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Abstract This paper is devoted to the study of the medial axes of sets definable in
polynomially bounded o-minimal structures, i.e. the sets of points with more than
one closest point with respect to the Euclidean distance. Our point of view is that of
singularity theory. While trying to make the paper self-contained, we gather here also
a large bunch of basic results. Our main interest, however, goes to the characterization
of those singular points of a definable, closed set X ⊂ R

n , which are reached by the
medial axis.
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1 Introduction

Although the present paper is essentially concerned with sets definable in some o-
minimal structure that in addition should be polynomially bounded, many of the results
presented herein hold true not only for subanalytic sets (which—recall—do not form
an o-minimal structure), but sometimes even in general. This is clearly apparent from
the proofs, and we will not stress particularly this fact.
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The main motivation for this paper, apart from the fact that medial axes are of utmost
importance in pattern recognition and robotics, were the results of [1] and [9]. Despite
the fact that the subject of medial axes, central sets, skeletons, cut loci (all these notions
denote more or less the same concept and are often incorrectly interchanged) has been
extensively studied, astonishingly few results concern the relations to singularities.
Our purpose is to study the medial axis on the grounds of singularity theory. The
bibliography we present is certainly far from being exhaustive.

2 Preliminaries

Throughout this paper, definable means definable in some polynomially bounded o-
minimal structure expanding the field of reals R (for a concise presentation of tame
geometry see, e.g. [5]; for simplicity, one can always think about semi-algebraic sets,
see also [6]). On the other hand, when we speak of subanalytic sets (see [7] or [8]),
then we should keep in mind that they do not form an o-minimal structure unless we
control them at infinity (or near the boundary). This does not play any role in the local
case, but from the global point of view, the difference is important (see [7] and [9]).

In this section, we present several facts that are of some use. Actually, most of
them hold in general, as can be seen from the proofs. The same is true for the results
presented in Sect. 2. When the definability is needed, we shall state it clearly.

The main objects we are interested in are the following. Consider a nonempty,
closed set X � R

n and write

d(x) := d(x, X) = inf {||x − y|| : y ∈ X}

for the Euclidean distance; it is a globally 1-Lipschitz function. We define the set of
closest points to x ∈ R

n or supporting set of x as

m(x) := {y ∈ X | ||x − y|| = d(x, X)}

which is a compact, nonempty subset of X intersected with the sphere S(x, d(x, X)).
We denote by B(x, r) the open Euclidean ball centred at x and with radius r > 0 and
so S(x, r) = ∂B(x, r). For r = d(x, X), we call the sphere or ball supporting. Note
that X cannot enter a supporting ball.

Recall also that any point x ∈ B(a, r) where a ∈ X has its distance d(x, X) realized
in B(a, 2r). As already proved, e.g. in [9], m(x) is a definable multifunction1—if X
is definable.

We write [x, y] for the segment joining x to y and [x, y) := [x, y] \ {y}, whenever
x �= y.

We shall denote by Ca(X) the Peano tangent cone of X at a ∈ X , i.e.

Ca(X) = {
v ∈ R

n | ∃X � xν → a, tν > 0 : tν(xν − a) → v
}
,

1 i.e. its graph �m := {(x, y) ∈ R
n × X | y ∈ m(x)} is a definable set.
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and write Na(X) for Clarke’s normal cone of X at a:

Na(X) = {
w ∈ R

n | ∀v ∈ Ca(X), 〈v,w〉 ≤ 0
}
.

Of course, both sets are definable/subanalytic in the definable or subanalytic case and
we have the inequalities dim Ca(X) ≤ dima X and dim Na(X) ≥ n − dima X .

We shall be using also some continuity properties, especially of the multifunc-
tion m(x). We briefly recall after [12] the Kuratowski upper and lower limits of a
multifunction F : R

n →P(Rm) at a point x0:

• y ∈ lim infx→x0 F(x) iff for any sequence xν → x0, xν �= x0, one can find a
sequence F(xν) � yν → y;

• y ∈ lim supx→x0
F(x) iff there are sequences xν → x0, xν �= x0, and F(xν) �

yν → y.

We take here into account only points from the domain of F , i.e. the set of points x
for which F(x) �= ∅ (and x0 is an accumulation point of this domain).

Of course, the upper limit contains the lower one, and both are closed sets that do
not alter if we replace the values of F by their closures. For details in respect of the
definable case, see [6]. In particular,

Ca(X) = lim sup
ε→0+

(1/ε)(X − a).

By the Curve Selection Lemma, in the definable case, we can replace the upper
limit by the limit itself (see e.g. [12]).

2.1 Medial Axis, Normal Sets and Central Set

We may see X as the boundary of the open set � = R
n \ X and thus d(x, X) is the

distance to ∂�. This is the usual setting for the notions of medial axis and central set
used introduced hereafter.

Definition 2.1 The medial axis of � is the set of points admitting more than one
closest point to the boundary:

MX : = {x ∈ � | ∃y, z ∈ X : y �= z, d(x, X) = ||x − y|| = ||x − z||}
= {

x ∈ R
n \ X | #m(x) > 1

}
.

By the strict convexity of the norm, MX is nowheredense; besides, it is definable
in the definable setting and subanalytic for a subanalytic set X (see, e.g. [9]).

There are two more useful sets as far as the realization of the distance is concerned.
Namely, the normal set

N (a) = {
x ∈ R

n | a ∈ m(x)
} = {

x ∈ R
n | ||x − a|| = d(x, X)

}
, a ∈ X

and the univalued normal set
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N ′(a) = {
x ∈ R

n | m(x) = {a}} , a ∈ X.

Below we gather some basic and known properties of N (a) and N ′(a):

Proposition 2.2 In the introduced setting,

(1) a ∈ N ′(a) ⊂ N (a);
(2) N (a) is closed, convex and definable (respectively, subanalytic), actually X �

a �→ N (a) is a definable (resp. subanalytic) multifunction, when X is definable
(resp. subanalytic);

(3) N (a) ⊂ Na(X)+ a;
(4) x ∈ N ′(a) ⇒ [a, x] ⊂ N ′(a) and x ∈ N (a) \ {a} ⇒ [a, x) ⊂ N ′(a);
(5) For any non-isolated a ∈ X, lim supX�b→a N (b) ⊂ N (a);
(6) N ′(a) is convex and definable/subanalytic (as a set and as a multifunction of

a ∈ X ) when X is definable/subanalytic;

Proof (1) is obvious, (2) is discussed in [15] and [9]. In order to prove that N (a) is
definable or subanalytic as a multifunction, it suffices to observe that its graph coincides
with the graph �m of m(x) itself2, up to a permutation of coordinates. Next, (3) is to
be found in [9], (4) follows from the strict convexity of the norm, and (5) for N (a) is
proved in [9]. To prove (6), we observe that for x ∈ [x1, x2], where x1, x2 ∈ N ′(a),
and we have the inclusion

B (x, ||x − a||) ⊂ B (x1, ||x1 − a||) ∪ B (x2, ||x2 − a||)

and B(x j , ||x j − a||) ∩ X = {a}. It remains to prove the definability/subanalycity,
when X is definable/subanalytic. Observe that

{
(a, x) ∈ X × R

n | m(x) = {a}}

= {
(a, x) ∈ X × R

n | x ∈ N (a), #m(x) = 1
}

= {(a, x) | (x, a) ∈ �m, dim m(x) = 0, #cc(m(x)) = 1}

where cc(m(x)) denotes the family of connected components of the set m(x). Both
functions x �→ dim(�m)x and x �→ #cc((�m)x )

3 in the description are definable/sub-
analytic (for the second one see [6], the set �m is v-relatively compact) and the assertion
follows. ��
Example 2.3 The set N ′(a) need not be closed:

Take X = {x2 + y2 = 1} ⊂ R
2; then MX = {(0, 0)} and for a = (1, 0) we have

N ′(a) = (0,+∞)× {0} and N (a) = N ′(a).

Example 2.4 It is obvious that a ∈ intX implies #N (a) = 1. We do not have neces-
sarily the converse implication:

Consider X = {y ≤ |x |3/2}. Then MX = {0} × (0,+∞) (see, e.g. Lemma 3.17)
and N ((0, 0)) = {(0, 0)}.

2 Note that N (a) = m−1(a), whereas N ′(a) = N (a) \ MX .
3 Where (�m )x denotes the x-section of the set �m .
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Remark 2.5 As is easily seen from the example of y = |x | as X and a = (0, 0) in (5)
from Proposition 2.2, we usually do not have an equality.

Property (5) does not hold for N ′(a). First of all, the upper limit is always a closed
set, while N ′(a) need not be so, as we have just seen. But apart from that, we cannot
hope even for an inclusion lim supX�aν→a N

′(aν) ⊂ N ′(a) as can be seen by taking

X = ((−∞, 1] × {−1, 1}) ∪
{
(x − 1)2 + y2 = 1, x ≥ 1

}

and a = (1, 1), aν = (1− 1/ν, 1). Here N ′(aν) = {aν} × (0,+∞) and so the upper
limit equals {1} × [0,+∞), while N ′(a) = {1} × (0,+∞).

Of course, there is always lim supX�b→a N
′(b) ⊂ N ′(a) in view of the next result.

Proposition 2.6 We always have N (a) = N ′(a).

Proof Obviously, N ′(a) ⊂ N (a), the latter being closed. Take a point x ∈ N (a) \
N ′(a). Then x �= a and by Proposition 2.2 (4) we have [a, x) ⊂ N ′(a) which ends
the proof. ��
Theorem 2.7 There is

MX =
⋃

a∈X
N (a) \ N ′(a) =

⋃

a∈X
N (a) \

⋃

a∈X
N ′(a) = R

n \
⋃

a∈X
N ′(a)

Proof If x ∈ MX we take any a ∈ m(x) and clearly x ∈ N (a) \ N ′(a). On the other
hand, if x ∈ N (a) \ N ′(a), then a ∈ m(x) is not the only point in m(a), whence
x ∈ MX .

In the second equality, the set on the left-hand side clearly contains the set on the
right-hand side. If x ∈ N (a) \ N ′(a), then m(x) does not reduce to a singleton, and
hence x /∈ N ′(b) for any b ∈ X .

The last equality follows from the obvious observation that there is
⋃

a∈X N (a) =
R
n . ��

Remark 2.8 Note that N ′(a) ∩ N ′(b) = ∅ as well as N ′(a) ∩ N (b) = ∅, provided
a �= b. Under the same condition, we have N (a) ∩ N (b) ⊂ MX , as MX = {x ∈ R

n |
#m(x) ≥ 2}.
Proposition 2.9 In the definable case, the set X ′ := {a ∈ X | N ′(a) � N (a)} is
(1) definable,
(2) empty iff MX = ∅.

Proof Ad(1): Remark that X ′ is the image of the difference of definable graphs �N \
�N ′ ⊂ X × R

n by the projection onto X .
Ad (2): This is obvious. ��

Remark 2.10 Note that X ′ need not be dense in X if only MX �= ∅. Indeed, take
X = (−∞, 0] × {0} ∪ {(1, 0)}. Then X ′ = {(0, 0), (1, 0)}.

Another notion closely related to the medial axis is the central set.
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Definition 2.11 We call B(x, r) ⊂ � a maximal ball for �, if

B(x, r) ⊂ B(x ′, r ′) ⊂ � ⇒ x = x ′, r = r ′.

The set of the centres of maximal balls for � is called the central set. We denote it by
CX .

Remark 2.12 If B(x, r) is a maximal ball, then r = d(x, X). Moreover, CX is clearly
definable, if X is such (cf. [3]).

There are two natural characterizations of the medial axis and the central set that
sometimes prove rather useful:

Lemma 2.13 There is

(1) x ∈ MX ⇔ ∃a ∈ m(x) : x /∈ N ′(a);
(2) x ∈ CX ⇔ ∃a ∈ m(x) : (R+(x − a)+ a) ∩ N (a) = [a, x].
Moreover, in both cases ∃ can be replaced by ∀.
Proof The first equivalence is a reformulation of Theorem 2.7 together with the remark
following it, as a ∈ m(x) means exactly x ∈ N (a). The second one requires a short
discussion.

Note that (R+(x − a) + a) ∩ N (a) is always a closed segment. If x ∈ CX , the
radius of the maximal ball B centred at x is d(x, X). Hence, B ∩ X = m(x). For any
point a ∈ m(x) and any point y ∈ (R+(x − a)+ a) ∩ N (a), we have [a, y] ⊂ N (a)

and so [a, x] � [a, y] implies B � B(y, ||y − a||) ⊂ R
n \ X contradicting x ∈ CX .

On the other hand, if (R+(x−a)+a)∩N (a) = [a, x], then for any ball B(x, ||x−
a||) ⊂ B(y, r) ⊂ R

n \X we necessarily have a ∈ ∂B(y, r) together with r = ||y−a||
and so y ∈ (R+(x − a)+ a) ∩ N (a). This implies y = x and so x ∈ CX . ��

One last notion, closely related to the previous ones is that of the conflict set of a
given finite family of nonempty sets (cf. [1]):

Definition 2.14 If X1, . . . , Xk ⊂ R
n are closed, pairwise distinct, nonempty sets,

where k ≥ 2, and �(x) := minki=1 d(x, Xi ), then the set of equidistant points

Conf(X1, . . . , Xk) =
{
x ∈ R

n | ∃i �= j : d(x, Xi ) = d(x, X j ) ≤ �(x)
}

is called the conflict set of X1, . . . , Xk .

Remark 2.15 Usually, the sets Xi in the definition of the conflict set are assumed to
be pairwise disjoint. Thanks to this assumption the dimension of the conflict set does
not exceed n − 1 (cf. [1]). Otherwise, we lose some control: consider, e.g. X1, X2 as
the half-lines y = x, x ≥ 0 and y = −x, x ≤ 0, respectively. Then Conf(X1, X2) is
the union of the half-line x = 0, y ≥ 0 together with the oblique quadrant y ≤ −|x |.

Naturally, the definition makes sense also in any metric space. In particular, if
all the sets Xi are contained in E ⊂ R

n , we can compute the relative conflict set
ConfE (X1, . . . , Xk) with respect to a given metric in E (we shall need this later for a
sphere with its geodesic metric, cf. Theorem 3.26).
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2.2 Some Remarks on the Multifunction m(x)

We recall the following notion from [12]. Let F : R
m →P(Rn) be a multifunction.

