz).
Using a bump function one readily constructsKz ∈ K�(TM; E, F), essentially homo-
geneous of order s(z), such that�∗(Kz) coincides withLz on neighborhood ofM×R.
Hence, kz coincides with ev1(Kz) in a neighborhood of the diagonal. Clearly, this
implies (a).

Let us now turn to the implication (b)⇒(c): Note first, that χ · φ∗(kz |V ) ∈
K�,prop(T M; E, F), hence its fiberwise Fourier transform is smooth on t∗M × �

and depends holomorphically on z ∈ �. Fix a bump function ρ ∈ C∞(t∗M) which
vanishes in a neighborhood of the zero section and such that ρ(ξ) = 1 whenever
|ξ | ≥ 1. Since kz, j is essentially homogeneous of order s(z) − j , there exist unique
k̂ j,z ∈ �∞(hom(p∗E, p∗F)|t∗M\M ), strictly homogeneous of order s(z)− j , such that
ρ · (F(χ · kz, j )− k̂z, j

)
is in the fiberwise Schwartz space S(t∗M; hom(p∗E, p∗F)).

More precisely, for every compact K ⊆ �, every homogeneous differential operator
D, and every integer b ∈ N, there exists a constant C ≥ 0 such that

∣∣∣D
(
F

(
χ · k j,z

) − k̂ j,z
)

(ξ)

∣∣∣ ≤ C |ξ |−b

holds for all z ∈ K and ξ ∈ t∗M with |ξ | ≥ 1. In view of the expansion (80), we
conclude that for every compact K ⊆ �, every b ∈ N, every homogeneous differential
operator D, and every sufficiently large J ∈ N, there exists a constant C ≥ 0 such
that

∣
∣∣∣∣∣
D

⎛

⎝F

⎛

⎝χ ·
⎛

⎝φ∗(kz |V ) −
J−1∑

j=0

k j,z

⎞

⎠

⎞

⎠

⎞

⎠ (ξ)

∣
∣∣∣∣∣
≤ C |ξ |−b

holds for all z ∈ K and ξ ∈ t∗M with |ξ | ≥ 1. Combining the preceding two estimates,
we see that for every compact K ⊆ �, every b ∈ N, every homogeneous differential
operator D, and every sufficiently large J ∈ N, there exists a constant C ≥ 0 such
that

∣
∣∣∣∣∣
D

⎛

⎝F
(
χ · φ∗(kz |V )

) −
J−1∑

j=0

k̂ j,z

⎞

⎠ (ξ)

∣
∣∣∣∣∣
≤ C |ξ |−b

holds for all z ∈ K and ξ ∈ t∗M with |ξ | ≥ 1. If D is homogeneous of degree a ∈ N,
i.e., (δ̇′λ)∗D = λaD, then |Dk̂ j,z(ξ)| ≤ C |ξ |s(z)− j−a , whence (81).

Let us now turn to the implication (c)⇒(b): Note first that the homogeneous terms
k̂ j,z in the asymptotic expansion (81) depend holomorphically on z ∈ �. This follows
from (82), cf. [43, Remark 4.2.2]. Defining k j,z := F−1(ρ · k̂ j,z), we thus have
k j,z ∈ K�(T M; E, F). Moreover, for each λ > 0,

(δλ)∗k j,z − λs(z)− j k j,z = F−1
(
λs(z)− j · ((δ̇′λ)∗ρ − ρ

) · k̂ j,z
)
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is a holomorphic curve in the fiberwise Schwartz space S(T M; hom(π∗E, π∗F) ⊗
�π). In particular, k j,z is essentially homogeneous of order s(z)− j . If W is an open
subset with compact closure in �, then (82) implies that, for sufficiently large J ∈ N,
the expression χ · φ∗(kz |V ) − ∑J−1

j=0 k j,z is a holomorphic curve in the space of CN

sections, whence (80). ��
Remark 4 As pointed out in the proof above, the homogeneous terms k̂ j,z in the asymp-
totic expansion (81) depend holomorphically on z ∈ �.

The characterization in Lemma 7 shows that the concept of holomorphic families
considered here generalizes the definition for Heisenberg manifolds, see [43, Sect. 4].

Let us now complete the proof of Theorem 2 by establishing the following gener-
alization of [43, Theorem 5.3.1].

Lemma 8 The complex powers A−z ∈ �−zr (E) considered in Theorem 2 constitute
a holomorphic family.

Proof Writing A−z = Ak A−(z+k) and using Lemma 6, we see that it suffices to show
that the powers form a holomorphic family on � = {�(z) > 0}. To prove this, we
will use the characterization in Lemma 7(b) and proceed as in [43, Lemma 5.3.2].

As observed above, away from the diagonal the Schwartz kernels kA−z , see (69),
are smooth and depend holomorphically on z ∈ C. Moreover, the distributions Kz, j

defined in (73) form a family in K�(T M; E, F) which is essentially homogeneous
of order −r z − j in the sense of Definition 4, see (74). Furthermore, the CN sections
defined by the integral in (72) depend holomorphically on z ∈ �. We conclude that
the asymptotic expansion (75) established above is in fact the asymptotic expansion
required in Lemma 7(b). ��

7 Non-commutative Residue

In this section, we consider the analogue of Wodzicki’s non-commutative residue
[29,58] for filtered manifolds. Let E be a vector bundle over a closed filtered manifold
M of homogeneous dimension n. We will fix a strictly positive Rockland differential
operator D ∈ DOr (E) of even Heisenberg order r > 0. For a pseudodifferential
operator A ∈ �k(E) of integer Heisenberg order k ∈ Z, the operator AD−z ∈
�k−r z(E) is trace class for R(z) > (n + k)/r and hence defines a holomorphic
function

ζA(z) := tr(AD−z), R(z) > (n + k)/r ,

see Theorem 2 and [21, Proposition 3.9(d)]. In view of Lemma 6, the subsequent
proposition can be applied to R(z) = AD−z .

