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Abstract
Motivated from the action functional for bosonic strings with extrinsic curvature term
we introduce an action functional for maps between Riemannian manifolds that inter-
polates between the actions for harmonic and biharmonic maps. Critical points of this
functional will be called interpolating sesqui-harmonic maps. In this article we initiate
a rigorous mathematical treatment of this functional and study various basic aspects
of its critical points.

Keywords Interpolating sesqui-harmonic maps · Harmonic maps · Biharmonic
maps · Bosonic string with extrinsic curvature term

Mathematics Subject Classification 58E20 · 31B30

1 Introduction and Results

Harmonic maps play an important role in geometry, analysis and physics. On the one
hand, they are one of the most studied variational problems in geometric analysis, and
on the other hand they naturally appear in various branches of theoretical physics, for
example as critical points of the non-linear sigma model or in the theory of elasticity.
Mathematically, they are defined as critical points of the Dirichlet energy

E1(φ) =
∫
M

|dφ|2dV , (1.1)

where φ : M → N is a map between the two Riemannian manifolds (M, h) and
(N , g). The critical points of (1.1) are characterized by the vanishing of the so-called
tension field, which is given by
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0 = τ(φ) := Trh ∇dφ.

This is a semilinear, elliptic second-order partial differential equation, for which many
results on existence and qualitative behavior of its solutions have been obtained. For
a recent survey on harmonic maps see [15]. Due to their non-linear nature, harmonic
maps do not always need to exist. For example, if M = T 2 and N = S2, there does
not exist a harmonic map with degφ = ±1 regardless of the chosen metrics [12].

In these cases one may consider the following generalization of the harmonic map
equation, the so-called biharmonic maps. These arise as critical points of the bienergy
[16], which is defined as

E2(φ) =
∫
M

|τ(φ)|2dV . (1.2)

In contrast to the harmonic map equation, the biharmonic map equation is an elliptic
equation of fourth order and is characterized by the vanishing of the bitension field

0 = τ2(φ) := �τ(φ) − RN (dφ(eα), τ (φ))dφ(eα),

where � is the connection Laplacian on φ∗T N , eα an orthonormal basis of T M , and
RN denotes the curvature tensor of the target manifold N . Wemake use of the Einstein
summation convention, meaning that we sum over repeated indices.

In the literature that studies analytical aspects of biharmonic maps, one refers to
(1.2) as the energy functional for intrinsic biharmonic maps.

For a survey on biharmonic maps between Riemannian manifolds, we refer to [10]
and [26].

In this article we want to focus on the study of an action functional that interpolates
between the actions for harmonic and biharmonic maps

Eδ1,δ2(φ) = δ1

∫
M

|dφ|2dV + δ2

∫
M

|τ(φ)|2dV (1.3)

with δ1, δ2 ∈ R.
This functional appears at several places in the physics literature. In string theory

it is known as bosonic string with extrinsic curvature term, see [17,28].
On the mathematical side there have been several articles dealing with some par-

ticular aspect of (1.3). Up to the best knowledge of the author the first place where the
functional (1.3) was mentioned is [13, pp.134–135] with δ2 = 1 and δ1 > 0. In that
reference it is already shown that if the domain has dimension 2 or 3 and the target N
negative sectional curvature then the critical points of (1.3) reduce to harmonic maps.
Later it was shown in [20, p.191] that no critical points exist if one does not impose the
curvature condition on N and also assumes that degφ = 1. Some analytic questions
related to critical points of (1.3) have been discussed in [19] assuming δ1 = 2, δ2 = 1.
For the sake of completeness we want to mention that the functional (1.3) with δ1 > 0
and δ2 = 1

2 is also presented in the survey article “A report on harmonic maps”, see
[11, p.28, Example (6.30)].
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250 V. Branding

In [21] the authors initiate an extensive study of (1.3) assuming δ2 = 1 and δ1 ∈ R

under the condition that φ is an immersion. They consider variations of (1.3) that
are normal to the image φ(M) ⊂ N . In this setup they call critical points of (1.3)
biminimal immersions. They also point out possible applications of their model to the
theory of elasticity.

Up to now there exist several results on biminimal immersions, see for example
[9] for biminimal hypersurfaces into spheres, [23] for biminimal submanifolds in
manifolds of non-positive curvature and [24] for biminimal submanifolds of Euclidean
space. Instead of investigatingmaps that are immersions, we here want to put the focus
on arbitrary maps between Riemannian manifolds.

The critical points of (1.3) will be referred to as interpolating sesqui-harmonic
maps and are given by

δ2�τ(φ) = δ2R
N (dφ(eα), τ (φ))dφ(eα) + δ1τ(φ), (1.4)

where τ(φ) denotes the tension field of the map φ and by � we are representing the
connection Laplacian on the vector bundle φ∗T N .

As in the case of biharmonic maps, it is obvious that harmonic maps solve (1.4).
For this reason we are mostly interested in solutions of (1.4) that are not harmonic
maps. However, we can expect that as in the case of biharmonic maps there may be
many situations in which solutions of (1.4) will be harmonic maps. In particular, we
can expect that this is the case if N has negative sectional curvature and δ1δ2 > 0. This
question will be dealt with in Sect. 4. On the other hand, if δ1 and δ2 have opposite
sign, we might expect a different behavior of solutions of (1.4) since in this case the
two terms in the energy functional (1.3) are competing with each other and the energy
functional can become unbounded from above and below.

This article is organized as follows: In Sect. 2 we study basic features of inter-
polating sesqui-harmonic maps. Afterwards, in Sect. 3, we derive several explicit
solutions of the interpolating sesqui-harmonic map equation and in the last section
we provide several results that characterize the qualitative behavior of interpolating
sesqui-harmonic maps.

Throughout this paper we will make use of the following conventions. Whenever
choosing local coordinateswewill useGreek letters to denote indices on the domainM
and Latin letters for indices on the target N . We will choose the following convention
for the curvature tensor R(X ,Y )Z := [∇X ,∇Y ]Z − ∇[X ,Y ]Z such that the sectional
curvature is givenby K (X ,Y ) = R(X ,Y ,Y , X). For theLaplacian actingon functions
f ∈ C∞(M) we choose the convention � f = div grad f , and for sections in the
vector bundle φ∗T N we make the choice �φ∗T N = Tr(∇φ∗T N∇φ∗T N ). Note that the
connection Laplacian on φ∗T N is defined by � := ∇eα∇eα − ∇∇eα eα .

2 Interpolating Sesqui-Harmonic Maps

In this section we analyze the basic features of the action functional (1.3) and start by
calculating its critical points.
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Proposition 2.1 The critical points of (1.3) are given by

δ2�τ(φ) = δ2R
N (dφ(eα), τ (φ))dφ(eα) + δ1τ(φ),

where τ(φ) := Trh∇dφ is the tension field of the map φ.

