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Abstract We show that for a noncollapsing sequence of closed, connected, oriented
Riemannian manifolds with Ricci curvature bounded below and diameter bounded
above, Gromov-Hausdorff convergence agrees with intrinsic flat convergence. In par-
ticular, the limiting current is essentially unique, has multiplicity one, and mass equal
to the Hausdorff measure. Moreover, the limit spaces satisfy a constancy theorem.
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In this manuscript, we consider the class M(n,�, v, D) of n-dimensional, closed,
connected, oriented Riemannian manifolds M with

RicM ≥ −(n − 1)�, Hn(M) ≥ v > 0, Diam(M) ≤ D,

and show that for a sequence of manifolds in this class, Gromov-Hausdorff conver-
gence essentially agrees with intrinsic flat convergence.

The intrinsic flat distance was introduced by Sormani and Wenger [13], and relates
to the flat distance as the Gromov-Hausdorff distance relates to the Hausdorff distance.

In general, there are significant differences between Gromov-Hausdorff conver-
gence and intrinsic flat convergence: the intrinsic flat limit may be noncompact, there
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are sequences of Riemannian manifolds that do have an intrinsic flat limit but do not
have a Gromov-Hausdorff limit, the intrinsic flat limit is always rectifiable, etc. How-
ever, in the presence of a uniform lower bound on the Ricci curvature and the volume,
the theory on the structure of Gromov-Hausdorff limits developed by Cheeger and
Colding [3–5] suggests that the two concepts may not differ all that much.

The first result in this direction goes back to Sormani and Wenger [12]. They show
that if a sequence of manifolds Mi ∈ M(n,� = 0, v, D) with nonnegative Ricci
curvature converges in the Gromov-Hausdorff distance to a metric space X , then a
subsequence will converge in the intrinsic flat distance to an integral current space
(X, dX , T ): a metric space X endowed with an integral current T (in the sense of
Ambrosio-Kirchheim [1]), that is completely settled (meaning X is exactly the set
of positive n-dimensional lower density for T ). Recently, Munn [8] has obtained a
similar result for sequences of manifolds with a uniform, two-sided bound on the
Ricci curvature.

Li and Perales [7] have proved that for a sequence of integral current spaces for
which the metric spaces are Alexandrov spaces of nonnegative curvature and have
a uniform diameter upper bound, either the sequence converges in the intrinsic flat
distance to the zero space, or a subsequence converges in both the Gromov-Hausdorff
and the intrinsic flat distance, and the underlying metric spaces in the limit are the
same.

This manuscript extends the results by Sormani and Wenger [12] and Munn [8] to
sequences of manifolds with an arbitrary uniform lower bound on the Ricci curvature
and additionally shows that the limiting current is essentially unique, has multiplicity
one, and has mass equal to the Hausdorff measure on the limiting space.

Beforewe state ourmain resultsmore precisely,we need to introduce somenotation.
The class M(n,�, v, D) is precompact both in the Gromov-Hausdorff distance and
in the intrinsic flat distance [12]. We denote the completions with respect to these
distances respectively by MGH (n,�, v, D) and MI F (n,�, v, D).

There is an involution ι acting on the space MI F (n,�, v, D) by reverting the
orientation of the current. We denote byMI F/ι(n,�, v, D) the quotient metric space
obtained from MI F (n,�, v, D) by identifying every integral current space with its
image under the involution.

Our first main theorem is the following.

Theorem A The map F : MI F/ι(n,�, v, D) → MGH (n,�, v, D) given by

(X, dX , T ) �→ X

is well-defined and is a homeomorphism.
Additionally, for all (X, dX , T ) ∈ MI F (n,�, v, D),

(i) the set of positive lower-density set(T ) of T equals X,
(ii) the mass measure ‖T ‖ equals the Hausdorff measure Hn on X,
(iii) the multiplicity of T is equal to 1, Hn-a.e.

This theorem implies the aforementioned results bySormani andWenger andMunn.
Yet it also illustrates that the currents are just going along for the ride: up to the
involution, the currents are uniquely determined by the underlying metric spaces.
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IF and GH Convergence with Ricci Bounded Below 1857

From the fact that the mass measure ‖T ‖ equals the Hausdorff measure Hn , it
follows that it is the limit (in a weak sense) of the Riemannian volume measures of
the manifolds in the approximating sequence. Indeed, Cheeger and Colding [3, Theo-
rem 5.9] have shown that under Gromov-Hausdorff convergence, the Riemannian vol-
ume measures on the manifolds converge to the Hausdorff measure on the limit space.

We believe that the idea of the original proof by Sormani and Wenger in [12] can
be used to extend their result to the case of Ricci curvature bounded below by an
arbitrary constant. The important ingredients in their proof, such as the application
of a volume estimate by Colding [6, Corollary 2.19] and Perelman’s Main Lemma in
[9], are applicable to manifolds of almost nonnegative curvature, and therefore they
can be applied after scaling. To our knowledge, this was so far unknown. Our proof
will differ from the one by Sormani and Wenger and does not use Perelman’s Main
Lemma.

Our techniques also allow to prove the uniqueness of the limiting current and the
following local constancy theorem.