We continue to use the canonical identification |�M | = o∗�π between the bundle
of 1-densities on M and the restriction along the zero section of the bundle of vertical
densities on T M , see Sect. 3. In particular, we will use the induced identification

�∞(|�M | ⊗ end(E)) = P−n(T M; E, E). (84)
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Recall that the right-hand side in (84) denotes the space of smooth sections of
end(π∗E)⊗�π which are homogeneous of degree−n and thus fiberwise translation
invariant (constant).

Proposition 2 Let E be a vector bundle over a closed filtered manifold M of homo-
geneous dimension n. Moreover, suppose r > 0 and let R(z) ∈ �d−r z(E) be a
holomorphic family of Heisenberg pseudodifferential operators on M with Schwartz
kernels kz. Then the restriction to the diagonal, kz(x, x), provides a holomorphic
curve in �∞(end(E) ⊗ |�M |) for �(z) > (n + d)/r . This curve can be extended
meromorphically to the entire complex plane with at most simple poles located at
z j := (n+d− j)/r with j ∈ N0. Moreover, the residue at z j can be computed locally
by the expected formula,

resz=z j

(
kz(x, x)

) = 1

r

∫

ξ∈t∗x M,|ξ |=1
k̂ j,z j (ξ)dξ = p j (ox )

r
, (85)

where k̂ j,z are as in Lemma 7(c), and p j ∈ P−n(T M; E, E) are characterized by
(δλ)∗k j,z j = λ−nk j,z j + λ−n log |λ| p j for λ > 0 with k j,z as in Lemma 7(b).4

In particular, the function tr(R(z)) is analytic on the half planeR(z) > (n+ d)/r ,
and has a meromorphic continuation to all of the complex plane with only simple poles
possibly located at z j with j ∈ N0. Moreover,

resz=z j tr(R(z))= 1

r

∫

x∈M

∫

ξ∈t∗x M,|ξ |=1
trE

(
k̂ j,z j (ξ)

)
dξ = 1

r

∫

M
trE (p j |M ). (86)

Remark 5 The volume density dξ used in (85) and (86) is defined such that a 1-density
on tx M in the Schwartz class, k ∈ S(|�tx M |), and its Fourier transform, k̂ ∈ S(t∗x M),
a Schwartz class function on t∗x M , are related by

k̂(ξ) =
∫

X∈tx M
e−2π i〈ξ,X〉k and k(X) =

∫

t∗x M
e2π i〈ξ,X〉k̂(ξ)dξ, (87)

where X ∈ tx M and ξ ∈ t∗x M . Hence, dξ is the translation invariant 1-density on
t∗x M with values in |�tx M | corresponding to the canonical pairing between |�t∗x M |
and |�tx M |. Given a homogeneous norm | − | on tx M , we may contract dξ with the
fundamental vector field of the dilation action, ∂

∂λ
|λ=1δ̇

′
λ, and restrict to obtain a 1-

density on the unit sphere {ξ ∈ t∗x M : |ξ | = 1} with values in |�tx M | which will also
be denoted by dξ and can be characterized by

∫

t∗x M
f (ξ)dξ =

∫ ∞

0
λn−1dλ

∫

ξ∈t∗x M,|ξ |=1
f (δ̇′λ(ξ))dξ, (88)

for all compactly supported smooth functions f on t∗x M\{0}.
4 By adding smooth cosymbols, the asymptotic terms k j ,z j may be chosen to have this property. They are
not unique, but p j is without ambiguity, cf. [21, Lemma 3.8] or Lemma 2.
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Proof of Proposition 2 To beginwith, let�(z) > (n+d)/r .We fix adapted exponential
coordinates and consider the corresponding asymptotic expansion of the kernel kz
along the diagonal as in Lemma 7(c), see (81). Using Fourier inversion formula, see
(87), we may write

kz(x, x) =
(
φ∗(kz|V )

)
(ox ) =

∫

t∗x M
F

(
χ · φ∗(kz |V )

)
(ξ)dξ.

Splitting the integral at the unit sphere in t∗x M and using the asymptotic expansion in
(81) this may be rewritten in the form

kz(x, x) =
∫

ξ∈t∗x M,|ξ |≤1
F

(
χ · φ∗(kz |V )

)
(ξ)dξ

+
∫

ξ∈t∗x M,|ξ |≥1

⎛

⎝F
(
χ · φ∗(kz |V )

) −
N∑

j=0

k̂ j,z

⎞

⎠ (ξ)dξ (89)

+
N∑

j=0

∫

ξ∈t∗x M,|ξ |≥1
k̂ j,z(ξ)dξ.