Proof We choose Riemannian normal coordinates that satisfy∇∂t eα = 0 at the respec-
tive point. Consider a variation of the map φ, that is φt : (−ε, ε) × M → N , which
satisfies ∇

∂t φ
∣∣
t=0 = η. It is well known that

d

dt

∣∣
t=0

∫
M

|dφt |2dV = −2
∫
M

〈η, τ(φ)〉dV .

In addition, we find

d

dt

∣∣
t=0

∫
M

|τ(φt )|2dV =2
∫
M

〈 ∇
∂t

∇eαdφt (eα), τ (φt )〉dV
∣∣
t=0

=2
∫
M

(〈RN (dφt (∂t ), dφt (eα))dφt (eα), τ (φt )〉
+ 〈∇eα∇eαdφt (∂t ), τ (φt )〉

)
dV

∣∣
t=0

=2
∫
M

〈η,�τ(φ) − RN (dφ(eα), τ (φ))dφ(eα)〉dV .

Adding up both contributions yields the claim. 
�
Solutions of (1.4) will be called interpolating sesqui-harmonic maps. 1

Remark 2.2 Choosing δ1 = 2, δ2 = 1 and M = S4, N = Sk solutions of (1.4) were
called quasi-biharmonic maps in [30]. These arise when considering a sequence of
weakly intrinsic biharmonic maps in dimension four. When taking the limit, one finds
that quasi-biharmonic spheres separate at finitely many points as in many conformally
invariant variational problems.

Remark 2.3 There is another way how we can think of (1.4). If we interpret the bihar-
monic map equation as acting with the Jacobi-field operator J on the tension field
τ(φ), then we may rewrite the equation for interpolating sesqui-harmonic maps as

J (τ (φ)) = δ1

δ2
τ(φ).

Since the Jacobi-field operator is elliptic it has a discrete spectrum whenever M is a
closed manifold. In this case the equation for interpolating sesqui-harmonic maps can
be thought of as an eigenvalue equation for the Jacobi-field operator.

1 Finding an appropriate name for solutions of (1.4) turned out to be subtle. The author would like to thank
John Wood for suggesting the word “sesqui.”
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252 V. Branding

Remark 2.4 In order to highlight the dependence of the action functional (1.3) on the
metric on the domain M , we write

Eδ1,δ2(φ, h) = δ1

∫
M

|dφ|2hdVh + δ2

∫
M

|τh(φ)|2hdVh,

where dVh represents the volume element of the metric h. If we perform a rescaling
of the metric by a constant factor h̃ := λ2h, the action functional transforms as

Eδ1,δ2(φ, h̃) = δ1

∫
M

|dφ|2hλn−2dVh + δ2

∫
M

|τh(φ)|2hλn−4dVh .

This clearly reflects the fact that the action functional for harmonic maps is scale-
invariant in two dimensions, whereas the action functional for biharmonic maps is
scale-invariant in four dimensions. We can conclude that the action for interpolating
sesqui-harmonic maps is not scale-invariant in any dimension and we may expect that
interpolating sesqui-harmonic maps may be most interesting if dim M = 2, 3, 4.

In order to highlight the analytical structure of (1.4) we take a look at the case of
a spherical target. For biharmonic maps this was carried out in [18] making use of a
different method.

Proposition 2.5 For φ : M → Sn ⊂ R
n+1 with the constant curvature metric, the

equation for interpolating sesqui-harmonic maps (1.4) acquires the form

δ2(�
2φ + (|�φ|2 + �|dφ|2 + 2〈dφ,∇�φ〉 + 2|dφ|4)φ + 2∇(|dφ|2dφ))

= δ1(�φ + |dφ|2φ). (2.1)

Proof Recall that for a spherical target the tension field has the simple form

τ(φ) = �φ + |dφ|2φ.

Since we assume that N = Sn with constant curvature, the term on the right-hand
side of (1.4) acquires the form

−RN (dφ(eα), τ (φ))dφ(eα) =|dφ|2τ(φ) − 〈dφ(eα), τ (φ)〉dφ(eα)

=|dφ|2�φ + |dφ|4φ − 〈dφ(eα),�φ〉dφ(eα).

Using the special structure of the Levi-Civita connection on Sn ⊂ R
n+1, we calculate

�τ(φ) =∇∇(�φ + |dφ|2φ)

=∇(∇�φ + 〈dφ,�φ〉φ + ∇(|dφ|2φ))

=�2φ + 〈dφ,∇�φ〉φ + ∇(〈dφ,�φ〉φ) + �(|dφ|2φ) + 〈dφ,∇(|dφ|2φ)〉φ
=�2φ + |�φ|2φ + 2〈dφ,∇�φ〉φ + 〈dφ,�φ〉dφ + �(|dφ|2φ) + |dφ|4φ.

Combining both equations yields the claim. 
�
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Byvarying (1.3)with respect to the domainmetric,weobtain the energy-momentum
tensor. Since the energy-momentum tensor for both harmonic and biharmonic maps
is well known in the literature, we can directly give the desired result.

Proposition 2.6 The energy-momentum tensor associated to (1.3) is given by

T (X ,Y ) = δ1(〈dφ(X), dφ(Y )〉 − 1

2
|dφ|2h(X ,Y ))

+ δ2
(1
2
|τ(φ)|2h(X ,Y ) + 〈dφ,∇τ(φ)〉h(X ,Y )

− 〈dφ(X),∇Y τ(φ)〉 − 〈dφ(Y ),∇Xτ(φ)〉), (2.2)

where X ,Y are vector fields on M.

Proof We consider a variation of the metric on M , that is

d

dt

∣∣
t=0ht = k,

where k is a symmetric (2, 0)-tensor. The energy-momentum tensor for harmonic
maps can be computed as [2]

d

dt

∣∣
t=0

∫
M

|dφ|2dVht =
∫
M
kαβ

(〈dφ(eα), dφ(eβ)〉 − 1

2
|dφ|2hαβ

)
dVh .

Deriving the energy-momentum tensor for biharmonic maps is more involved as one
has to vary the connection of the domain since it depends on the metric. The energy-
momentum tensor for biharmonic maps was already presented in [16], a rigorous
derivation was obtained in [22, Theorem 2.4], that is

d

dt

∣∣
t=0

∫
M

|τ(φ)|2dVht = −
∫
M
kαβ(

1

2
|τ(φ)|2hαβ + 〈dφ,∇τ(φ)〉hαβ

− 〈dφ(eα),∇eβ τ (φ)〉 − 〈dφ(eβ),∇eα τ (φ)〉)dVh .