Theorem B Let (X, dX , T ) ∈ MI F (n,�, v, D). For all q ∈ X, and every integral
current S on X such that ‖∂S‖(Bt (q)) = 0 for some t > 0, there exists an integer
k ∈ Z such that S = kT on Bt (q).

Alternatively, Theorem B may be interpreted as stating that the local top-dimensional
homology of the space is isomorphic to Z.

The structure of themanuscript is as follows. Section 1 gives a coarse background on
integral currents in the sense of Ambrosio and Kirchheim [1], integral current spaces
and intrinsic flat converge as introduced by Sormani and Wenger [13] and some of
the elements we need from the theory on the structure of spaces with Ricci curvature
bounded below by Cheeger and Colding [3,4]. In our notation, we generally try to
stick to the notation in these articles.

Theorems A and B are direct consequences of Theorem 4.1 in the text. A crucial
ingredient is a link between zero-dimensional slices and the degree, which we will
explain in Sect. 2. Earlier work by Sormani and the second author [10] showed that
integrals of the flat distance between lower-dimensional slices of currents can be
controlled by the flat distances between the original currents. This will imply that
the L1-distance between their degrees can be controlled locally. In Sect. 3, we show
that Colding’s volume estimate easily translates into an estimate on the degree for
manifolds M ∈ M(n,�, v, D). In Sect. 4 we combine these two ingredients to give
a proof of the main theorem.

1 Background

In this section, we review integral currents onmetric spaces as introduced byAmbrosio
and Kirchheim [1], the intrinsic flat distance introduced by Sormani and Wenger [13]
and some theory on the structure of spaces with Ricci curvature bounded below by
Cheeger and Colding [3,4]. The prime purpose of this review is to fix notation. We
adhere closely to the notation used in these articles, and therefore the reader familiar
with these works could probably understand the rest of the manuscript without reading
this section.
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1858 R. Matveev, J. W. Portegies

1.1 Currents

Let X be a complete metric space. For n ≥ 1, we define the set Dn(X) of all (n + 1)-
tuples ( f, π1, . . . , πn) of Lipschitz functions on X , where additionally f is required
to be bounded. For n = 0, we defineD0(X) as the set of bounded Lipschitz functions.
It can be helpful to think of an element ( f, π1, . . . , πn) ∈ Dn+1 as an n-form f dπ1 ∧
· · · ∧ dπn .

An n-dimensional metric functional is a function T : Dn(X) → R such that the
map

( f, π1, . . . , πn) �→ T ( f, π1, . . . , πn) (1)

is subadditive and positively 1-homogeneous with respect to the functions f and
π1, . . . , πn . We denote the vector space of n-dimensional metric functionals on X by
MFn(X).

The exterior differential d maps Dn(X) into Dn+1(X) according to

d( f, π1, . . . , πn) := (1, f, π1, . . . , πn). (2)

For n ≥ 1, the boundary of T ∈ MFn(X) is the (n−1)-dimensional metric functional
denoted by ∂T defined by

∂T (ω) := T (dω), ω ∈ Dn−1(X). (3)

If Y is another complete metric space and � : X → Y is Lipschitz, we define the
pullback operator that maps Dn(Y ) to Dn(X) by

�#( f, π1, . . . , πn) = ( f ◦ �,π1 ◦ �, . . . , πk ◦ �). (4)

We define the pushforward �#T ∈ MFn(Y ) of T ∈ MFn(X) by

�#T (ω) := T (�#ω), ω ∈ Dn(Y ). (5)

For T ∈ MFn(X) and ω = (g, τ1, . . . , τk) ∈ Dk(X), with k ≤ n, we define the
restriction T �ω ∈ MFn−k(X) by

T �ω( f, π1, . . . , πn−k) := T ( f g, τ1, . . . , τk, π1, . . . , πn−k). (6)

We say that T ∈ MFn(X) has finite mass if there exists a finite Borel measure μ on
X such that for all ( f, π1, . . . , πn) ∈ Dn(X),

|T ( f, π1, . . . , πn)| ≤
n∏

i=1

Lip(πi )

∫

X
| f | dμ, (7)

where Lip(πi ) denotes the Lipschitz constant of πi . Moreover, the minimal measure
satisfying this bound is called the mass of T and is denoted by ‖T ‖. When T has finite
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IF and GH Convergence with Ricci Bounded Below 1859

mass, it can be uniquely extended to a function on (n + 1)-tuples ( f, π1, . . . , πn) for
which f is merely bounded Borel, and π1, . . . , πn are Lipschitz.

An n-dimensional current T is an n-dimensional metric functional with additional
properties. From the definition by Ambrosio and Kirchheim [1, Definition 3.1], imme-
diately stronger properties may be derived. We choose to only phrase the stronger
properties. The space of n-dimensional currents forms a Banach space, with respect
to the mass norm M(T ) = ‖T ‖(X). We denote the Banach space by Mn(X). Every
T ∈ Mn(X) satisfies

(i) T is multilinear in ( f, π1, . . . , πn), and whenever f and π1 are both bounded and
Lipschitz, it holds that

T ( f, π1, . . . , πn) + T (π1, f, . . . , πn) = T (1, f π1, . . . , πn),

and

T ( f, ψ1(π), . . . , ψn(π)) = T ( f det∇ψ(π), π1, . . . , πn),

where ψ = (ψ1, . . . , ψn) ∈ [C1(Rn)]n and ∇ψ is bounded;
(ii) The following continuity property is satisfied

lim
i→∞ T

(
f i , π i

1, . . . , π
i
n

)
= T ( f, π1, . . . , πn)

whenever f i − f → 0 in L1(X, ‖T ‖) and π i
j → π j pointwise in X with

uniformly bounded Lipschitz constant Lip(π i
j ) ≤ C ;

(iii) The following locality property holds: T ( f, π1, . . . , πn) = 0 if { f �= 0} = ∪i Bi
where Bi are Borel and πi is constant on Bi .

