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Abstract We prove that 2
d , 2d−3

(d−1)2
, 2d−1

d(d−1) ,
2d−5

d2−3d+1
and 2d−3

d(d−2) are the smallest log
canonical thresholds of reduced plane curves of degree d � 3, andwe describe reduced
plane curves of degree d whose log canonical thresholds are these numbers. As an
application, we prove that 2

d , 2d−3
(d−1)2

, 2d−1
d(d−1) ,

2d−5
d2−3d+1

and 2d−3
d(d−2) are the smallest

values of the α-invariant of Tian of smooth surfaces in P
3 of degree d � 3. We also

prove that every reduced plane curve of degree d � 4 whose log canonical threshold is
smaller than 5

2d is GIT-unstable for the action of the group PGL3(C), and we describe
GIT-semistable reduced plane curves with log canonical thresholds 5

2d .
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Worst Singularities of Plane Curves of Given Degree 2303

1 Introduction

Let Cd be a reduced plane curve in P
2 of degree d � 3, and let P be a point in Cd .

The curve Cd can have any given plane curve singularity at P provided that its degree
d is sufficiently big. Thus, it is natural to ask

Question 1.1 What is the worst singularity that Cd can have at P?

Denote by m P the multiplicity of the curve Cd at the point P , and denote by μ(P)

the Milnor number of the point P . If we use m P to measure the singularity of Cd at
the point P , then a union of d lines passing through P is an answer to Question 1.1,
since m P � d, and m P = d if and only if Cd is a union of d lines passing through
P . If we use the Milnor number μ(P), then the answer would be the same, since
μ(P) � (d − 1)2, and μ(P) = (d − 1)2 if and only if Cd is a union of d lines passing
through P . Alternatively, we can use the number

lctP
(
P
2, Cd

) = sup
{
λ ∈ Q

∣∣
∣ the log pair

(
P
2, λCd

)
is log canonical at P

}
,

which is known as the log canonical threshold of the log pair (P2, Cd) at the point P
or the log canonical threshold of the curve Cd at the point P (see [4, Definition 6.34]).
The smallest lctP (P2, Cd) when P runs through all points in Cd is usually denoted by
lct(P2, Cd). Note that

1

m P
� lctP

(
P
2, Cd

)
� 2

m P
.

This is well known (see, [4, Exercise 6.18] and [4, Lemma 6.35]). So, the smaller
lctP (P2, Cd), the worse singularity of the curve Cd at the point P is.

Example 1.2 Suppose thatCd is givenby xn1
1 xn2

2 (xm1
1 +xm2

2 ) = 0up to analytic change
of local coordinates, where m1 and m2 are positive integers, and n1, n2 ∈ {0, 1}. Then

lctP
(
P
2, Cd

) = min

{
1,

1
m1

+ 1
m2

1 + n1
m1

+ n2
m2

}

by [8, Proposition 2.2].

Log canonical thresholds of plane curves have been intensively studied (see, for
example, [8]). Surprisingly, they give the same answer to Question 1.1 by

Theorem 1.3 ([1, Theorem 4.1])One has lctP (P2, Cd) � 2
d . Moreover, lct(P2, Cd)=

2
d if and only if Cd is a union of d lines that pass through P.

In this paper we want to address

Question 1.4 What is the second worst singularity that Cd can have at P?
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2304 I. Cheltsov

To give a reasonable answer to this question, we have to disregard m P by obvious
reasons. Thus, we will use the numbersμ(P) and lctP (P2,Cd). For cubic curves, they
give the same answer.

Example 1.5 Suppose that d = 3, m P < 3 and P is a singular point of C3. Then P
is a singular point of type A1,A2 or A3. Moreover, if C3 has singularity of type A3 at
P , then C3 = L + C2, where C2 is a smooth conic, and L is a line tangent to C2 at P .
Furthermore, we have

μ(P) =

⎧
⎪⎨

⎪⎩

1 if C3 has A1 singularity at P,

2 if C3 has A2 singularity at P,

3 if C3 has A3 singularity at P.

Similarly, we have

lctP
(
P
2, C3

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if C3 has A1 singularity at P,

5

6
if C3 has A2 singularity at P,

3

4
if C3 has A3 singularity at P.

For quartic curves, the numbers μ(P) and lctP (P2,Cd) give different answers to
Question 1.4.

Example 1.6 Suppose that d = 4, m P < 4 and P is a singular point of C4. Going
through the list of all possible singularities that CP can have at P (see, for example,
[6]), we obtain

μ(P) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6 if C4 has D6 singularity at P,

6 if C4 has A6 singularity at P,

6 if C4 has E6 singularity at P,

7 if C4 has A7 singularity at P,

7 if C4 has E7 singularity at P,

and μ(P) < 6 in all remaining cases. Similarly, we get

lctP
(
P
2, C4

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5

8
if C4 has A7 singularity at P,

5

8
if C4 has D5 singularity at P,

3

5
if C4 has D6 singularity at P,

7

12
if C4 has E6 singularity at P,

5

9
if C4 has E7 singularity at P,

and lctP (P2, C4) > 5
8 in all remaining cases.
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Worst Singularities of Plane Curves of Given Degree 2305

Recently, Arkadiusz Płoski proved that μ(P) � (d − 1)2 − � d
2 � provided that

m P < d. Moreover, he described Cd in the case when μ(P) = (d − 1)2 − � d
2 �. To

present his description, we need

Definition 1.7 The curve Cd is an even Płoski curve if d is even, the curve Cd has
d
2 � 2 irreducible components that are smooth conics passing through P , and all
irreducible components of Cd intersect each other pairwise at P with multiplicity
4. The curve Cd is an odd Płoski curve if d is odd, the curve Cd has d+1

2 � 2
irreducible components that all pass through P, d−1

2 irreducible component of the
curve Cd are smooth conics that intersect each other pairwise at P with multiplicity
4, and the remaining irreducible component is a line in P

2 that is tangent at P to all
other irreducible components. We say that Cd is Płoski curve if it is either an even
Płoski curve or an odd Płoski curve.

Each Płoski curve has unique singular point. If d = 4, then C4 is a Płoski curve
if and only if it has a singular point of type A7. Thus, if d = 4, then μ(P) =
(d −1)2 −� d

2 � = 7 if and only if either C4 is a Płoski curve and P is its singular point
or C4 has singularity E7 at the point P (see Example 1.6). For d � 5, Płoski proved

Theorem 1.8 ([10, Theorem 1.4]) If d � 5, then μ(P) = (d − 1)2 − � d
2 � if and only

if Cd is a Płoski curve and P is its singular point.

This result gives a very good answer to Question 1.4. The main goal of this paper
is to give an answer to Question 1.4. using log canonical thresholds. Namely, we will
prove that

lctP
(
P
2, Cd

)
� 2d − 3

(d − 1)2

provided that m P < d, and we will describe Cd in the case when lctP (P2, Cd) =
2d−3

(d−1)2
. To present this description, we need

Definition 1.9 The curve Cd has singularity of type Tr (resp., Kr , T̃r , K̃r ) at the
point P if the curve Cd can be given by xr

1 = x1xr
2 (resp., xr

1 = xr+1
2 , x2xr−1

1 =
x1xr

2, x2xr−1
1 = xr+1

2 ) up to analytic change of coordinates at the point P .

Note that T2 = A3,K2 = A2, T̃2 = K̃2 = A1, K̃3 = D5, T̃3 = D6,K3 = E6
and T3 = E7. Furthermore, since we assume that d � 3, the formula in Example 1.2
gives

lctP
(
P
2, Cd

) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2d − 3

(d − 1)2
if Cd has Td−1singularity at P,

2d − 1

d(d − 1)
if Cd has Kd−1singularity at P,

2d − 5

d2 − 3d + 1
if Cd has T̃d−1 singularity at P,

2d − 3

d(d − 2)
if C has K̃d−1 singularity at P,
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2306 I. Cheltsov

where 2
d < 2d−3

(d−1)2
< 2d−1

d(d−1) < 2d−5
d2−3d+1

� 2d−3
d(d−2) . In this paper we will prove

Theorem 1.10 Suppose that d � 4 and lctP (P2, Cd) � 2d−3
d(d−2) . Then one of the

following holds:

(1) m P = d,
(2) the curve Cd has singularity of type Td−1,Kd−1, T̃d−1 or K̃d−1 at the point P,
(3) d = 4 and Cd is a Płoski quartic curve (in this case lctP (P2, Cd) = 5

8 ).

This result describes the five worst singularities that Cd can have at the point P .
In particular, Theorem 1.10 answers Question 1.4. This answer is very different from
the answer given by Theorem 1.8. Indeed, if Cd is a Płoski curve, d > 3 and P is its
singular point, then

lctP
(
P
2, Cd

) = 5

2d
>

2d − 3

(d − 1)2
.

The proof of Theorem 1.10 implies one result that is interesting on its own. To
describe it, let us identify the curve Cd with a point in the space |OP2(d)| that parame-
terizes all (not necessarily reduced) plane curves of degree d. Since the group PGL3(C)

acts on |OP2(d)|, it is natural to ask whether Cd is GIT-stable (resp., GIT-semistable)
for this action or not. For small d, its answer is classical and immediately follows from
the Hilbert–Mumford criterion (see [9, Chapter 2.1]).

Example 1.11 ([9, Chapter 4.2]) If d = 3, then C3 is GIT-stable (resp., GIT-
semistable) if and only if C3 is smooth (resp., C3 has at most A1 singularities). If
d = 4, then C4 is GIT-stable (resp., GIT-semistable) if and only if C4 has at most A1
andA2 singularities (resp., C4 has at most singular double points and C4 is not a union
of a cubic with an inflectional tangent line).

Paul Hacking, HosungKim andYongnamLee noticed that the log canonical thresh-
old lct(P2, Cd) and GIT-stability of the curve Cd are closely related. In particular, they
proved

Theorem 1.12 ([5, Propositions 10.2 and 10.4], [7, Theorem 2.3]) If lct(P2, Cd) � 3
d ,

then the curve Cd is GIT-semistable. If d � 4 and lct(P2, Cd) > 3
d , then the curve Cd

is GIT-stable.

This gives a sufficient condition for the curve Cd to be GIT-stable (resp, GIT-
semistable). However, this condition is not a necessary condition. Let us give two
examples that illustrate this.

Example 1.13 ([13, p. 268], [5, Example 10.5]) Suppose that d = 5, the quintic curve
C5 is given by

x5 +
(

y2 − xz
)2( x

4
+ y + z

)
= x2

(
y2 − xz

)(
x + 2y

)
,
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Worst Singularities of Plane Curves of Given Degree 2307

and P = [0 : 0 : 1]. Then C5 is irreducible and has singularity A12 at the point P . In
particular, it is rational. Furthermore, the curve C5 is GIT-stable (see, for example, [9,
Chapter 4.2]). On the other hand, it follows from Example 1.2 that

lct
(
P
2, C5

) = lctP
(
P
2, C5

) = 1

2
+ 1

13
= 15

26
<

3

5
.

Example 1.14 Suppose that Cd is a Płoski curve. Let P be its singular point, and let
L be a general line in P2. Then

lct
(
P
2, Cd + L

) = lct
(
P
2, Cd

) = lctP
(
P
2, Cd

) = 5

2d
<

3

d
.

On the other hand, if d is even, then Cd is GIT-semistable, and Cd + L is GIT-stable.
This follows from the Hilbert–Mumford criterion. Similarly, if d is odd, then Cd is
GIT-unstable, and Cd + L is GIT-semistable.