The continuation of the left-hand side in (89) can be achieved by studying the right-
hand side. Clearly, the first integral on the right-hand side of (89) converges and
defines a smooth section of end(E) ⊗ |�M | which depends holomorphically on z ∈
� for the integrand is smooth and analytic in z. The second integral converges for
�(z) > (d + n − N )/r and defines a smooth section of end(E) ⊗ |�M | which
depends holomorphically on these z in view of the estimates (82). Using (88) and the
homogeneity of k̂ j,z , we rewrite the remaining terms in the form

∫

ξ∈t∗x M,|ξ |≥1
k̂ j,z(ξ)dξ =

∫ ∞

1
λd−r z− j+n−1dλ

∫

ξ∈t∗x M,|ξ |=1
k̂ j,z(ξ)dξ

= 1

r z − d − n + j

∫

ξ∈t∗x M,|ξ |=1
k̂ j,z(ξ)dξ.

Hence, this term admits a meromorphic continuation to the entire complex plane with
a single pole located at z j = (d + n − j)/r . This pole is simple with residue

resz=z j

∫

ξ∈t∗x M,|ξ |≥1
k̂ j,z(ξ)dξ = 1

r

∫

ξ∈t∗x M,|ξ |=1
k̂ j,z j (ξ)dξ.

Combining these observation, we obtain the meromorphic extension of kz(x, x) and
the first equality in (85). The second equality in (85) is well known.

For R(z) > (n + d)/r the Schwartz kernel kz of the operator R(z) is continuous,
and we can compute the trace by

tr(R(z)) =
∫

x∈M
trE (kz(x, x)).

123



The Heat Asymptotics on Filtered Manifolds 377

The meromorphic extension of tr(R(z)) thus follows from the meromorphic extension
of kz(x, x), and so does the formula for the residues. ��

We can now define a functional on integer-order pseudodifferential operators A ∈
�∞(E) := ⋃

k∈Z �k(E) by

τ(A) := r · resz=0(ζA(z)),

where ζA(z) = tr(AD−z), cf. Proposition 2 and Lemma 6.
The following corollary generalizes a result for CRmanifolds obtained by R. Ponge

in his thesis, see [42].

Corollary 6 The functional τ : �∞(E) → C is a non-trivial trace on the algebra of
integer-order pseudodifferential operators. More precisely, we have:

(a) τ([A, B]) = 0 for all A, B ∈ �∞(E).
(b) τ(A) does not depend on the positive Rockland differential operator D.
(c) If the order of A ∈ �∞(E) is less than −n then τ(A) = 0.
(d) If A has order d ≥ −n, and φ∗(kA|V ) ∼ ∑∞

j=0 k j is an asymptotic expansion
of its kernel with k j essentially homogeneous of order d − j , chosen such that
(δλ)∗kd+n = λ−nkd+n + λ−n log |λ|pA for λ > 0 with pA ∈ P−n(T M; E, E),
then

τ(A) =
∫

M
trE (pA|M ).

(e) If B ∈ �∞(end(E)) and j ∈ N0, then

τ
(
BD( j−n)/r

)
= r

�((n − j)/r)

∫

M
trE (Bq j ), (90)

where q j denotes the term in the heat kernel asymptotics of D, that is ke−t D (x, x) ∼∑∞
j=0 t

( j−n)/r q j (x), see Theorem 1.

(f) The map μ : C∞(M) → C, μ( f ) := τ( f D− n
r ) = r

�(n/r)

∫
M f trE (q0) is a

positive smooth measure on M.
(g) In particular, μ(1) = τ(D− n

r ) = r · a0/�( nr ) > 0, where a0 is the leading
term in the heat trace expansion of D, that is, tr(e−t D) ∼ ∑∞

j=0 t
( j−n)/r a j , see

Corollary 1.

Proof To see (a), we observe that, for �(z) very large,

tr([A, B]D−z) = tr(A[B, D−z]) + tr([AD−z, B]) = tr(A[B, D−z]).

Note that [B, D−z] is a holomorphic family which vanishes at z = 0, for D is assumed
to be strictly positive. Hence, the holomorphic family A[B, D−z] is of the form zR(z)
for some holomorphic family R(z). As tr(R(z)) can at most have a simple pole at
z = 0, the function tr(A[B, D−z]) has no pole there and hence τ([A, B]) = 0.
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To see (b), let D̃ ∈ � r̃ (E) be another strictly positiveRockland differential operator
of order r̃ > 0, and suppose A is of order k. Hence, AD−z/r−AD̃−z/r̃ is a holomorphic
family of order k−zwhich vanishes at z = 0.As before,we conclude that tr

(
AD−z/r−

AD̃−z/r̃
)
is holomorphic at z = 0. Consequently,

resz=0 tr(AD
−z/r ) = resz=0 tr(AD̃

−z/r̃ ).

Equivalently, r · resz=0 tr(AD−z) = r̃ · resz=0 tr(AD̃−z).
To see (c), observe that for operators A of order less than−n the zeta function ζA(z)

is clearly analytic at z = 0 and hence has no residue there.
Part (d) follows immediately from the formula for the residue in (86).
To see (e), suppose B ∈ �∞(end(E)) and observe that we clearly have

kBD( j−n)/r D−z (x, x) = B(x)kD( j−n)/r−z (x, x),

for all x ∈ M . Using Theorem 2, we obtain

resz=0
(
kBD( j−n)/r D−z (x, x)

) = B(x) resz=(n− j)/r (kD−z (x, x)) = B(x)q j (x)

�((n − j)/r)
,

see Eq. 8. Applying trE and integrating over x ∈ M , we obtain (90).
The assertion about μ( f ) in (f) follows from (90) by specializing to the multipli-

cation operator B = f , where f ∈ C∞(M), and observing that trE (q0(x)) > 0 at
each x ∈ M , for we have q0(x) > 0 according to Theorem 1. Hence, μ is a positive
functional.