We say that a sequence of currents Ti ∈ Mn(X) converges weakly to T ∈ Mn(X) if
for all ω ∈ Dn(X),

lim
i→∞ Ti (ω) = T (ω). (8)

The mass of open sets is lower-semicontinuous under weak convergence, that is for
O ⊂ X open, and Ti converging weakly to T ,

lim inf
i→∞ ‖Ti‖(O) ≥ ‖T ‖(O). (9)

A very important example of an n-dimensional current on the Euclidean space Rn

is given by the current induced by a function g ∈ L1(Rn) which we denote by �g�
and is defined by

�g�( f, π1, . . . , πn) :=
∫

Rn
g f dπ1 ∧ · · · ∧ dπn =

∫

Rn
g f det(∇π) dx . (10)

We say that a current T ∈ Mn(X) is normal if ∂T ∈ Mn−1(X).
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A subset S ⊂ X is called countablyHn-rectifiable if there are compact sets Ki ⊂ R
n

and Lipschitz functions fi : Ki → X such that

Hn (
S\ ∪∞

i=1 fi (Ki )
) = 0. (11)

We say T ∈ Mn(X) is rectifiable if ‖T ‖ is concentrated on a countablyHn-rectifiable
set and vanishes on Hn-negligible Borel sets. We call T integer rectifiable if for
all φ ∈ Lip(X,Rn) and all open O ⊂ X it holds that φ#(T �O) = �θ� for some
θ ∈ L1(Rn,Z). Finally, the collection of integral currents will consist of all integer
rectifiable currents that are also normal. We will denote this collection by In(X) and
in this manuscript, we will only deal with integral currents.

We denote by ωn the (Lebesgue) volume of the unit ball inRn . For a Borel measure
μ on X , we define respectively the n-dimensional lower and upper density of μ in
x ∈ X by

�n∗(μ, x) := lim inf
r↓0

μ(Br (x))

ωnrn
, �∗

n(μ, x) := lim sup
r↓0

μ(Br (x))

ωnrn
. (12)

If these values coincide, we call the common value the n-dimensional density of μ in
x and we denote it by �n(μ, x). We define set(T ) ⊂ X as

set(T ) := {x ∈ X | �n∗(‖T ‖, x) > 0} . (13)

For an integer rectifiable current T , the mass ‖T ‖ is always concentrated on set(T )

and set(T ) is rectifiable.
Integer rectifiable currents allow for a parametric representation. It is a simple

consequence of Lusin’s theorem and [1, Theorem 4.5] that if T is an n-dimensional
integer rectifiable current, there exist a sequence of compact sets Ki , numbers θi ∈ N

and bi-Lipschitz functions fi : Ki → E such that fi (Ki ) ∩ f j (K j ) = ∅ for i �= j ,
and

T =
∞∑

i=1

θi fi #�χKi � and
∞∑

i=1

θiM( fi #�χKi �) = M(T ). (14)

An n-dimensional oriented Riemannian manifold M naturally induces a current
(on its geodesic metric space), that we will also denote by �M�, given by integration
of ω ∈ Dn over M ,

�M�(ω) =
∫

M
ω =

∫

M
〈ω, τ 〉 dHn, (15)

where τ is a (unit) orienting n-vector field. In this case, the mass of �M� equals the
Riemannian volume.

The intrinsic representation of rectifiable currents by Ambrosio and Kirchheim [1,
Theorem 9.1] shows that at least in some sense, this formula holds for any integer
rectifiable current. More precisely, if Z is a w∗-separable dual space (i.e. Z = G∗ for
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a separable Banach space G), and T is an integer rectifiable current on Z , then there
exists a countablyHn-rectifiable set Y ⊂ Z , a Borel function θT : Y → N (which we
call the multiplicity of T ) with

∫
Y θT dHn < ∞ and an orientation τ of Y such that

T ( f, π1, . . . , πn) =
∫

Y
f (z)θT (z)〈dπ1 ∧ · · · ∧ dπn, τ 〉 dHn(z), (16)

for ( f, π1, . . . , πn) ∈ Dn(Z). We sometimes write T = �Y, θT , τ�. The multiplicity
θT corresponds to the θi in the parametric representation (14), in the sense that for
‖T ‖-a.e. x ∈ fi (Ki ), θ(x) = θi .

Moreover, the mass of T satisfies

‖T ‖ = λθTHn�Y, (17)

for a Borel function λ : Y → [c(n),C(n)] (the area factor) that is bounded away from
zero and infinity by constants that only depend on the dimension.