Combining both formulas concludes the proof. 
�
It can be directly seen that the energy-momentum tensor (2.2) is symmetric. For

the sake of completeness we prove the following:

Proposition 2.7 The energy-momentum tensor (2.2) is divergence free.

Proof We choose a local orthonormal basis eα and set

Tαβ := T (eα, eβ) =δ1

(
〈dφ(eα), dφ(eβ)〉 − 1

2
|dφ|2hαβ

)

+ δ2
(1
2
|τ(φ)|2hαβ + 〈dφ,∇τ(φ)〉hαβ

− 〈dφ(eα),∇eβ τ (φ)〉 − 〈dφ(eβ),∇eα τ (φ)〉).
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By a direct calculation we find

∇eα

(
〈dφ(eα), dφ(eβ)〉 − 1

2
|dφ|2hαβ

)
= 〈τ(φ), dφ(eβ)〉

and also

∇eα (
1

2
|τ(φ)|2hαβ + 〈dφ,∇τ(φ)〉hαβ − 〈dφ(eα),∇eβ τ (φ)〉 − 〈dφ(eβ),∇eα τ (φ)〉)

=〈∇eβ τ (φ), τ (φ)〉 + 〈∇eβdφ(eγ ),∇eγ τ (φ)〉 + 〈dφ(eγ ),∇eβ ∇eγ τ (φ)〉
− 〈τ(φ),∇eβ τ (φ)〉 − 〈dφ(eα),∇eα∇eβ τ (φ)〉
− 〈∇eαdφ(eβ),∇eα τ (φ)〉 − 〈dφ(eβ),∇∇τ(φ)〉

=〈dφ(eα), RN (dφ(eβ), dφ(eα))τ (φ)〉 − 〈dφ(eβ),�τ(φ)〉,

where we used the torsion-freeness of the Levi-Civita connection. Adding up both
equations yields the claim. 
�

2.1 Conservation Laws for Targets with Symmetries

In this subsection we discuss how to obtain a conservation law for solutions of the
interpolating sesqui-harmonic map equation in the case that the target manifold has
a certain amount of symmetry, more precisely, if it possesses Killing vector fields. A
similar discussion has been performed in [4].

To this end let ξ be a diffeomorphism that generates a one-parameter family of
vector fields X . Then we know that

d

dt

∣∣
t=0ξ

∗g = LX g,

where L denotes the Lie-derivative acting on the metric. In terms of local coordinates
the Lie-derivative of the metric is given by

LX gi j = ∇i X j + ∇ j Xi .

This enables us to give the following:

Definition 2.8 Let ξ be a diffeomorphism that generates a one-parameter family
of vector fields X on N . We say that X generates a symmetry for the action
Eδ1,δ2(φ, ξ∗g) if

d

dt

∣∣
t=0Eδ1,δ2(φ, ξ∗g) =

∫
M
LX (δ1|dφ|2 + δ2|τ(φ)|2)dV = 0,

where the Lie-derivative is acting on the metric g.
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Note that if X generates an isometry then LX g = 0 such that we have to require
the existence of Killing vector fields on the target.

In the following we will make use of the following facts:

Lemma 2.9 If X is a Killing vector field on the target N , then

∇2
Y ,Z X = −RN (X ,Y )Z , (2.3)

LX�k
i j = ∇i∇ j X

k − Rk
i jl X

l , (2.4)

where �k
i j are the Christoffel symbols on N, Rk

i jl the components of the Riemannian
curvature tensor on N and Y , Z vector fields on N.

Lemma 2.10 Let φ : M → N be a smooth solution of (1.4) and assume that N admits
a Killing vector field X. Then the Lie-derivative acting on the metric g of the energy
density is given by

LX (δ1|dφ|2 + δ2|τ(φ)|2) =2δ1∇eα 〈dφ(eα), X(φ)〉
+ 2δ2∇eα (〈τ(φ),∇eα X(φ)〉 − δ2〈∇eα τ (φ), X(φ)〉).

Proof We choose Riemannian normal coordinates xα on M and calculate

LX |dφ|2 = (LX g)i j
∂φi

∂xα

∂φ j

∂xβ
hαβ

= 2∇i X j
∂φi

∂xα

∂φ j

∂xβ
hαβ

= 2〈dφ(eα),∇eα (X(φ))〉
= 2∇eα 〈dφ(eα), X(φ)〉 − 2〈τ(φ), X(φ)〉.

To calculate the variation of the tension field with respect to the target metric, we first
of all note that

LX |τ(φ)|2 = 2τ i (φ)τ j (φ)∇i X j + 2gi jτ
i (φ)LXτ j (φ).

Making use of the local expression of the tension field this yields

LXτ j (φ) =LX

(
�φ j + hαβ ∂φk

∂xα

∂φl

∂xβ
�

j
kl

)

= hαβ ∂φk

∂xα

∂φl

∂xβ
LX�

j
kl

= hαβ ∂φk

∂xα

∂φl

∂xβ
(∇k∇l X

j − R j
klr X

r ),

where we used (2.4) in the last step.
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This allows us to infer

gi jτ
i (φ)LXτ j (φ) = 〈τ(φ),∇dφ(eα)∇eα X(φ)〉 + 〈RN (τ (φ), dφ(eα))dφ(eα), X〉.

Combining both equations we find

LX |τ(φ)|2 = 2∇eα 〈τ(φ),∇eα X(φ)〉 − 2∇eα 〈∇eα τ (φ), X(φ)〉 + 2〈�τ(φ), X(φ)〉
+ 2〈RN (τ (φ), dφ(eα))dφ(eα), X〉.

The result follows by adding up both contributions. 
�
Proposition 2.11 Let φ : M → N be a smooth solution of (1.4) and assume that N
admits a Killing vector field X. Then the following vector field is divergence free

Jα := δ1〈dφ(eα), X(φ)〉 + δ2〈τ(φ),∇eα X(φ)〉 − δ2〈∇eα τ (φ), X(φ)〉. (2.5)

Proof A direct calculation yields

∇eα Jα = δ1〈τ(φ), X(φ)〉 + δ1 〈dφ(eα),∇eα X(φ)〉︸ ︷︷ ︸
=0

+δ2〈τ(φ),∇2
eα,eα X(φ)〉

− δ2〈�τ(φ), X(φ)〉
= 〈X(φ), δ1τ(φ) + δ2R

N (dφ(eα), τ (φ))dφ(eα) − δ2�τ(φ)〉
= 0,

where we used (2.3) and that φ is a solution of (1.4) in the last step. 
�
Remark 2.12 In the physics literature the vector field (2.5) is usually called Noether
current.