For a ∈ domF , we consider

• F−1(F(a)) = {x ∈ R
m | F(x) = F(a)} the (strong) pre-image;

• F∗(F(a)) = {x ∈ domF | F(x) ⊂ F(a)} the lower pre-image;
• F∗(F(a)) = {x ∈ R

m | F(x) ⊃ F(a)} the upper pre-image;
• F#(F(a)) = {x ∈ R

m | F(x) ∩ F(a) �= ∅} the weak pre-image.

Finally, we may consider a point pre-image defined for a point y ∈ F(a) as the
section (�F )y := {x ∈ R

m | y ∈ F(x)}. Obviously,

F#(F(a)) =
⋃

y∈F(a)

(�F )y .

We are particularly interested in the multifunctions

m : R
n � x �→ m(x) ⊂ X, N : X � a �→ N (a) ⊂ R

n

and also N ′. As already noted, m and N share the same graph up to a permutation of
the coordinates.

We readily observe that for a ∈ X ,

(1) N (a) = (�m)a and N ′(a) = m−1(m(a)) (cf. m(a) = {a});
(2) N−1(N (a)) = {a} = m(a) (because N ′(a) is dense in N (a) by our previous

remarks);
(3) N ′∗(N ′(a)) = N (a) = N ′(a);
(4) N #(N (a)) � {a} ⇔ a ∈ m(MX );
(5) m#(m(a)) = m#({a}) = N (a), while for b /∈ X , m#(m(b)) = ⋃

y∈m(b) N (y).

Moreover, for a ∈ R
n ,

(1) a ∈ MX ⇒ m∗(m(a)) ⊂ MX ;
(2) a /∈ MX ⇒ m∗(m(a)) ∩ MX = ∅.

Recall that for a multifunction F as above and G : R
n → P(Rp) we define the

composition G ◦ F by

(x, z) ∈ �G◦F ⇔ ∃y ∈ R
n : (x, y) ∈ �F and (y, z) ∈ �G .

Let us compose m with N in two ways. First for (x, z) ∈ R
n × R

n

(x, z) ∈ �N◦m ⇔ ∃y ∈ X : y ∈ m(x) and z ∈ N (y)

⇔ ∃y ∈ X : y ∈ m(x) and y ∈ m(z)

⇔ m(x) ∩ m(z) �= ∅

⇔ z ∈ m#(m(x)).
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In particular, if x, z ∈ N (a), then (x, z) ∈ �N◦m .
Next, for (a, b) ∈ X × X ,

(a, b) ∈ �m◦N ⇔ ∃x ∈ R
n : x ∈ N (a) and b ∈ m(x)

⇔ ∃x ∈ R
n : a, b ∈ m(x).

In particular, if we denote � := {(x, x) | x ∈ X} the diagonal in X × X , we obtain
� ⊂ �m◦N and

MX = ∅ ⇔ �m◦N = � ⇔ m ◦ N = idX .

By the results of [12] Section 6, we have a Łojasiewicz-type inequalities in the
definable setting:

Proposition 2.16 Let F denote either the closed multifunction N (x), x ∈ X, or the
compact one m(x), x ∈ R

n. Then for any point x0 in the domain of F, there are
constants C, 	 > 0 such that in a neighbourhood of x0,

distHK (F(x), F(x0)) ≥ Cd(x, F•(F(x0)))
	

where distHK denotes the Hausdorff-Kuratowski distance4, and F•(F(x0)) stands for
any of the pre-images introduced above. In particular,

(1) distK (N (x), N (x0)) ≥ C ||x − x0||	 for all x ∈ X near x0 ∈ X;
(2) distH (m(x),m(x0)) ≥ Cd(x, N ′(x0))

	 for all x ∈ R
n near x0 ∈ X;

(3) distH (m(x),m(x0)) ≥ Cd(x, N (x0))
	 for all x ∈ R

n near x0 ∈ X;
(4) distH (m(x),m(x0)) ≥ Cd(x,

⋃
y∈m(x0)

N (y))	 for all x ∈ R
n near x0 ∈ R

n;

(5) distH (m(x),m(x0)) ≥ Cd(x, MX )	 for all x ∈ R
n near x0 ∈ MX

Proof The result follows directly from [12] Corollary 6.4. To prove the particular
cases, we use the computations made above for the strong pre-image of N of x0 ∈ X
(this gives (1)), the strong pre-image of m of x0 ∈ X and the fact that N ′(x0) =
N (x0) (this gives (2) and (3)); the weak pre-image of m gives (4); (5) follows from
m∗(m(x0)) ⊂ MX when x0 ∈ MX . ��

Now, we can add a property of m(x) that is useful in this context (no definability
is needed).

Proposition 2.17 The multifunction m(x) is upper semi-continuous:
lim supD�x→x0

m(x) = m(x0) at any point x0 ∈ R
n and for any dense subset D

of R
n.

Proof If y = lim yν for some yν ∈ m(xν) where D � xν → x0, then ||yν − xν || =
d(xν, X) and so passing to the limit yields y ∈ m(x0).

As for the converse inclusion, by [12], we have nothing to prove, if m(x0) reduces
to a point. Now, if y ∈ m(x0), we can assume that [x0, y] \ {x0} is nonempty. Take

4 For compact sets, it is the usual Hausdorff distance, and for closed ones, it is the metric giving the
Kuratowski convergence.
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neighbourhoods U � y and V � x0. Then ∅ �= V ∩ [x0, y] \ {x0} ⊂ N ′(y) (cf.
Proposition 2.2 (4)). Hence, arbitrarily near x0, we can find points x with m(x) = {y}.
But D is dense, so arbitrarily near x there are points x ′ ∈ D and as #m(x) = 1, again
by [12] we have the continuity of m at x . Thus, there is a point x ′ ∈ D ∩ V for which
m(x ′) ∩U �= ∅. We have shown that lim supD�x→x0

m(x) = m(x0). ��
Remark 2.18 Note that along MX we usually only have an inclusion (see [9]):
lim supMX�x→x0

m(x) ⊂ m(x0).

Another useful fact is the following observation that holds in general.

Proposition 2.19 Let U ⊂ R
n be open and nonempty. Assume that there is a continu-

ous selection μ : U → X for m(x), i.e. for any x ∈ U, μ(x) ∈ m(x). Then μ = m|U ,
i.e. m(x) is univalent on U.

Proof Obviously, by the preceding Proposition, μ coincides with m on U \ MX .
Suppose that there is a point x ∈ U ∩ MX . Then by Theorem 2.7, x ∈ N (a) \ N ′(a)

for some a ∈ X . From the definition of the normal set, it follows that x ∈ N (b) for
some b ∈ X \ {a}. Then when we approach x along the two distinct segments [a, x]
and [b, x], we get two different limits for μ, contrary to the continuity. ��

2.3 On the Distance Function and the Medial Axis

As already observed in [17] (without a proof), the set MX is related in a most natural
way (based on the results of [4]) to the singularities (non-differentiability points) of
the function δ(x) := d(x, X)2. Namely, we give a simple proof of the Theorem 2.23
below. Before we do it, we recall that for any locally Lipschitz function f : U → R

withU ⊂ R
n open, the Rademacher Theorem asserts that the set D f of differentiability

points is dense in U . Hence, we can define the Clarke subdifferential ∂ f (x) at any
point x ∈ U as the convex hull cvx∇ f (x) of the set ∇ f (x) of all the possible limits
of the gradients ∇ f (xν) for sequences D f � xν → x . It is easy to see that ∂ f (x) is a
compact set, and by [4], it reduces to a point y iff x ∈ D f and ∇ f |D f is continuous
at y (then ∂ f (x) = {y}). Of course, to compute ∂ f (x), we may restrict ourselves to
any dense subset of D f (see [4]). Some discussion of x �→ ∂ f (x) as a multifunction
is presented in [12]. For the moment, we do not need any definability assumptions.

Lemma 2.20 ([4]) If d(x) = d(x, X) is differentiable and non-zero at a point x0,
then x0 /∈ X, #m(x0) = 1 and ∇d(x0) = x0−m(x0)

d(x0)
.

Actually, we will need a slightly altered version of this lemma:

Lemma 2.21 The function d(x) is differentiable at any x0 /∈ MX ∪ X and ∇d(x0) =
x0−m(x0)
d(x0)

.

Proof Since U = R
n \ (MX ∪ X) is open, the set of differentiability points of d in U ,

Dd ∩U , is dense in U . But U ⊂ R
n \ (MX ∪ X) ⊂ R

n \ X and we know that MX is
nowheredense in R

n and Dd ∩R
n \ X is dense in R

n \ X . Hence Dd ∩R
n \ (MX ∪ X)
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is dense in U ′ = R
n \ (MX ∪ X). The mapping v(x) = x−m(x)

d(x) is well-defined and
continuous in U ′. Moreover, d(x + tv(x)) = ||x − m(x)|| + t for x ∈ U ′ and small
t < 0 (then x + tv(x) ∈ U ′). Therefore, for any x ∈ Dd ∩U ′,

〈∇d(x), v(x)〉 = lim
t→0−

d(x + tv(x))− d(x)

t
= 1,

while the left-hand side is smaller than ||∇d(x)|| by the Cauchy-Schwarz inequality.
Observe that d(x) being 1-Lipschitz we have ||∇d(x)|| ≤ 1 at any differentiability
point x ∈ Dd

5, so ||∇d(x)|| = 1. Note also that 〈u, w〉 = ||u|| · ||w|| cos � (u, w) and
so in view of the fact that we get 〈∇d(x), v(x)〉 = ||∇d(x)|| = 1, we conclude that
∇d(x) = λv(x) for some λ > 06. Again ||v(x)|| = 1 implies λ = 1 and we are done.
By the continuity of v(x), the formula holds in the whole of U ′ (the only possible
value for the subdifferential ∂d(x) at x ∈ U ′ is v(x) and ∇d(x) varies continuously
on Dd ∩U ′ due to the continuity of v(x)). Clarke’s results ([4, Proposition 1.13]) give
the assertion. ��

Of course, the function δ(x) = d(x)2 is a locally Lipschitz function. This function
encodes information about the singularities of X , see [15]. Moreover, we can compute
∇δ(x) also for points x ∈ X , getting zero. This leads to:

Lemma 2.22 The function δ(x) is differentiable at any point x0 /∈ MX and∇δ(x0) =
2(x − m(x0)). Moreover, δ(x) is of class C1 in the open set R

n \ MX.

Proof The set of differentiability points Dδ contains the analogous set Dd of d. By
the previous Lemma, for any x /∈ MX ∪ X , we can compute

∇δ(x) = 2d(x)
x − m(x)

d(x)
= 2(x − m(x)).

On the other hand, for any point x0 ∈ X , since d(x) = |d(x) − d(x0)| ≤ ||x − x0||,
we get δ(x) = |δ(x) − δ(x0)| < ε||x − x0||, provided ||x − x0|| < ε. This implies
that ∇δ(x0) = 0 = 2(x0 − m(x0)), too.

The last part of the Lemma follows from [4] together with Proposition 2.17. ��
Part of the following theorem appeared as Proposition 2.2 in [17] without a proof.

In order to make our paper self-contained, we give a direct proof—independent of [4]
Theorem 2.1 evoked in [17]—of a slightly extended version of this result7.

Theorem 2.23 We have for any point x ∈ R
n,

(1) ∂δ(x) = {2(x − y) | y ∈ cvx m(x)};

5 Indeed, for any ε > 0 we choose δ > 0 in order to have |d(x + y) − d(x) − 〈∇d(x), y〉| ≤ ε||y|| for
||y|| < δ. Then |〈∇d(x), y〉| ≤ ε||y|| + ||y||, d being 1-Lipschitz. Finally ε → 0.
6 Indeed, ||v(x)|| = ||∇d(x)|| = 1 so that 〈∇d(x), v(x)〉 = 1 implies cos � (∇d(x), v(x)) = 1, too, hence
∇d(x) and v(x) have the same direction and orientation.
7 Let us note that Corollary 2.1 in [17] is also cited there without a proof but seems to be false which we
discuss in [11].
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(2) The following conditions are equivalent:
(a) x ∈ MX;
(b) #∂δ(x) > 1;
(c) x /∈ Dδ;
(d) x /∈ Dd ∪ X.

(3) ∇δ(x) = 0 ⇔ x ∈ X;
(4) ∇δ is continuous in Dδ = R

n \ MX.

Proof Clearly, in order to get the equivalence (a)⇔(b), we need only to show the
formula for ∂δ(x). If x /∈ MX , then the last Lemma gives ∇δ(x) = 2(x − m(x)).
Moreover, we know that D = R

n \ MX is dense in R
n . Clearly, a sequence {∇δ(xν)}

for {xν} ⊂ D converging to some x0, has a limit if and only {m(xν)} has a limit.
Therefore,

∂δ(x0) = cvx

{

2(x − y) | y ∈ lim sup
D�x→x0

m(x)

}

=
{

2(x − y) | y ∈ cvx lim sup
D�x→x0

m(x)

}

.

Proposition 2.17 ends the proof of (1).
From the previous Lemmas, we know that (c)⇒(a), (d)⇒(a) (Lemma 2.21 and the

fact that MX ∩ X = ∅) and that Dd ∪ X ⊂ Dδ , i.e. (c)⇒(d). Now, we will show that
x ∈ Dδ implies x /∈ MX . Taking x ∈ Dδ we may assume that x /∈ X and so x /∈ m(x).
Let y ∈ m(x) and denote by xt = y + t (x − y) = x + (1 − t)(y − x) a point with
t ∈ (0, 1). We have δ(xt ) = ||xt − y||2 = t2||x − y||2 and we may write for t close
to 1,

δ(xt )− δ(x) = 〈∇δ(x), xt − x〉 + o(||xt − x ||)
⇒ δ(x)(t2 − 1) = 〈∇δ(x), (1− t)(y − x)〉 + o ((1− t) ||y − x ||)
⇒ −δ(x)(t + 1) = 〈∇δ(x), y − x〉 + o(1− t)

1− t
.