It is true that we have not defined the objects appearing in (16). For a precise
definition and formulation see [1]. For the purpose of the paper we just would like to
stress the analogy with the formula for a current induced by a Riemannian manifold.

Additionally, the representation formula makes clear that if there is another integral
current S supported on a subset of Y , it holds that S = T �(b/θT ) for a Borel function
b : Y → Z. We will denote the ratio (b/θT ) by �S/�T .

On Y , a version of the Lebesgue differentiation theorem is still valid. By [2, Theo-
rem 5.4] and the remark following it, if A ⊂ Y is Borel, then for Hn-a.e. x /∈ A,

�n(‖T � A‖, x) = �n(‖T ‖�A, x) = 0, (18)

while on the other hand for every Borel function g : Y → R, forHn-a.e. x ∈ Y ,

�n(‖T �g‖, x) = λ(x)θT (x)g(x). (19)

A very useful technique in dealing with currents on metric spaces is called slicing.
For the purpose of this manuscript, we only need zero-dimensional slices. For T ∈
In(X), a Lipschitz map � : X → R

n and points x ∈ R
n , the slices 〈T,�, x〉 ∈ I0(X)

are characterized by the property

∫

Rn
〈T,�, x〉ψ(x) dx = T �(ψ ◦ �) d�, for all ψ ∈ Cc

(
R
n) , (20)

from which it follows that for any bounded Borel function f on X ,

∫

Rn
〈T,�, x〉( f ) dx = T ( f d�). (21)

By [1, Theorem9.7], if X is in addition aw∗-separable dual space, and T = �Y, θT , τ�,
for a rectifiable set Y ⊂ X , the slices are very easy to interpret. Indeed, for Ln-a.e.
x ∈ R

n , �−1(x) ∩ Y contains at most finitely many points and
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〈T,�, x〉 =
∑

p∈�−1(x)∩Y
apθT (p)δp, (22)

for somechoice ofap ∈ {−1, 1}. Finally, for instance by [1,Theorem5.7] if S ∈ In(X),
withHn(set(T )\set(S)) = 0, for Ln-a.e. x ∈ R

n ,

〈S,�, x〉 = 〈T,�, x〉� �S

�T
. (23)

Finally, we note that a separable space Y can always be isometrically embedded
into a w∗-separable Banach space. Indeed, if yi (i = 1, 2, . . . ) is a dense sequence in
Y , we may embed Y into the w∗-separable Banach space L∞({yi }i ) by a Kuratowski
embedding I : Y → L∞({yi }i ) given by

(I (y))(yi ) := d(y, yi ) − d(y, y1). (24)

1.2 Integral Current Spaces and Intrinsic Flat Convergence

Let S, T ∈ In(X). The flat distance between S and T in X is defined as

dX
F (S, T ) := inf{M(U ) + M(V ) | S − T = U + ∂V, U ∈ In(X), V ∈ In+1(X)}.

(25)

As briefly mentioned in the introduction, an n-dimensional integral current space
(X, dX , T ) is a pair of a metric space (X, dX ), which is not necessarily complete, and a
current T ∈ In(X̄) on the completion of X . Additionally, by convention, it is assumed
that the current is completely settled, that is X = set(T ).

The intrinsic flat distance between two integral current spaces (X, dX , T ) and
(Y, dY , S) is given by

dF ((X, dX , T ), (Y, dY , S)) := inf
{
dZ
F (φ#T, ψ#S) | Z complete metric space

φ : X → Z , ψ : Y → Z isometric embeddings
}
.

(26)

If dF ((X, dX , T ), (Y, dY , S)) = 0, this implies that there exists a current-preserving
isometry φ : X → Y , that is an isometry such that φ#T = S. Note that without the
convention X = set(T ) (or a similar condition), this would certainly not be the case
in general.

We will denote the metric space of (equivalence classes of) n-dimensional integral
current spaces with the intrinsic flat distance byMI F

n .
There is an involution ι acting on MI F

n , given by

ι(X, dX , T ) := (X, dX ,−T ). (27)
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IF and GH Convergence with Ricci Bounded Below 1863

We may endow the quotient space MI F
n /ι by the quotient distance:

dF/ι(M, N ) := inf{dF (M, ιε1M1) + dF (M1, ι
ε2M2) + · · · + dF (Mn−1, ι

εn N )

| Mi ∈ MI F
n , εi ∈ {0, 1}} (28)

In general, such a definition only yields a pseudometric. However, in this special case,
the quotient distance is indeed a distance, and is in fact given by

dF/ι(M1, M2) = min(dF (M1, M2), dF (M1, ι(M2))). (29)

We denote the metric space MI F
n /ι endowed with this quotient metric byMI F/ι

n .

1.3 The Structure of Spaces with Ricci Curvature Bounded Below

In [3–5], Cheeger and Colding study the structure of metric spaces that arise as the
Gromov-Hausdorff limits of manifolds with Ricci curvature uniformly bounded from
below.

Cheeger and Colding consider both noncollapsed and collapsed limit spaces. From
the point of view of intrinsic flat convergence, the collapsed case is trivial as in that case
the approximating sequence of Riemannian manifolds converges in the intrinsic flat
distance to the zero integral current space. We therefore consider only noncollapsed
limit spaces, for which the results by Cheeger and Colding are much stronger.