In this paper we will prove the following result that complements Theorem 1.12.

Theorem 1.15 If lct(P2, Cd) < 5
2d , then Cd is GIT-unstable. Moreover, if lct(P2, Cd)

� 5
2d , then Cd is not GIT-stable. Furthermore, if lct(P2, Cd) = 5

2d , then Cd is GIT-
semistable if and only if Cd is an even Płoski curve.

Example 1.14 shows that this result is sharp. Surprisingly, its proof is very similar
to the proof of Theorem 1.10. In fact, we will give a combined proof of both these
theorems in Section 3.

In this paper we will also prove one application of Theorem 1.10. To describe it,
we need

Definition 1.16 ([12, Appendix A], [3, Definition 1.20]) For a given smooth variety
V equipped with an ample Q-divisor HV , let α

HV
V : V → R�0 be a function defined

as

α
HV
V (O) = sup

{

λ ∈ Q

∣
∣∣∣∣
the pair (V, λDV ) is log canonical at O

for every effective Q-divisor DV ∼Q HV

}

.

Denote its infimum by α(V, HV ).

Let Sd be a smooth surface in P3 of degree d � 3, let HSd be its hyperplane section,
let O be a point in Sd , and let TO be the hyperplane section of Sd that is singular at
O . Similar to lctP (P2, Cd), we can define

lctO
(
Sd , TO

) = sup
{
λ ∈ Q

∣∣∣ the log pair
(
Sd , λTO

)
is log canonical at O

}
.

Then α
HSd
Sd

(O) � lctO(Sd , TO) by Definition 1.16. Note that TO is reduced, since the
surface Sd is smooth. In this paper we prove
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2308 I. Cheltsov

Theorem 1.17 If α
HSd
Sd

(O) < 2d−3
d(d−2) , then

α
HSd
Sd

(O) = lctO
(
Sd , TO

) ∈
{
2

d
,
2d − 3

(d − 1)2
,

2d − 1

d(d − 1)
,

2d − 5

d2 − 3d + 1

}
.

Similarly, if α(Sd , HSd ) < 2d−3
d(d−2) , then

α
(
Sd , HSd

) = inf
O∈Sd

{
lctO

(
Sd , TO

)} ∈
{
2

d
,
2d − 3

(d − 1)2
,

2d − 1

d(d − 1)
,

2d − 5

d2 − 3d + 1

}
.

If d = 3, then we can drop the condition α
HSd
Sd

(O) < 2d−3
d(d−2) in Theorem 1.17,

since 2d−3
d(d−2) = 1 in this case. Thus, Theorem 1.17 implies

Corollary 1.18 ([3, Corollary 1.24]) Suppose that d = 3. Then α
HS3
S3

(O) =
lctO(S3, TO).

If d � 4, we cannot drop the condition α
HSd
Sd

(O) < 2d−3
d(d−2) in Theorem 1.17 in

general. Let us give two examples that illustrate this.

Example 1.19 Suppose that d = 4. Let S4 be a quartic surface in P3 that is given by

t3x + t2yz + xyz(y + z) = 0,

and let O be the point [0 : 0 : 0 : 1]. Then S4 is smooth, and TO has singularity A1 at
O , which implies that lctO(S4, TO) = 1. Let L y be the line x = y = 0, let Lz be the
line x = z = 0, and let C2 be the conic y + z = xt + yz = 0. Then L y, Lz and C2
are contained in S4, and O = L y ∩ Lz ∩ C2. Moreover,

L y + Lz + 1

2
C2 ∼ 2HS4 ,

because the divisor 2L y + 2Lz + C2 is cut out on S4 by t x + yz = 0. Furthermore,

the log pair (S4, L y + Lz + 1
2C2) is not log canonical at O , so that α

HS4
S4

(O) < 1 by
Definition 1.16.

Example 1.20 Suppose that d � 5 and TO has A1 singularity at O . Then
lctO(Sd , TO) = 1. Let f : S̃d → Sd be a blow up of the point O . Denote by E
its exceptional curve. Then

(
f ∗(HSd ) − 11

5
E

)2 = 5 − 121

25
> 0.

Hence, it follows from Riemann–Roch theorem there is an integer n � 1 such that
the linear system | f ∗(5nHSd ) − 11nE | is not empty. Pick a divisor D̃ in this linear
system, and denote by D its image on Sd . Then (Sd , 1

5n D) is not log canonical at P ,
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Worst Singularities of Plane Curves of Given Degree 2309

since multP (D) � 11n. On the other hand, 1
5n D ∼Q HSd by construction, so that

α
Hd
Sd

(O) < 1 by Definition 1.16.

This work was carried out during the author’s stay at the Max Planck Institute for
Mathematics in Bonn in 2014. We would like to thank the institute for the hospital-
ity and very good working condition. We would like to thank Michael Wemyss for
checking the singularities of the curve C5 in Example 1.13. We would like to thank
Alexandru Dimca, Yongnam Lee, Jihun Park, Hendrick Süß and Mikhail Zaidenberg
for very useful comments.

2 Preliminaries

In this section, we present results that will be used in the proof of Theorems 1.10,
1.15, 1.17. Let S be a smooth surface, let D be an effective non-zeroQ-divisor on the
surface S, and let P be a point in the surface S. Write

D =
r∑

i=1

ai Ci ,

where each Ci is an irreducible curve on the surface S, and each ai is a non-negative
rational number. Let us recall

Definition 2.1 ([4, § 6]) Let π : S̃ → S be a birational morphism such that S̃ is
smooth. Then π is a composition of blow ups of smooth points. For each Ci , denote
by C̃i its proper transform on the surface S̃. Let F1, . . . , Fn be π -exceptional curves.
Then

KS̃ +
r∑

i=1

ai C̃i +
n∑

j=1

b j Fj ∼Q π∗(KS + D
)

for some rational numbers b1, . . . , bn . Suppose, in addition, that
∑r

i=1 C̃i +∑n
j=1 Fj

is a divisor with simple normal crossings. Then the log pair (S, D) is said to be log
canonical at P if and only if the following two conditions are satisfied:

• ai � 1 for every Ci such that P ∈ Ci ,
• b j � 1 for every Fj such that π(Fj ) = P .

Similarly, the log pair (S, D) is said to be Kawamata log terminal at P if and only if
ai < 1 for every Ci such that P ∈ Ci , and b j < 1 for every Fj such that π(Fj ) = P .

Using just this definition, one can easily prove

Lemma 2.2 Suppose that r = 3, P ∈ C1 ∩ C2 ∩ C3, the curves C1, C2 and C3 are
smooth at P, a1 < 1, a2 < 1 and a3 < 1. Moreover, suppose that both curves C1 and
C2 intersect the curve C3 transversally at P. Furthermore, suppose that (S, D) is not
Kawamata log terminal at P. Put k = multP (C1 ·C2). Then k(a1 +a2)+a3 � k +1.
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2310 I. Cheltsov

Proof Put S0 = S and consider a sequence of blow ups

Sk

πk

Sk−1

πk−1

· · ·
π3

S2
π2

S1
π1

S0 ,

where each π j is the blow up of the intersection point of the proper transforms of
the curves C1 and C2 on the surface S j−1 that dominates P (such point exists, since
k = multP (C1 ·C2)). For eachπ j , denote by Ek

j the proper transform of its exceptional

curve on Sk . For each Ci , denote by Ck
i its proper transform on the surface Sk . Then

KSk +
n∑

i=1

ai C
k
i +

k∑

j=1

(
j
(
a1 + a2

) + a3 − j
)

Ek
j ∼Q (π1 ◦ π2 ◦ · · · ◦ πk)

∗(KS + D
)
,

and
∑n

i=1 Ck
i +∑k

j=1 E j is a simple normal crossing divisor in every point of∪k
j=1E j .

Thus, it follows from Definition 2.1 that there exists l ∈ {1, . . . , k} such that l(a1 +
a2) + a3 � l + 1, because (S, D) is not Kawamata log terminal at P . If l = k,
then we are done. So, we may assume that l < k. If k(a1 + a2) + a3 < k + 1, then
a1 + a2 < 1 + 1

k − a3
1
k , which implies that

l + 1 � l
(
a1 + a2

) + a3 <

(
l + l

k
− a3

l

k

)
+ a3 = l + l

k
+ a3

(
1 − l

k

)

� l + l

k
+

(
1 − l

k

)
= l + 1,

because a3 < 1. Thus, the obtained contradiction shows that k(a1 +a2)+a3 � k +1.
��

Corollary 2.3 Suppose that r = 2, P ∈ C1 ∩ C2, the curves C1 and C2 are smooth
at P, a1 < 1 and a2 < 1. Put k = multP (C1 · C2). If (S, D) is not Kawamata log
terminal at P, then k(a1 + a2) � k + 1.

The log pair (S, D) is called log canonical if it is log canonical at every point of S.
Similarly, the log pair (S, D) is called Kawamata log terminal if it is Kawamata log
terminal at every point of the surface S.

Remark 2.4 Let R be any effective Q-divisor on S such that R ∼Q D and R = D.
Put

Dε = (1 + ε)D − εR,

where ε is a non-negative rational number. Then Dε ∼Q D. Moreover, since R = D,
there exists the greatest rational number ε0 � 0 such that the divisor Dε0 is effective.
Then Supp(Dε0) does not contain at least one irreducible component of Supp(R).
Moreover, if (S, D) is not log canonical at P , and (S, R) is log canonical at P , then
(S, Dε0) is not log canonical at P by Definition 2.1, because

D = 1

1 + ε0
Dε0 + ε0

1 + ε0
R
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Worst Singularities of Plane Curves of Given Degree 2311

and 1
1+ε0

+ ε0
1+ε0

= 1. Similarly, if the log pair (S, D) is not Kawamata log terminal
at P , and (S, R) is Kawamata log terminal at P , then (S, Dε0) is not Kawamata log
terminal at P .

The following result is well known.

Lemma 2.5 ([4, Exercise 6.18]) If (S, D) is not log canonical at P, thenmultP (D) >

1. Similarly, if (S, D) is not Kawamata log terminal at P, then multP (D) � 1.

Combining with

Lemma 2.6 ([4, Lemma 5.36]) Suppose that S is a smooth surface in P
3, and D ∼Q

HS, where HS is a hyperplane section of S. Then each ai does not exceed 1.

Lemma 2.5 gives

Corollary 2.7 Suppose that S is a smooth surface in P
3, and D ∼Q HS, where HS

is a hyperplane section of S. Then (S, D) is log canonical outside of finitely many
points.

The following result is a special case of amuchmore general result, which is known
as Shokurov’s connectedness principle (see, for example, [4, Theorem 6.3.2]).

Lemma 2.8 ([11, Theorem 6.9]) If −(KS + D) is big and nef, then the locus where
(S, D) is not Kawamata log terminal is connected.

Corollary 2.9 Let Cd be a reduced curve in P
2 of degree d, and let O and Q be two

points in Cd such that O = Q. If lctO(P2, Cd) < 3
d , then lctQ(P2, Cd) � 3

d .

Let π1 : S1 → S be a blow up of the point P , and let E1 be the π1-exceptional
curve. Denote by D1 the proper transform of the divisor D on the surface S1 via π1.
Then the log pair (S1, D1 + (multP (D) − 1)E1) is often called the log pull back of
the log pair (S, D), because

KS1 + D1 +
(
multP (D) − 1

)
E1 ∼Q π∗

1

(
KS + D

)
.