3 Explicit Solutions of the Interpolating Sesqui-Harmonic Map
Equation

In this section we want to derive several explicit solutions to the Euler–Lagrange
equation (1.4). We can confirm that solutions may have a different behavior than
biharmonic or harmonic maps.

Let us start in the most simple setup possible.

Example 3.1 Suppose that M = N = S1 and by s we denote the global coordinate on
S1. Then (1.4) acquires the form

δ2φ
′′′′

(s) = δ1φ
′′
(s).

Taking an ansatz of the form

φ(s) =
∑
k

ake
iks
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we obtain

∑
k

akk
2(δ2k

2 − δ1)e
iks = 0.

Consequently, we have to impose the condition k2 = δ1
δ2
. In particular, this shows that

there does not exist a solution of (1.4) on S1 if δ1 and δ2 have opposite sign.

Example 3.2 Consider the case M = R
2 and N = R. In this case being interpolating

sesqui-harmonic means to find a function f : M → N that solves

δ2(∂
2
x + ∂2y )

2 f = δ1(∂
2
x + ∂2y ) f ,

where x, y denote the canonical coordinates in R2. If we make a separation ansatz of
the form

f (x, y) = eαx eβ y,

then we are lead to the following algebraic expression

δ2(α
2 + β2) = δ1.

Let us distinguish the following cases:

(1) δ1 = 0, that is f is biharmonic. In this case α2 + β2 = 0 and we have to choose
α, β ∈ C.

(2) δ2 = 0, that is f is harmonic. In this case there are no restrictions on α, β.
(3) If δ1δ2 > 0 we have to impose the condition α2 +β2 > 0 meaning that α, β ∈ R.
(4) If δ1δ2 < 0 we find that α2 + β2 < 0 meaning that α, β ∈ C.

This again shows that interpolating sesqui-harmonic functions may be very different
from both harmonic and biharmonic functions.

3.1 Interpolating Sesqui-Harmonic Functions in Flat Space

In this section we study interpolating sesqui-harmonic functions in flat space.
First, suppose that M = N = R and we denote the global coordinate on R by x .

Then (1.4) acquires the form

δ2φ
′′′′

(x) = δ1φ
′′
(x).

This can be integrated as

φ(x) = δ2

δ1

(
c1e

√
δ1
δ2
x + c2e

−
√

δ1
δ2
x
)

+ c3x + c4,
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258 V. Branding

where ci , i = 1, . . . 4 are integration constants. It is interesting to note that both limits
δ1 → 0 and δ2 → 0 do not exist. Consequently, the solution of the interpolating
sesqui-harmonic function equation does neither reduce to a solution of the harmonic
or the biharmonic function equation. In the following we will analyze if the same
behavior persists in higher dimensions.

If we take M = (Rn, δ) and N = (R, δ) both with the Euclidean metric, the
equation for interpolating sesqui-harmonic maps turns into

δ2�� f = δ1� f , (3.1)

where f : Rn → R. Although this equation is linear, we may expect some analyti-
cal difficulties since we do not have a maximum principle available for fourth-order
equations.

A full in detail analysis of this equation is far beyond the scope of this article.
Nevertheless, we will again see that solutions of (3.1) may be very different from
harmonic and biharmonic functions. We will be looking for radial solutions of (3.1),

where r :=
√
x21 + . . . + x2n . In this case the Laplacian has the form

� = d2

dr2
+ n − 1

r

d

dr
.

Recall that the fundamental solution of the Laplace equation in Rn is given by

H�(x, y) =
{

|x − y|2−n, n ≥ 3,

log |x − y|, n = 2,

whereas for biharmonic functions it acquires the form

H�2(x, y) =

⎧⎪⎨
⎪⎩

|x − y|4−n, n ≥ 5,

log |x − y|, n = 4,

|x − y|, n = 3.

Note that we did not write down any normalization of the fundamental solutions.
We cannot expect to find a unique solution to (3.1) since we can always add a har-

monic function once we have constructed a solution to (3.1). Since we are considering
R
n instead of a curved manifold at the moment, all curvature terms in (1.4) vanish and

we are dealing with a linear problem.
Instead of trying to directly solve (3.1) we rewrite the equation as follows:

�

(
� f − δ1

δ2
f

)
= 0.

Assume that n ≥ 3 and making use of the fundamental solution of the Laplacian, we
may solve
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� f (r) − δ1

δ2
f (r) = r2−n,

which then provides an interpolating sesqui-harmonic function. This yields the fol-
lowing ordinary differential equation

f ′′(r) + n − 1

r
f ′(r) − δ1

δ2
f (r) = r2−n . (3.2)

This equation can be solved explicitly in terms of a linear combination of Bessel
functions in any dimension. Since the general solution is rather lengthy, we only give
some explicit solutions for a fixed dimension.

• Suppose that n = 3, then the solution of (3.2) is given by

f (r) = c1
e
−

√
δ1
δ2
r

r
+ c2

e

√
δ1
δ2
r

√
δ1/δ2r

− δ2

δ1

1

r
.

As in the one-dimensional case both limits δ1 → 0 and δ2 → 0 do not exist.
• Suppose that n = 4 and that δ1

δ2
> 0. Then the solution of (3.2) is given by

f (r) = c1
J1

(√
δ1
δ2
r
)

r
+ c2

Y1
(√

δ1
δ2
r
)

r

+ π

2
√

δ1/δ2r

(
J1

(√
δ1

δ2
r

)
Y0

(√
δ1

δ2
r

)
− J0

(√
δ1

δ2
r

)
Y1

(√
δ1

δ2
r

))
.

If δ1
δ2

< 0, then we obtain the solution by an analytic continuation.
• The qualitative behavior of solutions to (3.2) for n ≥ 5 seems to be the same as
above.

It becomes obvious that solutions of (3.1) may show a different qualitative behavior
compared to biharmonic functions. Moreover, as one should expect, the qualitative
behavior depends heavily on the sign of the product δ1δ2.

3.2 Interpolating Sesqui-Harmonic Curves on the Three-Dimensional Sphere

In this subsectionwe study interpolating sesqui-harmonic curves on three-dimensional
spheres with the round metric, where we follow the ideas from [7].

To this end let (N , g) be a three-dimensional Riemannian manifold with constant
sectional curvature K .Moreover, let γ : I → N be a smooth curve that is parametrized
by arc length. Let {T , N , B} be an orthonormal frame field of T N along the curve γ .
Here, T = γ ′ is the unit tangent vector of γ , N the unit normal field, and B is chosen
such that {T , N , B} forms a positive oriented basis.