The last statement about τ(D− n
r ) in (g) follows from (90) by specializing to A =

idE and using
∫
M trE (q0) = a0 > 0, see Corollary 1. In particular, τ is non-trivial. ��

Remark 6 Using (84), we may identify the logarithmic term pA = pA|M associated
with a pseudodifferential operator A ∈ �∞(E), see Corollary 6(d), as an end(E)

valued density on M . This Wodzicki density is intrinsic to A, i.e., it does not depend
on the exponential coordinates used for the asymptotic expansion. The independence
follows from the evident formula pBA = BpA for all B ∈ �∞(end(E)), the expression
for the residue in Corollary 6(d), and the intrinsic definition of the residue using D.

In case of a trivially filteredmanifoldM , the trace τ is the non-commutative residue
which was introduced in Wodzicki and Guillemin [29,58], with many applications
including to index theory [18]. In Connes [17], the non-commutative residue is shown
to coincide with Dixmier trace for classical pseudodifferential operators of order −n.
We expect such a relationship to hold also in Heisenberg calculus extending part (f)
of Corollary 6.

8 Weyl’s Law for Rumin–Seshadri Operators

In this section, we will work out the eigenvalue asymptotics for Rumin–Seshadri oper-
ators associated with Rockland sequences of differential operators whose Heisenberg
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principle symbol sequence is the same at each point. More precisely, we will assume
that the principle symbol sequence, the L2 inner product, and the volume density on
any two osculating groups are simultaneously isometric. In this situation, the con-
stant appearing in Weyl’s law is the product of the volume of the underlying manifold
with a constant depending on the isometry class of the principal symbol sequence,
see Corollary 7. Similar formulas for CR and contact geometry can be found in [43,
Sect. 6].

In the second part of this section, we will specialize to a particular parabolic geome-
try in five dimensions associated with the exceptional Lie groupG2. Every irreducible
representation ofG2 gives rise to a Rockland sequence of differential operators known
as a (curved) BGG sequence [13]. Moreover, there is a distinguished class of fiber-
wise Hermitian inner products such that the Heisenberg principal symbol sequences,
at any two points, are indeed isometric. In this situation, the constant in Weyl’s law is
universal, depending only on the representation of G2, see Corollary 8.

8.1 Rumin–Seshadri Operators

Let Ei be vector bundles over a closed filtered manifold M . Consider a sequence of
differential operators

· · · → �∞(Ei−1)
Ai−1−−→ �∞(Ei )

Ai−→ �∞(Ei+1) → · · · (91)

where Ai ∈ DOri (Ei , Ei+1) is of Heisenberg order at most ri ≥ 1. Recall that such
a sequence is called Rockland if the Heisenberg principal symbol sequence

· · · → H∞ ⊗ Ei−1,x
π(σ

ri−1
x (Ai−1))−−−−−−−−−→ H∞ ⊗ Ei,x

π(σ
ri
x (Ai ))−−−−−−→ H∞ ⊗ Ei+1,x → · · ·

is (weakly) exact, for each x ∈ M and every non-trivial irreducible unitary represen-
tation π : Tx M → U (H) on a Hilbert space H, see [21, Definition 2.14]. Here H∞
denotes the subspace of smooth vectors.

Fix a volume density dx on M . Moreover, let hi be a fiberwise Hermitian metric
on Ei , and consider the associated standard L2-inner product

〈〈ψ1, ψ2〉〉L2(Ei )
:=

∫

M
hi (ψ1, ψ2)dx, (92)

where ψ1, ψ2 ∈ �∞(Ei ). Let A∗
i ∈ DOri (Ei+1, Ei ) denote the formal adjoint

characterized by 〈〈A∗
i φ,ψ〉〉L2(Ei )

= 〈〈φ, Aiψ〉〉L2(Ei+1)
for all ψ ∈ �∞(Ei ) and

φ ∈ �∞(Ei+1), cf. [21, Remark 2.5].
Assume ri ≥ 1 and choose positive integers si such that

ri−1si−1 = ri si =: κ. (93)
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It is easy to see that the Rumin–Seshadri operator �i ∈ DO2κ(Ei ) defined by

�i :=
(
Ai−1A

∗
i−1

)si−1 + (
A∗
i Ai

)si (94)

is Rockland, see [47] and [21, Lemma 2.18]. Clearly, �i is formally self-adjoint and
non-negative.

Definition 5 (Model sequence)

(a) A model sequence consists of a finite dimensional graded nilpotent Lie algebra
n, a volume density μ ∈ |�n|, finite dimensional Hermitian vector spaces Fi ,
integers ri ≥ 1, and Bi ∈ U−ri (n) ⊗ hom(Fi , Fi+1). A model sequence gives
rise to a sequence of left invariant homogeneous differential operators on the
corresponding simply connected Lie group N ,

· · · → C∞(N , Fi−1)
Bi−1−−→ C∞(N , Fi )

Bi−→ C∞(N , Fi+1) → · · · ,

and provides left invariant L2 inner products on the spaces C∞(N , Fi ) which
are induced by the invariant volume density on N corresponding to μ and the
Hermitian inner products on Fi , cf. (4).