This Q-rational equivalence implies that the log pair (S, D) is not log canonical at P
provided that multP (D) > 2. Similarly, if multP (D) � 2, then the singularities of
the log pair (S, D) are not Kawamata log terminal at the point P .

Remark 2.10 The log pair (S, D) is log canonical at P if and only if (S1, D1 +
(multP (D) − 1)E1) is log canonical at every point of the curve E1. Similarly, the log
pair (S, D) is Kawamata log terminal at P if and only if (S1, D1+(multP (D)−1)E1)

is Kawamata log terminal at every point of the curve E1.

Let Z be an irreducible curve on S that contains P . Suppose that Z is smooth
at P , and Z is not contained in Supp(D). Let μ be a non-negative rational number.
The following result is a very special case of a much more general result known as
Inversion of Adjunction (see, for example, [11, § 3.4] or [4, Theorem 6.29]).
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Theorem 2.11 ([11, Corollary 3.12], [4, Exercise 6.31], [2, Theorem 7]) Suppose that
the log pair (S, μZ + D) is not log canonical at P and μ � 1. ThenmultP (D · Z) > 1.

This result implies

Theorem 2.12 Suppose that (S, μZ + D) is not Kawamata log terminal at P, and
μ < 1. Then multP (D · Z) > 1.

Proof The log pair (S, Z + D) is not log canonical at P , becauseμ < 1, and (S, μZ +
D) is not Kawamata log terminal at P . Then multP (D · Z) > 1 by Theorem 2.11. ��

Theorems 2.11 and 2.12 imply

Lemma 2.13 If (S, D) is not log canonical at P and multP (D) � 2, then there exists
a unique point in E1 such that (S1, D1+ (multP (D)−1)E1) is not log canonical at it.
Similarly, if (S, D) is not Kawamata log terminal at P, and multP (D) < 2, then there
exists a unique point in E1 such that (S1, D1 + (multP (D) − 1)E1) is not Kawamata
log terminal at it.

Proof If multP (D) � 2 and (S1, D1 + (λmultP (D) − 1)E1) is not log canonical at
two distinct points P1 and P̃1, then

2 � multP
(
D

) = D1 · E1 � multP1

(
D1 · E1

)
+ mult P̃1

(
D1 · E1

)
> 2

by Theorem 2.11. By Remark 2.10, this proves the first assertion. Similarly, we can
prove the second assertion using Theorem 2.12 instead of Theorem 2.11. ��

The following result can be proved similarly to the proof of Lemma 2.5. Let us
show how to prove it using Theorem 2.12.

Lemma 2.14 Suppose that (S, D) is not Kawamata log terminal at P, and (S, D)

is Kawamata log terminal in a punctured neighbourhood of the point P, then
multP (D) > 1.

Proof By Remark 2.10, the log pair (S1, D1 + (multP (D) − 1)E1) is not Kawamata
log terminal at some point P1 ∈ E1. Moreover, if multP (D) < 2, then (S1, D1 +
(multP (D) − 1)E1) is Kawamata log terminal at a punctured neighbourhood of the
point P1. Thus, if multP (D) � 1, then multP

(
D

) = D1 · E1 > 1 by Theorem 2.12,
which is absurd. ��

Let Z1 and Z2 be two irreducible curves on the surface S such that Z1 and Z2
are not contained in Supp(D). Suppose that P ∈ Z1 ∩ Z2, the curves Z1 and Z2 are
smooth at P , the curves Z1 and Z2 intersect each other transversally at P . Let μ1 and
μ2 be non-negative rational numbers.

Theorem 2.15 ([2, Theorem 13]) Suppose that the log pair (S, μ1Z1 + μ2Z2 + D)

is not log canonical at the point P, and multP (D) � 1. Then either multP (D · Z1) >

2(1 − μ2) or multP (D · Z2) > 2(1 − μ1) (or both).
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This result implies

Theorem 2.16 Suppose that (S, μ1Z1 +μ2Z2 + D) is not Kawamata log terminal at
P, and multP (D) < 1. Then either multP (D · Z1) � 2(1− μ2) or multP (D · Z2) �
2(1 − μ1) (or both).

Proof Let λ be a rational number such that

1

multP (D)
� λ > 1.

Then (S, D + λμ1Z1 + λμ2Z2) is not log canonical at P . Now it follows from
Theorem 2.15 that either multP (D · Z1) > 2(1−λμ2) or multP (D · Z2) > 2(1−λμ1)

(or both). Since we can choose λ to be as close to 1 as we wish, this implies that either
multP (D · Z1) � 2(1 − μ2) or multP (D · Z2) � 2(1 − μ1) (or both). ��

3 Reduced Plane Curves

The purpose of this section is to prove Theorems 1.10 and 1.15. Let Cd be a reduced
plane curve in P

2 of degree d � 4, and let P be a point in Cd . Put λ1 = 2d−3
d(d−2) and

λ2 = 5
2d . To prove Theorem 1.10, we have to show that if the log pair (P2, λ1Cd) is

not Kawamata log terminal at the point P , then one of the following assertions hold:

• multP (Cd) = d,
• Cd has singularity Td−1,Kd−1, T̃d−1 or K̃d−1 at the point P ,
• d = 4 and C4 is a Płoski curve (see Definition 1.7).

To prove Theorem 1.15, we have to show that if (P2, λ2Cd) is not Kawamata log
terminal, then either Cd is GIT-unstable or Cd is an even Płoski curve. In the rest of
the section, we will do this simultaneously. Let us start with few preliminary results.

Lemma 3.1 The following inequalities hold:

(i) λ1 < 2
d−1 ,

(ii) λ1 < 2k+1
kd for every positive integer k � d − 3,

(iii) if d � 5, then λ1 < 2k+1
kd+1 for every positive integer k � d − 4,

(iv) λ1 < 3
d ,

(v) λ1 < 2
d−2 ,

(vi) λ1 < 6
3d−4 ,

(vii) if d � 5, then λ1 < λ2.

Proof The equality 2
d−1 = λ1 + d−3

d(d−1)(d−2) implies (i). Let k be positive integer.

If k = d − 2, then λ1 = 2k+1
kd . This implies (ii), because 2k+1

kd = 2
d + 1

kd is a
decreasing function on k for k � 1. Similarly, if k = d − 4 and d � 4, then λ1 =
2k+1
kd+1 − 3

d(d−2)(d2−4d+1)
< 2k+1

kd+1 . This implies (iii), since 2k+1
kd+1 = 2

d + d−2
d(kd+1) is a

decreasing function on k for k � 1. The equality λ1 = 3
d − d−3

d(d−2) proves (iv). Note

that (v) follows from (i). Since 6
3d−4 > 2

d−1 , (vi) also follows from (i). Finally, the

equality λ1 = λ2 − d−4
2d(d−2) implies (vii). ��
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We may assume that P = [0 : 0 : 1]. Then Cd is given by Fd(x, y, z) = 0,
where Fd(x, y, z) is a homogeneous polynomial of degree d. Put x1 = x

z , x2 = y
z and

fd(x1, x2) = Fd(x1, x2, 1). Put m0 = multP (Cd). Then

fd
(
x1, x2

) =
∑

i�0, j�0,
m0�i+ j�d

εi j x i
1x j

2 ,

where each εi j is a complex number. For every positive integers a and b, define the
weight of the polynomial fd(x1, x2) as

wt(a,b)

(
fd(x1, x2)

) = min
{

ai + bj
∣
∣∣ εi j = 0

}
.

Then the Hilbert–Mumford criterion implies

Lemma 3.2 ([7, Lemma 2.1]) Let a and b be positive integers. If Cd is GIT-stable,
then

wt(a,b)

(
fd

(
x1, x2

))
<

d

3

(
a + b

)
.

Similarly, if Cd is GIT-semistable, then wt(a,b)( fd(x1, x2)) � d
3 (a + b).

Let f1 : S1 → P
2 be a blow up of the point P . Denote by E1 the exceptional curve

of the blow up f1. Denote by C1
d the proper transform on S1 of the curve Cd .

Lemma 3.3 If multP (Cd) > 2d
3 , then Cd is GIT-unstable. Let O be a point in E1. If

multP (Cd) + multO(C1
d) > d,

then Cd is GIT-unstable.

Proof Since multP (Cd) = wt(1,1)( fd(x1, x2)), the first assertion follows from
Lemma 3.2. Let us prove the second assertion. We may assume that O is contained in
the proper transform of the line in P

2 that is given by x = 0. Then

wt(2,1)
(

fd(x1, x2)
) = multP (Cd) + multO(C1

d),

so that the second assertion also follows from Lemma 3.2. ��
Now we are ready to prove Theorems 1.10 and 1.15. To do this, we may assume

that Cd is not a union of d lines passing through the point P . Suppose, in addition,
that

(A) either (P2, λ1Cd) is not Kawamata log terminal at P ,
(B) or (P2, λ2Cd) is not Kawamata log terminal at P .
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We will show that (A) implies that either Cd has singularity Td−1,Kd−1, T̃d−1 or
K̃d−1 at the point P , or Cd is a Płoski quartic curve. Similarly, we will show that (B)
implies that either Cd is GIT-unstable (i.e. Cd is not GIT-semistable), or Cd is an even
Płoski curve. If (A) holds, let λ = λ1. If (B) holds, let λ = λ2.

If d = 4, then λ1 = λ2. If d � 5, then λ1 < λ2 by Lemma 3.1(vii). Since Cd is
reduced and λ < 1, the log pair (P2, λCd) is Kawamata log terminal outside of finitely
many points. Thus, it is Kawamata log terminal outside of P by Lemma 2.8.

Then the log pair (S1, λC1
d + (λm0 − 1)E1) is not Kawamata log terminal at some

point P1 ∈ E1 by Remark 2.10. Note that we have

KS1 + λC1
d +

(
λm0 − 1

)
E1 ∼Q f ∗

1

(
KP2 + λCd

)
.

Let f2 : S2 → S1 be a blow up of the point P1, and let E2 be its exceptional curve.
Denote by C2

d the proper transform on S2 of the curve Cd , and denote by E2
1 the proper

transform on S2 of the curve E1. Put m1 = multP1(C
1
d). Then

KS2 + λC2
d + (

λm0 − 1
)
E2
1 + (

λ(m0 + m1) − 2
)
E2 ∼Q f ∗

2

(
KS1 + λC1

d

+ (
λm0 − 1

)
E1

)
.

By Remark 2.10, the log pair (S2, λC2
d + (λm0 − 1)E2

1 + (λ(m0 + m1) − 2)E2) is
not Kawamata log terminal at some point P2 ∈ E2. Let f3 : S3 → S2 be a blow up of
this point, and let E3 be the f3-exceptional curve. Denote by C3

d the proper transform
on S3 of the curve Cd , denote by E3

1 the proper transform on S3 of the curve E1, and
denote by E3

2 the proper transform on S3 of the curve E2. Putm2 = multP2(C
2
d ). Then

KS3 + λ2C3
d + (

λ2m0 − 1
)
E3
1

+ (
λ2(m0 + m1) − 2

)
E3
2 + (

λ2(2m0 + m1 + m2) − 4
)
E3 ∼Q

∼Q f ∗
3

(
KS2 + λ2C2

d + (
λ2m0 − 1

)
E2
1 + (

λ2(m0 + m1) − 2
)
E2

)
.