123



260 V. Branding

In this setup we have the following Frenet equations for the curve γ

∇T T = kgN , ∇T N = −kgT + τg B, ∇T B = −τgN . (3.3)

Lemma 3.3 Let γ : I → N be a curve in a three-dimensional Riemannian manifold.
Then the curve γ is interpolating sesqui-harmonic if the following equation holds

(−3δ2kgk
′
g)T + (δ2(k

′′
g − k3g − kgτ

2
g + kgK ) − δ1kg)N + δ2(2k

′
gτg + kgτ

′
g)B = 0.

Proof Making use of the Frenet equations (3.3) a direct calculation yields

∇3
T T = (−3kgk

′
g)T + (k′′

g − k3g − kgτ
2
g )N + (2k′

gτg + kgτ
′
g)B = 0.

Using that the sectional curvature of N is given by K = RN (T , N , N , T ), we obtain
the claim. 
�
Corollary 3.4 Let γ : I → N be a curve in a three-dimensional Riemannian manifold.
Then the curve γ is interpolating sesqui-harmonic if the following system holds

kgk
′
g = 0, 2k′

gτg + kgτ
′
g = 0, δ2(k

′′
g − k3g − kgτ

2
g + kgK ) = δ1kg.

The non-geodesic solutions (kg �= 0) of this system are given by

kg = const �= 0, τg = const, δ2(k
2
g + τ 2g ) = δ2K − δ1. (3.4)

We directly obtain the following characterization of interpolating sesqui-harmonic
curves:

Proposition 3.5 (1) Let γ : I → N be a curve in a three-dimensional Riemannian
manifold. If K ≤ δ1

δ2
, then any interpolating sesqui-harmonic curve is a geodesic.

(2) To obtain a non-geodesic interpolating sesqui-harmonic curve γ : I → S3, we
have to demand that δ2 > δ1.

Proposition 3.6 Let γ : I → S3 be a curve on the three-dimensional sphere with the
round metric. The curve γ is interpolating sesqui-harmonic if the following equation
holds

γ
′′′′ + (1 − δ1 + δ2)γ

′′ + (−k2g − δ1 + δ2)γ = 0. (3.5)

Proof Differentiating the first equation of (3.3) we find

∇2
T N = − k′

gT − kg∇T T + τ ′
g B + τg∇T B

= − kg∇T T + τg∇T B

= − (k2g + τ 2g )N

=(−δ2 + δ1)N ,
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where we used (3.4). Moreover, employing the formula for the Levi-Civita connection
on S3 ⊂ R

4

∇T X = X ′ + 〈T , X〉γ,

we get the equations

∇2
T N =∇T (N ′ + 〈T , N 〉γ ) = N ′′ + 〈T ,∇T N 〉γ = N ′′ − kgγ,

∇T T =kgN = γ ′′ + |γ ′|2γ = γ ′′ + γ.

Combining the equations for ∇2
T N we obtain

N ′′ − kgγ = (δ1 − δ2)N

and rewriting this as an equation for γ yields the claim. 
�
Proposition 3.7 Let γ : I → S3 be a curve on the three-dimensional sphere with the
round metric. If k2g = δ2 − δ1, the interpolating sesqui-harmonic curves are given by

γ (t) =
(
cos

(√
(1 − δ1 + δ2)t

)
√

(1 − δ1 + δ2)
,
sin

(√
(1 − δ1 + δ2)t

)
√

(1 − δ1 + δ2)
, d1, d2

)
, (3.6)

where 1
1−δ1+δ2

+ d21 + d22 = 1.

Proof Making use of the assumptions (3.5) simplifies as

γ
′′′′ + (1 − δ1 + δ2)γ

′′ = 0.

Solving this differential equation together with the constraints |γ |2 = 1 and |γ ′|2 = 1
yields the claim. 
�
Remark 3.8 Note that it is required in (3.6) that 1 − δ1 + δ2 > 1, which is equivalent
to δ2 > δ1. This is consistent with the assumption k2g = δ2 − δ1.

Theorem 3.9 Let γ : I → S3 be a curve on the three-dimensional sphere with the
round metric and suppose that δ2 > δ1. Then the non-geodesic solution to (3.5) is
given by

γ (t) = 1√
a21 − a22

(√
1 − a22 cos(a1t),

√
1 − a22 sin(a1t),

√
a21 − 1 cos(a2t),

√
a21 − 1 sin(a2t)

)
(3.7)
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with the constants

a1 := 1√
2

√
1 − δ1 + δ2 +

√
(1 + δ1 − δ2)2 + 4k2g,

a2 := 1√
2

√
1 − δ1 + δ2 −

√
(1 + δ1 − δ2)2 + 4k2g.

Proof The most general ansatz for a solution of (3.5) is given by

γ (t) = c1 cos(at) + c2 sin(at) + c3 cos(bt) + c4 sin(bt),

where ci , i = 1 . . . 4 are mutually perpendicular and a and b are real numbers. This
leads to the following quadratic equation for both a and b

a4 − a2(1 − δ1 + δ2) + (−k2g − δ1 + δ2) = 0.

We obtain the two solutions

a21 = 1

2

(
1 − δ1 + δ2 +

√
(1 + δ1 − δ2)2 + 4k2g

)
,

a22 = 1

2

(
1 − δ1 + δ2 −

√
(1 + δ1 − δ2)2 + 4k2g

)
.

Moreover, the constraints |γ |2 = 1 and |γ ′|2 = 1 give the two equations

|c1|2 + |c2|2 = 1, a21 |c1|2 + a22 |c2|2 = 1.

Solving this system for |c1|2 and |c2|2 yields the claim. 
�
Remark 3.10 If we analyze the constants appearing in (3.7), then we find that we have
to demand the condition δ2 − δ1 > k2g > 0 in order to obtain a real-valued constant
a2. In addition, we find

a21 − a22 =
√

(1 + δ1 − δ2)2 + 4k2g > 0,

1 − a22 = 1

2
(1 + δ1 − δ2 +

√
(1 + δ1 − δ2)2 + 4k2g) > 0,

a21 − 1 = 1

2
(−1 − δ1 + δ2 +

√
(1 + δ1 − δ2)2 + 4k2g) > 0

such that we do not get any further restrictions. We conclude that we get a solution of
(3.4) for all δ1, δ2 satisfying δ2 − δ1 > k2g > 0.

Remark 3.11 Ifwe compare our resultswith [7,Theorem3.3], thenwefind that interpo-
lating sesqui-harmonic curves on S3 have the same qualitative behavior as biharmonic
curves. More precisely, we have the following two cases:
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(1) If k2g = δ2 − δ1, then γ is a circle of radius 1√
1+k2g

.