(b) A model sequence is called Rockland if

· · · → H∞ ⊗ Fi−1
π(Bi−1)−−−−→ H∞ ⊗ Fi

π(Bi )−−−→ H∞ ⊗ Fi+1 → · · ·

is exact for every non-trivial irreducible unitary representation π : N → U (H)

where H∞ denotes the subspace of smooth vectors.
(c) Two model sequences,

(
n, μ, Bi ∈ U−ri (n) ⊗ hom(Fi , Fi+1)

)
and

(
n′, μ′, B ′

i ∈
U−r ′i (n

′)⊗ hom(F ′
i , F

′
i+1)

)
are said to be isometric if ri = r ′i , and there exists an

isomorphism of graded Lie algebras ϕ̇ : n → n′ mapping μ to μ′, and there exist
unitary isomorphisms φi : Fi → F ′

i such that the induced isomorphisms

ϕ̇ ⊗ hom(φ−1
i , φi+1) : U−ri (n) ⊗ hom(Fi , Fi+1) → U−r ′i (n

′) ⊗ hom(F ′
i , F

′
i+1)

map Bi to B ′
i , for all i .

If Ei are Hermitian vector bundles over a filtered manifold M equipped with a
volume density, then the Heisenberg principal symbols of a sequence of differential
operators Ai ∈ DOri (Ei , Ei+1) give rise to a model sequence

(
tx M, μx , σ

ri
x (Ai ) ∈ U−ri (tx M) ⊗ hom(Ex,i , Ex,i+1)

)
(95)

at every point x ∈ M . Here μx ∈ |�tx M | denotes the volume density induced by dx
via the canonical isomorphism |�tx M | = |�Tx M |.

The following generalizes [43, Proposition 6.1.5].
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Corollary 7 If
(
n, μ, Bi ∈ U−ri (n) ⊗ hom(Fi , Fi+1)

)
is a Rockland model sequence,

see Definition 5, then there exist constants αi > 0 with the following property. Sup-
pose Ei are Hermitian vector bundles over a closed filtered manifold M, let dx be a
volume density on M, and suppose Ai ∈ DOri (Ei , Ei+1) is a sequence of differential
operators such that the Heisenberg principal symbol sequence, see (95), is isometric
to the model sequence at each point x ∈ M. Moreover, fix positive integers si as in
(93), and let �i ∈ DO2κ(Ei ) denote the associated Rumin–Seshadri operators, see
(92) and (94). Then, as λ → ∞,

�

{
eigenvalues of �i less than λ

counted with multiplicities

}
∼ αi · vol(M)λn/2κ . (96)

Here vol(M) := ∫
M dx, and n denotes the homogeneous dimension of n.

Proof Let x ∈ M . By assumption, there exists an isomorphism of graded nilpotent
Lie algebras ϕ̇ : tx M → n mapping the volume density induced by dx on tx M to
the volume density μ on n, and there exist unitary isomorphisms of vector spaces
φi : Ex,i → Fi such that the induced isomorphisms

ϕ̇ ⊗ hom(φ−1
i , φi+1) : U−ri (tx M) ⊗ hom(Ex,i , Ex,i+1) → U−ri (n) ⊗ hom(Fi , Fi+1)

map σ
ri
x (Ai ) to Bi . We conclude that the induced isomorphism

ϕ̇ ⊗ hom(φ−1
i , φi ) : U−2κ(tx M) ⊗ end(Ex,i ) → U−2κ(n) ⊗ end(Fi )

maps σ 2κ
x (�i ) toCi := (Bi−1B∗

i−1)
si−1 + (B∗

i Bi )
si . Hence, the fundamental solutions

of the heat equation are related by

k
σ 2κ
x (�i )

t = ϕ∗(φ−1
i kCi

t φi
)

(97)

where ϕ : Tx M → N denotes the isomorphism of Lie groups integrating ϕ̇. Let αi > 0
the unique number such that

trFi
(
kCi
1 (oN )

) = αi�(1+ n/2κ)μ. (98)

Note that αi only depends on the model sequence and (potentially) on the integers si ,
but not on the actual geometry. From (97) and (65), we obtain

trEi

(
q�i
0

) = αi�(1+ n/2κ)dx .

where q�i
0 ∈ �∞(

end(Ei )⊗ |�M |) is as in Theorem 1. Hence, for the corresponding

a�i
0 = ∫

M trEi

(
q�i
0

)
, see Corollary 1, we obtain

a�i
0 = αi�(1+ n/2κ) vol(M).
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The statement in (96) thus follows from Corollary 3.
It remains to show that the constants αi do not depend on the choice of positive

integers si as in (93). To this end, suppose u ∈ N and consider s′i := usi . Then
ri−1s′i−1 = ri s′i = κ ′ with κ ′ = uκ , cf. (93). Since Ai is a Rockland sequence, we

have σ
ki
x (Ai )σ

ki−1
x (Ai−1) = 0. Hence, �′

i := (Ai−1A∗
i−1)

s′i−1 + (A∗
i Ai )

s′i and (�i )
u

have the same Heisenberg principal symbol, i.e., σ 2κ ′
x (�′

i ) = σ 2uκ
x ((�i )

u), and thus
the constants in their Weyl asymptotics coincide, see Corollary 3, Remark 2, and (65).
Clearly, the number of eigenvalues less than λ of (�i )

u coincides with the number of
eigenvalues of �i which are smaller than λ1/u . From (96) we thus obtain

�

{
eigenvalues of �′

i less than λ

counted with multiplicities

}
∼ αi · vol(M)λn/2κ ′ .