Thus, the log pair (S3, λ2C3
d +(λ2m0−1)E3

1+(λ2(m0+m1)−2)E3
2+(λ2(2m0+m1+

m2) − 4)E3) is not Kawamata log terminal at some point P3 ∈ E3 by Remark 2.10.
Note that the divisor λ2C3

d + (λ2m0 − 1)E3
1 + (λ2(m0 + m1) − 2)E3

2 + (λ2(2m0 +
m1 + m2) − 4)E3 is effective by Lemma 2.5.

Lemma 3.4 One has λm0 < 2.

Proof Since Cd is not a union of d lines passing through P , we have m0 � d − 1.
Thus, if (A) holds, then λm0 < 2 by Lemma 3.1(i), because d � 4. Similarly, if (B)
holds, then m0 � 2d

3 by Lemma 3.3, which implies that λm0 � 10
6 < 2. ��

Thus, the log pair (S1, λC1
d + (λm0 − 1)E1) is Kawamata log terminal outside of

P1 by Lemma 2.13. Note that P1 ∈ C1
d , because the log pair (S1, (λm0 − 1)E1) is

Kawamata log terminal at P1. Thus, we have m1 > 0.
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Let L be the line in P2 whose proper transform on S1 contains the point P1. Such a
line exists and it is unique. By a suitable linear change of coordinates, we may assume
that L is given by x = 0. Denote by L1 the proper transform of the line L on the
surface S1.

Lemma 3.5 Suppose that (A) holds and m0 = d − 1. Then Cd has singularity
Kd−1, K̃d−1,Td−1 or T̃d−1 at the point P.

Proof Suppose that L is not an irreducible component of the curveCd . Thenm0+m1 �
d, because

d − 1 − m0 = C1
d · L1 � m1.

Since m0 = d − 1, this gives m1 = 1. Then P1 ∈ C1
d and the curve C1

d is smooth
at P1. Put k = multP1(C

1
d · E1). Applying Corollary 2.3 to the log pair (S1, λ1C1

d +
(λ1m0 − 1)E1) at the point P1, we get

kλ1m0 � k + 1,

which gives λ1 � 2k+1
kd . Then k � d − 2 by Lemma 3.1(ii). Since

k � C1
d · E1 = m0 = d − 1,

either k = d − 1 or k = d − 2. If k = d − 1, then Cd has singularity Kd−1 at P . If
k = d − 2, then Cd has singularity K̃d−1 at the point P .

To complete the proof, we may assume that L is an irreducible component of the
curve Cd . Then Cd = L +Cd−1, where Cd−1 is a reduced curve in P2 of degree d −1
such that L is not its irreducible component. Denote by C1

d−1 its proper transform on
S1. Put n0 = multP (Cd−1) and n1 = multP1(C

1
d−1). Then n0 = m0 − 1 = d − 2 and

n1 = m1−1.This implies that P1 ∈ C1
d−1, since the log pair (S1, λ1L1+(λ1m0−1)E1)

is Kawamata log terminal at P . Hence, n1 � 1. One the other hand, we have

d − 1 − n0 = C1
d−1 · L1 � n1,

which implies that n0 + n1 � d − 1. Then n1 = 1, since n0 = d − 2.
We have P1 ∈ C1

d−1 and C1
d−1 is smooth at P1. Moreover, since

1 = d − 1 − n0 = L1 · C1
d−1 � n1 = 1,

the curve C1
d−1 intersects the curve L1 transversally at the point P1. Put k =

multP1(C
1
d−1 · E1). Then k � 1. Applying Lemma 2.2 to the log pair (S1, λ1C1

d−1 +
λ1L1 + (λ1(n0 + 1) − 1)E1) at the point P1, we get

k
(
λ1(n0 + 2) − 1

)
+ λ1 � k + 1.
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Then λ1 � 2k+1
kd+1 . Then k � d − 3 by Lemma 3.1(iii). Since

k � E1 · C1
d−1 = n0 = d − 2,

either k = d − 2 or k = d − 3. In the former case, Cd has singularity Td−1 at the
point P . In the latter case, Cd has singularity T̃d−1 at the point P . ��
Lemma 3.6 Suppose that (A) holds and m0 � d − 2. Then the line L is not an
irreducible component of the curve Cd.

Proof Suppose that L is an irreducible component of the curve Cd . Let us see for a
contradiction. PutCd = L+Cd−1, whereCd−1 is a reduced curve inP2 of degree d−1
such that L is not its irreducible component. Denote by C1

d−1 its proper transform on
S1. Put n0 = multP (Cd−1) and n1 = multP1(C

1
d−1). Then (S1, (λ1(n0 + 1)− 1)E1 +

λ1L1 + λ1C1
d−1) is not Kawamata log terminal at P1 and is Kawamata log terminal

outside of the point P1. In particular, n1 = 0, because (S1, (λ1(n0+1)−1)E1+λ1L1)

is Kawamata log terminal at P1. On the other hand,

d − 1 − n0 = L1 · C1
d−1 � n1,

which implies that n0 + n1 � d − 1. Furthermore, we have n0 = m0 − 1 � d − 3.
Since n0 + n1 � 2n1, we have n1 � d−1

2 . Then λn1 < 1 by Lemma 3.1(i). Thus,
we can apply Theorem 2.16 to the log pair (S1, (λ1(n0+1)−1)E1+λ1L1+λ1C1

d−1)

at the point P1. This gives either

λ1
(
d − 1 − n0

) = λ1C1
d−1 · L1 � 2

(
2 − λ1

(
n0 + 1

))

or

λ1n0 = λ1C1
d−1 · E1 � 2

(
1 − λ1

)

(or both). In the former case, we have λ1(d + 1+ n0) � 4. In the latter case, we have
λ1(n0 + 2) > 2. Thus, in both cases we have λ1(d − 1) � 2, since n0 � d − 3. But
λ1(d − 1) < 2 by Lemma 3.1(i). This is a contradiction. ��

If the curve Cd is GIT-semistable, then m0 � d −2 by Lemma 3.3. Thus, it follows
from Lemma 3.5 that we may assume that

m0 � d − 2

in order to complete the proof of Theorems 1.10 and 1.15. Moreover, if L is not an
irreducible component of the curve Cd , then

d − m0 = C1
d · L1 � m1.

123



2318 I. Cheltsov

Thus, if (A) holds, then m0 + m1 � d by Lemma 3.6. Similarly, if the curve Cd is
GIT-semistable, then m0 + m1 � d by Lemma 3.3. Thus, to complete the proof of
Theorems 1.10 and 1.15, we may also assume that

m0 + m1 � d. (3.1)

Then λ(m0 + m1) < 3 by Lemma 3.1(v), so that (S2, λC2
d + (λm0 − 1)E2

1 + (λ(m0 +
m1) − 2)E2) is Kawamata log terminal outside of the point P2 by Lemma 2.13.
Furthermore, we have

Lemma 3.7 Suppose that P2 = E2
1 ∩ E2. Then (A) does not hold and Cd is GIT-

unstable.

Proof We have m0 − m1 = E2
1 · C2

d � m2, so that

m2 � m0

2
, (3.2)

because 2m2 � m1 + m2. On the other hand, m0 � d − 2 by assumption. Thus, we
have m2 � d−2

2 .
Suppose that (A) holds. Thenλ = λ1 andλ1m2 < 1 byLemma 3.1(v). Thus, we can

apply Theorem 2.16 to the log pair (S2, λ1C2
d +(λ1m0−1)E2

1+(λ1(m0+m1)−2)E2).
This gives either

λ1
(
m0 − m1

) = λ1C2
d · E2

1 � 2
(
3 − λ1

(
m0 + m1

))

or

λ1m1 = λ1C2
d · E2 � 2

(
2 − λ1m0

)

(or both). The former inequality implies λ1(3m0 + m1) � 6. The latter inequality
implies λ1(2m0 + m1) � 4. On the other hand, m0 + m1 � d by (3.1), and m0 �
d − 2 by assumption. Thus, 3m0 + m1 � 3d − 4 and 2m0 + m1 � 2d − 2. Then
λ1(3m0 + m1) < 6 by Lemma 3.1(vi), and λ1(2m0 + m1) < 4 by Lemma 3.1(i). The
obtained contradiction shows that (A) does not hold.

We see that (B) holds. We have to show that Cd is GIT-unstable. Suppose that this
is not the case, so that Cd is GIT-semistable. Let us seek for a contradiction.

By Lemma 3.2, we have 2m0 + m1 + m2 � 5d
3 , because

wt(3,2)
(

fd
(
x1, x2

)) = 2m0 + m1 + m2.

Thus, we have λ2(2m0 + m1 + m2) − 4 < 1 by Lemma 3.1(v). Hence, the log pair
(S3, λ2C3

d + (λ2m0 − 1)E3
1 + (λ2(m0 + m1)− 2)E3

2 + (λ2(2m0 + m1 + m2)− 4)E3)

is Kawamata log terminal outside of the point P3 by Remark 2.10.
If P3 = E3

1 ∩ E3, then it follows from Theorem 2.12 that

λ2
(
m0 − m1 − m2

) = λ2C3
d · E3

1 > 5 − λ2
(
2m0 + m1 + m2

)
,
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which implies that m0 > 5
3λ2

= 2d
3 , which is impossible by Lemma 3.3. If P3 =

E3
2 ∩ E3, then it follows from Theorem 2.12 that

λ2
(
m1 − m2

) = λ2C3
d · E3

2 > 5 − λ2
(
2m0 + m1 + m2

)
,

which implies that m0 +m1 > 5
2λ2

= d, which is impossible by Lemma 3.3. Thus, we

see that P3 /∈ E3
1 ∪ E3

2 . Then the log pair (S3, λ2C3
d + (λ2(2m0 + m1 + m2) − 4)E3)

is not Kawamata log terminal at P3. Hence, Theorem 2.12 gives

λ2m2 = λ2C3
d · E3 > 1,

which implies that m2 > 1
λ2

= 2d
5 . Then m0 > 4d

5 by (3.2), which is impossible by
Lemma 3.3. ��

Thus, to complete the proof of Theorems 1.10 and 1.15, we may assume that

P2 = E2
1 ∩ E2.

Denote by L2 the proper transform of the line L on the surface S2.

Lemma 3.8 One has P2 = L2 ∩ E2.

Proof Suppose that P2 = L2 ∩ E2. If L is not an irreducible component of the curve
Cd , then

d − m0 − m1 = L2 · E2 � m2,

which implies that m0 + m1 + m2 � d. Thus, if (A) holds, then λ = λ1 and L is not
an irreducible component of the curve Cd by Lemma 3.6, which implies that

λ1d � λ1
(
m0 + m1 + m2

)
> 3

by Lemma 2.14. On the other hand, λ1d < 3 by Lemma 3.1(iv). This shows that (B)
holds.

Since λ = λ2 = 5
2d < 3

d and λ2(m0 + m1 + m2) > 3 by Lemma 2.14, we have
m0 + m1 + m2 > d. In particular, the line L must be an irreducible component of the
curve Cd .