Making t tend to 1, we obtain −2δ(x) = 〈∇δ(x), y − x〉. The left-hand side is non-
zero which implies ∇δ(x) �= 0 and proves (3) (cf. the last Lemma). Then, d = √

δ is
differentiable at x with ∇d(x) = ∇δ(x)

2d(x) . This yields

2 ||x − y|| = 2d(x) ||∇d(x)|| cos � (∇δ(x), x − y) ⇒
1 = ||∇d(x)|| cos � (∇δ(x), x − y).

But ||∇d(x)|| ≤ 1 and so we obtain ||∇d(x)|| = 1 and cos � (∇δ(x), x − y) = 1.
Therefore,∇δ(x) = 2(x− y) which implies that m(x) = {y} as required. By the way,
this shows the inclusion Dδ \ X ⊂ Dd .

Finally, (4) follows from the previous Lemma combined with Proposition 2.17, the
equivalence (a)⇔(c) (or simply by [4] and (b)⇔(c)). ��
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Remark 2.24 At x ∈ Dd ⊂ Dδ , we have ∇δ(x) = 2d(x)∇d(x), and from (3), we see
that the discontinuity points of∇d must belong to ∂X . To be more precise, ∂intX ⊂ ∂X
are certainly discontinuity points of∇d since we can reach them both from the interior
of X (where the gradient vanishes) and from R

n \ X (where the gradient has norm 1).
On the other hand, isolated points of X do not belong to Dd .

Note that on Dδ = R
n \ MX the multifunction m(x) is univalued and we have

the obvious relation δ(x) = ||x − m(x)||2. However, m need not be differentiable
there as we can easily see by taking X = {xy = 0, x, y ≥ 0} ⊂ R

2 and the point
(0,−1) ∈ ∂N (0, 0).

Finally, remark that whenever m(x) is univalued, we have the formula

m(x) = x − 1

2
∇δ(x)

which apart from X can be rewritten also as

m(x) = x − d(x)∇d(x).

In particular, we conclude that basic differential properties of m are related to the
Hessian of δ.

The relation between the medial axis and the central set is known (see [13] and the
citation in [3]) and given in the following theorem which we prove in a different way
than it is done in [13]. All the same, our proof is most probably a standard one.

Theorem 2.25 For a closed, nonempty set X � R
n,

MX ⊂ CX ⊂ MX .

Proof The first inclusion is obvious: if x ∈ MX , then the set m(x) ⊂ S(x, d(x, X))

consists of more than one point, and the boundary of any ball B(x, d(x, X)) ⊂
B(y, r) ⊂ R

n \ X has to be tangent to S(x, d(x, X)) at any point of m(x). Hence
B(x, d(x, X)) = B(y, r).

For the second inclusion, we have more to do. Consider the open set U := R
n \

(MX ∪ X). Then x �→ m(x) is univalued, and by Lemma 2.21 the gradient ∇d(x) =
(x − m(x))/d(x) ∈ S

1 is well-defined and continuous in U (cf. Proposition 2.17).
Fix a ∈ U and observe that for any x ∈ (m(a), a] ⊂ U we have ∇d(x) = ∇d(a).

Let us parametrize the segment by arc-length, i.e. x(t) := m(a)+ (t/d(a))(a−m(a))

for t ∈ (0, d(a)]. We obtain

x ′(t) = ∇d(a) = ∇d(x(t)), t ∈ (0, d(a)).

In other words, x(t) is the solution of the equation x ′ = ∇d(x) (in U ) with initial
condition x(d(a)) = a. The right-hand side is continuous, whence the Cauchy-Peano
Theorem guarantees that x(t) can be extended as γ (t) to some interval (0, d(a)+ ε).
Put γ (0) = m(a) extending γ continuously to [0, d(a)+ ε).
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Since ||∇d(x)|| = 1, this extended integral curveγ (t) is automatically parametrized
by arc-length and so has length d(a)+ ε. If we prove that

d(γ (d(a)+ ε)) = d(a)+ ε, (
)

then in view of the fact that γ (0) = m(a) ∈ X we can conclude that γ coincides with
the segment [m(a), γ (d(a)+ ε)). This implies that γ (d(a)+ ε) is in N (m(a)) (even
in N ′(m(a)) due to the definition of the set U where γ lives) and so a /∈ CX

8.
Actually, (
) follows from an easy computation:

d (γ (d(a)+ ε)) =
∫ d(a)+ε

0

d

dt
d(γ (t)) dt

=
∫ d(a)+ε

0
〈∇d(γ (t)), γ ′(t)〉 dt

=
∫ d(a)+ε

0
||∇d(γ (t))||2 dt

= d(a)+ ε.

The discussion above shows thatCX ⊂ MX ∪X . However, by definition,CX ∩X =
∅ and so we are done. ��
Remark 2.26 The inclusions may be strict: for the first one consider X = {y = x2}
in R

2 (then the focal point (0, 1/2) ∈ CX \ MX ), for the second one see [3] Example
2.2.

These inclusions, although simple, prove often useful, for example:

Theorem 2.27 Let � ⊂ R
n be open and such that it does not contain a half-space9,

X := ∂�. Then MX �= ∅.

Proof Pick a point x ∈ �. If x /∈ MX then there is exactly one point y ∈ X realizing
d := d(x, X). For t > 0, let xt = y + t (x − y) and we put

r := sup {t > 0 | B(xt , td) ⊂ �} .

Then r ≥ 1 is finite since � does not contain a half-space. We will show that xr ∈ MX .
Note that we necessarily have r = d(xr , X).

Suppose that xr /∈ MX . Then, since CX ⊂ MX , we would find a ball B(z, ρ) ⊂ �

containing B(xr , r). But as y ∈ B(xr , r) ⊂ B(z, ρ), we must have y ∈ ∂B(z, ρ). But
this implies that z = xt for some t > r which contradicts the definition of r . ��

8 Indeed, the point aε := γ (d(a) + ε) lies in U , hence its distance to X is realized in precisely one
point. But when we know that d(aε) = d(a) + ε so that γ is the segment [m(a), aε], we see that on
the sphere S(aε, d(aε)) we already have the point m(a), so there must be aε ∈ N ′(m(a)). In particular,
B(a, d(a)) � B(aε, d(aε)), whence a /∈ CX .
9 By half-space we mean a set of the form {x ∈ R

n | 〈x − v, v〉 ≤ 0} for some v �= 0.
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Remark 2.28 Taking the closure in the proof is necessary as we can see from the
example X = {v = u2} with y = (0, 0); we obtain r = 1/2 and xr = (0, 1/2) ∈
MX \ MX .

3 Reaching of Singularities of Hypersurfaces

Let us fix some more notation: for k ∈ N ∪ {∞, ω} we put

Regk X :=
{
x ∈ X | X is a Ck − submanifold at x

}

and Sngk X := X \ Regk X . In the analytic case, i.e. for k = ω, we omit the index.
Of course, even a plane analytic curve can have almost any type of singularity in

the sense that 0 ∈ SngX if and only if either � has a cusp at zero, or there is an integer
k ≥ 1 such that 0 ∈ Regk X ∩ Sngk+1X and all the possibilities can occur:

Example 3.1 Take two relatively prime integers p > q such that for a given k we
have k < p/q < k + 1 and consider the curve X defined by yq = x p. Then 0 ∈
Regk X ∩ Sngk+1X . For instance the function y = x5/3 has analytic graph and is C1

but not C2 smooth at the origin.

The starting point of our considerations is the observation made in [9] that there
are natural instances when MX reaches the singularities of X . However, this does not
happen always.

Example 3.2 Consider in R
2 the sets �1 := {y > x2}, �2 := {y > |x |3/2} and

�3 := {y > (1 + sgnx)x2}. Then the boundaries Xi , i = 2, 3 are C2 smooth except
at the origin where they are only C1 smooth, while X1 is C2-smooth everywhere.

It is easy to see that MX1 is the half-line {0} × (1/2,+∞) and so it does not meet
X1. On the other hand, MX2 = {0} × (0,+∞) reaches the C1-singularity of X2. But
again MX3 stays away from it. This is due to the fact that although both X2 and X3
have the same kind of singularity, their geometric radii of curvature (we will define
this precisely later on) are different.

Remark 3.3 It is worth to note at this point that for a given a ∈ X , we have

MX ∩ B(a, r) = MX∩B(a,2r) ∩ B(a, r),

since any point x ∈ B(a, r) has its distance to X realized in X ∩ B(a, 2r).

We will need the following result completing a Lemma of Yomdin (Part 3, Lemma
1 in [17]):

Lemma 3.4 Let X ⊂ R
n be a closed, nonempty set, x0 ∈ R

n \ X a point and
B = B(x0, r) a ball such that B∩ X = ⋃k

j=1 X j where the sets X j are nonempty and
pairwise disjoint, and for at least one i , Xi∩B �= ∅. Then there exists a neighbourhood
U of x0 such that

d(x, X) = k
min
j=1

d(x, X j ), x ∈ U.
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Proof Write d(x) = d(x, X) and d j (x) = d(x, X j ). Clearly, d(x) ≤ d j (x) which
gives one inequality. Note that d(x0) = minkj=1 d j (x0)

10.
Suppose that there is a sequence xν → x0 such that

d(xν) <
k

min
j=1

d j (xν).

By passing to a subsequence, we may assume that minkj=1 d j (xν) = d1(xν) for all

ν. We can find points yν ∈ X \ B and zν ∈ X1 such that ||xν − yν || = d(xν) and
||xν−zν || = d1(xν). Since X1 is compact, by extracting a subsequence, we may assume
that zν → z0 ∈ X1. Similarly, in view of the inequality ||yν || ≤ ||yν − xν || + ||xν ||,
we see that the sequence {yν} is bounded and again we may assume that yν → y0.
Clearly y0 ∈ X \ B.

Now, observe that ||x0 − y0|| = ||x0 − z0|| which implies that y0, z0 ∈ ∂B and
hence d(x0) = r . But this means that for any j , X j ⊂ ∂B contrary to the assumptions.

��
Remark 3.5 In the situation of the Lemma above, we have in particular that MX ∩U =
Conf(X1, . . . , Xk) ∩U .

3.1 General Remarks on Hypersurface Singularities

We suppose that X is locally homeomorphic to R
n−1.

Lemma 3.6 Assume that x1, x2 ∈ R
n \ MX are different but m(x1) = m(x2) = a. If,

moreover, the vectors x1 − a and x2 − a are linearly independent, then a ∈ Sng1X.

Proof The two hyperplanes Hi defined by the vectors xi − a are different. If we had
a ∈ Reg1X , then by the choice of a, we would have (xi − a)⊥Ta X for i = 1, 2,
whence Ta X = H1 = H2 which is a contradiction. ��
Proposition 3.7 Assume that in a neighbourhood U of x0 ∈ R

n we have m ≡ a ∈ X.
Then a ∈ Sng1X.

Proof We know that MX is nowheredense, hence U \ MX �= ∅. Thus, we can apply
the preceding Lemma to some points x1, x2. ��
Proposition 3.8 If x0 ∈ R

n \ MX is such that m(x0) ∈ Reg1X, then for S = B ∩
S(x0, d(x0)) where B is a sufficiently small open ball centred at x0, the mapping
m|S : S → m(S) is a homeomorphism onto the open subset m(S) ⊂ Reg1X.

Proof By assumption, m is univalued in a neighbourhood U of x0 and so also con-
tinuous. Thus, if we fix a neighbourhood V � m(x0) such that V ∩ X is C1-smooth,
we can find a ball B ⊂ U centred at x0 such that m(B) ⊂ V . By Proposition 3.7, for

10 Since X is closed, then for some r ′ < r , B(x0.r ′) ∩ X = ∅. Then for some radius r ′ < r ′′ < r we will
have B(x0, r ′′) ∩⋃k

j=1 X j = ∂B(x0, r ′′) ∩⋃k
j=1 X j �= ∅ so that d(x0) = minkj=1 d j (x0).
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two points x1, x2 ∈ S with m(x1) = m(x2) = a, we necessarily have an inclusion
between the segments [x1, a], [x2, a]which implies (provided B is small enough) that
x1 = x2. Thus, m|S is injective, and so by the Brouwer Domain Invariance Theorem,
m|S is a homeomorphism onto the open set m(S) ⊂ Reg1X . ��

Recall that in case X = Reg2X , for any point a ∈ X and x0 belonging to the
normal line (Ta X)⊥ + a to X at a, the function φ(y) = ||x0− y||2, y ∈ X , has a local
minimum at y = a if and only if there is no focal point on [a, x0] \ {x0} (see [16]11).

Observe that having a local minimum at a does not necessarily mean that a realizes
the distance of x0 to X . However, if a is a local minimum in B(a, r)∩ X and r satisfies
||a − x0|| < r/2, then indeed φ(a) = d(x0, X).

3.2 Superquadratic Functions

Motivated by the examples considered so far, we introduce the notion of superquadratic-
ity.

Let X be the graph of a non-negative continuous function germ f : (Rn, 0) →
(R+, 0).

Definition 3.9 In this situation, we call X superquadratic at the origin, if the function
g f (r) := maxx∈S(0,r) f (x) is superquadratic, i.e. it can be written near zero as g(r) =
arα + o(rα) with 0 < α < 2 (in particular f is non-constant).

There are two other closely related definitions:

Definition 3.10 We define the order at zero of a continuous definable function germ
f : (Rn, 0) → (R, 0) as

ord0 f = sup
{
η > 0 | | f (x)| ≤ const. ||x ||η , ||x || � 1

}
,

if f �≡ 0, and ord0 f := +∞ otherwise.

Remark 3.11 Clearly, the definition is well-posed since we are in a polynomially
bounded o-minimal structure, by the Łojasiewicz inequality. It is a mere exercise to
prove that in one variable g(t) = atα + o(tα) is written precisely with α = ord0g and
|g(t)| ≤ const.|t |α .

By the methods used by Bochnak and Risler in [2] Theorem 1, it is easy to show
that the least upper bound in the definition is in fact attained.

