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Abstract
Measurements of diffusion and thermodiffusion in liquids are very sensitive to convection caused for example by buoyancy. 
To reduce the impact of buoyancy-driven convection, benchmark experiments are performed in microgravity conditions. 
Here, we discuss the general influence of gravity on atomic mobility. The gravitational Péclet number and the gravitational 
length can be used to assess this influence. They show that the diffusion processes of atoms in a liquid is not affected by 
Earth’s gravitational force but that the process is dominated by the thermal energy of the atoms. Data from experiments under 
different gravity conditions ranging from 10−5g to 106g are summarized. They confirm that interdiffusion is only influenced 
by accelerations that are orders of magnitude larger than Earth’s gravity.
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Introduction

In experimental measurements of interdiffusion using the 
so-called long-capillary technique, two samples of differ-
ent composition are brought into contact to analyze the 
concentration distribution after a certain time. Interdiffu-
sion describes the flux of particles induced by a gradient 
in the chemical potential due to a concentration difference. 
It influences the velocity of chemical reactions, solidifi-
cation of multicomponent materials, sintering, and other 
processes (Cussler 2009; Grasso et  al.  2020; Steinbach   
2013). Measurements in solids can be performed in any  
orientation but in the case of liquid samples the denser liquid 
has to be placed at the bottom to stabilize the initial interface 
between the two compositions. Otherwise the samples will 
be mixed quickly due to buoyancy-driven convection (Kargl 

et al. 2013). Horizontal orientation would lead to an initially 
vertical interface that is unstable and would lead to imme-
diate convection. Convection can also be provoked by free 
surfaces due to bubbles (Marangoni convection) (Ruiz and  
Pallarés 2011; Roşu-Pflumm et al. 2009) which is inde-
pendent of gravity. Thus, measurements of interdiffusion 
in liquids can easily be disturbed by convection. To obtain 
benchmark values without buoyancy-driven convection, 
selected interdiffusion experiments were performed under 
microgravity (Mathiak et al. 1996; Garandet et al. (2004). 
The measured interdiffusion coefficient in microgravity 
was sometimes lower than the measured value obtained on 
ground (Praizey et al. 2001).

Denser particles in a liquid sediment over time due to 
gravity. This process can be accelerated by centrifugation 
which is used for example for blood fractionation. Sedimen-
tation effects are known from the incongruent solidifica-
tion of alloys, where solid parts nucleate with a different 
chemical composition than that of the melt, and thus rise or  
sink in the liquid depending on their relative density (Browne  
et al. 2017; Nguyen-Thi et al. 2011, 2014). Centrifugation 
of partially liquid alloys was also proposed as a method to 
purify scrap metal (Zhao et al. 2010).

In other words, the mass flow in liquids can be strongly 
influenced by gravity. In light of the fact that experiments 
in microgravity conditions do not always yield values that 
are in agreement with ground-based experiments, one 
might wonder whether gravity might influence diffusion 
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processes by pulling the heavier atoms towards the bottom. 
As we point out in the following, this is in fact not the case. 
To see this, we will describe relevant parameters and criti-
cally assess diffusion experiments under different gravity 
conditions.

Gravitational Péclet Number

For colloidal suspensions, where the diffusing particle is 
much bigger than the molecules or atoms comprising the 
surrounding fluid, a gravitational Péclet number Peg,c is used  
to characterize the movement of the particles (Bérut et al.  
2019; Russel et al. 1989). It is defined by the ratio of the 
particle weight and the Brownian thermal forces:

with d the diameter of the particles, m its buoyant mass, 
g the gravitational acceleration, T the temperature of the 
system and kB the Boltzmann constant. The buoyant mass m 
is the volume of the particle multiplied with the difference 
of density between the particle and the surrounding fluid.

As an example, silica particles with diameter d ≃ 1� m 
which are suspended in water have the gravitational Péclet 
number Peg,c ≃ 1 . This means that particles will sediment 
quickly but also show random fluctuations induced by ther-
mal agitation (Bérut et al. 2019). For colloidal particles in 
a density matched liquid Peg,c would be well below unity. 
In this case sedimentation would not be completely absent 
but very slow. As another case, let us consider unagitated 
granular particles suspended in air. We then obtain Peg,c ≫ 1 
in agreement with the observation that the diffusive motion 
of unagitated granular particles is completely dominated by 
gravitational settling.

The Péclet number can also be written in terms of the 
gravitational length that characterizes the gravity-induced 
density dependence known from the barometric height dis-
tribution (Royall et al. 2005),

with Peg,c = d∕�g . Gravitational settlement is dominant if 
the gravitational length �g is small compared to the size of 
the experimental sample. For the example of the silica par-
ticle mentioned above, �g ≈ d , and thus a noticeable density 
dependence is observed on the length scales relevant for 
the particle motion. Density matching in colloidal suspen-
sions increases �g sufficiently far such that over the size  
of the experimental sample, gravitational settling becomes 
unimportant.