PutCd = L+Cd−1, whereCd−1 is a reduced curve inP2 of degree d−1 such that L
is not its irreducible component.Denote byC1

d−1 its proper transformon S1, and denote
by C2

d−1 its proper transform on S2. Put n0 = multP (Cd−1), n1 = multP1(C
1
d−1) and

n2 = multP2(C
2
d−1). Then (S2, (λ2(n0 + n1 + 2) − 2)E2 + λ2L1 + λ2C1

d−1) is not
Kawamata log terminal at P2 and is Kawamata log terminal outside of the point P2.
Then Theorem 2.12 implies

λ2
(
d − 1 − n0 − n1

) = λ2C2
d−1 · L2 > 1 − (

λ2(n0 + n1 + 2) − 2
)

= 3 − λ2(n0 + n1 + 2),
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which implies that 5(d+1)
2d = λ2(d + 1) > 3. Hence, d = 4. Then λ = λ2 = 5

8 .
By (3.1), n0 + n1 � 2. Thus, n0 = n1 = n2 = 1, since

5

8

(
n0 + n1 + n2 + 3

) = λ2
(
m0 + m1 + m2

)
> 3

by Lemma 2.14. Then C3 is a irreducible cubic curve that is smooth at P , the line L is
tangent to the curve C3 at the point P , and P is an inflexion point of the cubic curve
C3. This implies that lctP (P2, Cd) = 2

3 . Since
2
3 > 5

8 = λ2, the log pair (P2, λ2Cd)

must be Kawamata log terminal at the point P , which contradicts (B). ��
Recall that m0 + m1 � d by (3.1). Then m1 � d

2 , since 2m1 � m0 + m1. Thus, we
have

λ
(
m0 + m1 + m2

)
� λ

(
m0 + 2m1

)
� λ

3d

2
� λ2

3d

2
= 15

4
< 4. (3.3)

Therefore, the log pair (S3, λC3
d + (λ(m0 +m1)−2)E3

2 + (λ(m0 +m1 +m2)−3)E3)

is Kawamata log terminal outside of the point P3 by Lemma 2.13.

Lemma 3.9 One has P3 = E3
2 ∩ E3.

Proof If P3 = E3
2 ∩ E3, then Theorem 2.12 gives

λ
(
m1 − m2

) = λC3
d · E3

2 > 1 −
(
λ
(
m0 + m1 + m2

) − 3
)

= 4 − λ
(
m0 + m1 + m2

)
,

which implies that λ(m0 + 2m1) > 4. But λ(m0 + 2m1) < 4 by (3.3). ��
Let f4 : S4 → S3 be a blow up of the point P3, and let E4 be its exceptional curve.

Denote by C4
d the proper transform on S4 of the curve Cd , denote by E4

3 the proper
transform on S4 of the curve E3, and denote by L4 the proper transform of the line L
on the surface S4. Then (S4, λC4

d + (λ(m0 + m1 + m2)− 3)E4
3 + (λ(m0 + m1 + m2 +

m3) − 4)E4) is not Kawamata log terminal at some point P4 ∈ E4 by Remark 2.10.
Moreover, we have

2L4 + E4
1 + 2E4

2 + E4
3 ∼ ( f1 ◦ f2 ◦ f3 ◦ f4)

∗(OP2
(
2
)) − ( f2 ◦ f3 ◦ f4)

∗(E1
)

−( f3 ◦ f4)
∗(E2

) − f ∗
4

(
E3

) − E4.

Lemma 3.10 The linear system |2L4+ E4
1 +2E4

2 + E4
3 | is a pencil that does not have

base points. Moreover, every divisor in |2L4 + E4
1 + 2E4

2 + E4
3 | that is different from

2L4 + E4
1 + 2E4

2 + E4
3 is a smooth curve whose image on P

2 is a smooth conic that
is tangent to L at the point P.

Proof All assertions follows from P2 /∈ E2
1 ∪ L2 and P3 /∈ E3

2 . ��
Let C4

2 be a general curve in |2L4 + E4
1 + 2E4

2 + E4
3 |. Denote by C2 its image

on P
2, and denote by L the pencil generated by 2L and C2. Then P is the only base

point of the pencil L, and every conic in L except 2L and C2 intersects C2 at P with
multiplicity 4 (cf. [3, Remark 1.14]).
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Lemma 3.11 One has m0 + m1 + m2 + m3 � m0 + m1 + 2m2 � 5
λ

. If m0 + m1 +
m2 + m3 = 5

λ
, then d is even and Cd is a union of d

2 � 2 smooth conics in L, where
d = 4 if (A) holds.

Proof By (3.1), we have m2 + m3 � 2m2 � m0 + m1 � d. This gives

m0 + m1 + m2 + m3 � m0 + m1 + 2m2 � 2d = 5

λ2
� 5

λ
.

To complete the proof, we may assume that m0 + m1 + m2 + m3 = 5
λ
. Then

all inequalities above must be equalities. Thus, we have m2 = m3 = d
2 and λ1 =

λ2. In particular, if (A) holds, then d = 4, because λ1 < λ2 = 5
2d for d � 5 by

Lemma 3.1(vii). Moreover, since m0 � m1 � m2 = d
2 and m0 + m1 � d, we see that

m0 = m1 = d
2 . Thus, d is even and

C4
d ∼ d

2

(
2L4 + E4

1 + 2E4
2 + E4

3

)
,

where d = 4 if (A) holds. Since |2L4 + E4
1 + 2E4

2 + E4
3 | is a free pencil and C4

d
is reduced, it follows from Lemma 3.10 that C4

d is a union of d
2 smooth curves in

|2L4 + E4
1 + 2E4

2 + E4
3 |. In particular, L4 is not an irreducible component of C4

d .
Thus, the curve Cd is a union of d

2 smooth conics in L, where d = 4 if (A) holds. ��

We see that m0 + m1 + m2 + m3 � 5
λ
. Moreover, if m0 + m1 + m2 + m3 = 5

λ
,

then Cd is an even Płoski curve. Furthermore, if m0 + m1 + m2 + m3 = 5
λ
and (A)

holds, then d = 4. Thus, to prove Theorems 1.10 and 1.15, we may assume that

m0 + m1 + m2 + m3 <
5

λ
.

Let us show that this assumption leads to a contradiction. ByLemma 2.13, this inequal-
ity implies that the log pair (S4, λC4

d + (λ(m0 + m1 + m2) − 3)E4
3 + (λ(m0 + m1 +

m2 + m3) − 4)E4) is Kawamata log terminal outside of the point P4.

Lemma 3.12 One has P4 = E4
3 ∩ E4.

Proof By Lemma 3.11, m0 + m1 + 2m2 � 5
λ
. If P4 = E4

3 ∩ E4, then Theorem 2.12
gives

λ
(
m2 − m3

) = λC4
d · E4

3 > 5 − λ
(
m0 + m1 + m2 + m3

)
,

which implies that m0 + m1 + 2m2 > 5
λ
. This shows that P4 = E4

3 ∩ E4. ��
Thus, the log pair (S4, λC4

d + (λ(m0 + m1 + m2 + m3) − 4)E4) is not Kawamata
log terminal at P4 and is Kawamata log terminal outside of the point P4.
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Let Z4 be the curve in |2L4+E4
1+2E4

2+E4
3 | that passes through the point P4. Then

Z4 is a smooth irreducible curve by Lemma 3.8. Denote by Z the proper transform of
this curve on P2. Then Z is a smooth conic in the pencil L by Lemma 3.10. If Z is not
an irreducible component of the curve Cd , then

2d − (
m0 + m1 + m2 + m3

) = Z4 · C4
d � multP4(C

4
d).

On the other hand, it follows from Lemma 2.14 that

multP4(C
4
d) + m0 + m1 + m2 + m3 >

5

λ
.

This shows that Z is an irreducible component of the curve Cd , since λ � λ2 = 5
2d .

Put Cd = Z + Cd−2, where Cd−2 is a reduced curve in P
2 of degree d − 2

such that Z is not its irreducible component. Denote by C1
d−2, C2

d−2, C3
d−2 and

C4
d−2 its proper transforms on the surfaces S1, S2, S3 and S4, respectively. Put

n0 = multP (Cd−2), n1 = multP1(C
1
d−2), n2 = multP2(C

2
d−2), n3 = multP3(C

3
d−2)

and n4 = multP4(C
4
d−2). Then

(
S4, λC4

d−2 + λZ4 + (λ(n0 + n1 + n2 + n3 + 4) − 4)E4

)

is not Kawamata log terminal at P4 and is Kawamata log terminal outside of the point
P4. Thus, applying Theorem 2.12, we get

λ
(
2
(
d − 2

) − n0 − n1 − n2 − n3

)
= λC4

d−2 · Z4 > 5 − λ
(
n0 + n1 + n2 + n3 + 4

)
,

which implies that λ > 5
2d . This is impossible, since λ � λ2 = 5

2d .
The obtained contradiction completes the proof of Theorems 1.10 and 1.15.

4 Smooth Surfaces in P
3

The purpose of this section is to prove Theorem 1.17. Let S be a smooth surface in P3

of degree d � 3, let HS be its hyperplane section, let P be a point in S, and let TP be
the hyperplane section of the surface S that is singular at P . Note that TP is reduced
by Lemma 2.6. Put λ = 2d−3

d(d−2) . Then Theorem 1.17 follows from Theorem 1.10,
Remark 2.4 and

Proposition 4.1 Let D be any effective Q-divisor on S such that D ∼Q HS. Suppose
that Supp(D) does not contain at least one irreducible component of the curve TP .
Then (S, λD) is log canonical at P.

For d = 3, this result is just [3, Corollary 1.13]. In the remaining part of the
section, we will prove Proposition 4.1. Note that we will do this without using [3,
Corollary 1.13]. Let us start with
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Lemma 4.2 The following assertions hold:

(i) λ � 2
d−1 ,

(ii) if d � 5, then λ � 3
d+1 ,

(iii) if d � 5, then λ � 4
d+3 ,

(iv) If d � 6, then λ � 3
d+2 ,

(v) λ � 4
d+1 ,

(vi) λ � 3
d .

Proof The equality 2
d−1 = λ + d−3

d(d−1)(d−2) implies (i), 4
d+1 = λ + d2−5d+3

d(d+1)(d−2)

implies (ii), and 4
d+3 = λ + 2d2−11d+9

d(d+3)(d−2) implies (iii). Similarly, (iv) follows from
3

d+2 = λ + d2−7d+6
d(d2−4)

, (v) follows from 4
d+1 = λ + 2d2−7d+3

d(d+1)(d−2) , and (vi) follows from
3
d = λ + d−3

d(d−2) . ��
Let n be the number of irreducible components of the curve TP . Write

TP = T1 + · · · + Tn,

where each Ti is an irreducible curve on the surface S. For every curve Ti , we denote
its degree by di , and we put ti = multP (Ti ).

Lemma 4.3 Suppose that n � 2. Then

Ti · Ti = −di (d − di − 1)

for every Ti , and Ti · Tj = di d j for every Ti and Tj such that Ti = Tj .

Proof The curve TP is cut out on S by a hyperplane H ⊂ P
3. Then H ∼= P

2. Hence,
for every Ti and Tj such that Ti = Tj , we have (Ti · Tj )S = (Ti · Tj )H = di d j . In
particular, we have

d1 = TP · T1 = T 2
1 +

n∑

i=2

Ti · T1 = T 2
1 +

n∑

i=2

di d1 = T 2
1 + (d − d1)d1,

which gives T1 ·T1 = −d1(d −d1−1). Similarly, we see that Ti ·Ti = −di (d −di −1)
for every curve Ti . ��

Let D be any effective Q-divisor on S such that D ∼Q HS . Write

D =
n∑

i=1

ai Ti + �,

where each ai is a non-negative rational number, and � is an effectiveQ-divisor on S
whose support does not contain the curves T1, . . . , Tn . To prove Proposition 4.1, it is
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enough to show that the log pair (S, λD) is log canonical at P provided that at least
one number among a1, . . . , an vanishes.

Without loss of generality, we may assume that an = 0. Suppose that the log pair
(S, λD) is not log canonical at P . Let us seek for a contradiction.