We borrow the following definitions. If X ∈ MGH (n,�, v, D), and p ∈ X , we
say p ∈ Rε,δ if and only if

dGH (Br (p), Br (0)) < εr, for all r < δ. (30)

We further define the regular setR by

R :=
⋂

ε>0

⋃

δ>0

Rε,δ. (31)

In words, p ∈ X is regular if for all ε > 0 there exists a δ > 0 such that Br (p) is
ε-close to a Euclidean ball at every scale smaller than δ.

Cheeger andColding show that in thenoncollapsed case, theHausdorff codimension
of the complement X\R is at least 2. They use this to prove in [4, Corollary 3.9
and 3.10] a (local) connectedness result. More precisely, for all q1, q2 ∈ R, and
every ε, σ > 0, there is a δ > 0 such that there is a path in Rε,δ of length smaller
than d(q1, q2) + σ connecting q1 and q2. It follows immediately that when q ∈ X ,
q1, q2 ∈ Bt (q) ∩ R, for every ε > 0 there is a path inRε,δ connecting q1 and q2 that
remains inside Bt (q). Indeed, there is a σ > 0 such that q1, q2 ∈ Bt−3σ (q). Next,
there exists a q3 ∈ R with d(q3, q) < σ by the Bishop-Gromov estimate and the fact
thatR has full measure. By the above, there exists a δ > 0 such that there are paths in
Rε,δ from q1 to q3 and from q3 to q2 respectively, both of length smaller than t − σ ,
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1864 R. Matveev, J. W. Portegies

as for k = 1, 2,

d(qk, q3) ≤ d(qk, q) + d(q, q3) < t − 3σ + σ = t − 2σ. (32)

These paths are contained in Bt (q) and by concatenating them we obtain a path from
q1 to q2 in Bt (q) ∩ Rε,δ .

2 Degree Estimate

For an integral current T ∈ In(X) on a complete metric space X and a Lipschitz
� : X → R

n the pushforward�#T ∈ In(Rn) is represented by a unique BV function,
by a representation theorem due to Ambrosio and Kirchheim [1, Theorem 3.7]. The
theorem also ensures that the mass measure of the boundary of �#T equals the total
variation of the distributional derivative of the representing function. We call such a
function the degree of � with respect to T .

Definition 2.1 Let X be a complete metric space and let T ∈ In(X). Let� : X → R
n

be aLipschitzmap.Wedefine the degree of� with respect to T as the (unique) function
deg(T, �, .) ∈ BV(Rn), taking values in Z, that satisfies

�#T = �deg(T, �, .)�.

If T is a current induced by an oriented Riemannian manifold, then the degree
defined above indeed corresponds to the usual topological degree.

By the Ambrosio-Kirchheim slicing theorem [1, Theorem 5.7] and [1, Eq. (5.18)]
the degree can be evaluated by

deg(T, �, x) = 〈�#T, Id, x〉(1)
= �#〈T, �, x〉(1)
= 〈T, �, x〉(1).

(33)

This observation is very useful in light of the estimates by Sormani and the second
author that show that integrals of flat distances between slices of two currents can
be controlled by the flat distance between the full currents. This translates to an L1

estimate on the difference between the degrees.

Lemma 2.2 Let Z be a complete metric space and let T k ∈ In(Z), k = 1, 2. Let
�k : Z → R

n be such that every component �k
j is 1-Lipschitz. Then

‖ deg
(
T 1,�1, .

)
− deg

(
T 2,�2, .

)
‖L1(Rn) ≤ dF

(
T 1, T 2

)

+ 2
n∑

j=1

‖�1
j − �2

j‖∞
(
M

(
T 2

)
+ M

(
∂T 2

))
.

(34)
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Proof We use the estimate by Sormani and the second author [10, Proposition 4.17]

∫

Rn
dF

(
〈T 1,�1, x〉, 〈T 2,�2, x〉

)
dx ≤ dF

(
T 1, T 2

)

+ 2
n∑

j=1

‖�1
j − �2

j‖∞
[
M

(
T 2

)
+ M

(
∂T 2

)]
.

(35)

From this inequality, we conclude the estimate (34) by using the link between slices
and the degree explained in (33). Indeed, for Ln-a.e. x ∈ R

n ,

∣∣∣deg
(
T 1,�1, x

)
− deg

(
T 2,�2, x

)∣∣∣ ≤
∣∣∣〈T 1,�1, x〉 (1) − 〈T 2,�2, x〉 (1)

∣∣∣

≤ dF
(
〈T 1,�1, x〉, 〈T 2,�2, x〉

)
.

(36)

��

3 A Consequence of Colding’s Volume Estimate

Throughout this section we use the notation Br (0) to denote the open ball of radius r
centered at 0 in the Euclidean space Rn . Let X be a metric space, x ∈ X , and a radius
R > 0, such that

dGH(BR(x), BR(0)) < ε. (37)

Let {x1, . . . , xn} ⊂ X and consider the map �x,x1,...,xn given by

�x,x1,...,xn (y) = (dM (x1, y) − dM (x1, x), . . . , dM (xn, y) − dM (xn, x)) . (38)

We call�x,x1,...,xn an (ε, R)-chart around x if there exist ametric space Z and isometric
embeddings φ : BR(x) → Z and ψ : BR(0) → Z , such that

dZ
H (φ(BR(x)), ψ(BR(0))) < ε, (39)

and

dZ
H (φ({x, x1, . . . , xn}), ψ({0, Re1, . . . , Ren})) < ε, (40)

where {ei } is the standard orthonormal frame in R
n , and dZ

H denotes the Hausdorff
distance in Z .