(1)Peg,c =
mgd

kBT

(2)�g =
kBT

mg
,

Applying this concept to atoms in a liquid alloy, we take 
as an example liquid zinc at 1000 K. Here the gravitational 
length is about 1.3 × 104 m. Note that we are here imply-
ing that thermal energy is the dominant driving factor for 
diffusive phenomena. Direct interatomic forces are much 
stronger, but due to Newton’s third law, they mostly cancel 
out, leaving thermal fluctuations as the main driving force of 
mass transport. The gravitational length has to be compared 
to the height of the container. In a typical diffusion experi-
ment the height of the container is in the order of 10−2 m 
which is orders of magnitude smaller than the gravitational 
length. This comparison shows that the influence of gravity 
on atoms in a liquid alloy can be neglected under normal and 
reduced gravity conditions.

The above estimates are based on a static energy bal-
ance. One might however wonder about dynamical effects. 
In fact, Peg,c can be identified as the ratio of the time scale tD 
relevant for diffusion versus that relevant for sedimentation, 
tg , identifying the colloidal regime as that where particles 
diffuse over the time window of experimental interest. This 
ascertains that for example, a brick in outer space, which 
formally obeys Peg,c = 0 , is not dominated by diffusion on 
any reasonable time scale (Frenkel 2002). The time scale 
tD for diffusion is estimated from the time where the mean-
squared displacement, r2 ∼ Dt , reaches the square of the size 
of the object itself, thus tD ∼ d2∕D . The time tg needed for 
a colloidal particle to be displaced by its own size under 
the influence of gravity is given by its sedimentation veloc-
ity vg ∼ �mg , where � = D∕kBT  is its mobility (and m the 
buoyant mass). Hence, tg ∼ d∕�mg , and setting Peg,c = tD∕tg 
recovers Eq. (1). For atomic systems or granular particles, 
where inertia effects play a role, tg is estimated from New-
ton’s equation of motion as tg ∼

√

d∕g . The dimensionless 
number suitable to quantify the influence is then the gravi-
tational Péclet number,

The ratio is taken such that as gravitational effects become 
negligible, Peg ≪ 1 (as then the typical time tg it takes for 
gravity to become noticeable, is much larger than the diffu-
sion time), whereas Peg ≫ 1 signifies strong gravitational 
effects. Related quantities known from fluid dynamics and 
granular matter physics are the Bond or Eötvös number (Clift  
and Grace 1978) quantifying the strength of gravitational 
forces over surface-tension forces, and the granular Bond 
number (Capece et al. 2015) estimating the relative impor-
tance of gravitational over cohesive forces. For liquid alloys 
typical values are in the order of d ∼ 1 Å and D ∼ 10−8 m2

s
−1

.
The gravitational Péclet number is then in the order 

of Peg ≃ 10−6 which is far below unity. By all accounts, 

(3)Peg =
tD

tg
=

√

gd3∕2

D
.
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liquid-state diffusion in alloys should be unaffected by 
Earth’s gravity.

Experiments Under Different Gravity 
Conditions

In order to suppress buoyancy-induced convection or to 
study the influence of gravity, some diffusion experiments 
were conducted under different gravity conditions. This 
includes mainly diffusion experiments in liquid samples 
performed under microgravity ( � g) and normal gravity (1g) 
but also experiments under hypergravity.

Under gravity diffusion measurements can be disturbed by 
buoyancy e.g. due to inhomogeneous temperature distribu-
tion (Alexander et al. 1996). Measurements of self-diffusion 
in liquid pure metals sometimes lead to diffusion coeffi-
cients that were too high due to additional mass transport by 
convection. In this case, measurements under microgravity 
which where not disturbed by this effect where lower than the 
values obtained on ground (Kaptay 2008). This is especially 
relevant at temperatures well above the melting point. On the 
other hand, stable density layering in interdiffusion setups  
can dampen convection under gravity (Barat and Garandet  
1996; Suzuki et al. 2005). On some microgravity plat-
forms, e.g. parabolic flights, changes in the residual accelera-
tion (“g-jitter”) can lead to additional mass transport in liquid 
samples (Mathiak et al. 2005). Specially designed isolators 
which decouple the experimental setup from the structure of 
the platform reduce this influence (Smith et al. 2009). Maran-
goni convection caused by differences in surface tension due 
to bubbles or free surfaces can occur both on earth and in  
microgravity (Ruiz et al. 2015; Ruiz and Pallarés 2011;  
Roşu-Pflumm et al. 2009; Kargl et al. 2013).