Lemma 4.4 Suppose that n � 2. Then

k∑

i=1

ai di dn � dn − tnmultP (�).

In particular,
∑k

i=1 ai di � 1 and each ai does not exceed 1
di

.

Proof One has

dn = Tn · D = Tn ·
( n∑

i=1

ai Ti + �

)
=

n∑

i=1

ai di dn + Tn · �

�
n∑

i=1

ai di dn + tnmultP (�),

which implies the required inequality. ��
Put m0 = multP (D).

Lemma 4.5 Suppose that P ∈ Tn. Then dn > d−1
2 . If n � 2, then Tn is smooth at P.

Proof Since Tn is not contained in the support of the divisor D, we have

d � dn = Tn · D � tnm0,

which implies that m0 � dn
tn
. Since m0 > 1

λ
by Lemma 2.5, we have dn > d−1

2 by
Lemma 4.2(i). Moreover, if n � 2 and tn � 2, then it follows from Lemma 2.5 that

1

λ
< m0 � dn

tn
� d − 1

tn
� d − 1

2
,

which is impossible by Lemma 4.2(i). ��
Now we are going to use Theorem 2.15 to prove

Lemma 4.6 Suppose that n � 3 and P is contained in at least two irreducible com-
ponents of the curve TP that are different from Tn and that are both smooth at P. Then
they are tangent to each other at P.

Proof Without loss of generality, we may assume that P ∈ T1 ∩ T2 and t1 = t2 = 1.
Suppose that T1 and T2 are not tangent to each other at P . Put � = ∑n

i=3 ai Ti + �,
so that D = a1T1 + a2T2 + �. Then a1d1 + a2d2 � 1 by Lemma 4.4.
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Put k0 = mult(�). Then

d1 + a1d1
(
d − d1 − 1

) − a2d1d2 = � · T1 � k0

by Lemma 4.3. Similarly, we have

d2 − a1d1d2 + a2d2
(
d − d2 − 1

) = � · T2 � k0.

Adding these two inequalities together and using a1d1 + a2d2 � 1, we get

2k0 � d1 + d2 + (
a1d1 + a2d2

)(
d − d1 − d2 − 1

)

� d1 + d2 + (
d − d1 − d2 − 1

) = d − 1.

Thus, k0 � 1
λ
by Lemma 4.2(i).

Since λk0 � 1, we can apply Theorem 2.15 to the log pair (S, λa1T1+λa2T2+λ�)

at the point P . This gives either λ� ·T1 > 2(1−λa2) or λ� ·T2 > 2(1−λa1). Without
loss of generality, we may assume that λ� · T2 > 2(1 − λa1). Then

d2 + a2d2
(
d − d2 − 1

) − a1d1d2 = � · T2 >
2

λ
− 2a1. (4.1)

Applying Theorem 2.12 to the log pair (S, λa1T1 + λb1T2 + λ�) and the curve T1 at
the point P , we get

d1 + a1d1
(
d − d1 − 1

) =
(
λa2T2 + λ�

)
· T1 >

1

λ
.

Adding this inequality to (4.1), we get

d + 1 � d − 1 + 2a1 � d1 + d2 + (
a1d1 + a2d2

)(
d − d1 − d2 − 1

) + 2a1 >
3

λ
,

because a1d1 + a2d2 � 1. Thus, it follows from Lemma 4.2(ii) that either d = 3 or
d = 4.

If d = 3, then n = 3 and d1 = d2 = d3 = λ = 1, which implies that a1 + a2 > 1
by (4.1). On the other hand, we know that a1d1 + a2d2 � 1, so that a1 + a2 � 1. This
shows that d = 3.

We see that d = 4. Then λ = 5
8 and d1 + d2 � 3. If d1 = d1 = 1, then (4.1)

gives 2a2 + a1 > 11
5 . If d1 = 1 and d2 = 2, then (4.1) gives a2 > 3

5 . If d1 = 2 and
d2 = 1, then (4.1) gives a2 > 11

5 . All these three inequalities are inconsistent, because
a1d1 + a2d2 � 1. The obtained contradiction completes the proof of the lemma. ��

Note that every line contained in the surfaces S that passes through P must be an
irreducible component of the curve TP . Moreover, the curve Tn cannot be a line by
Lemma 4.5. Thus, Lemma 4.6 implies that there exists at most one line in S that passes
through P . In particular, we see that n < d.
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Lemma 4.7 Suppose that n � 3 and P is contained in at least two irreducible com-
ponents of the curve TP that are different from Tn. Then these curves are smooth at
P.

Proof Without loss of generality, we may assume that P ∈ T1 ∩ T2 and t1 � t2. We
have to show that t1 = t2 = 1. We may assume that d � 5, because the required
assertion is obvious in the cases d = 3 and d = 4.

Put � = ∑n
i=3 ai Ti + � and put k0 = multP (�). Then m0 = k0 + a1t1 + a2t2.

Moreover, we have a1d1 + a2d2 � 1 by Lemma 4.4. On the other hand, it follows
from Lemma 4.3 that

d − 1�d1 + d2 + (
a1d1 + a2d2

)(
d − d1 − d2 − 1

) = � ·
(

T1 + T2
)

� k0
(
t1 + t2

)
,

because a1d1 + a2d2 � 1. Thus, we have k0 � d−1
t1+t2

. Hence, if t1 + t2 � 4, then

m0 = k0 + a1t1 + a2t2 � k0 + a1d1 + a2d2 � d − 1

t1 + t2
+ a1d1 + a2d2 � d − 1

t1 + t2
+ 1

� d + 3

4

because a1d1 + a2d2 � 1. Since m0 > 1
λ
by Lemma 2.5, the inequality m0 � d+3

4
gives λ > d+3

4 , which is impossible by Lemma 4.2(iii). Thus, t1 + t2 � 3. Since
t1 � t2, we have t1 = 1 and t2 � 2.

To complete the proof of the lemma, we have to prove that t2 = 1. Suppose t2 = 1.
Then t2 = 2, since t1 + t2 � 3. Since k0 � d−1

t1+t2
= d−1

3 and a1d1 + a2d2 � 1, we
have

m0 = k0 + a1t1 + a2t2 � k0 + a1d1 + a2d2 � d − 1

32
+ a1d1 + a2d2 � d − 1

t1 + t2
+ 1

= d + 2

3
.

On the other hand, m0 > 1
λ
by Lemma 2.5, so that λ > 3

d+2 . Then d = 5 by
Lemma 4.2(iv).

Since d = 5, t1 = 1 and t2 = 2, we have n = 3, d1 = 1, d2 = 3 and d3 = 1.
Applying Theorem 2.12 to the log pair (S, λa1T1 + λa2T2 + λ�), we get

1 + 3a1 = d1 + a2d1
(
d − d1 − 1

) =
(
λa2T2 + λ�

)
· T1 >

1

λ
= 15

7
,

which gives a1 > 8
21 . On the other hand, a1 + 3a2 � 1, because a1d1 + a2d2 � 1.

Since m0 > 1
λ

= 15
7 by Lemma 2.5, we see that
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15

7
− 1

9
= 128

63
>

8 − 5a1
3

= 3 − a1 + 7(1−a1)
3

2
= 3 − a1 + 7a2

2

= 3 − 3a1 + 3a2
2

+ a1 + 2a2

= � · T2
2

+ a1 + 2a2 �
multP

(
� · T2

)

2
+ a1 + 2a2 � t2k0

2
+ a1 + 2a2

= k0 + a1 + 2a2 = m0 >
15

7
,

which is absurd. ��
Now we are ready to prove

Lemma 4.8 One has m0 � d+1
2 .

Proof Suppose that m0 > d+1
2 . Let us seek for a contradiction. If n = 1, then

d = Tn · D � 2m0,

which implies thatm0 � d
2 . Thus, haven � 2. Thena1 � 1

d1
byLemma4.4.Moreover,

either tn = 0 or tn = 1 by Lemma 4.5. Hence, there is an irreducible component of TP

that passes through P and is different from Tn , because TP is singular at P . Without
loss of generality, we may assume that t1 � 1.

Put ϒ = ∑n
i=2 ai Ti + �, so that D = a1T1 + ϒ . Put n0 = multP (ϒ), so that

m0 = n0 + a1t1. Then tnn0 � dn − a1d1dn by Lemma 4.4, and

d1 + a1d1(d − d1 − 1) = ϒ · T1 � t1n0 (4.2)

by Lemma 4.3. Adding these two inequalities, we get (t1+tn)n0 � d1+dn +a1d1(d −
d1 − dn − 1). Hence, if n � 3 and tn = 1, then

2n0 �
(
t1 + tn

)
n0 � d1 + dn + a1d1

(
d − d1 − dn − 1

)
� d − 1 � d − a1d1,

because a1 � 1
d1
. Similarly, if n = 2 and tn = 1, then

2n0 �
(
t1 + tn

)
n0 � d1 + d2 + a1d1

(
d − d1 − d2 − 1

)

= d1 + d2 − a1d1 = d − a1d1.

Thus, if tn = 1, then n0 � d−a1d1
2 , which is impossible. Indeed, the inequality n0 �

d−a1d1
2 gives

d + 1

2
< m0 = n0 + a1t1 � n0 + a1d1 � d − a1d1

2
+ a1d1 = d + a1d1

2
� d + 1

2
,

because a1 � 1
d1
. This shows that tn = 0.
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If t1 � 2, then it follows from (4.2) that

d + 1

2
< m0 � n0 + a1d1 � d1 + a1d1(d − d1 − 1)

2
+ a1d1

= d1 + a1d1(d − d1 + 1)

2
� d + 1

2
,

because a1 � 1
d1
. This shows that t1 = 1.

Since t1 = 1 and tn = 0, there exists an irreducible component of the curve TP that
passes through P and is different from T1 and Tn . In particular, we have n � 3.Without
loss of generality, we may assume P ∈ T2. Then T2 is smooth at P by Lemma 4.7.

Put � = ∑n
i=3 ai Ti + � and put k0 = multP (�). Then a1d1 + a2d2 � 1 by

Lemma 4.4. Thus, it follows from Lemma 4.3 that

2k0 � � ·
(

T1 + T2
)

= d1 + d2 + (
a1d1 + a2d2

)(
d − d1 − d2 − 1

)
� d − 1,

which implies k0 � d−1
2 . Then

d + 1

2
< m0 = k0 + a1t1 + a2t2 � k0 + a1d1 + a2d2 � d − 1

2
+ a1d1 + a2d2

� d − 1

2
+ 1 = d + 1

2
,

because a1d1 + a2d2 � 1. The obtained contradiction completes the proof of the
lemma. ��

Let f1 : S1 → S be a blow up of the point P , and let E1 be its exceptional curve.
Denote by D1 the proper transform of the Q-divisor D on the surface S1. Then

KS1 + λD1 + (
λm0 − 1

)
E1 ∼Q f ∗

1

(
KS + λD

)
,

which implies that (S1, λD1 + (λm0 − 1)E1) is not log canonical at some point
P1 ∈ E1.

By Lemma 4.8, we have m0 � d+1
2 . By Lemma 4.2(v), we have λ � 4

d+1 . This
gives λm0 � 2. Thus, the log pair (S1, λD1 + (λm0 − 1)E1) is log canonical at every
point of the curve E1 that is different from P1 by Lemma 2.13.

Put m1 = multP1(D1). Then Lemma 2.5 gives

m0 + m1 >
2

λ
. (4.3)

For each curve Ti , denote by T 1
i its proper transform on S1. Put T 1

P = ∑n
i=1 T 1

i .