Note that every coordinate function of �x,x1,...,xn is Lipschitz with Lipschitz con-
stant 1.

In [6, Sect. 2], Colding shows the following result, that we phrase as a lemma.
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Lemma 3.1 (Colding [6]). Let η > 0. There exist � = �(η, n) > 0, R = R(η, n) >

1, and ε = ε(η, n) > 0 with the following property. For every n-dimensional com-
plete Riemannian manifold M with RicM ≥ −(n − 1)�, with p ∈ M, such that
dGH(BR(p), BR(0)) < ε, and every (ε, R)-chart � around p, it holds that

Ln (B1(0)\�(B1(p))) < ηn/3 (41)

and

Ln(�(B1(p))) ≤ Hn(B1(p)) < ωn + ηn/3. (42)

From the above lemma, we can derive that on a large set, the (ε, R)-chart � is
locally one-to-one.

Lemma 3.2 Let η > 0. There exist � = �(η, n), R = R(η, n) and ε = ε(η, n)

with the following property. For every n-dimensional, oriented, complete Riemannian
manifold M with RicM ≥ −(n − 1)�, p ∈ M such that

dGH(BR(p), BR(0)) < ε,

and every (ε, R)-chart � around p, the set

G =
{
x ∈ B1(0)

∣∣H0(�−1(x) ∩ B1(p)) = 1
}

satisfies

Ln(G) > ωn − ηn .

Proof We choose the constants �, R and ε as in Lemma 3.1, so that

ωn − ηn/3 < Ln(�(B1(p))) ≤ Hn(B1(p)) < ωn + ηn/3. (43)

Since every component of the map� is 1-Lipschitz, the Jacobian J� of� is bounded,
|J�| ≤ 1. We apply the coarea formula and find

Hn(B1(p)) ≥
∫

B1(p)
|J�| dHn

=
∫

Rn
H0

(
B1(p) ∩ �−1(x)

)
dx

≥ Ln(�(B1(p))).

(44)

Therefore,

Ln
({

x ∈ �(B1(p))
∣∣H0(B1(p) ∩ �−1(x)) ≥ 2

})
< 2ηn/3 (45)
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and consequently

Ln (G) > ωn − ηn . (46)

��
Lemma 3.3 Let η > 0. There exist � = �(n), R = R(η, n) and ε = ε(η, n)

such that if M is an n-dimensional oriented complete Riemannian manifold with
RicM ≥ −(n − 1)�, p ∈ M, and

dGH(BR(p), BR(0)) < ε,

then for every (ε, R)-chart � around p and for every x ∈ B1−σ (0),

deg(T �B1(p),�, x) = deg(T �B1(p),�, 0) = ±1,

where σ = σ(η, n) is defined by

ωn − Ln(B1−σ (0)) = ηn .

Proof We may without loss of generality assume that ηn ≤ ωn/4 =: η̄n .
Note that � is a σ -Gromov-Hausdorff approximation, for R large enough and ε

small enough, only depending on n.
We choose R = R(η, n) and ε = ε(η, n) such that � is an σ -Gromov-Hausdorff

approximation, and moreover

�3.3(n) = �3.2(η̄, n), R3.3(η, n) ≥ R3.2(η̄, n), ε3.3(η, n) ≤ ε3.2(η̄, n),

where the subscripts indicated the lemma in which the constants are introduced.
Consequently, �(∂B1(p)) ∩ B1−σ (0) = ∅ and deg(T �B1(p),�, .) is constant on

B1−σ (0). By Lemma 3.2 and our choice of σ ,

Ln
({

x ∈ B1−σ (0)
∣∣H0(�−1(x) ∩ B1(p)) = 1

})
> 0. (47)

Therefore,

| deg(T �B1(p),�, 0)| = 1. (48)

��

4 Proof of the Main Theorems

Theorems A and B in the introduction are implied by the following theorem.
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Theorem 4.1 Let Mi ∈ M(n, K , v, D) (i = 1, 2, . . . ) converge in the Gromov-
Hausdorff distance to the (compact) metric space X. We assume without loss of
generality that Mi and X are isometrically embedded in a common w∗-separable
Banach space Z.

Then,

(i) a subsequence of the associated integral current spaces Mi converges in the flat
distance to (X, dX , T ), with set(T ) = X,

(ii) the mass ‖T ‖ equals Hn, the Hausdorff measure on X,
(iii) T has multiplicity one Hn-a.e.,
(iv) for every q ∈ X, every t > 0, and every S ∈ In(X) with ‖∂S‖(Bt (q)) = 0, there

exists an integer k ∈ Z such that S = kT on Bt (q).

Before we prove Theorem 4.1, we explain how it implies the theorems in the
introduction. Certainly, Theorem B is a direct consequence of part (iv) in the above
theorem.