(2) If δ2 − δ1 > k2g > 0, then γ is a geodesic of the rescaled Clifford torus

S1

⎛
⎜⎜⎝

√
(1 + δ1 − δ2 +

√
(1 + δ1 − δ2)2 + 4k2g)

√
2((1 + δ1 − δ2)2 + 4k2g)

1
4

⎞
⎟⎟⎠

×S1

⎛
⎜⎜⎝

√
−1 − δ1 + δ2 +

√
(1 + δ1 − δ2)2 + 4k2g

√
2((1 + δ1 − δ2)2 + 4k2g)

1
4

⎞
⎟⎟⎠ .

Note that the solutions from above reduce to biharmonic curves (see [7, Theorem 3.3])
in the case of δ1 = 0, δ2 = 1.

We want to close this subsection by mentioning that it is possible to generalize the
results obtained from above to higher-dimensional spheres as was done for biharmonic
curves in [8].

4 The Qualitative Behavior of Solutions

In this section we study the qualitative behavior of interpolating sesqui-harmonic
maps.

In the case of a one-dimensional domain and the target being a Riemannian mani-
fold, the Euler–Lagrange equation reduces to

δ2∇3
γ ′γ ′ = δ2R

N (γ ′,∇γ ′γ ′)γ ′ + δ1∇γ ′γ ′, (4.1)

where γ : I → N and γ ′ denotes the derivative with respect to the curve parameter s.

Proposition 4.1 Suppose that γ : I → N is a smooth solution of (1.4). Then the
following conservation type law holds

(
δ2

d3

ds3
− δ1

d

ds

)
1

2
|γ ′|2 = δ2

d

ds

3

2
|∇γ ′γ ′|2.

Proof We test (4.1) with γ ′ and obtain

δ2〈∇3
γ ′γ ′, γ ′〉 = δ1〈∇γ ′γ ′, γ ′〉 = 1

2
δ1

d

ds
|γ ′|2.
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The left-hand side can be further simplified as

〈∇3
γ ′γ ′, γ ′〉 = d

ds
〈∇2

γ ′γ ′, γ ′〉 − 〈∇2
γ ′γ ′,∇γ ′γ ′〉

= d2

ds2
〈∇γ ′γ ′, γ ′〉 − 3

2

d

ds
|∇γ ′γ ′|2

= d3

ds3
1

2
〈γ ′, γ ′〉 − 3

2

d

ds
|∇γ ′γ ′|2,

which completes the proof. 
�
As already stated in the introduction, it is obvious that harmonic maps solve (1.4).

Wewill give several conditions under which interpolating sesqui-harmonic maps must
be harmonic generalizing several results from [19,27]. To achieve these results we will
frequently make use of the following Bochner formula:

Lemma 4.2 Letφ : M → N be a smooth solution of (1.4). Then the followingBochner
formula holds

�
1

2
|τ(φ)|2 = |∇τ(φ)|2 + 〈RN (dφ(eα), τ (φ))dφ(eα), τ (φ)〉 + δ1

δ2
|τ(φ)|2. (4.2)

Proof This follows by a direct calculation. 
�
Proposition 4.3 Suppose that (M, h) is a compact Riemannianmanifold. Letφ : M →
N be a smooth solution of (1.4).

(1) If N has non-positive curvature K N ≤ 0 and δ1, δ2 have the same sign, then φ is
harmonic.

(2) If |dφ|2 ≤ δ1
|RN |L∞ δ2

and δ1, δ2 have the same sign, then φ is harmonic.

Proof The first statement follows directly from (4.2) by application of the maximum
principle. For the second statement we estimate (4.2) as

�
1

2
|τ(φ)|2 = |∇τ(φ)|2 +

(
δ1

δ2
− |RN |L∞|dφ|2

)
|τ(φ)|2 ≥ 0

due to the assumptions. The claim follows again due to the maximum principle. 
�
If we do not require M to be compact, we can give the following result.

Proposition 4.4 Let φ : M → N be a Riemannian immersion that solves (1.4) with
|τ(φ)| = const. If N has non-positive curvature K N ≤ 0 and δ1, δ2 have the same
sign, then φ must be harmonic.

Proof Via the maximum principle we obtain ∇τ(φ) = 0 from (4.2). By assumption
the map φ is an immersion such that

−|τ(φ)|2 = 〈dφ,∇τ(φ)〉

concluding the proof. 
�
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In the case that dim M = dim N −1 the assumption of N having negative sectional
curvature can be replaced by demanding negative Ricci curvature.

Theorem 4.5 Letφ : M → N be aRiemannian immersion. Suppose that M is compact
and dim M = dim N − 1. If N has non-positive Ricci curvature and δ1, δ2 have the
same sign, then φ is interpolating sesqui-harmonic if and only if it is harmonic.

Proof Since φ is an immersion and dim M = dim N − 1, we obtain

RN (dφ(eα), τ (φ))dφ(eα) = −RicN (τ (φ)).

Making use of (4.2) we get

�
1

2
|τ(φ)|2 = |∇τ(φ)|2 − 〈RicN (τ (φ)), τ (φ)〉 + δ1

δ2
|τ(φ)|2 ≥ 0

due to the assumptions. The result follows by the maximum principle. 
�

As for harmonic maps ([29, Theorem 2]) we can prove a unique continuation
theorem for interpolating sesqui-harmonic maps. To obtain this result we recall the
following ([1, p.248]):

Theorem 4.6 Let A be a linear elliptic second-order differential operator defined on
a domain D of Rn. Let u = (u1, . . . , un) be functions in D satisfying the inequality

|Au j | ≤ C

⎛
⎝∑

α,i

∣∣∣∣ ∂ui

∂xα

∣∣∣∣ +
∑
i

|ui |
⎞
⎠ . (4.3)

If u = 0 in an open set, then u = 0 throughout D.

Making use of this result we can prove the following:

Proposition 4.7 Let φ ∈ C4(M, N ) be an interpolating sesqui-harmonic map. If φ is
harmonic on a connected open set W of M, then it is harmonic on the whole connected
component of M which contains W.

Proof The analytic structure of the interpolating sesqui-harmonic map equation is the
following:

|�τ(φ)| ≤ C(|dφ|2|τ(φ)| + |τ(φ)|).

In order to apply Theorem 4.6 we consider the equation for interpolating sesqui-
harmonic maps in a coordinate chart in the target. The bound on |dφ|2 can be obtained
by shrinking the chart if necessary such that (4.3) holds.
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4.1 Interpolating Sesqui-Harmonic Maps with Vanishing Energy-Momentum
Tensor

In this section we study the qualitative behavior of solutions to (1.4) under the addi-
tional assumption that the energy-momentum tensor (2.2) vanishes similar to [22].
Such an assumption is partially motivated from physics: In physics one usually also
varies the action functional (1.3) with respect to the metric on the domain and the
resulting Euler–Lagrange equation yields the vanishing of the energy-momentum ten-
sor.