Lemma 4.9 One has P1 /∈ T 1
P .
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Proof Suppose that P1 ∈ T 1
P . Let us seek for a contradiction. If TP is irreducible,

then

d − 2m0 = T 1
P · D1 � m1,

so that m1 + 2m0 � d. This inequality gives

3

λ
< m1 + 2m0 � d,

because 2m0 � m0 + m1 > 2
λ
by (4.3). This shows that TP is reducible, because

λ � 3
d by Lemma 4.2(vi).

We see that n � 2. If P1 ∈ T 1
n , then

d − 1 − m0 � dn − m0 = dn − m0tn = T 1
n · D1 � m1,

which is impossible, because m0 + m1 > 2
λ
by (4.3), and λ � 2

d−1 by Lemma 4.2(i).
Thus, we see that P1 /∈ T 1

n .
Without loss of generality, we may assume that P1 ∈ T 1

1 . Put ϒ = ∑n
i=2 ai Ti +�,

and denote by ϒ1 the proper transform of the Q-divisor � on the surface S1. Put
n0 = multP (ϒ), put n1 = multP1(�

1) and put t11 = multP1(T
1
1 ). Then

d1 + a1d1
(
d − d1 − 1

) − n0t1 = T 1
1 · ϒ1 � t11n1,

which implies that n0t1 + n1t11 � d1 + a1d1(d − d1 − 1).
Note that t11 � t1. Moreover, we have a1 � 1

d1
by Lemma 4.4. Thus, if t11 � 2,

then

2
(
n0 + n1

)
� t11

(
n0 + n1

)
� n0t1 + n1t11 � d1 + a1d1

(
d − d1 − 1

)

� d1 + (
d − d1 − 1

) = d − 1,

which implies that n0 + n1 � d−1
2 . Moreover, if n0 + n1 � d−1

2 , then it follows from
(4.3) that

d + 3

2
= 2 + d − 1

2
� 2a1d1 + d − 1

2
� 2a1t1 + d − 1

2
� a1

(
t1 + t11

) + n0 + n1

= m0 + m1 >
2

λ

which gives d � 4 by Lemma 4.2(iii). Thus, if d � 5, then t11 = 1. Furthermore, if
d � 4, then d1 � 3, which implies that t11 � 1. This shows that t11 = 1 in all cases.
Thus, the curve T 1

1 is smooth at P1.
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Applying Theorem 2.11 to the log pair (S1, λϒ1+λa1T 1
1 + (λ(n0 +a1t1)−1)E1),

we see that

λ
(
d − 1 − n0t1

)
� λ

(
d1 + a1d1

(
d − d1 − 1

) − n0t1
)

= λ�1 · T 1
1 > 2 − λ

(
n0 + a1t1

)
,

because a1 � 1
d1
. Thus, we have d−1+a1t1−n0(t1−1) > 2

λ
. Butm0 = a1t1+n0 > 1

λ
by Lemma 2.5. Adding these inequalities together, we obtain

d − 1 + 2a1t1 − n0(t1 − 2) >
3

λ
. (4.4)

If t1 � 2, this gives

d + 1 � d − 1 + 2a1d1 � d − 1 + 2a1t1 � d − 1 + 2a1t1 − n0(t1 − 2) >
3

λ
.

because a1 � 1
d1
. One the other hand, if d � 5, then λ � 3

d+1 by Lemma 4.2(ii). Thus,
if d � 5, then t1 = 1. Moreover, if d = 3, then d1 � 2, which implies that t1 = 1 as
well. Furthermore, if d = 4 and t1 = 1, then d1 = 3, t1 = 2, λ = 5

8 , which implies
that

1

3
= 1

d1
� a1 >

9

20

by (4.4). Thus, we see that t1 = 1 in all cases. This simply means that the curve T1 is
smooth at the point P .

Since a1 � 1
d1
, we have

d − 1 − n0 � d1 + a1d1
(
d − d1 − 1

) − n0 = �1 · T 1
1 � n1,

which implies that n1 � n0+n1
2 � d−1

2 . Then λn1 � 1 by Lemma 4.2(i). Hence, we
can apply Theorem 2.15 to the log pair (S1, λϒ1 + λa1T 1

1 + (λ(n0 + a1t1) − 1)E1)

at the point P1. This gives either

ϒ1 · T 1
1 >

4

λ
− 2(n0 + a1)

or ϒ1 · E1 > 2
λ

− 2a1 (or both). Since a1 � 1
d1
, the former inequality gives

d − 1 − n0 � d1 + a1d1
(
d − d1 − 1

) − n0 = ϒ1 · T 1
1 >

4

λ
− 2(n0 + a1).

Similarly, the latter inequality gives

n0 = λϒ1 · E1 >
2

λ
− 2a1.
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Thus, either d − 1 + 2a1 + n0 > 4
λ
or 2a1 + n0 > 2

λ
(or both).

If tn � 1, then dn = 1 by Lemma 4.5. Thus, if tn � 1, then

d − 1 � dn � a1d1dn + n0 � 2a1 + n0

by Lemma 4.4. Therefore, if tn � 1, then

2(d − 1) � d − 1 + 2a + n0 >
4

λ

or d − 1 � 2a + n0 > 2
λ
, because d − 1 + 2a + n0 > 4

λ
or 2a + n0 > 2

λ
. In both

cases, we get λ > d−1
2 , which is impossible by Lemma 4.2(i). This shows that tn = 0,

so that P /∈ Tn .
Since T1 is smooth at P and P /∈ Tn , there must be another irreducible component

of TP passing through P that is different from T1 and Tn . In particular, we see that
n � 3. Without loss of generality, we may assume that P ∈ T2. Then T2 is smooth at
P by Lemma 4.7, so that t2 = 1. Moreover, the curves T1 and T2 are tangent at P by
Lemma 4.6, which implies that d � 4. Since P1 ∈ T 1

1 , we see that P1 ∈ T 1
2 as well.

Put � = ∑n
i=3 ai Ti + � and k0 = multP (�), so that m0 = k0 + a1 + a2. Then

a1d1 + a2d2 � 1 by Lemma 4.4.
Denote by �1 the proper transform of the Q-divisor � on the surface S1. Put

k1 = multP1(�
1). Then

d − 1 − 2k0 � d1 + d2 + (
a1d1 + a2d2

)(
d − d1 − d2 − 1

) − 2k0

= �1 ·
(

T 1
1 + T 1

2

)
� 2k1

because a1d1+a2d2 � 1 and d � d1+d2+dn � d1+d2+1. This gives k0+k1 � d−1
2 .

On the other hand, we have

2a1 + 2a2 + k0 + k1 = m0 + m1 >
2

λ

by (4.3). Thus, we have

d + 3

2
= 2 + d − 1

2
� 2

(
a1d1 + a2d2

) + d − 1

2
� 2a1 + 2a2 + d − 1

2

� 2a1 + 2a2 + k0 + k1 >
2

λ

because a1d1 + a2d2 � 1. By Lemma 4.2(iii) this gives d = 4. Thus, we have λ = 5
8 .

Since d = 4 > n � 3, we have n = 3. Without loss of generality, we may assume
that d1 � d2. By Lemma 4.6, there exists at most one line in S that passes through P .
This shows that d1 = 1, d2 = 2 and d3 = 1. Thus, T1 and T3 are lines, T2 is a conic,
T1 is tangent to T2 at P , and T3 does not pass through P . In particular, the curves T 1

1
and T 2

1 intersect each other transversally at P1.
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By Lemma 4.3, we have T1 · T1 = T2 · T2 = −2 and T1 · T2 = 2. On the other
hand, the log pair (S1, λa1T 1

1 + λa2T 1
2 + λ�1 + (λ(a1 + a2 + k0) − 1)E1) is not log

canonical at the point P1. Thus, applying Theorem 2.11 to this log pair and the curve
T 1
1 , we get

λ
(
1 + 2a1 − 2a2 − k0

) = λ�1 · T 1
1 > 2 − λ(a1 + a2 + k0) − λa2,

which implies that 3a1 > 2
λ

− 1 = 11
5 , because λ = 5

8 . Similarly, applying Theo-
rem 2.11 to this log pair and the curve T 1

2 , we get

λ
(
2 − 2a1 + 2a2 − k0

) = λ�1 · T 1
2 > 2 − λ(a1 + a2 + k0) − λa1,

which implies that 3a2 > 2
λ

− 2 = 6
5 . Hence, we have a1 > 11

15 and a2 > 2
5 , which is

impossible, since a1 +2a2 = a1d1 +a2d2 � 1. The obtained contradiction completes
the proof of the lemma. ��

Nowweare going to show that the curve TP has atmost two irreducible components.
This follows from

Lemma 4.10 One has n � 2 and multP (TP ) = 2. Moreover, if n = 2, then P ∈
T1 ∩ T2, both curves T1 and T2 are smooth at P, and d1 � d2.

Proof If TP is irreducible and multP (TP ) � 3, then Lemma 2.5 gives

d = TP · D � 3m0 >
3

λ
,

which is impossible by Lemma 4.2(vi). Thus, if n = 1, then multP (TP ) = 2.
To complete the proof, we may assume that n � 2. Then tn = 0 or tn = 1

by Lemma 4.5. In particular, there exists an irreducible component of the curve TP

different from Tn that passes through P . Without loss of generality, we may assume
that P ∈ T1.

Putϒ = ∑n
i=2 ai Ti +�, and denote byϒ1 the proper transform of theQ-divisor�

on the surface S1. Put n0 = multP (ϒ). Then the log pair (S1, λϒ1 + (λ(n0 + a1t1) −
1)E1) is not log canonical at P1, since P1 /∈ T 1

1 by Lemma 4.9. In particular, it follows
from Theorem 2.12 that

λn0 = λϒ1 · E1 > 1,

which implies that n0 > 1
λ
. Thus, if t1 � 2, then it follows from Lemma 4.3 that

1

λ
� d − 1

2
� d1 + a1d1(d − d1 − 1)

2
= ϒ · T1

2
� t1n0

2
� n0 >

1

λ
,

because a1 � 1
d1

by Lemma 4.4, and λ � 2
d−1 by Lemma 4.2(i). This shows that

t1 = 1, so that the curve T1 is smooth at P .
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If tn = 1 and n � 3, then

2

λ
� d − 1 � d1 + dn + ad1(d − d1 − dn − 1) = ϒ ·

(
T1 + Tn

)
� 2n0 >

2

λ
.

Thus, if tn = 1, then n = 2. Vice versa, if n = 2, then tn = 1, because T1 is smooth at
P . Furthermore, if n = 2, then d1 � dn , because dn > d−1

2 by Lemma 4.5. Therefore,
to complete the proof, we must show that n = 2.

Suppose that n � 3. Let us seek for a contradiction. We know that P /∈ Tn , so that
tn = 0. Then every irreducible component of the curve TP that contain P is smooth
at P by Lemma 4.7. Hence, there should be at least one irreducible component of the
curve TP containing P that is different from T1 and Tn . Without loss of generality, we
may assume that P ∈ T2.

Put � = ∑n
i=3 ai Ti + � and k0 = multP (�). By Lemma 4.4, we have a1d1 +

a2d2 � 1. Thus, it follows from Lemma 4.3 that

2k0 � � ·
(

T1 + T2
)

= d1 + d2 + (
a1d1 + a2d2

)(
d − d1 − d2 − 1

)

� d1 + d2 + (
d − d1 − d2 − 1

) = d − 1.