The map F : MI F/ι(n,�, v, D) → MGH (n,�, v, D) given by

(X, dX , T ) → X

considered in Theorem A is well-defined as Sormani and Wenger have shown that
if the intrinsic flat distance between two integral current spaces is zero, there is a
(current-preserving) isometry between the spaces [13]. Therefore, the map does not
depend on the choice of representative. Moreover, by item (i) of Theorem 4.1, X is
indeed a compact metric space.

The map F is one-to-one by (iv). A one-to-one continuous map from a compact to
a Hausdorff space is automatically a homeomorphism. So the only non-trivial part of
Theorem A left to show is the continuity of F .

If (Xi , dXi , Ti ) ∈ MI F/ι(n,�, v, D) converge in the intrinsic flat distance
to an integral current space (X, dX , T ), there are Riemannian manifolds Mi ∈
MI F/ι(n,�, v, D) such that the associated integral current spaces [Mi ] converge
in the intrinsic flat distance to (X, dX , T ) while

dF ((Xi , dXi , Ti ), [Mi ]) → 0. (49)

By the Gromov compactness and embedding theorems, we may isometrically embed
F([Mi ]) into a common metric space, in which a subsequence converges in the Haus-
dorff distance to a compact metric space Y . It suffices to show that Y is isometric to
X .

Theorem 4.1 shows that [Mi ] → (Y, dY , S) for some S ∈ In(Y ). Hence,

dF ((X, dX , T ), (Y, dY , S)) = 0 (50)

and thus Y is isometric to X .
We will now prove Theorem 4.1.
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Proof By the Ambrosio-Kirchheim compactness theorem [1, Theorem 5.2], a subse-
quence of the associated currents Ti converges in the weak sense to an integral current
T without boundary. A theorem by Wenger [14, Theorem 1.4] implies that the Ti
converge to T in the flat distance in Z as well.

Let p ∈ X be a regular point, that is p ∈ R ⊂ X . (The definition of the sets R
and Rε,δ are as in [4], see also Sect. 1.3). Let η > 0. Let �(n), ε(η, n) and R(η, n)

be as in Lemma 3.3. Since p ∈ R, there exists a number 0 < δ <
√

�/K such that
p ∈ Rε/R,δR . In other words, for all r < δ,

dGH (Br R(p), Br R(0)) < εr. (51)

We will now show that for a subsequence, we may localize the flat convergence to
balls. Since Mi → X in the Hausdorff distance in Z , there exists a sequence pi ∈ Mi

such that pi → p. By the proof of [11, Lemma 4.1], see also [10, Theorem 4.16], for
yet another subsequence, for L1-a.e. radius 0 < r < δ, the currents restricted to balls
of radius r converge, that is

dF (Ti�Br (pi ), T �Br (p)) → 0. (52)

We choose p1, . . . , pn ∈ X such that

� = �p,p1,...,pn (53)

is an (εr, r R)-chart around p.
In order to prove (ii), we will lift this (ε, R)-chart � to charts on the manifolds

in the approximating sequence. By the results in the previous section, we have good
control of the degree of these charts, and Lemma 2.2 allows us to pass this control to
the limit. Estimates on the degree will immediately imply density estimates.

We argue as follows. Since Mi → X in the Hausdorff distance, there exist p j
i ,

j = 1, . . . , n with p j
i → p j as i → ∞, such that �i := �pi ,p1i ,...,p

n
i
is an (ε, R)-

chart around pi for i large enough. The maps �i converge to � uniformly by the
triangle inequality.

By Lemma 2.2, deg(Ti�Br (pi ),�i , .) → deg(T �Br (p),�, .) in L1(Rn) as i →
∞. By this convergence result and Lemma 3.3, for all x ∈ B(1−σ)r (0),

deg(T �Br (p),�, x) = deg(T �Br (p),�, 0) = ±1. (54)

In particular,

‖T ‖(Br (p)) ≥
∫

B(1−σ)r (0)
| deg(T �Br (p),�, x)| dx

≥ ωnr
n − ηnrn .

(55)

Moreover, by lower-semicontinuity of the mass measure under weak convergence,

‖T ‖(Br (p)) ≤ lim inf
i→∞ ‖Ti‖(Br (pi )) ≤ ωnr

n + ηnrn/3. (56)

123



1870 R. Matveev, J. W. Portegies

In particular, p ∈ set(T ), and since η > 0 was arbitrary, the density �n(‖T ‖, p)
of ‖T ‖ in p is 1. Since Hn(X\R) = 0, in fact Hn = ‖T ‖, which shows (ii).

By the results by Cheeger and Colding however, we know that Hn satisfies the
Bishop-Gromov estimate, so that in particular, at every point in X the density of
Hn(= ‖T ‖) is (strictly) positive. Consequently, set(T ) = X , which finishes the proof
of (i).

Our next objective is to show (iii), namely that T has multiplicity one. To this
end, we use that the measure of the set {| deg(T �Br (p),�, .)| = 1} is very close to
‖T ‖(Br (p)). This can only happen if most points in the image of � have exactly one
pre-image, where the multiplicity is one.