In the followingwewill oftenmake use of the trace of the energy-momentum tensor
(2.2), which is given by (where n = dim M)

Tr T = δ1

(
1 − n

2

)
|dφ|2 + δ2

n

2
|τ(φ)|2 + δ2(n − 2)〈dφ,∇τ(φ)〉. (4.4)

Note that we do not have to assume that φ is a solution of (1.4) in the following.

Proposition 4.8 Let γ : S1 → N be a curve with vanishing energy-momentum tensor.
If δ1δ2 > 0, then γ maps to a point.

Proof Using (4.4) and integrating over S1 we find

0 = δ1

2

∫
S1

|γ ′|2ds + 3

2
δ2

∫
S1

|τ(γ )|2ds,

which yields the claim. 
�
Proposition 4.9 Suppose that (M, h) is a Riemannian surface. Let φ : M → N be a
smooth map with vanishing energy-momentum tensor. Then φ is harmonic.

Proof Since dim M = 2, we obtain from (4.4) that |τ(φ)|2 = 0 yielding the claim. 
�
For a higher-dimensional domain we have the following result.

Proposition 4.10 Let φ : M → N be a smooth map with vanishing energy-momentum
tensor. Then the following statements hold:

(1) If dim M = 3 and δ1δ2 < 0, then φ is trivial.
(2) If dim M = 4, then φ is trivial.
(3) If dim M ≥ 5 and δ1δ2 > 0, then φ is trivial.

Proof Integrating (4.4) we obtain

0 = δ1

(
1 − n

2

) ∫
M

|dφ|2dV + δ2

(
2 − n

2

) ∫
|τ(φ)|2dV ,

which already yields the result. 
�
As a next step we rewrite the condition on the vanishing of the energy-momentum

tensor.
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Proposition 4.11 Let φ : M → N be a smooth map and assume that n �= 2. Then the
vanishing of the energy-momentum tensor is equivalent to

0 = T (X ,Y ) = δ1〈dφ(X), dφ(Y )〉
− δ2

1

n − 2
|τ(φ)|2h(X ,Y ) − δ2

(〈dφ(X),∇Y τ(φ)〉 + 〈dφ(Y ),∇Xτ(φ)〉).
(4.5)

Proof Rewriting the equation for the vanishing of the trace of the energy-momentum
tensor (4.4), we find

δ2〈dφ,∇τ(φ)〉 = δ1
( n2 − 1)

(n − 2)
|dφ|2 − δ2

n

2(n − 2)
|τ(φ)|2.

Inserting this into the energy-momentum tensor (2.2) yields the claim. 
�
This allows us to give the following:

Proposition 4.12 Let φ : M → N be a smooth map with vanishing energy-momentum
tensor. Suppose that dim M > 2 and rank φ ≤ n − 1. Then φ is harmonic.

Proof Fix a point p ∈ M . By assumption rank φ ≤ n − 1 and hence there exists
a vector X p ∈ ker dφp. For X = Y = X p we can infer from (4.5) that τ(φ) = 0
yielding the claim. 
�

If the domain manifold M is non-compact we can give the following variant of the
previous results.

Proposition 4.13 Let φ : M → N be a smooth Riemannian immersion with vanishing
energy-momentum tensor. If dim M = 2, then φ is harmonic, and if dim M = 4, then
φ is trivial.

Proof Since φ is a Riemannian immersion, we have 〈τ(φ), dφ〉 = 0. Hence (4.4)
yields

0 = δ1

(
1 − n

2

)
|dφ|2 + δ2

(
2 − n

2

)
|τ(φ)|2,

which proves the claim.

4.2 Conformal Construction of Interpolating Sesqui-Harmonic Maps

In [3] the authors present a powerful constructionmethod for biharmonicmaps. Instead
of trying to directly solve the fourth-order equation for biharmonic maps they assume
the existence of a harmonic map and then perform a conformal transformation of the
metric on the domain to render this map biharmonic. In particular, they call a metric
that renders the identity map biharmonic, a biharmonic metric. In this section we
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will discuss if the same approach can also be used to construct interpolating sesqui-
harmonic maps.

To this end let φ : (M, h) → (N , g) be a smooth map. If we perform a conformal
transformation of the metric on the domain, that is h̃ = e2uh for some smooth function
u, we have the following formula for the transformation of the tension field

τh̃(φ) = e−2u(τh(φ) + (n − 2)dφ(∇u)),

where τh̃(φ) denotes the tension field of the map φ with respect to the metric h̃. In
addition, we set n := dim M .

Now, suppose that φ is a harmonic map with respect to h, that is τh(φ) = 0, then
we obtain the identity

τh̃(φ) = e−2u(n − 2)dφ(∇u).

This allows us to deduce

Proposition 4.14 Let φ : (M, h) → (N , g) be a smooth harmonic map and suppose
that dim M �= 2. Let h̃ = e2uh be ametric conformal to h. Then themap φ : (M, h̃) →
(N , g) is interpolating sesqui-harmonic if and only if

δ2
(∇∗∇dφ(∇u) + (n − 6)∇∇udφ(∇u) + 2(−�u − (n − 4)|du|2)dφ(∇u)

+Trh R
N (dφ(∇u), dφ)dφ

) = δ1e
−2udφ(∇u).

Proof For every v ∈ �(φ∗T N ) the following formula holds

∇∗
h̃
∇h̃v = e−2u(∇∗

h∇hv + (n − 2)∇∇uv).

By a direct calculation we find

∇∗
h∇h(τh̃(φ)) =(n − 2)e−2u( − 2�udφ(∇u) + 4|du|2dφ(∇u)

− 4〈∇u,∇(dφ(∇u))〉 + ∇∗∇dφ(∇u)
)
.

Together with

∇∇uτh̃(φ) = (n − 2)e−2u(−2|∇u|2dφ(∇u) + ∇∇udφ(∇u)),

RN (dφ, τh̃(φ))dφ = (n − 2)e−4u RN (dφ, dφ(∇u))dφ,

this completes the proof. 
�
In the following we will call a metric that renders the identity map interpolating

sesqui-harmonic an interpolating sesqui-harmonic metric.

Corollary 4.15 Let φ : (M, h) → (M, h) be the identity map and suppose that
dim M �= 2. Let h̃ = e2uh be a metric conformal to h. Then the map φ : (M, h̃) →
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(M, h) is interpolating sesqui-harmonic if and only if

δ2(2(−�u − (n − 4)|du|2)∇u + (n − 6)∇∇u∇u + Trh(∇∗∇)∇u + RicM (∇u))

= δ1e
−2u∇u.

We now rewrite this as an equation for ∇u.