Note also that the inequality defining the order is satisfied with any exponent
α ≤ ord0 f and that it makes sense also for a vector-valued f ; then it is written

11 Roughly speaking, if N X is the normal bundle of X , then the focal points of X are exactly those points
at which the Jacobian of (a, v) �→ a + v, from N X to R

n , vanishes, which means that at this point nearby
normals intersect. Along a normal line (Ta X)⊥ + a, there are at most n − 1 focal points located at points
a + (1/ki (a))ν(a) where ki (a) is the i-th principal curvature and ν(a) is a unit normal after fixing a unit
normal vector field ν on X near a.
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as || f (x)|| ≤ const.||x ||η. In the latter case, ord0 f coincides with the minimal order
of the components fi of f = ( f1, . . . , fk)12.

Definition 3.12 We call sectional order at zero for a definable function f : (Rn, 0) →
(R, 0), f �≡ 0, the number

s0( f ) = inf
{
α > 0 | f (tv) = atα + o(tα), 0 ≤ t � 1, v ∈ S

n−1 : f |R+v �≡ 0
}

.

Proposition 3.13 Consider anon-constant, continuous, definable germ f : (Rn, 0) →
(R, 0). Then for the following three conditions:

(1) s0( f ) < 2;
(2) ord0 f < 2;
(3) | f | is superquadratic at 0;

we have (1) ⇒ (2) ⇔ (3).

Proof The implications (1) ⇒ (2) ⇒ (3) are immediate. Indeed, if (2) does not hold,
then in a neighbourhood of zero, | f (x)| ≤ C ||x ||2 for some C > 0. Thus, for f (tv)

we have for all t ≥ 0 small enough, |atα + o(tα)| ≤ Ct2 which implies α ≥ 2 (divide
both sides by tα and take t → 0+) and so s0( f ) ≥ 2. If (3) does not hold, then
| f (x)| ≤ g| f |(||x ||) = a||x ||α + o(||x ||α) for some α ≥ 2. But as ord0g| f | = α, we
obtain | f (x)| ≤ const.||x ||α and so ord0 f ≥ 2.

Furthermore, to see that (3) ⇒ (2) suppose that ord0 f ≥ 2 and consider the
definable set A = {(r, x) ∈ [0, ε] × R

n | ||x || = r, g| f |(||x ||) = | f (x)|}. Then
0 is an accumulation point of A and so there is a continuous definable selection
r �→ (r, γ (r)) ∈ A.

Then g| f |(r) = | f (γ (r))| and it follows from the definition of the order of vanishing
(note that for small r , the values γ (r) are near zero) that ord0g| f | ≥ ord0 f and so
ord0g| f | ≥ 2 as required13. ��
Remark 3.14 The equivalence (2) ⇔ (3) allows us to extend the Definition 3.9 to any
set being the graph of a definable function.

Example 3.15 The implication (2) ⇒ (1) does not hold in general. To verify this,
consider the semi-algebraic function

f (x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x ≤ 0 or y ≤ 0,
y
x , 0 < y ≤ x and x2 + y2 >

y2

x2 ,
(
x2 + y2

) x
y , 0 < y ≤ x and x2 + y2 ≤ y2

x2 ,

f (y, x), 0 < x < y.

12 Also in this case the upper bound is attained. If | fi (x)| ≤ ci ||x ||θi for ||x || � 1 where ci > 0 and
θi = ord0 fi , then max | fi (x)| ≤ (max ci )||x ||min θi whence ord0 f ≥ min θi . On the other hand, for the
Euclidean norm we have || f (x)|| ≤ | fi (x)| for any i , whence ord0 f ≤ θi .
13 We even have ord0g| f | ≥ ord0 f · ord0γ since | f (γ (r))| ≤ const.||γ (r)||ord0 f . But ||γ (r)|| ≤
const.rord0γ , so that g| f |(r) ≤ const.rord0 f ·ord0γ .
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It is easy to check that f is continuous. Clearly, f |R+v �≡ 0 iff v ∈ S
2 ∩ {x, y >

0} =: S in which case f (tv) = t2(v1/v2) for 0 ≤ t ≤ v2/v1 (for greater t’s, we get
f (tv) = v2/v1), where v = (v1, v2). Hence s0( f ) = 2.

But if there were ord0 f ≥ 2, then we would have in a neighbourhood of zero,
f (x, y) ≤ C ||(x, y)||2 for some constant C > 0. In particular, this would hold for
(x, y) = tv for any v ∈ S and all t ∈ (0, ε) with an appropriate ε > 0. However, this
would lead to v1/v2 ≤ C which yields a contradiction when we make (v1, v2) ∈ S
tend to (1, 0).

In the next subsection, we will give yet one more characterization of superquadratic-
ity (Proposition 3.18).

Remark 3.16 For a given function germ f : (Rn, 0) → (R, 0), the definition of dif-
ferentiability at zero gives readily the following two implications:

f is differentiable at 0 and ∇ f (0) = 0 ⇒ ord0 f ≥ 1,

and

ord0 f ≥ 2 ⇒ f is differentiable at 0 and ∇ f (0) = 0.

The example of f (x) = |x |3/2 shows that there may be f ′(0) = 0 and ord0 f ∈
(1, 2). Note also that without the assumption of definability, the differentiability of
f at zero together with ∇ f (0) = 0 need not imply ord0 f > 1. We define f as
follows: consider the sequence xν := 1/νν2

and put f (xν) = 1/νν2+ν−1; then we
join the obtained consecutive points by segments in order to obtain a piecewise linear
curve defined on (0, 1]. We extend f by putting f (0) = 0 and f (x) = f (−x) for
x ∈ [−1, 0]. The obtained function is differentiable at zero with f ′(0) = 0. Observe
that f (xν) = νx1+1/ν

ν . If there were constants r,C, ε > 0 such that f (x) ≤ C |x |1+ε

for |x | < r , then for all ν sufficiently large we have xν < r and 1/ν < ε so that
Cx1+ε

ν < νx1+1/ν
ν which gives a contradiction. Therefore, ord0 f = 1.

3.3 Plane Case

Recall that we call (open) bi-ball (or bidisc when we are in the plane) in the direction
v ∈ S

n−1 the open set

bv(a, r) := B(a − rv, r) ∪ B(a + rv, r)

where r > 0.
In this section, we consider a pure one-dimensional closed definable set X ⊂ R

2

with 0 ∈ X . In particular, in a neighbourhood of zero, X consists of finitely many
branches ending at zero. Each branch can be realized as the graph of a definable
function f : [0, ε) → R with f (0) = 0 (in properly chosen coordinates in R

2).
Observe that the curve f (t) = atα + o(tα) (with a �= 0, α > 0) for 0 < t � 1

is C1 at zero iff α ≥ 1. By analogy to the Definition 3.9, we say that this curve is
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superquadratic at zero iff α < 2. In particular, if X is a graph, it is superquadratic iff
one of the two branches is superquadratic. Let us note the following easy lemma.

Lemma 3.17 If γ : [0, ε) → [0,+∞) is superquadratic with γ (0) = γ ′(0) = 0,
then for any r > 0 the disc Dr := B((0, r), r) ⊂ {y > 0} tangent to the x-axis at zero
contains points of γ inside.

Proof It follows from the obvious observation that if g : [0, r) → R+ denotes the
usual parametrization of the lower part of the circle ∂Dr through zero, then g(x) =
1
2r x

2 + o(x2) near zero. At the same time, γ (x) = axα + o(xα) with a > 0 and
α ∈ (0, 2) and so there must be g(x) < γ (x) for small x . ��

This Lemma is an observation that leads to yet another characterization of
superquadraticity for any hypersurface X ⊂ R

n :

Proposition 3.18 Let X ⊂ R
n be a closed definable set such that the tangent cone

C0(X) is a linear hyperplane and X ∩U is a graph over it, for some neighbourhood
U of 0 ∈ X. Then the following assertions are equivalent:

(1) X is superquadratic at the origin.
(2) For any r > 0, bν(0)(0, r) ∩ X �= ∅, where ν(0) is a unit normal to X at 0.

Proof Choose coordinates in R
n = R

n−1
x × Rt so that C0(X) = {t = 0} and write

X = � f in a neighbourhood of zero. Fix ν(0) = (0, 1).
We start with (1) ⇒ (2). Suppose that for some r > 0, bν(0)(0, r) ∩ X =

∅. This implies that for all x ∈ R
n−1 sufficiently close to zero, we have

(x, | f (x)|) /∈ B(rν(0), r). On the other hand, observe that for 0 < ||x || < r
we have (x, (1/r)||x ||2) ∈ B(rν(0), r). Summing up, in a neighbourhood of zero,
| f (x)| ≤ (1/r)||x ||2 which means by Proposition 3.13 that X is not superquadratic.

In order to prove (2) ⇒ (1), assume that X is not superquadratic at zero. Then by
Proposition 3.13 we conclude that ord0 f ≥ 2, i.e. | f (x)| ≤ c||x ||2 for ||x || < ε where
c, ε > 0 are constants. Observe that for any 0 < r < 1/(2c), the graph of t = c||x ||2
does not enter the ball B((0, r), r). This readily implies that X ∩ bν(0)(0, r) = ∅,
provided we have taken r < min{1/(2c), ε}. ��

We go back to the plane case.
First, we recall that for a C2 smooth curve y = f (x) its curvature radius at (x, f (x))

is given by r(x) = 1/κ(x) where

κ(x) =
∣∣ f ′′(x)

∣∣
(
1+ f ′(x)2

)3/2 . (R)

Moreover, it is known that the point (x, f (x)) realizes the distance d((a, b), � f ∩U )

(where U is a small neighbourhood of (x, f (x))14) if v := (a, b) − (x, f (x)) is
orthogonal to � f at (x, f (x)) and ||v|| < r(x).

14 If the point (a, b) is sufficiently close to (x, f (x)), then d((a, b), � f ∩ U ) = d((a, b), � f ). More
precisely, if U = B((x, f (x)), R), then it is sufficient that (a, b) be taken in B((x, f (x)), R/2).
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Theorem 3.19 Assume that 0 ∈ Reg1X ∩ Sng2X. Then 0 ∈ MX iff X is
superquadratic at the origin.

Proof The problem is local and so we may assume that X \ {0} is C2-smooth. Fur-
thermore, the tangent cone C0(X) being a line we may write X as the graph of a C1

definable function f : (−1, 1) → R with f (0) = f ′(0) = 0 and that is C2 outside
zero.

Write ν(t) = (− f ′(t), 1)/||(− f ′(t), 1)|| for the normal to X at (t, f (t)).
We start with proving the ‘if’ part. Let � be the branch of f for t ≥ 0 and suppose

that it is superquadratic. We may also assume that f is convex on [0, 1).
Consider bν(t)((t, f (t)), ε), the open bi-disc at (t, f (t)) of radius ε. Since � is

superquadratic at zero, we know by Proposition 3.18 that for any ε, bν(0)((0, 0), ε) ∩
� �= ∅. Our assumptions imply that it is the upper disc B((0, 0) + εν(0), ε) (here
ν(0) = (0, 1)) that actually intersects �. Therefore, we concentrate our attention only
on the ‘upper’ discs that we will make roll to zero from the left.

Denote by aε(t) = (t, f (t))+ εν(t) the centres of the discs for t ∈ (−1, 0]. If we
start sufficiently far from zero, i.e. for some tε near −1, and with a sufficiently small
ε, we will have B(aε(tε), ε) ⊂ {(x, y) | x < 0}. In particular,

d (aε(tε), �) ≥ d (aε(tε), {x ≥ 0}) > ε.

Observe that taking a smaller ε allows us to choose tε nearer to zero.
Consider the continuous function

φε(t) = ε − d (aε(t), �) , t ∈ (−1, 0].

We have φε(tε) < 0. On the other hand, since B(aε(0), ε) ∩ � �= ∅, it is clear that
the distance of aε(0) to � is smaller than the radius of the disc. Hence, φε(0) > 0.
Now the Darboux property implies that for some t ′ε ∈ (tε, 0) we have φε(t ′ε) = 0
which means precisely that � is tangent to the disc B(aε(t ′ε), ε). So aε(t ′ε) belongs to
the medial axis MX of the graph of f and as t ′ε → 0 when ε → 0, we conclude that
(0, 0) ∈ MX .

Of course, in order to roll the disc properly we need an extra assumption. Namely,
either the branch �′ of f for t < 0 is concave, or it is non-superquadratic at the origin.
Indeed, if it is concave, then due to our choices, the disc rolls on the concave side. If,
however, it is convex but non-superquadratic at the origin, then:

• firstly, the definability assures us that f |(−1,0) has a C2 extension through zero, and
so we can compute its curvature at any point;

• secondly, it follows from the standard formula for the curvature that the curvature
radius in this case stays away from zero.

Summing up, we conclude that for all ε small enough, the discs of radius ε are tangent
to �′ at any point.

We are left now only with the case when �′ is convex and superquadratic at zero
just as �. We proceed as follows.

Any disc B((0, ε), ε) has points of �′ and � inside. Fix ε and keeping the centre at
(0, ε), decrease the radius to ε′ so that 0 /∈ B((0, ε), ε′) =: B(ε′). Then the intersection

123



Medial Axis and Singularities 2359

of B(ε′) with the graph of f consists of two connected components C1,C2 the conflict
set of which contains a part of MX . Indeed, this is a consequence of Lemma 3.4 and the
remark following it. This ends the proof, since we may repeat the argument starting
from a smaller ε.

To prove the ‘only if’ part, suppose that X is not superquadratic at zero. The function
f has two branches f+(t) = a+tα++o(tα+) for t ∈ [0, ε) and f−(t) = a−tα−+o(tα−)

for t ∈ (−ε, 0]. Since X is not superquadratic, we have α+, α− ≥ 2. In this case, both
branches have C2 extensions through zero which means that we are able to roll a ball
of a fixed radius on both sides of X . This ends the proof. ��
Example 3.20 In more variables, the situation is not that clear. Consider X to be the
graph of f (x, y) = |xy|. It is easy to see that ord0 f ≥ 2, i.e. f is not superquadratic
at zero, but it is differentiable at this point with ∇ f (0, 0) = 0. However, MX reaches
the origin. Of course, 0 /∈ Reg1X .

Consider two half-lines 	i = R+vi starting at zero, where vi ∈ S
1. We call bisector

of the angle formed by 	1, 	2 the half-line 	 = R+w where w = (v1+v2)/2, provided
w �= 0 (i.e. � (	1, 	2) �= π ).