We conclude that the constant αi does not depend on the choice of si . ��

8.2 Generic Rank-Two Distributions in Dimension Five

In the remaining part of this section, we will specialize to a particular geometry in five
dimensions and discuss certain natural Rockland sequences over it, known as curved
BGG sequences, which have been constructed by Čap, Slovák and Souček, see [13].

Let M be 5-manifold, and suppose H ⊆ T M is a smooth subbundle of rank
two. Recall that H is said to be of Cartan type [8] if it is bracket generating with
growth vector (2, 3, 5). More precisely, H is of Cartan type if every point in M
admits an open neighborhood U and there exist sections X ,Y ∈ �∞(H |U ) such
that X ,Y , [X ,Y ], [X , [X ,Y ]], [Y , [X ,Y ]] is a frame of T M |U . Putting T−1M := H
and denoting the rank-three bundle spanned by Lie brackets of sections of H by
T−2M := [H , H ], the 5-manifold M thus becomes a filtered manifold,

T M = T−3M ⊇ T−2M ⊇ T−1M ⊇ T 0M = 0. (99)

The osculating algebras tx M are all isomorphic to the graded nilpotent Lie algebra
n = n−3⊕n−2⊕n−1, uniquely characterized (up to isomorphism) by the fact that n−1
admits a basis ξ, η such that [ξ, η] is a basis of n−2 and [ξ, [ξ, η]], [η, [ξ, η]] forms a
basis of n−3.

Rank-two distributions of Cartan type are also known as generic rank two distri-
butions in dimension five, see [10,31,32,48,49], the condition on H being open with
respect to the C2-topology. Their history can be traced back to Cartan’s celebrated
“five variables paper” [14]. Whether a 5-manifold admits a Cartan distribution is well
understood in the open case, see [20, Theorem 2]. For closed 5-manifolds, however,
this problem remains open and has served as amajormotivation to develop the analysis
in this paper.

A rank-two distribution of Cartan type can equivalently be described as regular
normal Cartan geometry of type (G, P) where G denotes the split real form of the
exceptional Lie groupG2 and P denotes amaximal parabolic subgroup corresponding
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to the shorter root, see [14,48] and [11, Theorem 3.1.14 and Sect. 4.3.2]. The Lie
algebra of G admits a grading,

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3, (100)

i.e., [gi , g j ] ⊆ gi+ j for all i and j , such that

P = {g ∈ G | ∀i : Adg(gi ) ⊆ gi },

where gi := ⊕
i≤ j g j denotes the associated filtration. The Lie algebra of P is p =

g0 ⊕ g1 ⊕ g2 ⊕ g3. The corresponding Levi group,

G0 = {g ∈ G | ∀i : Adg(gi ) = gi } ∼= GL(2,R), (101)

has Lie algebra g0 ∼= gl(2,R). Furthermore, p+ = g1 ⊕ g2 ⊕ g3 is a nilpotent ideal
in p and P+ := exp(p+) is a closed normal subgroup in P such that the inclusion
G0 ⊆ P induces a natural isomorphism of groups, G0 = P/P+. The graded nilpotent
Lie algebra g− := g−3 ⊕ g−2 ⊕ g−1 is isomorphic to n.

The Cartan geometry consists of a principal P-bundle G → M and a regular Cartan
connection ω ∈ �1(G; g) satisfying a normalization condition, see [11]. The Cartan
connection induces an isomorphism T M = G ×P g/p. By regularity, the filtration on
T M , see (99), coincides with the filtration induced by the filtration g/p = g−3/p ⊇
g−2/p ⊇ g−1/p ⊇ g0/p = 0. Note that P+ acts trivially on the associated graded
gr(g/p), and the inclusion g− ⊆ g induces an isomorphism of G0 = P/P+ modules,
g− = gr(g/p). Regularity also implies that the induced isomorphism tM = gr(T M) =
G ×P gr(g/p) = G0 ×G0 g− is an isomorphism of bundles of graded nilpotent Lie
algebras. Here G0 := G/P+ is considered as a principal G0-bundle over M .

The canonically associated Cartan geometry permits to construct natural sequences
of differential operators over M known as curved BGG sequences, see [13] and [9,12].
Every finite dimensional complex representation ρ : G → GL(E) gives rise to a
sequence of natural differential operators,

0 → �(E0)
D0−→ �(E1)

D1−→ �(E2)
D2−→ �(E3)

D3−→ �(E4)
D5−→ �(E5) → 0 (102)

where Ei := G0 ×G0 Hi (g−;E) and Hi (g−;E) denotes the i-th Lie algebra coho-
mology with coefficients in the representation of g− obtained by restricting ρ. In [21,
Corollary 4.23 and Example 4.24] it has been shown that this is a Rockland sequence
for every irreducible representation ρ. We will denote the Heisenberg order of Di by
ki .