Hence, we have k0 � d−1
2 .

Denote by �1 the proper transform of the Q-divisor � on the surface S1. Then the
log pair (S1, λ�1 + (λ(k0 + a1 + a2) − 1)E1) is not log canonical at P1, because
P1 /∈ T 1

1 and P1 /∈ T 1
2 by Lemma 4.9. In particular, it follows from Theorem 2.11 that

λk0 = λ�1 · E1 > 1,

which implies that k0 > 1
λ
. This contradicts Lemma 4.2(i), because k0 � d−1

2 . ��
Later, we will need the following simple

Lemma 4.11 Suppose that d = 4. Then m0 � 11
5 .

Proof If n = 1, then

2tn � dn = Tn · D � tnm0,

so that m0 � 2 < 11
5 . Thus, we may assume that n = 1. Then it follows from

Lemma 4.10 that n = 2, P ∈ T1 ∩ T2, both curves T1 and T2 are smooth at P , and
d1 � d2.

If d2 = 2, then m0 � 2 < 11
5 , because

2 = T2 · D � m0.

Thus,wemay assume that d2 = 2. Then d1 = 1 and d2 = 3. ThenmultP (�)+3a1 � 3
by Lemma 4.4. Moreover, we have

1 + 2a1 = T1 · � � multP (�).

123



2334 I. Cheltsov

The obtained inequalities give m0 = multP (�) + a1 � 11
5 . ��

Let f2 : S2 → S1 be a blow up of the point P1. Denote by E2 the f2-exceptional
curve, denote by E2

1 the proper transform of the curve E1 on the surface S2, and denote
by D2 the proper transform of the Q-divisor D on the surface S2. Then

KS2 + λD2 + (
λm0 − 1

)
E2
1 +

(
λ
(
m0 + m1

) − 2
)

E2 ∼Q f ∗
2

(
KS1 + λD1

+ (
λm0 − 1

)
E1

)
.

By Remark 2.10, the log pair (S2, λD2 + (λm0 − 1)E2
1 + (λ(m0 + m1) − 2)E2) is

not log canonical at some point P2 ∈ E1.

Lemma 4.12 One has m0 + m1 � 3
λ

.

Proof Suppose that m0 + m1 > 3
λ
. Then 2m0 � m0 + m1 > 3

λ
. But m0 � d+1

2 by
Lemma 4.8. Then λ > 3

d+1 . Thus, we have d � 4 by Lemma 4.2(ii). Moreover, if
d = 4, then

22

5
� 2m0 � m0 + m1 >

3

λ
= 24

5

by Lemma 4.11. This shows that d = 3.
We have λ = 1. If n = 1, then

3 = TP · D � 2m0 � m1 + m0 >
3

λ
= 3,

which is absurd. Hence, it follows from Lemma 4.10 that n = 2, d1 = 1, d2 = 2 and
P ∈ T1 ∩ T2.

We have m0 = multP (�) + a1. On the other hand, we have multP (�) + 2a1 � 2
by Lemma 4.4. Moreover, we have

1 + a1 = T1 · � � multP (�),

which implies that multP (�) − a1 � 1. Adding these inequalities, we get

3 � 2multP (�) + a = multP (�) + m0 � m1 + m0 >
3

λ
= 3,

because multP (�) � m1, since P1 /∈ T 1
1 by Lemma 4.9. ��

Thus, the log pair (S2, λD2+(λm0−1)E2
1 +(λ(m0+m1)−2)E2) is log canonical

at every point of the curve E2 that is different from the point P by Lemma 2.13.

Lemma 4.13 One has P2 = E2
1 ∩ E2.
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Proof Suppose that P2 = E2
1 ∩ E2. Then Theorem 2.11 gives

λ
(
m0 − m1

) = λD2 · E2
1 > 3 − λ

(
m0 + m1

)
,

which implies that m0 > 3
2λ . But m0 � d+1

2 by Lemma 4.8. Therefore, we have
λ > 3

d+1 , which implies that d � 4 by Lemma 4.2(ii). If d = 4, then

12

5
= 3

2λ
< m0 � 11

5

by Lemma 4.11. Thus, we have d = 3.
One has λ = 1. If n = 1, then

3 = TP · D � 2m0 >
3

λ
= 3,

which is absurd. Hence, it follows from Lemma 4.10 that n = 2, d1 = 1, d2 = 2 and
P ∈ T1 ∩ T2.

We have m0 = multP (�) + a1. Moreover, we have multP (�) + 2a1 � 2 by
Lemma 4.4, Then 2multP (�) + a1 � 3, because

1 + a1 = T1 · � � multP (�).

Denote by�1 the proper transform of the divisor� on the surface S1, and denote by
�2 the proper transform of the divisor � on the surface S2. Then m1 = multP1(�

1),
because P1 /∈ T 1

1 by Lemma 4.9. Thus, the log pair (S2, λ�2 + (m0 − 1)E2
1 + (m0 +

m1 − 2)E2) is not log canonical at P2. Applying Theorem 2.11 to this pair and the
curve E2

1 , we get

multP (�) − m1 = �2 · E2
1 > 3 − m0 − m1,

which implies that 2multP (�)+ a1 > 3. The latter is impossible, because we already
proved that 2multP (�) + a1 � 3. ��

Thus, the log pair (S2, λD2 + (λ(m0 + m1) − 2)E2) is not log canonical at P2.
Then Lemma 2.5 gives

m0 + m1 + m2 >
3

λ
. (4.5)

Denote by T 2
P the proper transform of the curve TP on the surface S2. Then

T 2
P + E2

1 ∼ ( f1 ◦ f2)
∗(OS(1)) − f ∗

2 (E1) − E2,

because T 1
P ∼ f ∗

1 (OS(1)) − 2E1 by Lemma 4.10, and P1 /∈ T 1
P by Lemma 4.9.
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Lemma 4.14 The linear system |T 2
P + E2

1 | is a pencil that does not have base points
in E2.

Proof Since |T 1
P + E1| is a two-dimensional linear system that does not have base

points, |T 2
P + E2

1 | is a pencil. Let C be a curve in |T 1
P + E1| that passes through P1

and is different from T 1
P + E1. Then C is smooth at P , since P ∈ f1(C) and f1(C) is

a hyperplane section of the surface S that is different from TP . Since C · E1 = 1, we
see that T 1

P + E1 and C intersect transversally at P1. Thus, the proper transform of
the curve C on the surface S2 is contained in |T 1

P + E1| and have no common points
with T 2

P + E2
1 in E2. This shows that the pencil |T 1

P + E1| does not have base points
in E2. ��

Let Z2 be the curve in |T 2
P + E2| that passes through the point P2. Then

Z2 = T 2
P + E2

1 ,

because P2 = E2
1 ∩ E2 by Lemma 4.13. Then Z2 is smooth at P2. Put Z = f1◦ f2(Z2)

and Z1 = f2(Z2). Then P ∈ Z and P1 ∈ Z1. Moreover, the curve Z is smooth at P ,
and the curve Z1 is smooth at P1. Furthermore, the curve Z is reduced by Lemma 2.6.

The log pair (S, λZ) is log canonical at P , because Z is smooth at P . Note that

Z ∼Q D.

Thus, we may assume that Supp(D) does not contain at least one irreducible com-
ponent of the curve Z by Remark 2.4. Denote this irreducible component by Z , and
denote its degree in P3 by d̄. Then d̄ � d.

Lemma 4.15 One has P /∈ Z.

Proof Suppose that P ∈ Z . Let us seek for a contradiction. Denote by Z
2
the proper

transform of the curve Z on the surface S2. Then

d − m0 − m1 � d̄ − m0 − m1 = Z
2 · D2 � m2,

which implies that m0 + m1 + m2 � d. One the other hand, m0 + m1 + m2 > 3
λ
by

(4.5). This gives λ > 3
d , which is impossible by Lemma 4.2(vi). ��

In particular, the curve Z is reducible. Denote by Ẑ its irreducible component that
passes through P , denote its proper transform on the surface S1 by Ẑ1, and denote its
proper transform on the surface S2 by Ẑ2. Then Z = Ẑ , P1 ∈ Ẑ1 and P2 ∈ Ẑ2. Denote
by d̂ the degree of the curve Ẑ in P

3. Then d̂ + d̄ � d. Moreover, the intersection
form of the curves Ẑ and Z on the surface S is given by

Lemma 4.16 One has Z · Z = −d̄(d −d̄ −1), Ẑ · Ẑ = −d̂(d −d̂ −1) and Z · Ẑ = d̄ d̂.

Proof See the proof of Lemma 4.3. ��
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Put D = a Ẑ + �, where a is a positive rational number, and � is an effective
Q-divisor on the surface S whose support does not contain the curve Ẑ . Denote by �1

the proper transform of the divisor � on the surface S1, and denote by �2 the proper
transform of the divisor � on the surface S2. Put n0 = multP (�), n1 = multP1(�

1)

and n2 = multP2(�
2). Then m0 = n0 + a, m1 = n1 + a and m2 = n2 + a. Then the

log pair (S2, λa Ẑ2 + λ�2 + (λ(n0 + n1 + 2a) − 2)E2) is not log canonical at P2,
because (S2, λD2 + (λ(m0 + m1) − 2)E2) is not log canonical at P2. Thus, applying
Theorem 2.11, we see that

λ
(
� · Ẑ − n0 − n1

)
= λ�2 · Z2 > 1 −

(
λ
(
n0 + n1 + 2a

) − 2
)

= 3 − λ
(
n0 + n1 + 2a

)
,

which implies that

� · Ẑ >
3

λ
− 2a. (4.6)

On the other hand, we have

d̄ = D · Z =
(

a Ẑ + �
)

· Z � a Ẑ · Z = ad̂d̄

by Lemma 4.16. This gives

a � 1

d̂
. (4.7)

Thus, it follows from (4.6), (4.7) and Lemma 4.16 that

3

λ
− 2 � 3

λ
− 2a < � · Ẑ = d̂ + ad̂

(
d − d̂ − 1

)
� d − 1,

which implies that λ > 3
d+1 . Then d � 4 by Lemma 4.2(ii).

Lemma 4.17 One has d = 4.

Proof Suppose that d = 4. Then λ = 5
8 and d̂ � 3. By Lemma 4.9, Ẑ is not a line,

since every line passing through P must be an irreducible component of the curve TP .
Thus, either Ẑ is a conic or Ẑ is a plane cubic curve. If Ẑ is a conic, then Ẑ2 = −2
and a � 1

2 by (4.7). Thus, if Ẑ is a conic, then

2 + 2a = � · Ẑ >
3

λ
− 2a = 24

5
− 2a,

which implies that 1
2 � a > 7

10 . This shows that Ẑ is a plane cubic curve. Then
Ẑ2 = 0. Since a � 1

3 by (4.7), we have
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3 = � · Ẑ >
3

λ
− 2a = 24

5
− 2a � 24

5
− 2

3
= 62

15
,

which is absurd. ��
Thus, we see that d = 3. Then Ẑ is either a line or a conic. But every line passing

through P must be an irreducible component of TP . Since Ẑ is not an irreducible
component of TP byLemma4.9, the curve Ẑ must be a conic. Then Ẑ2 = 0. Therefore,
it follows from (4.6) that

3 − 2a = 3

λ
− 2a < � · Ẑ = d̂ + ad̂

(
d − d̂ − 1

)
= d̂ = 2,

which implies that a > 1
2 . But a � 1

d̂
= 1

2 by (4.7). The obtained contradiction
completes the proof of Theorem 1.17.
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