For a curve (one-dimensional set) X ⊂ R
2, the tangent cone at any of its points

consists of finitely many half-lines. This tangent cone is linear if and only if there are
only two half-lines 	1, 	2 such that � (	1, 	2) = π .

Theorem 3.21 Let X ⊂ R
2 be a definable curve with 0 ∈ Sng1X. Then 0 ∈ MX,

provided the germ (X \ {0}, 0) has at least two connected components.

Remark 3.22 By the Nash Lemma (see, e.g. [9, Lemma 1.1]), if 0 ∈ Reg2X , then
MX stays away from X in a neighbourhood of the origin. Hence, both Theorems
above together with Proposition 3.24 below completely describe the reaching of the
singularities in the plane case.

Proof If we restrict to a neighbourhood of zero, then we may assume that X \ {0} is
of class C2 and has a finite number, say k, of branches �i . We know that k ≥ 2.

First suppose that k = 2. Then, having a singularity means in this case that C0(X)

is not linear, i.e. it consists of two lines forming an angle different from π (but it could
be zero). We are working in a ball B centred at zero, divided by X into two domains
D1, D2

15. Since N (0) ⊂ N0(X), we conclude that on one side of 0 in B, say in D1,
there are no points whose distance to X is realized in zero16. Of course, this does not
depend on the radius of B (provided it is sufficiently small).

Consider now any small ball Bε � B centred at zero. From the assumptions made
so far, we infer that Cε := D1∩ ∂Bε is an arc of the circle ∂Bε going from �1 to �2

17.
If we restrict to it the function x �→ d(x, �1)− d(x, �2), then we see that it changes
sign, whence Cε ∩ Conf(�1, �2) �= ∅.

15 Note the definability implies that the two branches �i can be seen as graphs with constant convexity.
16 Indeed, in a possibly smaller B, the two branches lie entirely outside N0(X)\ {0} and so does the region
D1 between them.
17 i.e. Cε ∩ X consists of two distinct points, one on �1, the other on �2.
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If we pick a point a ∈ Cε ∩ Conf(�1, �2), then from the definition of the conflict
set, it follows that here are two points bi ∈ �i such that ||a − b1|| = d(a, �1) =
d(a, �2) = ||a − b2||. But X = �1 ∪ �2 and 0 /∈ m(a), whence b1, b2 ∈ m(a) and
so a ∈ MX (see also Remark 3.23 hereafter). Since ε is arbitrarily small, the proof is
accomplished.

Now, assume that k ≥ 3. Actually, the argument is quite the same, the only differ-
ence being that the linearity or nonlinearity of the tangent cone changes the start-point.
Indeed, if C0(X) is nonlinear, then we can extract, so to say, two different branches
�i , � j such that

• their tangent half-lines at zero form an angle different from π ;
• in one of the two regions they divide B in, call it D, there are no other branches of

X .

Then we can repeat the same argument showing that part of the conflict set
Conf(�i , � j ) in D is contained in MX and so it approaches zero.

Otherwise, ifC0(X) is linear, then, again, among the k ≥ 3 branches of X \{0} there
must be two branches that satisfy the two requirements above. The only difference is
that now we know that the angle between the tangent half-lines is 0, which does not
affect the argument.

This ends the proof. ��
Remark 3.23 Note that in general, for two distinct closed sets X,Y with a unique
common point X ∩ Y = {a}, there is

MX∪Y \
(
Terro(X) ∪ Terro(Y )

) = Conf(X,Y ) \ C(X,Y ),

where Terro(X) = {x ∈ R
n | d(x, X) < d(x,Y )} is the open territory of X and

C(X,Y ) = {x ∈ Conf(X,Y ) | mX (x) = mY (x)}. The inclusion ‘⊃’ follows from
the proof above: if x is equidistant to X and Y (so that x does not belong to any of the
open territories) but mX (x) �= mY (x), then necessarily #mX∪Y (x) > 1. To see ‘⊂’,
pick a point x in the set on the left-hand side. Then it is equidistant to X and Y so that
it belongs to the conflict set. But mX (x) = mY (x) implies that this set is included in
X ∩ Y = {a}, and so mX∪Y (x) = {a}, contrary to the assumptions.

By throwing away the open territories of X and Y from the medial axis, we make
sure there are no ‘self-conflict’ parts left. On the other hand, getting rid of C(X,Y )

from the conflict set is important in view of the example given in Remark 2.15.
If the intersection X ∩Y has more than one point, there is no such a simple relation

between the medial axis and the conflict set as we can see, for instance, from the
example of X being the unit circle in R

2 together with the point (2, 0) and Y just the
unit circle.

Proposition 3.24 Assume that X ⊂ R
2 is a definable curve such that 0 ∈ X and the

germ (X \ {0}, 0) is connected. Then 0 /∈ MX.

Proof The tangent cone C0(X) is a half-line that we can assume to be the x-axis for
x ≥ 0. Moreover, we can assume that X near zero is a graph of a definable, convex
function f : [0, ε) → R, f (0) = 0 that is C2 on (0, ε) and has a C1 extension through
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zero with f ′(0) = 0. If the extension can be made of class C2, then by the Nash Lemma
we conclude that 0 /∈ MX . Suppose thus that there is only a C1 extension. This means
that when we write f (t) = ctα + o(tα) with c, α > 0, there must be α ∈ (1, 2), i.e.
f is superquadratic.

Observe that N0(X) = {(x, y) | x ≤ 0}. By the superquadraticity and the convexity
of f , we conclude that no point (0, y) with y > 0 has its distance to X realized at
zero. On the other hand, it is obvious that for all other points from N0(X) sufficiently
near zero, the origin is the unique closest point in X .

Take a point a(y) = (0, y) with a small y > 0 and consider the supporting sphere
S(a(y), d(a(y), X)). This circle touches X in a finite number of points none of which
is the origin, by superquadraticity. But the function y �→ #m(a(y)) is definable (cf.
[6]) which implies that for all y > 0 near zero it must be constant, equal to 1 (cf. the
points in m(a(y)) tend to zero when y → 0+ and X is a graph near zero). This ends
the proof. ��

We end this section by describing the tangent cone of MX when this set reaches X .
Note that as X \{0} consists of finitely many branches ending at zero, the tangent cone
C0(X) is the union of finitely many half-lines being the tangents of these branches. As
can be expected, it turns out that the tangent cone of the medial axis consists of all the
bisectors of the half-lines forming up C0(X). However, as the next example shows,
not all the pairs of half-lines are to be taken into account.

Example 3.25 Let X ⊂ R
2 be the graph of y = x2 together with the curve y = −x2

for x ≥ 0. Therefore, X has three branches ending at the origin and C0(X) is the x-
axis. Clearly, 0 ∈ MX (as MX = (0,+∞)×{0}), but only the two branches y = ±x2

contribute to this. Both have [0,+∞) × {0} as the tangent cone at zero and so the
bisector coincides with this half-line. Of course, it is C0(MX ).

A similar situation occurs for a λ-shaped curve.

Before we state and prove the theorem on the tangent cone, let us introduce some
notions that will help to state the result.

For a plane definable germ (X, 0), we say that two branches �1, �2 at zero are
consecutive, if they bound a region near zero which does not contain any other branch
of X18. There is only one such region, if X has more than two branches. In this case,
we denote it by D(�1, �2).

Assume that 0 ∈ MX . Of course, MX is the union of all the medial axes M�1∪�2 ∩
D(�1, �2) for all pairs of consecutive branches �1, �2 (assuming that X has more
than two branches). We say that a region delimited by a pair of consecutive branches
contributes to MX at zero, if the origin belongs to the closure of the corresponding
medial axis19.

If X has only two branches at zero, then there are two regions delimited by them,
which we denote D±. It may happen that MX appears in only one of these regions

18 If X is defined by |y| = x2, then the branches y = ±x2 for x ≥ 0 are consecutive, but not the branches
y = x2, x ≤ 0 and y = −x2, x ≥ 0
19 In Example 3.25, the region delimited by the pair of branches y = ±x2 contributes to MX at zero, while
the region of the pair y = x2 for x ≤ 0 and x ≥ 0 does not (although the corresponding medial axis is
nonempty).
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(as for X : y2 = x3), or in both of them (as for X : y = sgnx |x |3/2). In this case it is
natural to consider the two branches as two different pairs of consecutive branches,
distinguished by their ordering.

Finally, let us recall one theorem from [1] that we shall use in the proof.

Theorem 3.26 (Birbrair–Siersma) Let X1, . . . , Xk ⊂ R
n be closed, definable, pair-

wise disjoint, nonempty sets such that 0 belongs to K := Conf(X1, . . . , Xk) and let
S := S(0, d(0, X1)) be the supporting sphere at 0.

Then C0(K ) is the cone spanned over the conflict set Conf S(X̃1, . . . , X̃k) in the
sphere, where X̃i := Xi ∩ S.

Here, what we mean by a cone spanned over a subset E of the sphere S centred
at zero is the set

⋃{R+v | v ∈ E}. The conflict set in the sphere is computed with
respect to the geodesic metric in S (cf. Remark 2.15).

Theorem 3.27 Assume that 0 ∈ MX ∩ X where X is a pure one-dimensional closed
definable set in the plane. Then C0(MX ) is the union of the bisectors of all the pairs
of half-lines forming up C0(X) and given by pairs of branches delimiting regions that
contribute to MX at zero.

Proof Since MX is nowheredense, definable and 0 ∈ MX \ MX , it follows from
the Curve Selection Lemma that dim0 MX = 1. Therefore, the germ of MX at zero
consists of finitely many branches (arcs) Mi ending at the origin. Each of them gives
a half-line, and the union of these half-lines forms the tangent cone C0(MX ).

Of course, each branch Mi must lie between exactly two consecutive branches
�i,1, �i,2 of X . Moreover, by the triangle inequality, in the region delimited by two
branches �1, �2 of X , there cannot be more than one branch Mi

20.
Therefore, we may restrict our considerations to the case when X has only two

branches �1, �2, both of class C121, delimiting a region D in which the medial axis is
a curve M ending at zero. From the definability, it follows that M may be assumed to
be a C1 curve and C0(M) is the tangent half-line at 0 ∈ M .

From [9] Theorem 4.13, we know that apart from a finite set of points in M , we have
dim m(x) = 0 along M . Moreover, as m(x) varies continuously when M � x → 0,
we conclude that #m(x) = 2 for x ∈ M , for the points form rails on which the disc
B(x, d(x, X)) rolls to zero, and so the rails must coincide with the two branches22.

In view of our previous results, the assumption 0 ∈ MX means that either 0 ∈
Sng1X , or X is superquadratic at zero. In both cases, it follows that no point in D has
its distance to X realized in zero (cf. the previous proofs).

20 Indeed, suppose that there are two such branches M1, M2 lying in D(�1, �2) and pick a point a between
them. Then it has exactly one closest point to X , say b ∈ �1. But then [a, b] ∩ (M1 ∪ M2) �= ∅ and if c
belongs to the intersection (note that c �= a, b), its distance to X is necessarily realized in b and in some
other point b′, but then ||a − b′|| < ||a − c|| + ||b′ − c|| = ||a − b|| = d(a, X) which is a contradiction.
21 If 	1, 	2 are the two half-lines tangent to the branches �1, �2, respectively, and so forming up C0(X),
then the branches can be seen as C1 graphs with constant convexity, defined over a segment [0, εv) in the
bisector 	 = R+v of the angle � (	1, 	2); of course, it may happen that 	1 = 	2 = 	.
22 This can be also obtained from the definability of x �→ #m(x) following from [6]. Note also that both
points cannot lie on the same branch of X .
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Therefore, if we parametrize M by γ : (0, ε) → M with γ (t) → 0 when t → 0,
we will have C0(M) = R+γ ′+(0). Moreover, for each t ∈ (0, ε), there are two points
ηi (t) ∈ �i realizing d(γ (t), X) and ηi (t) → 0 when t → 0. Observe that the tangents
to �i at ηi (t) tend to the tangent direction of �i at zero.

Since #m(γ (t)) = 2, we can invoke Lemma 3.3 to see that M near γ (t) coincides
with the conflict set of the two branches. Thus, we are in a position that allow us
to use the Birbrair–Siersma Theorem: the conflict set of the two points ηi (t) in the
circle S(γ (t), d(γ (t), X)) consists obviously of two antipodal points, since the cone
spanned over them is the tangent cone Cγ (t)(M) which must coincide with the tangent
to M at γ (t). Still more, this line is clearly the bisector of the angle formed by the
tangents to the circle at the points ηi (t) (note that they cannot be parallel).

Of course, when t tends to zero, the tangent direction Cγ (t)(M) approaches the
tangent direction to M at zero. It follows that C0(M) must be the bisector of the
tangent half-lines of the branches, as required. ��
Example 3.28 In the non-definable setting, the tangent cone C0(MX ) (when MX

reaches the set X at zero) may be quite big. To ascertain this, consider X =
{0} ∪⋃+∞

ν=1{(xν, 0)} ⊂ R
2 where xν = 1/ν. Then

MX =
+∞⋃

ν=1

{
xν + xν+1

2

}
× R

and so 0 ∈ MX , but C0(MX ) = {(x, y) | x ≥ 0}, while C0(X) = [0,+∞)× {0}.
Example 3.29 Let X = {(x, x2) | x ∈ [0, 1)} ∪ {(x, x3) | x ∈ [0, 1)}. Then MX near
zero is clearly a curve lying between the two branches of X \{0}. Since these branches
have a common tangent [0,+∞) × {0} at zero, this line is also the tangent cone of
MX at the origin.

From the last Theorem, we obtain a kind of symmetry property of plane analytic
curves.

Corollary 3.30 Let X ⊂ R
2 be a real-analytic curve germ at zero and such that

X \ {0} consists of only two branches and 0 ∈ MX. Then in a neighbourhood U of
zero, the medial axis MX is a half-line that is a symmetry axis of X ∩U.

Proof In view of the preceding results, there are two possibilities23: either 0 ∈ Sng1X ,
or 0 ∈ Reg1X ∩ Sng2X with X superquadratic at the origin. In the first case, by
[14] Corollary 5.6, we know that C0(X) is a half-line 	, that we may assume to be
{0} × [0,+∞), whereas in the second one, it is a line L that we assume to be the
x-axis. Using the definition of the tangent cone, we may assume in both cases that
in a neighbourhood of the origin X is a graph over an interval (−ε, ε) in the x-axis.
Consider F = 0 to be an analytic equation of X in the same neighbourhood.