Let θ be a Cartan involution on g such that

θ(gi ) = g−i (103)

for all i , cf. [11, Proof of Proposition 3.3.1]. Denoting the Killing form of g by B, we
obtain a Euclidean inner product on g, given by Bθ (X ,Y ) := −B(X , θ(Y )) where
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X ,Y ∈ g. The summands in the decomposition (100) are orthogonal with respect
to Bθ . Let � denote the global Cartan involution on G corresponding to θ . Then
K := {g ∈ G : �(g) = g} ∼= (

SU(2) × SU(2)
)
/Z2 is a maximal compact subgroup

of G, and Bθ is invariant under K . Moreover, � restricts to a Cartan involution on G0,
and K0 := {g ∈ G0 : �(g) = g} ∼= O(2,R) is a maximal compact subgroup of G0.
Let h be a Hermitian inner product on E such that

h(ρ′(X)v,w) = −h(v, ρ′(θ(X))w) (104)

for all X ∈ g and v,w ∈ E where ρ′ : g → gl(E) denotes the Lie algebra representa-
tion corresponding to ρ, cf. [11, Proof of Proposition 3.3.1]. In particular, h is invariant
under the action of K . We equip the G0-module Ci (g−;E) = �ig∗− ⊗ E with the
Hermitian inner product hi induced by Bθ and h. Note that hi is invariant under K0.
These inner products play an important role in the construction of the curved BGG
sequences since Kostant’s codifferential, ∂∗ : Ci+1(g−;E) → Ci (g−;E), is adjoint
to the Chevalley–Eilenberg codifferential ∂ : Ci (g−;E) → Ci+1(g−;E) with respect
to hi , see [11, Proposition 3.3.1]. The induced K0-invariant Hermitian inner product
on Hi (g−;E) will also be denoted by hi . We let μ ∈ |�g−| denote the volume den-
sity associated with the Euclidean inner product on g− induced by Bθ . Clearly, μ is
K0-invariant.

To obtain Hermitian inner products on the bundles Ei , we choose a reduction of
the structure group of G0 → M to K0 ⊆ G0. This is a principal K0-bundle K0 → M
together with a K0-equivariant bundle map K0 ⊆ G0. This choice amounts to fixing a
fiberwise Euclidean metric on the rank-two bundle H . It provides an isomorphism of
principal G0-bundles, G0 = K0 ×K0 G0, and thus

Ei = G0 ×G0 Hi (g−;E) = K0 ×K0 Hi (g−;E). (105)

Moreover,

gr(T M) = G0 ×G0 g− = K0 ×K0 g−.

We equip Ei with the fiberwise Hermitian metric induced from the K0-invariant Her-
mitian metric on Hi (g−;E), and we equip M with the volume density dx induced
from the K0-invariant volume density μ on g−.

Corollary 8 Let M be a closed 5-manifold equipped with a rank-two distribution of
Cartan type. Moreover, let ρ be an irreducible complex representation of the excep-
tional Lie group G2, consider the associated curved BGG sequence (102), and let �i

denote the corresponding Rumin–Seshadri operator, see (94), constructed using the
volume density dx on M and the fiberwise Hermitian metrics on Ei described above.
Then, as λ → ∞,

�

{
eigenvalues of �i less than λ

counted with multiplicities

}
∼ αi (ρ) · vol(M)λ5/κ , (106)
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where αi (ρ) > 0 and vol(M) = ∫
M dx. The constant αi (ρ) does not depend on M or

the distribution H, nor does it depend on the Cartan involution θ satisfying (103) or
the Hermitian inner product h satisfying (104) or the reduction of structure group of
G0 along K0 ⊆ G0, and it is also independent of the choice of positive integers si as
in (93); it only depends on i and the representation ρ.

Proof Fix x ∈ M . Every G0-equivariant identification (G0)x ∼= G0 induces an iso-
morphism of graded nilpotent Lie algebras ϕ̇ : tx M → g− and isomorphisms of
vector spaces φi : Ei,x → Hi (g−;E)which intertwine the principal Heisenberg sym-

bol σ ki
x (Di ) with DG−

i , the corresponding left invariant operator on the nilpotent Lie
group G− = exp(g−). If the frame (G0)x ∼= G0 is induced from a K0-equivariant
identification (K0)x ∼= K0, then the isomorphisms φi are unitary and ϕ̇ maps the
volume density μx on tx M induced by dx to the volume density μ on g−. Hence, at
every point x ∈ M , the principal symbol sequence

(
tx M, μx , σ

ki
x (Di ) ∈ U−ki (tx M) ⊗ hom(Ei,x , Ei+i,x )

)

is isometric to the model sequence

(
g−, μ, DG−

i ∈ U−ki (g−) ⊗ hom(Hi (g−;E), Hi+1(g−;E))
)
,

cf. Definition 5. According to Corollary 7 there exists αi (ρ) > 0 such that (106) holds,
and this constant does not depend on the choice of si as in (93).