Over the last decades experimental setups for diffusion 
measurements were optimized to reduce disturbing convec-
tion. For experiments where a stable density layering is possi-
ble and special care is taken to avoid bubbles and to minimize  
radial temperature gradients, measurements on ground and in  
micro-gravity show comparable results. Interdiffusion meas-
urements in aluminum-based liquid alloys on ground and in  
micro-gravity agree within uncertainties (Sondermann et al.  
2016, 2019; Garandet et al. 2004). In these experiments  
the shear cell technique was used where the two parts of 
the diffusion couple are melted separately and brought into 
contact after the annealing temperature has been reached. 
The concentration distribution along the diffusion couple is 
either recorded continuously by in situe X-radiography or at 
the end of the diffusion time by separating the liquid sample 
in several small parts and chemically analysing the solidified 
parts. The same technique was used on earth and in micro-
gravity. The uncertainty of these interdiffusion measurements 
is about 10%. Also for Sn-Bi alloys it could be shown that 

experiments on ground give the same results as experiments 
done aboard a satellite (Roşu-Pflumm et al. 2009; Garandet 
et al. 2004; Praizey et al. 2001). Again the shear cell tech-
nique was employed.

A process that depends on diffusion in the melt is crystal 
growth. It has been reported that crystals of sodium chloride 
grow slower in microgravity compared to normal gravity 
conditions. This can be attributed to convective flow that 
transports depleted solution away from the crystal under 
normal gravity (Maruyama et al. 2002). Crystallization and 
crystal growth as well as the long-time dynamics in solid-
ifying colloidal suspensions are in fact also known to be 
strongly influenced by gravity (Zhu et al. 1997; Simeonova 
and Kegel 2004).

Similar experiments that also probe the movement of 
atoms or molecules in a liquid are measurements of ther-
modiffusion. Thermodiffusion (also known as the Ludwig-
Soret effect) describes the formation of a concentration 
gradient induced by a temperature gradient in a mixture. 
Comprehensive measurements of diffusion and thermodif-
fusion coefficients in water-isopropanol mixtures using three  
different instrumental techniques show good agreement 
between ground-based and microgravity experiments  
(Mialdun et al. 2012). Comparison between measurements of  
thermodiffusion in hydrocarbon mixtures onboard the Inter-
national Space Station (ISS) and measurements on ground 
shows only minor variation in the values of the thermodif-
fusion coefficient (Ahadi and Saghir 2016; Larrañaga et al.  
2015). However, in these studies not only the environment 
(microgravity and Earth gravity condition) was changed but 
also the experimental techniques. An overview over experi-
ments on thermodiffusion in microgravity by the European  
Space Agency can be found here (Braibanti et al. 2019).

To further test the influence of gravity on single atoms, 
let us also take a look at measurements under hypergrav-
ity. Hypergravity means accelerations which are higher then  
the acceleration of Earth’s gravity g. Ono et al. studied the  
miscible alloy In-Pb at about 140 ◦ C, which is below its 
melting point, in a centrifuge that provides an acceleration  
of 106 g. They find that the Pb-content continuously increases  
in the direction of gravitational field from about 12 to 36 
at.% Pb over the sample thickness of about 1.5 mm. This 
graded structure is continuous in atomic scale, and was 
formed by the sedimentation of solute atoms. The composi-
tion change reached a steady state within 60 hours (Ono et al.  
2005). Taking as atomic radius d ≈ 10−10 m and the inter-
diffusion coefficient D ≈ 10−12 m2 /s (Ono et al. 2005) the 
gravitational Péclet number in this case is Peg ≃ 3 . This is 
in accordance with the observation that hypergravity influ-
ences the movement of atoms. Alternatively, we can use 
Eq. 2 to calculate the gravitational length. At an acceleration 
of 106 g the gravitational length of lead at 140 ◦ C is about 
1.7 × 10−3 m which is comparable to the thickness of the  
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sample. A theoretical description to calculate the chemical 
distribution in a multicomponent system depending on the 
acceleration field is given by Mashimo (1994).

Similarly using a centrifuge, Ogata et  al. compared 
measurements of the interdiffusion couple Cu-Cu

70
Zn

30
 at 

400 ◦ C in hyper-gravity of 106 g and in normal gravity of 1g. 
Depending on the direction of the concentration gradient 
with respect to the acceleration, the measured interdiffusion  
coefficient is 1.8 times larger than that of the 1g sample  
or only 0.83 times the value of the 1g sample (Ogata et al.  
2015). These experiments show that gravity can lead to 
sedimentation of individual atoms even in solids. However,  
this effect is only measurable at extreme accelerations.

Conclusion

In summary, we described the gravitational Péclet number 
and the gravitational length as parameters to assess the influ-
ence of gravity on individual atoms. Under normal condi-
tions, the thermal energy in a liquid is larger than the gravi-
tational potential energy by orders of magnitude. Thus by 
going from 1g to � g and in the absents of convection the 
atomic mobility itself is not affected. Only accelerations that 
are orders of magnitude larger than Earth’s gravity influence 
interdiffusion.
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