23 Note that both may occur: y3 = x4 is C1 regular at zero but superquadratic at this point, cf. Example
3.1.
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Let h be the branch over (−ε, 0] and g the branch over [0, ε). They both are C1 at
zero and due to the Puiseux Theorem, for some integer p > 0, g(t p) has an analytic
extension through zero onto (−δ, δ) for some δ ∈ (0, ε). Then, we obtain

F(s, g(s)) ≡ 0, s ∈ [0,
p
√

δ).

Therefore, by the identity principle, this holds true for |s| < p
√

δ. But we may repeat
the same argument with h and so we conclude that g(−s) = h(s) for s ∈ (0, δ) (if
δ was chosen < 1) which gives the symmetry sought after (since the germ of MX at
zero depends only on the germ of X at this point) and proves that MX is a half-line
near zero, as well. ��
Remark 3.31 It follows from this Corollary that, for instance, the superquadratic curve
y = sgn(x)|x |3/2 is not analytic at the origin.

4 Hypersurfaces in R
n

4.1 Tangent Cone Method at C1-Singular Points

We begin with a not so obvious proof of an obvious fact:

Proposition 4.1 Let V ⊂ R
n be a closed real cone with vertex at the origin and such

that

(1) intV = ∅;
(2) V is not contained in a hyperplane.

Then 0 ∈ MV .

Proof It is sufficient to prove that CV �= ∅
24 since, firstly, CV = MV , and secondly,

picking a point x ∈ CV , we may move the maximal ball B(x, d(x, V )) towards the
vertex by homothety and it stays maximal.

By (1), there is a point x ∈ R
n \ V . If x /∈ CV , then we have exactly one closest

point m(x) ∈ V . Now, we consider the balls

Bt (x) := B (m(x)+ t (x − m(x)), td(x, V )) , t ≥ 1

whose closure touch V at m(x). Let

t (x) = sup
{
t ≥ 1 | Bt (x) ⊂ R

n \ V }
.

Either t (x) is finite, in which case the corresponding centre belongs to CV , or t (x) =
+∞ which means that V does not enter the open half-space Hx := {y ∈ R

n |
〈y, x−m(x)〉 > 0}when translated to m(x). But as V is a cone, we have Hx ∩V = ∅.
If the latter occurs we say that Hx is a supporting half-space for V .

24 This is true when R
n \ V does not contain a half-space.
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Any open half-space is defined by a unique unit vector v ∈ S
n−1 through the

inequality 〈y, v〉 > 0, and we denote this half-space by Hv .
For the rest of the proof, let us suppose that CV = ∅. Then by the preceding

observation, the set

P =
{
v ∈ S

n−1 | Hv is a supporting half-space for V
}

is nonempty, and

V ⊂
⋂

v∈P
H ′

v =: W

where H ′
v = {y ∈ R

n | 〈y, v〉 ≤ 0} is the complement of Hv . If we had V �= W ,
then we would find a point w ∈ W \ V . It would readily imply that w is the centre of
a maximal ball contrary to the assumptions. This is so because, by the assumptions,
w has a unique closest point m(w), and so for v := (w − m(w))/||w − m(w)||,
Hv is a supporting half-space for V , whence V ⊂ H ′

v , i.e. v ∈ P . But, clearly,
〈w − m(w),m(w)〉 = 0, and so we can write

〈w,w − m(w)〉 = 〈w,w − m(w)〉 − 〈m(w),w − m(w)〉 = ||w − m(w)||2 > 0

which means that w ∈ Hv , contrary to the choice of w.
Hence V = ⋂

v∈P H ′
v . This, however, contradicts the conjunction of (1) and (2).

Indeed, we have just shown that V is a convex cone. Let k denote the maximal
number of linearly independent vectors in V ∩ S

n−1. If k = n, then V must contain
an n-dimensional simplex (formed by the n points on the sphere and the origin) and
so has nonempty interior. Otherwise, if k < n, it follows that V is contained in a
hypersurface. ��
Remark 4.2 By homothety, we easily see that for any closed cone V with vertex at a,
MV is also a cone with a as the vertex.

Observe also that assumption (2) implies that V is nonlinear, i.e. not a vector
subspace.

We need both assumptions in the Proposition above:

Example 4.3 Consider V1 = {(x, y) ∈ R
2 | y ≥ |x |}; it has nonempty interior.

Clearly, MV1 = ∅.
Let V2 = [0,+∞) × {0} ⊂ R

2. Then V2 is contained in a line of the plane and
MV2 = ∅.

It follows from the definition of the tangent cone C0(X) that v ∈ C0(X) \ {0} iff
for any ε, δ > 0,

X ∩ B(0, ε) ∩ V (v, δ) �= ∅

where V (v, δ) = {tw | t > 0, w ∈ R
n \ {0} : ||(v/||v||)− (w/||w||)|| < δ}.
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In particular, if we assume that C0(X) satisfies the assumptions of the previous
Proposition, we see that, obviously, 0 ∈ Sng1X , and it is rather not astonishing that
also 0 ∈ MX , as we will show in the next Theorem. Moreover, we could expect that
then C0(MX ) = MC0(X).

The general idea is clear: we obtain the tangent cone by looking at X in the point
0 through a strong magnifying glass so that it becomes a set of half-lines; it is thence
natural to expect that near 0 the medial axis of X should behave like the medial axis
of the cone itself.

Remark 4.4 Note that this does not solve the problem 0 ∈ Sng1X entirely since we
do not consider the cases when C0(X) is linear (like for the graph of z = y|x |) or
degenerated (like for the horn x2 + y2 = z3).

Not only this remark should stop our optimism, but also the following example:

Example 4.5 We can hardly expect equality: let X be the union of the horn x2+y2 = z3

together with z = −||(x, y)||. Then V := C0(X) consists of x = y = 0, z ≥ 0
together with z = −||(x, y)|| and so satisfies the assumptions of Proposition 4.1, but
MX is the z-axis without the origin, so that C0(MX ) is the z-axis, whereas MV is just
x = y = 0, z < 0 which means that C0(MV ) is only x = y = 0, z ≤ 0.

In view of this example, the best result we can have is the following one obtained
using the main result of [10]:

Theorem 4.6 Assume that X ⊂ R
n is a definable hypersurface with tangent cone

V = C0(X) satisfying the assumptions of the Proposition 4.1. Then 0 ∈ MX and
C0(MX ) ⊃ MV .

Proof As we are in the definable case, we know that V is the Kuratowski limit when
t → 0+ of the dilatations (1/t)X , t > 0 (this follows from the Curve Selection
Lemma). Hence by [10],

MV ⊂ lim inf
t→0+

M(1/t)X .

But it is easy to see that M(1/t)X = (1/t)MX (by homothety) and so the limit inferior
is actually a limit and coincides with C0(MX ). Finally, as observed in [12], for a
definable set we have C0(E) = limt→0+(1/t)E also in the case when 0 /∈ E in which
case the limit is empty. Therefore, since we know by Proposition 4.1 that 0 ∈ MV , we
obtain the result sought for. ��
Remark 4.7 It is possible to give a straightforward proof which, however, requires
rather technical computations.

4.2 The Medial Axis Near C1-Smooth Points of Hypersurfaces

In this section, we assume that X = Reg1X is a C1 codimension 1 submanifold.
Then locally we can define at each point a ∈ X a continuous unit normal vector field
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(‘exterior’ or ‘interior’ depending on the side of X we choose) U ∩ X � x �→ ν(x) ∈
S
n−1, where U is an appropriate neighbourhood of a such that U ∩ X is connected

and is the graph of a C1 function. We call such a neighbourhood admissible. Then we
consider

La(U ) := inf
{
L > 0 | ∣∣∣∣ν(x)− ν(x ′)

∣∣∣∣ ≤ L
∣∣∣∣x − x ′

∣∣∣∣ | x, x ′ ∈ U ∩ X
}
.

Recall that inf ∅ = +∞ so that we have La(U ) ∈ [0,+∞]; La(U ) is a Lipschitz
constant for ν.

Let us note that for a smaller neighbourhood a ∈ U ′ ⊂ U , there is La(U ′) ≤ La(U )

so that if La(U ) is finite, it remains finite for a basis of neighbourhoods of a.

Remark 4.8 If the neighbourhoodU is of the form V×W ⊂ R
n−1×R (with appropri-

ately chosen coordinates) so that U ∩ X is the graph � f of a C1 function f : V → W ,
then if f is of class C1,125, we have La(U ) < +∞26.

Proposition 4.9 Assume that La(U ) < +∞ and let x ∈ U be such that m(x) ⊂ U.
If d(x) < 1/La(U ), then #m(x) = 1.

Proof We may assume x /∈ X , so that d(x) > 0. Take y, y′ ∈ m(x) and observe that
we necessarily have x = y ± d(x)ν(y) = y′ ± d(x)ν(y′) with the same sign in both
cases, for by assumption U ∩ X is a graph. Hence ||y − y′|| = d(x)||ν(y) − ν(y′)||
and so y �= y′ would imply La(U ) ≥ 1/d(x) contrary to the assumption. ��

From this, we immediately obtain

Corollary 4.10 If La(U ) < +∞ (for some admissible U), then a /∈ MX.

Proof It is sufficient to note that for x ∈ V ⊂ U where V is a sufficiently small
neighbourhood of a, we havem(x) ⊂ U∩X by Proposition 2.17. Hence, the preceding
Proposition applies to any point from W = B(a, 1/La(U )) ∩ V . Hence, m|W is
univalued. ��

For x ∈ X , we extend the definition of an open bi-ball

b(x, r) = B(x + rν(x), r) ∪ B(x − rν(x), r)

tangent to Tx X by putting b(x, 0) := ∅.

Definition 4.11 We call

ra(U ) := sup {r ≥ 0 | b(x, r) ∩ X = ∅, x ∈ U ∩ X}

the local (double) reach radius of X in U .

25 meaning its derivative is Lipschitz.
26 The converse is more delicate as the function f (x) = √

x over (0, 1) is not C1,1, but La(U ) < +∞ for
a given a ∈ U = (0, 1)× R.
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Remark 4.12 Let us observe that for a neighbourhood a ∈ U ′ ⊂ U , there is ra(U ′) ≥
ra(U ). Note also that ra(U ) = +∞ for some U iff X is contained in an affine
hyperplane (and then ra(U ′) = +∞ for any neighbourhood U ′ of a). It is important
to stress that we are looking at the intersection of the biballs with the whole of X , not
only with U ∩ X .

Proposition 4.13 a ∈ MX implies ra(U ) = 0 for all sufficiently small neighbour-
hoods U � a.

Proof Observe that if ra(U ) > 0 for some U , then for any ball B(a, 2ρ) ⊂ U with
2ρ < ra(U ) each point x ∈ B(a, ρ) has its distance to X realized in B(a, 2ρ) ∩ X .
Then we have necessarily #m(x) = 1 and so B(a, 2ρ) ∩ MX = ∅. ��

The local reach radius is closely related to La(U ), provided it is bounded and its
boundedness comes from the shape of X near a and not from other parts of X . To
be more precise, the following Theorem 4.16 does not hold for X = R × {−1, 1}
since ra(U ) = 1, but La(U ) = 0 at all points and for all admissible U . Therefore, we
introduce one more notion:

Definition 4.14 We say that the local reach radius of X is intrinsically bounded at
a, if for some admissible neighbourhood U of a there is ra(U ) < +∞ and for
any r > ra(U ), we can find r > r ′ > ra(U ) and a point b ∈ U ∩ X such that
∅ �= b(b, r ′) ∩ X ⊂ U .

Remark 4.15 Essentially, this means that the germ of MX at a depends only on the
germ of X at a. The admissibility of U is important in view of the example preceding
Definition 4.11.

Theorem 4.16 Let X be a C1 hypersurface and U an admissible neighbourhood of
a point a ∈ X. Then ra(U ) ≤ 1/La(U ) (with the convention that 1/0 := +∞). If,
moreover, ra(U ) is intrinsically bounded, then, ra(U ) = 1/La(U ) for a sufficiently
small neighbourhood U � a.

Proof Take ra(U ) > r > 0 and write b± = b ± rν(b), c± = c ± rν(c) where b �= c
are two points in U ∩ X . Clearly,

||b+ − c−|| ≥ 2r,

as the points in question lie on different sides of X which means that B(b+, r) ∩
B(c−, r) = ∅. Squaring both sides we can rewrite this inequality as

||b − c||2 + 2r〈b − c, ν(b)+ ν(c)〉 + r2 ||ν(b)+ ν(c)||2 ≥ 4r2. (i)

The same kind of computation leads from ||b− − c+|| ≥ 2r to

||b − c||2 − 2r〈b − c, ν(b)+ ν(c)〉 + r2 ||ν(b)+ ν(c)||2 ≥ 4r2. (i i)
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Note that

||ν(b)+ ν(c)||2 = ||ν(b)||2 + ||ν(c)||2 + 2〈ν(b), ν(c)〉

and ||ν(b)|| = ||ν(c)|| = 1. Therefore, ((i)+ (i i))/2 yields

||b − c||2 + r2(2+ 2〈ν(b), ν(c)〉) ≥ 4r2

||b − c||2 ≥ 2r2 (1− 〈ν(b), ν(c)〉) = r2 ||ν(b)− ν(c)||2 .

This implies that La(U ) ≤ 1/r and so

ra(U ) ≤ 1/La(U ).

Now, suppose that ra(U ) is intrinsically bounded and there is no equality, so that
we can find

1/La(U ) > r > ra(U ).