It remains to show that αi (ρ) does not depend on θ or h. To this end, suppose θ̃ is
another Cartan involution on g such that θ̃ (gi ) = g−i , for all i , cf. (103). Then there
exists g ∈ G such that θ̃ = Ad−1

g ◦ θ ◦ Adg = Adg−1�(g) ◦ θ . In view of the Cartan
decomposition, wemaywrite g = k exp(X)with k ∈ G and X ∈ g such that�(k) = k
and θ(X) = −X . Hence, g−1�(g) = exp(−2X), and we obtain θ̃ = Adexp(−2X) ◦ θ .
Since (θ̃θ−1)(gi ) = gi , we have exp(−2X) ∈ G0, see (101). Using θ(X) = −X , we
actually conclude X ∈ g0, hence g0 := exp(X) ∈ G0, and

θ̃ = Ad−1
g0 ◦ θ ◦ Adg0 . (107)

For the corresponding global Cartan involution �̃ we get �̃(g) = g−1
0 �(g0gg

−1
0 )g0,

for all g ∈ G, and thus the corresponding maximal compact subgroups are related by
K̃ = {g ∈ G : �̃(g) = g} = g−1

0 Kg0 and

K̃0 = {g ∈ G0 : �̃(g) = g} = g−1
0 K0g0. (108)

Furthermore, suppose h̃ is another Hermitian inner product on E such that
h̃(ρ′(X)v,w) = −h̃(v, ρ′(θ̃(X))w) for all X ∈ g and v,w ∈ E, cf. (104). Using
ρ′(Adg0(X)) = ρ(g0)ρ′(X)ρ(g0)−1 and (107) as well as (104), we obtain the rela-
tion h(ρ(g0)ρ′(X)v, ρ(g0)w) = −h(ρ(g0)v, ρ(g0)ρ′(θ̃(X))w). Hence, by Schur’s
lemma, there exists a constant C > 0 such that, for all v,w ∈ E,

h̃(v,w) = C · h(
ρ(g0)v, ρ(g0)w

)
. (109)
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By invariance of the Killing form and (107), we have

Bθ̃ (X ,Y ) = Bθ

(
Adg0(X),Adg0(Y )

)
. (110)

Hence, the K̃0-invariant Hermitian inner product h̃i induced by Bθ̃ and h̃ on H
i (g−;E)

is related to the K0-invariant Hermitian inner product hi via

h̃i (ξ, η) = C · hi (g0 · ξ, g0 · η) (111)

where ξ, η ∈ Hi (g−;E) and g0 · ξ denotes the G0-action.
Suppose, moreover, K̃0 → G0 is a reduction of the structure group along the

inclusion K̃0 ⊆ G0. LetK0 denote the principal K0-bundle with underlying manifold
K̃0 where the right action by k ∈ K0 is given by the principal K̃0-action of g−1

0 kg0
on K̃0, see (108). We consider the reduction of structure group K0 → G0 along
the inclusion K0 ⊆ G0 obtained by composing the reduction K̃0 → G0 with the
diffeomorphismG0 → G0 provided by right actionwith g−1

0 .Using (111),we conclude
that via the canonical identifications

K̃0 ×K̃0
Hi (g−;E) = Ei = K0 ×K0 Hi (g−;E),

cf. (105), the Hermitian inner products on Ei induced by h̃i and hi , respectively, differ
by the constant C . Similarly, using (110), we see that the induced volume densities on
M coincide. This implies that the corresponding L2-inner products on �(Ei ) differ by
a constant which is independent of i , hence they give rise to the same formally adjoint
operators.

Summarizing, we see that the Rumin–Seshadri operators associated with θ̃ , h̃, and
a reduction K̃0 → G0 coincide with the Rumin–Seshadri operators associated with θ ,
h, and the reduction K0 → G0 described in the previous paragraph. We conclude that
the constant αi (ρ) does not depend on θ or h. ��

Let us conclude this section with some remarks on the constant α0(ρ0) in Corol-
lary 8 for the trivial representation ρ0. For the nilpotent Lie group G− all irreducible
unitary representations have been calculated explicitly in [24, Proposition 8]. For each
(λ, μ, ν) ∈ R

3 such that (λ, μ) �= (0, 0) there is an irreducible unitary representa-
tion of G− on L2(R) with the standard inner product 〈ψ1, ψ2〉 =

∫
ψ̄1(θ)ψ2(θ)dθ

where dθ denotes the Lebesgue measure. Moreover, these representations are mutu-
ally non-equivalent. There are further, more singular representations, but they form
a set of measure zero with respect to the Plancherel measure. On the representa-
tions parametrized by (λ, μ, ν) above, the Plancherel measure is dλ dμ dν, i.e., the
Lebesgue measure on R

3, see [24, Eq. (26)]. In the representation corresponding to
(λ, μ, ν), the sub-LaplacianonG− takes the formof aLaplacianwith quartic potential,

−�̂λ,μ,ν = 1

λ2 + μ2

d2

dθ2
−

(
(λ2 + μ2)2θ2 + ν

)2

4(λ2 + μ2)
,

see [7, Sect. 3.3.2]. Denoting the solution of
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∂
∂t �t = −�̂λ,μ,ν�t , lim

t↘0
�t = δθ̄

by �
λ,μ,ν
t (θ, θ̄ ), the heat kernel of the sub-Laplacian at the origin in G− can be

expressed in the form

kG−
t (o) =

∫

(λ,μ) �=(0,0)
dλ dμ dν

∫ ∞

−∞
dθ �

λ,μ,ν
t (θ, θ),

see [1, Corollary 29] and Theorem [7, Eq. (25)]. Integrating out the circular sym-
metry and using (98), we obtain the following expression for one of the constants in
Corollary 8

α0(ρ0) = 2π

5!
∫ ∞

0
μdμ

∫ ∞

−∞
dν

∫ ∞

−∞
dθ �

0,μ,ν
1 (θ, θ).

Noexplicit formulas for�λ,μ,ν
t (θ, θ̄ ) appear to be known [7]. For some2-step nilpotent

groups, explicit formulas for the heat kernel of the sub-Laplacian can be found in
[5,19,27].
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