More precisely, since

(ωn − ηn)rn =
∫

B(1−σ)r (0)
| deg(T �Br (p),�, x)| dx

≤
∫

B(1−σ)r (0)
M(〈T �Br (p),�, x〉) dx

≤ ‖T ‖(Br (p)) ≤ (ωn + ηn/3)rn,

(57)

if we define the “good” set G ⊂ B(1−σ)r (0) by

G := {
x ∈ B(1−σ)r (0)

∣∣M(〈T �Br (p),�, x〉) = 1
}
, (58)

it follows that

Ln(B(1−σ)r (0)\G) < 2ηnrn . (59)

ForLn-a.e. x ∈ G, there is a unique px ∈ set(T )∩Br (p) such that�(px ) = x and the
multiplicity θT (px ) = 1. Therefore, again using that ‖T ‖(Br (p)) ≤ ωnrn + ηnrn/3,
we find

‖T ‖({x ∈ Br (p) | θT (x) �= 1}) < 4ηnrn . (60)

This shows that in every p ∈ R, the density of the set where the multiplicity of T is
larger than 1 equals zero. Since Hn(X\R) = 0, θT ≡ 1. This shows (iii).

Finally, we need to show (iv). Let therefore q ∈ X and S ∈ In(X) such that
‖∂S‖(Bt (q)) = 0, for some t > 0. Let p ∈ R ∩ Bt (q) and r > 0 be as above,
with the additional assumption that r < d(p, X\Bt (q)). The representation theorem
for integer rectifiable currents [1, Theorem 9.1] implies that there is a Borel function
�S/�T : X → Z such that

S = T � �S

�T
. (61)

We will prove (iv) by showing that on a large set �S/�T is equal to the ratio of two
degrees, which in turn are constant. The next few lines will be devoted to the choice
of a good representative for �S/�T .

123



IF and GH Convergence with Ricci Bounded Below 1871

We first introduce an “average” version, based on a majority vote:
(

�S

�T

)

p,r
:= argmax

k∈Z
‖T ‖

(
Br (p) ∩

{
�S

�T
= k

})
, (62)

where, if the maximum is not unique, we give preference to the smallest absolute value
of k, and if this gives no decision, the positive value. However, this is quite irrelevant.

By the Lebesgue differentiation theorem, for Hn-a.e. q1 ∈ X ,

�S

�T
(q1) := lim

r→0

(
�S

�T

)

q1,r
. (63)

For convenience, we will from now on only work with the precise representative of
�S/�T which we define to be the right-hand-side of (63) if this limit exists, and 0
otherwise.

By the characterization of slices [1, Theorems 5.7 and 9.7], for Ln-a.e. x ∈ G, the
slice 〈T,�, x〉 is just a signed delta-measure,

〈T �Br (p),�, x〉 = ±δpx , (64)

while

〈S�Br (p),�, x〉 = �S

�T
(px )〈T �Br (p),�, x〉. (65)

We apply both sides to the function identically equal to 1, and conclude that

�S

�T
(px ) = deg(S�Br (p),�, x)

deg(T �Br (p),�, x)
. (66)

If we inspect the proof of Lemma 3.3, we see that the constants �, R, and ε

were chosen such that � is a σr -Gromov-Hausdorff approximation. Hence, both
deg(T �Br (p),�, .) and deg(S�Br (p),�, .) are constant on the ball B(1−σ)r (0) and
we can find a compact subset G̃ ⊂ G, Ln(G̃) > (ωn − 3ηn)rn such that every x ∈ G̃
has exactly one pre-image px under � in set(T ) ∩ Br (p), and for this px

�S

�T
(px ) = deg(S�Br (p),�, 0)

deg(T �Br (p),�, 0)
. (67)

It follows that

‖T ‖
(

�S

�T
�=

(
�S

�T

)

p,r

)
≤ ‖T ‖(Br (p)\�−1(G̃))

≤ ‖T ‖(Br (p)) −
∫

G̃
| deg(T �Br (p),�, x)| dx (68)

≤ ωnr
n + ηnrn/3 − ωnr

n + 3ηn

≤ 4ηnrn .
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Therefore, for η small enough, only depending on the dimension, the average
(�S/�T )p,r is jointly continuous in (p, r) on the domain p ∈ Rε/R,δR ∩ Bt (q),
0 < r < min(δ, dX (p, X\Bt (q))). In particular, �S/�T is continuous onRε/R,δR ∩
Bt (q).

However, by a result by Cheeger and Colding [4, Corollary 3.9 and 3.10] (see also
Sect. 1.3), for all q1, q2 ∈ Bt (q) ∩ X , there is a δ such that q1 and q2 lie in the same
component ofRε/R,δR ∩ Bt (q). Therefore, �S/�T is constant on Bt (p). This shows
(iv). ��
Remark 4.2 To obtain the necessary control on the degree, we use that an (ε, R)-
chart � is a Gromov-Hausdorff approximation. It is possible to conclude such
control under weaker assumptions. A lot of information can be extracted from
the existence of a map � : X → R

n on the limit space X , for which every
component is 1-Lipschitz, and such that the excess ‖T ‖(Br (p)) − T (χBr (p)d�)

is small. We have decided to not present this argument in the manuscript, as it
is considerably longer, and at this point, it is unclear whether there are applica-
tions in which the easier argument by a Gromov-Hausdorff approximation cannot
be applied.
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