In order to obtain a contradiction, we argue as follows. By the intrinsic boundedness,
taking a smaller r if necessary, we can find a point b ∈ U ∩ X such that ∅ �=
b(b, r) ∩ X ⊂ U 27. There is a point c in this intersection, say, that c ∈ B(b+, r)∩ X ,
such that ||b+ − c|| = d(b+, X). But this distance is smaller than r < 1/La , hence
by Proposition 4.928, we have m(b+) = {c}. Moreover,

[b, b+] ∩ N (b) = [b, u] � [b, b+]

for some u. In particular, b ∈ m(u) and for any x ∈ (u, b+], b /∈ m(x).
Take a sequence (u, b+] � xν → u. Then lim supν→+∞ m(xν) ⊂ m(u) (cf. Propo-

sition 2.17), whence we can find a sequence m(xν) � yν → y0 ∈ m(u). But d(xν, X)

converges both to d(u, X) = ||u − b|| and to ||u − y0|| and so the latter is strictly
smaller than r < 1/La(U ). Proposition 4.9 implies that y0 = b and m(u) = {b}.

We have xν = b + ||xν − b||ν(b) = yν + ||xν − yν ||ν(yν). Let us denote

αν := � (yν − b, xν − b), βν := � (b − xν, yν − xν) .

Since X is C1, we have ν(yν) → ν(b) and so αν → π/2 and βν → 0. By the Sine
Law,

sin αν

||yν − xν || =
sin βν

||yν − b|| .

27 Remark that this intersection could lie outside U as in the example of X = R × {−1, 1} for which
ra = 1, but La = 0 at all points. That is why we need the intrinsic boundedness.
28 By the intrinsic boundedness, m(b+) ⊂ U .
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This leads to

La ≥ ||ν(yν)− ν(b)||
||yν − b|| = ||ν(yν)− ν(b)||

sin βν

· sin αν

||yν − xν || . (#)

It remains to observe that, passing to the limit, on the one hand we get

sin αν

||yν − xν || →
1

||b − u|| >
1

r
> La

where the first inequality comes from the fact that u ∈ (b, b+) and ||b − b+|| = r ,
while on the other one,

||ν(yν)− ν(b)||
sin βν

→ 1,

because

||ν(yν)− ν(b)||2
sin2 βν

= 2
1− 〈ν(yν), ν(b)〉

1− cos2 βν

= 2
1− cos � (ν(yν), ν(b))

1− cos2 � (ν(yν), ν(b))

= 2
1

1+ cos � (ν(yν), ν(b))
.

Summing up, (#) leads to a contradiction as wanted. ��
Remark 4.17 Up to now we have had no need for definability. If we suppose that
X = � f is definable, it readily implies that for ν̃(x) = (−∇ f (x), 1)/||(−∇ f (x), 1)||
the set

E := {
(r, L) ∈ (0, 1)× (0,+∞) | ∀x, x ′ ∈ Bn−1(a, r),

∣∣∣∣ν̃(x)− ν̃(x ′)
∣∣∣∣ ≤ L

∣∣∣∣(x, f (x))− (x ′, f (x ′))
∣∣∣∣}

is definable. Put ϕ(r) := inf Er where Er is the r -section of E and let π(r, L) = r .
Then ϕ(r) = +∞ iff r /∈ π(E) which implies that ϕ : (0, 1) → [0,+∞] is a definable
function (cf. [10, Lemma 4.4]). This in turn means that ϕ has a well-defined limit
La := limr→0+ ϕ(r)29. According to the remark following the definition of La(U ),
ϕ is an increasing function, so that La = infr∈(0,1) ϕ(r).

Remark 4.18 By Proposition 3.18, if X is superquadratic at a, then ra(U ) = 0 for
any neighbourhood U of a. The converse is not true as we can see from the definable
example of the graph of the C1 function f (x, y) = y|x |3/2. Here, ord0 f ≥ 2, so that
f is not superquadratic at the origin, but at any point along the y-axis (apart from
zero), f is superquadratic whence r0(U ) = 0 for any neighbourhood U of zero.

29 It can be infinite as for the graph of f (x) = |x |3/2 at a = 0.
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We can complete the discussion by the following result.

Theorem 4.19 For a hypersurface X with a ∈ Reg1X, the following conditions are
equivalent:

(1) for some neighbourhood U of a, there is ra(U ) > 0;
(2) for some admissible neighbourhood U of a and some ε > 0, the segments νε

x :=
[x − εν(x), x + εν(x)], x ∈ U ∩ X, are pairwise disjoint, where ν is a local unit
normal field on U ∩ X;

(3) a /∈ MX.

Proof (1) ⇒ (3), (2). Since ra(U ) > 0, by Proposition 4.13 we conclude that a /∈ MX

which gives (3). In particular, in some neighbourhood V ⊂ U of a,m is univalued, and
we may assume that m(V ) ⊂ U . Take 0 < ε < ra(U ) such that for any x ∈ V ′ ∩ X ,
νε
x ⊂ V where V ′ ⊂ V is a possibly smaller neighbourhood of a. Now, suppose that

for some distinct x, x ′ ∈ V ′ ∩ X , the segments νε
x and νε

x ′ do intersect and let z be
a point in the intersection. The distance d(z) is realized by a point x ′′ ∈ U ∩ X that
may be different from x, x ′. Since there cannot be ||z − x || = ||z − x ′′|| because of
the univaluedness of m, we may assume that ||z − x || > ||z − x ′′||. But then x ′′ lies
inside the biball b(x, ε) contrary to the definition of ra(U ). Thus, (2) holds.

(2) ⇒ (3). Fix r > 0 such that B(a, 2r) ⊂ U . Then for any z ∈ B(a, r), there
is m(z) ⊂ U ∩ X . If in addition we ask that d(z) < ε, then #m(z) = 1, for, given
x, x ′ ∈ m(z), we necessarily have z ∈ νε

x ∩νε
x ′ . This gives (3) as MX does not intersect

B(a, r) ∩ {d(z) < ε}.
(3) ⇒ (1). Assume that (1) does not hold, i.e. ra(U ) = 0 for all neighbourhoods

U of a. Let us introduce30

r±ν(x) := sup {r ≥ 0 | B(x ± rν(x), r) ∩ X = ∅} .

By the definition, if 0 < rν(x) < +∞, then x+rν(x)ν(x) belongs to CX . In our case,
for any U , there is a point x ∈ U such that either rν(x), or r−ν(x) is finite.

As ra(U ) = 0 for arbitrary small neighbourhoods U , there are two possibilities:
either there is a sequence X � xk → a such that for any k, one of the two radii r±ν(xk)
is finite, positive and it is possible to choose them so that they converge to zero—in
which case a ∈ CX = MX , or there is a neighbourhood U � a and a constant C > 0
such that a belongs to the closure of the set U0 := {x ∈ U | rν(x) = 0 or r−ν(x) = 0}
whose complement in U is UC := {x ∈ U | r±ν(x) ≥ C}31.

Now, if a ∈ U0, i.e. one of the radii r±ν(a), say rν(a), is zero, then for any r > 0, the
point a is not the closest point to a(r) := a + rν(a). Of course, for small r , the point
a(r) has at least one closest point y(r) ∈ U ∩ X and these points must converge to a
when r → 0+, for a(r) → a. Since a(r)− y(r) are non-zero and normal to X at y(r),
we conclude that rν(y(r)) > 0. Note that (a(r) − y(r))/||a(r) − y(r)|| = ν(y(r)),

30 Still with the convention that B(y, 0) = ∅

31 In connection to this, an interesting example is that of the graph of f (x, y) = y|x |3/2 for y ≥ 0 and
f (x, y) = 0 for y < 0. Here r±ν(0) > 0 and r±ν(x, y) ≥ const. for y < 0, but r(0,0,1)(0, y) = 0 for
y > 0.

123



2372 L. Birbrair, M. P. Denkowski

because the points a(r) are on the side of X designed by ν(a). If the radii rν(a(r))
stayed separated from zero by a constant c > 0, then since the open balls B(y(r), c)
are disjoint with X and converge to B(a, c), we would conclude that B(a, c)∩ X = ∅,
contrary to rν(a) = 0. Hence, rν(y(r)) → 0, and so a is the limit of the points
a(r) ∈ CX , as required.

Next, suppose that a ∈ UC . We know that there is a sequence U0 � xk → a and,
to each xk , we may apply the preceding reasoning in order to conclude that xk ∈ CX .
Therefore, a ∈ MX , too. All these results show that (3) does not hold, and thus the
proof is completed. ��

4.3 Reaching Radius

The previous subsection suggests some possible notions of reaching radius that could
detect the approaching of MX . We are looking for a notion of radius of curvature that
would detect the medial axis (the usual notion—too local—need not do this even in
the C2 smooth situation).

A kind of reach radius that immediately sees the approaching of the medial axis
would be the following. Let N ′(X) := ⋃

x∈X N ′(x). Note that the union is disjoint
and this set is the projection onto R

n of the graph of x �→ N ′(x), hence it is definable.
For any a ∈ X , we put

ρ(a) := sup
{
r ≥ 0 | B(a, r) ⊂ N ′(X)

}
.

Immediately we obtain

Proposition 4.20 For any a ∈ X, ρ(a) = d(a, MX ), and so x �→ ρ(x) is definable.

Proof By Theorem 2.7, we know that MX = R
n \ N ′(X). Therefore, for a ∈ X ,

ρ(a) = sup
{
r ≥ 0 | B(a, r) ∩ MX = ∅

}
,

which readily implies thatρ(a) = d(a, MX ). As we know that X and MX are definable,
so is the distance to this set. ��
Corollary 4.21 For any a ∈ X, the following conditions are equivalent:

(1) ρ(a) = 0;
(2) a ∈ MX;
(3) a /∈ intN ′(X).

Proof The equivalence of the two first conditions is clear, for the third one we invoke
Theorem 2.7 again. Indeed, R

n \ N ′(X) = MX , but for any A ⊂ R
n , there is intA =

R
n \ Rn \ A, which accounts for the equivalence between conditions (2) and (3), as

intN ′(X) = R
n \ MX . ��

Corollary 4.22 For any a ∈ X, ρ(a) > 0 iff δ(x) = d(x, X)2 is of class C1 in a
neighbourhood of a.
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Proof By Clarke’s results and our previous remarks, δ is of classC1 in a neighbourhood
of a iff ∂δ is univalued in this neighbourhood. But this is equivalent to saying that MX

stays away from a by Theorem 2.23. ��
Remark 4.23 As observed in [15], δ may be of class C1 even at points a ∈ Sng1X ,
e.g. for X = (−∞, 0] in R, that is the case.

The number ρ(X) := inf{ρ(a) | a ∈ X} corresponds to the reach introduced by
Federer (see [14]).

A much more general approach is possible, partially inspired by Theorem 4.19.
Consider a closed, definable, nonempty set X ⊂ R

n . For a ∈ X and the normal
cone Na(X) we put Va := Na(X) ∩ S

n−132.

Definition 4.24 We define the weak reaching radius

r ′(a) = inf
v∈Va

rv(a)

where

rv(a) = sup {t ≥ 0 | a ∈ m(a + tv)}

is the directional reaching radius (or v-reaching radius). Next we put

r̃(a) = lim inf
X\{a}�x→a

r ′(x)

for the limiting reaching radius. Finally, we define the reaching radius as

r(a) =
{
r ′(a), a ∈ Reg2X,

min
{
r ′(a), r̃(a)

}
, a ∈ Sng2X.

Remark 4.25 If a ∈ intX , then Na(X) = {0} and so Va = ∅ which gives r ′(a) = +∞
(as the infimum over the empty set).

Of course, if X is a hypersurface, then at a ∈ Reg1X , we have Va = {ν(a),−ν(a)}
where ν is a local unit normal vector field.

The reason why we consider the biggest lower bound of the radii in all possible
normal directions at a is to take into account the curvature and obtain a possibly finite
number, e.g. for X = {y = x2} ⊂ R

2 we have r ′(0) = r(0,1)(0) = 1/2 < r(−1,0)(0) =
+∞.

Taking into account the limiting radius is motivated by the fact that for X = {y =
|x |} we have r ′(0) = +∞, while lim infX\{0}�x→0 r ′(x) = 0. On the other hand,
if, e.g. X = ((−∞,−1] ∪ [1,+∞)) × {0}. Then r̃(−1, 0) = +∞, while using the
directions from the normal cone, we see that infv∈V0 rv(−1, 0) = 1. This explains the
minimum in the definition.

32 It may be empty when Na(X) reduces to zero like when a ∈ intX or a = 0 for X : xy = 0.
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Proposition 4.26 Under the assumptions above,

(1) for any a ∈ Reg2X, there is r(a) > 0;
(2) for any a ∈ X and any v ∈ Va such that 0 < rv(a) < +∞, there is av :=

a + rv(a)v ∈ CX;
(3) for any a ∈ X and any v ∈ Va, a + tv ∈ N ′(a) for all t ∈ [0, rv(a)).
(4) for any a ∈ X such that r(a) = +∞, there is Na(X)+ a = N ′(a).

Proof Ad (1). By assumptions, X is a C2 submanifold in a neighbourhood of a33.
By the Nash Lemma (cf. [9, Lemma 1.1]), the multifunction m(x) is univalued in a
neighbourhood U � a. Take r > 0 such that B(a, 2r) ⊂ U . As x −m(x) is normal to
X at m(x), we obtain for any x ∈ ((Ta X)⊥ + a) ∩ B(a, r), m(x) = a. This implies
(1).

Ad (2). If av /∈ CX , then we may increase the ball B(av, rv(a)) ⊂ R
n \ X = �

without leaving � but of course keeping the tangency point a. This, however, increases
rv(a), contrary to the definition.

Ad (3). This follows directly from our previous considerations.
Ad (4). It is a consequence of the preceding point. ��
At this stage, let us consider X∞ := {a ∈ X | r(a) = +∞} and X+ := X∞ ∩

Reg1X .

Lemma 4.27 For a ∈ X+, we have X ⊂ Ta X + a.

Proof We have a ∈ X∞ ∩ Reg1X . Of course, we may assume that a /∈ intX . Then
in any normal direction v ∈ Va , there must be rv(a) = +∞. By (3) in the previous
Proposition, this means that for a fixed v ∈ Va , a + R+v ⊂ N ′(a), i.e. X ⊂ R

n \
B(a + tv, t) for any t > 0. Therefore,

X ⊂
⋂

v∈Va

{
y ∈ R

n | 〈y − a, a + v〉 ≤ 0
} = Ta X + a

as required. ��
Theorem 4.28 X+ is either void or a union of some connected components ofReg1X.