Proposition 4.16 Let φ : (M, h) → (M, h) be the identity map and suppose that
dim M �= 2. Let h̃ = e2uh be a metric conformal to h and set ∇u = β. Then the map
φ : (M, h̃) → (M, h) is interpolating sesqui-harmonic if and only if

−�β = 2(d∗β − (n − 4)|β|2)β + (n − 6)
1

2
d|β|2 + 2RicM (β�)� − δ1

δ2
e−2uβ,

(4.6)

where −� = dd∗ + d∗d is the Laplacian acting on one-forms.

Proof TheLaplacian acting on one-forms satisfies the followingWeitzenböck identity:

�β(X) = Trh(∇2)β(X) − β Ric(X),

where X is a vector field. In addition, note that (see [3, Proof of Proposition 2.2] for
more details)

∇∇u∇u = 1

2
d|β|2,

which completes the proof. 
�
Proposition 4.17 Let (M, h) be a compactmanifold of strictly negativeRicci curvature
with dim M > 2 and assume that δ1δ2 > 0. Then there does not exist an interpolating
sesqui-harmonic metric that is conformally related to h except a constant multiple
of h.

Proof Note that our sign convention for the Laplacian is different from the one used
in [3]. We define the one-form θ := e−2uβ. By a direct calculation we then find using
(4.6)

�θ = −1

2
(n − 2)e2ud|θ |2 − 2RicM (θ�)� + δ1

δ2
e−2uθ.

In addition, we have

�
1

2
|θ |2 = 〈�θ, θ〉 + |∇θ |2 + Ric(θ�, θ�)

= −1

2
(n − 2)e2u〈d|θ |2, θ〉 + |∇θ |2 − Ric(θ�, θ�) + δ1

δ2
e−2u |θ |2.

The claim then follows by the maximum principle.
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Remark 4.18 In contrast to the case of biharmonic maps (4.6) contains also a term
involving u on the right-hand side. This reflects the fact that both harmonic and bihar-
monic maps on its own have a nice behavior under conformal deformations of the
domain metric, whereas interpolating sesqui-harmonic maps do not. This prevents us
frommaking a connection between interpolating sesqui-harmonicmetrics and isopara-
metric functions as was done in [3] for biharmonic maps.

4.3 A Liouville-Type Theorem for Interpolating Sesqui-Harmonic Maps Between
Complete Manifolds

In this section we will prove a Liouville-type theorem for solutions of (1.4) between
complete Riemannian manifolds generalizing a similar result for biharmonic maps
from [25]. For more Liouville-type theorems for biharmonic maps see [5,6] and ref-
erences therein.

To this end we will make use of the following result due to Gaffney [14]:

Theorem 4.19 Let (M, h) be a complete Riemannian manifold. If a C1 one-form ω

satisfies

∫
M

|ω|dV < ∞ and
∫
M

|δω|dV < ∞

or, equivalently, a C1 vector field X defined by ω(Y ) = h(X ,Y ), satisfies

∫
M

|X |dV < ∞ and
∫
M
div(X)dV < ∞,

then
∫
M

(δω)dV =
∫
M
div(X)dV = 0.

Theorem 4.20 Let (M, h) be a complete non-compact Riemannian manifold and
(N , g) a manifold with non-positive sectional curvature. Let φ : M → N be a smooth
solution of (1.4) and p be a real constant satisfying 2 ≤ p < ∞.

(1) If δ1δ2 > 0 and

∫
M

|τ(φ)|pdV < ∞,

∫
M

|dφ|2dV < ∞,

then φ must be harmonic.
(2) If δ1δ2 > 0, vol(M, h) = ∞ and

∫
M

|τ(φ)|pdV < ∞,

then φ must be harmonic.
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Proof We choose a cutoff function 0 ≤ η ≤ 1 on M that satisfies

η(x) = 1 for x ∈ BR(x0), η(x) = 0 for x ∈ B2R(x0), |∇η| ≤ C

R
for x ∈ M,

where BR(x0) denotes the geodesic ball around the point x0 with radius R.
We test the interpolating sesqui-harmonicmapequation (1.4)withη2τ(φ)|τ(φ)|p−2

and find

η2|τ(φ)|p−2〈�τ(φ), τ (φ)〉 = η2|τ(φ)|p−2〈RN (dφ(eα), τ (φ))dφ(eα), τ (φ)〉
+ δ1

δ2
η2|τ(φ)|p ≥ 0,

where we made use of the assumptions on the curvature of the target and the signs of
δ1 and δ2. Integrating over M and using integration by parts we obtain

∫
M

η2|τ(φ)|p−2〈�τ(φ), τ (φ)〉dV

= −2
∫
M

〈∇τ(φ), τ (φ)〉|τ(φ)|p−2η∇ηdV

− (p − 2)
∫
M

η2|〈∇τ(φ), τ (φ)〉|2|τ(φ)|p−4dV

−
∫
M

η2|∇τ(φ)|2|τ(φ)|p−2dV

≤ C

R2

∫
M

|τ(φ)|pdV − 1

2

∫
M

η2|∇τ(φ)|2|τ(φ)|p−2dV

− (p − 2)
∫
M

η2|〈∇τ(φ), τ (φ)〉|2|τ(φ)|p−4dV ,

where we used Young’s inequality and the properties of the cutoff function η. Com-
bining both equations we find

1

2

∫
M

η2|∇τ(φ)|2|τ(φ)|p−2dV ≤ C

R2

∫
M

|τ(φ)|pdV

− (p − 2)
∫
M

η2|〈∇τ(φ), τ (φ)〉|2|τ(φ)|pdV .

Letting R → ∞ and using the finiteness assumption of the L p norm of the tension
field, we may deduce that τ(φ) is parallel and thus has constant norm.

To establish the first claim of the theorem, wemake use of Theorem 4.19.We define
a one-form ω by

ω(X) := |τ(φ)| p
2 −1〈dφ(X), τ (φ)〉,
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where X is a vector field on M . Note that

∫
M

|ω|dV ≤
∫
M

|dφ||τ(φ)| p
2 dV ≤

( ∫
M

|dφ|2dV
) 1

2
( ∫

M
|τ(φ)|pdV

) 1
2

< ∞.

Using that |τ(φ)| has constant norm we find by a direct calculation that δω =
|τ(φ)| p

2 +1.Again, since |τ(φ)| has constant normand the L p-normof τ(φ) is bounded,
we find that |δω| is integrable over M . By application of Theorem 4.19 we can then
deduce that τ(φ) = 0.

To prove the second claim, we note that vol(M, h) = ∞ and |τ(φ)| �= 0 give

∫
M

|τ(φ)|pdV = |τ(φ)|pvol(M, h) = ∞,

yielding a contradiction.
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