Proof It is enough to show that X+ is closed and open in Reg1X .
For a ∈ X+, we may assume that a /∈ intX . Then we have r(a) = +∞ which

means that rv(a) = +∞ for any v ∈ Va , whence X ⊂ Ta X + a. The point a lies in
Reg1X , so that in a neighbourhood U of a, the set X is the graph of a C1 function
over U ∩ Ta X + a. But then X ∩ U = (Ta X + a) ∩ U which implies that r ≡ +∞
in U ∩ X and so X+ is open in Reg1X .

Take now a convergent sequence X+ � aν → a ∈ Reg1X . Since we have X ⊂
Taν X + aν and Taν X converges to Ta X , we conclude that r(a) = +∞, and so X+ is
closed in Reg1X . This ends the proof. ��

33 Recall that for a given r > 0 and any x ∈ B(a, r), the distance d(x, X) is realized in B(a, 2r).
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Example 4.29 It is rather hard to say something about X∞ ∩ Sng1X as we can see
from the following three examples:

(1) Suppose X is described by y ≥ |x |. Then X∞ = X (note that Sng1X is the
boundary of X ).

(2) Let X be the x-axis in R
2 without the open segment (0, 1). Then apart from the

unique singular points (0, 0) and (1, 0) at which it is finite, the radius r is infinite.
This shows that X∞ need not be closed in X .

(3) Let X be the x-axis in R
2 for x ≥ 0 together with y = 1/x for x > 0. Then along

the hyperbola, the radius goes to infinity when we approach the y-axis, while at
the origin (the unique singularity), it is finite.

Our main aim now is to prove the definability of the newly introduced radius
r : X → [0,+∞]. Let us have a look at a general approach. For a definable set,
X ⊂ R

n the multifunction

� : X � x �→ Cx (X) ∈P(Rn)

is definable (see, e.g. [12]), for its graph �� is described by a first-order formula
involving definable sets:

(x, y) ∈ �� ⇔ x ∈ X, y ∈ Cx (X)

⇔ x ∈ X, y ∈ lim sup
t→0+

1

t
(X − x)

⇔ x ∈ X,∀r > 0, ∀ε > 0, ∃t ∈ (0, ε), ∃z ∈ X̂(x,t) : ||y − z|| < r

where X̂(x,t) is the (x, t)-section of the definable set

X̂ = {(x, t, z) | x ∈ X, t > 0, t z + x ∈ X} .

Similarly, the multifunction

θ : X � x �→ Nx (X) ∩ S
n−1 ∈P(Rn)

is definable. From this, we obtain the definability of the weak reaching radius

r ′(x) = inf
v∈θ(x)

sup {t ≥ 0 | x ∈ m(x + tv)} , x ∈ X,

as introduced in Definition 4.24:

Proposition 4.30 The set X ′∞ = {x ∈ X | r ′(x) = +∞} is definable and so is the
function r ′|X\X ′∞ .
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Proof This follows directly from the descriptions and the definability of θ and m.
Indeed,

r ′(x) =+∞
⇔ θ(x) = ∅ ∨ ∀v ∈ θ(x), sup {t ≥ 0 | x ∈ m(x + tv)} = +∞
⇔ θ(x) = ∅ ∨ ∀v ∈ θ(x), ∀t ≥ 0, x ∈ m(x + tv),

which accounts for the definability of X ′∞.
Observe that s ≤ sup{t ≥ 0 | x ∈ m(x + tv)} is equivalent to saying that x ∈

m(x + sv). Hence, r ′(x) = r < +∞ is equivalent to the condition

∀v ∈ θ(x), x ∈ m(x + rv) ∧ ∀ε > 0, ∃vε ∈ θ(x) : x /∈ m (x + (r + ε)vε) ,

which gives the definability of r ′ on X \ X ′∞. ��
This settles the definability of r ′(x), x ∈ X . Finally, we apply the following general

fact:

Proposition 4.31 Let E ⊂ R
n be a closed, definable set and ϕ : E → [0,+∞] a

definable function. For a closed, definable, nonempty F � E satisfying E \ F = E,
we put

ψ(y) = lim inf
E�x→y,x �=y

ϕ(x), y ∈ F.

Then ψ is a definable function.

Proof We observe that for y ∈ F ,

lim inf
E�x→y,x �=y

ϕ(x) = inf(�ϕ|E\{y})y

where Zy denotes the y-section of the set Z and �ϕ|E\{y} is the graph of the restriction
ϕ|E\{y}. Consider the definable set

G = (
�ϕ × F

) \�

where � = {(x, t, y) ∈ E × [0,+∞] × F | x = y}. Then for a fixed y ∈ F , the
section Gy = {(x, t) | (x, t, y) ∈ G} is �ϕ|E\{y} .

Next, we observe that the set

H = {
(x, t, y) ∈ E × [0,+∞] × F | (x, t) ∈ Gy

}

= {
(x, t, y) | ∀r > 0, ∃(x ′, t ′) : (x ′, t ′, y) ∈ G ∧ ∣∣∣∣(x, t)− (x ′, t ′)

∣∣∣∣ < r
}

is definable. Therefore, the multifunction

h : Y � y �→ Hy ∈P(E × [0,+∞])
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is definable, too. Note that the y-section h(y)y is exactly (�ϕ|E\{y})y .
Finally, we have ψ(y) = inf h(y)y which ends the proof. ��

Theorem 4.32 In the situation considered, the functionr : X → [0,+∞] is definable.
Proof From Proposition 4.31, we obtain the definability of r̃(x), x ∈ Sng2X which
together with Proposition 4.30 yields the definability of r(x) = min{r̃(x), r ′(x)},
x ∈ Sng2X and means that r(x) is definable as a function of x ∈ X . ��

We end with some more general properties of the introduced radius.

Theorem 4.33 Under the assumptions above,

(1) the set X∞ is definable and MX �= ∅ implies X \ X∞ �= ∅;
(2) the function r̂ : X \ X∞ � a �→ r(a) ∈ [0,+∞) is definable and r̂−1(0) ⊂

Sng2X;
(3) for any x ∈ CX and any a ∈ m(x), d(x, X) ≥ r(a).

Proof Ad (1). The definability of X∞ is a consequence of the definability of r(x)
proved in the last Theorem. For a point x0 ∈ MX and any y ∈ m(x0), we have
r ′(y) ≤ rv(y) = d(x0) < +∞ where v = (x0 − y)/||x0 − y||. Thus, y ∈ X \ X∞.

Ad (2).This is a consequence of the previous considerations and Proposition 4.26
(1).

Ad (3). We have [a, x) ⊂ N ′(a) ⊂ Na(X) + a and, obviously, also r x−a
||x−a||

(a) =
d(x, X) whence the result. ��

The next and last theorem is related to Theorem 4.19. We would like to obtain an
equivalence between the reaching of the point a ∈ X , i.e. a ∈ MX , and the vanishing
of the radius: r(a) = 0. There are several problems that make this difficult.

Remark 4.34 It would be helpful, if r ′(a) = 0 implied r̃(a) = 0. Unfortunately, the
example of X = {(x, y, z) | z = 0, y ≤ |x |3/2} shows that there may be r ′(a) = 0
and r̃(a) > 0. Here Sng1X = {(x, |x |3/2, 0) | x ∈ R}, so that r ′ ≡ +∞ along Reg1X .

On the other hand, if X is the graph of f (x, y) = y|x |3/2, then r ′(0) > 0, while
r̃(0) = 0, in particular, r ′(0, y) = 0 for y �= 0.

Theorem 4.35 In the setting considered, a ∈ MX iff r(a) = 0.

Proof If a ∈ Reg2X , then a /∈ MX , by the Nash Lemma ([9, Lemma 1.1]), and
necessarily r ′(a) > 0. Therefore, we assume for the rest of the proof that a ∈ Sng2X .

Consider X∞ = {x ∈ X | r(x) = +∞} and let W := {x ∈ R
n | m(x) ⊂ X \ X∞}.

Equivalently,W is described by the conditionm(x)∩X∞ = ∅. Observe that MX ⊂ W .
Moreover, MX �= ∅ (which is the case of interest to us) implies X \ X∞ �= ∅.

Take now a point x ∈ W \ X and a point y ∈ m(x). Then 0 �= x − y ∈ Ny(X) and
for v(x, y) := x−y

||x−y|| we have rv(x,y)(y) ∈ (0,+∞). Therefore, the point

ηy(x) := y + rv(x,y)(y)v(x, y)

is well-defined. It is obvious that ηy(x) ∈ CX . Actually, x ∈ MX iff for some (and
then for any) y ∈ m(x), ηy(x) = x . In this case, rv(x,y)(y) = d(x).

123



2378 L. Birbrair, M. P. Denkowski

If a ∈ MX = CX , then there is a sequence (xν) ⊂ W \X such that ηyν (xν) = xν for
some yν ∈ m(xν) and xν → a. Then by the semicontinuity of m, yν → a. There are
two possibilities: either yν = a for any ν, in which case r ′(a) = 0 and so r(a) = 0, or
(passing to a subsequence) yν �= a, in which case r̃(a) = 0 and r(a) = 0, as required.

Now, let r(a) = 0. We will show that a ∈ MX . Since r(a) = min{r ′(a), r̃(a)}, we
have two cases to consider.

(1) r ′(a) = 0. According to the definition inf{rv(a) | v ∈ Va} = 0 and there are
two possibilities.

(a) There is a sequence (vν) ⊂ Va that we may assume to converge to some v ∈ Va
(for it lives in S

n−1) and such that the directional radii rvν (a) → 0 but rvν (a) > 0.
Then the corresponding points a + rvν (a)vν belong to CX and converge to a. Hence
a ∈ CX = MX .

(b) There is a decomposition Va = V 0
a ∪ V 1

a with V 0
a �= ∅ and such that rv(a) = 0

for all v ∈ V 0
a , whereas rv(a) ≥ c > 0 for all v ∈ V 1

a where c > 0 is some constant.
In this case, we pick a vector v ∈ V 0

a and observe that a /∈ m(a + tv) for all t > 0.
However, we may choose y(t) ∈ m(a + tv) and we get y(t) → a as t → 0+.
Moreover, it follows also that for v(t) = (a + tv − y(t))/||a + tv − y(t)|| we get
rv(t)(y(t)) positive and finite.

Claim. v(t) → v as t → 0+.
Suppose the claim holds true. Then two things can happen.
(i) rv(t)(y(t)) → 0 as t → 0+. Then y(t) + rv(t)(y(t))v(t) belong to CX and

converge to a which ends the proof.
(ii) There is a constant C > 0 such that rv(t)(y(t)) ≥ C for all t > 0. Then the open

balls B(y(t)+Cv(t),C) do not meet X and converge to the closure of B(a+Cv,C).
By the convergence, the latter cannot meet X either. But this is a contradiction showing
case (1)(b)(ii) cannot happen.

Before we turn to case (2) let us prove the Claim. First let us recall that a normal
vector u ∈ Ny(X) ∩ S

n−1 at y ∈ X is called proximal, if for some r > 0, y is
the unique closest point to y + ru in X . This is equivalent to saying that for any
x ∈ X , 〈x − y, u〉 ≤ (1/2r)||x − y||2. Indeed, m(y + ru) = {y} is equivalent to
||y+ru− x || > r for any x ∈ X \ {y}. After squaring both sides, this can be rewritten
as (1/2r)||x − y||2 > 〈x − y, u〉.

In our case, we know that the vectors v(t) are proximal.
Let us take any decreasing sequence tν → 0. We may assume that the unit vectors

wν := (y(tν) − a)/||y(tν) − a|| converge to some w. Of course, w ∈ Ca(X). Let us
denote βν := � (y(tν)− a, v).

Then we observe that cos βν → 0. Indeed, w ∈ Ca(X) implies that 〈v,w〉 ≤ 0.
If there were 〈v,w〉 < 0, then we would have 〈v,wν〉 < 0, i.e. cos βν < 0 for all
indices large enough. But this means that if we look at the triangle formed by the
points a, y(tν), a + tνv, we have

d(a + tνv)2 = t2
ν + ||y(tν)− a||2 − 2tν ||y(tν)− a|| cos βν > t2

ν ,

for the term with the minus sign is negative. But this contradicts our assumption
d(a + tv) < t for any t .
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Now, v(tν) being proximal at y(tν) with any r ∈ (0, d(a + tνv)), we can write

〈a − y(tν), v(tν)〉 ≤ 1

2d (a + tνv)
||a − y(tν)||2

which is equivalent to

〈a − y(tν), a + tνv − y(tν)〉 ≤ 1

2
||a − y(tν)||2

||a − y(tν)||2 + 〈a − y(tν), v〉tν ≤ 1

2
||a − y(tν)||2

||a − y(tν)||2 ≤ 2tν〈y(tν)− a, v〉
= 2tν ||y(tν)− a|| cos βν.

It follows that ||a − y(tν)||/tν → 0.
It remains to show that this implies that 〈v(tν), v〉 converges to 1. Note that

〈v(tν), v〉 ≤ 1. Since d(a + tνv) < tν , we have

〈v(tν), v〉 = 1

d (a + tνv)
〈a + tνv − y(tν), v〉

= 1

d (a + tνv)
(〈a − y(tν) , v〉 + tν)

>
1

tν
(〈a − y(tν), v〉 + tν) = 〈a − y(tν), v〉

tν
+ 1,

But |〈a− y(tν), v〉| ≤ ||a− y(tν)|| and so 〈a− y(tν), v〉/tν → 0 which ends the proof
of the Claim.

(2) r̃(a) = 0 (and we may assume now that r ′(a) > 0). Here r̃(a) =
lim infX\{a}�x→a r ′(x). Again there are two possibilities.

(a) There are sequences X \{a} � xν → a and vν ∈ Vxν such that 0 < rvν (xν) → 0.
By the compactness of Va , we may assume that vν → v0 ∈ Va , and so xν + rvν (xν)vν

are points from CX converging to a as required.
(b) For any sequence X \ {a} � xν → a, the sets Vxν decompose as in (1)(b) into

V 0
xν
∪V 1

xν
, and the constants cν = inf{rv(xν) | v ∈ V 1

xν
} do not converge to zero. Then,

necessarily, V 0
xν

are not empty, and we have thus r ′(xν) = 0. By (1), this means that
xν ∈ MX which implies a ∈ MX , and hence, the proof is complete. ��
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