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Abstract
The stability of thermocapillary flow in a liquid bridge made from 5 cSt silicone oil (Pr = 68) is computed numerically.
To improve the numerical model as compared to the standard approach, we consider the flow in the liquid bridge fully
coupled to the flow in the ambient gas, temperature-dependent material parameters, and a dynamically deforming liquid–gas
interface. We address the full two-phase-flow problem of interest for the space experiment JEREMI and investigate the effect
of a steady axisymmetric coaxial gas flow which is imposed at the inlet of the annular gap between the liquid bridge and the
outer confining cylinder. Under zero-gravity the flow is primarily driven by the imposed temperature gradient with viscous
stresses from the gas phase being small. However, the heat transfer between liquid and the gas, and thus the temperature
fields are strongly affected by the forced flow in the gas phase. As a result the stability of the steady axisymmetric flow
depends sensitively on the flow direction and the temperature of the gas. If the temperature of the gas is identical to that of
the support rod of the liquid bridge a gas stream opposing the thermocapillary stresses strongly destabilizes the basic flow.
In a co-flow configuration the basic state is stabilized. Curves of neutral Reynolds numbers as functions of the strength of
the annular gas flow are discussed for two aspect ratios of the liquid bridge.
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Introduction

The thermocapillary flow in liquid bridges and its stability
have been widely studied as a fundamental model for
crystal growth from the melt, see e.g. Cröll et al. (1991),
Wanschura et al. (1997), and Leypoldt et al. (2000). Despite
of all investigations, the heat transfer between the liquid
bridge and the ambient gas is poorly understood and most
difficult to control. In the past, most numerical studies
addressed the problem considering only the liquid phase,
neglecting viscous stresses from the gas phase and modeling
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the heat transfer between liquid and gas by Newton’s law
(Nienhüser and Kuhlmann 2002; Wanschura et al. 1995).
These assumption can lead to a poor numerical prediction of
the real flow and its stability. Recent experiments revealed
that the heat transfer across the interface strongly affects
the stability boundaries of the axisymmetric steady flow
(Yano et al. 2017). This observation has also been confirmed
by numerical investigations (Shevtsova et al. 2014; Yasnou
et al. 2018) which extended the computational domain into
the gas phase and thus improved on the above mentioned
approximations.

In the present work we consider a two-phase flow model
which properly takes into account for a full mechanical
and thermal coupling between the liquid and the gas phase.
Moreover, our model allows for a dynamically deform-
ing liquid–gas interface, its exact shape being part of the
numerical solution. To this end, the Navier-Stokes, conti-
nuity and energy equations under zero gravity conditions
are solved simultaneously for both, the liquid and the gas
phase, coupled by the interfacial boundary conditions which
involve the balance of normal and tangential stresses as
well as the heat transfer between the two phases. Further-
more, temperature-dependent thermophysical properties of
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both, the liquid and the gas phase are taken into account. To
modify the liquid–gas heat transfer and to influence hydro-
dynamic instabilities an axisymmetric axial flow is imposed
in the gas phase.

Problem Formulation

A liquid bridge of length llb is kept in place by surface-
tension forces between two concentric solid rods of radius
ri . The support cylinders with lengths lcold and lhot are
mounted coaxially in a large cylindrical tube with radius
ro > ri (Fig. 1). The rods are kept at different temperatures
Tcold = T0 − ΔT/2 and Thot = T0 + ΔT/2, respectively,
with constant mean temperature T0 = 25◦C. Due to the
temperature dependence of the surface tension σ(T ) ≈
σ0(T0) − γ (T − T0), where γ is the negative linear
Taylor coefficient of the surface tension and the subscript
0 denotes the reference values, the fluid flow is driven by
thermocapillary stresses along the liquid–gas interface. A
gas stream with constant mean velocity wg is imposed in
the annular gap surrounding the liquid bridge.

The symmetries of the problem allow for an axisymmet-
ric and time-independent thermocapillary-driven basic flow.
The basic flow is stably realized for sufficiently small tem-
perature differences ΔT . To properly take care of larger
temperature differences the temperature dependence of the
density �(T ), the specific heat capacity cp(T ), the heat con-
ductivity λ(T ) and the dynamic viscosity μ(T ), are taken
into account in the governing equations. For this purpose
the functional dependence of these material parameters are
implemented according to the data sheet for Shin-Etsu sili-
cone oils (Shin-Etsu 2004), the working fluid in the planned
space experiment JEREMI (Shevtsova et al. 2014). The

steady state version of the continuity, Navier–Stokes and
energy equations read

∇ · (�u) = 0, (1.a)

∇ · (� uu) = −∇p + ∇ ·
{
μ

[
∇u + (∇u)T

]}
, (1.b)

∇ · (
�ucpT

) = ∇ · (λ ∇T ) , (1.c)

where u = uer + wez is the axisymmetric velocity vector
written in cylindrical coordinates, p the pressure and T the
temperature field. Equations (1.1a-c) remain valid for the
gaseous phase by simply considering the thermophysical
properties of Argon

(
�g, c

g
p, λg, μg

)
, which is the foreseen

working gas for the JEREMI experiment. The correlation
equations for the temperature-dependent properties of argon
are taken from VDI Wärmeatlas (2010). The properties of
the liquid phase are denoted

(
�, cp, λ, μ

)
.

In addition to the usual no-slip conditions on all solid
walls, we prescribe the fully developed annular velocity
profile and the outflow condition ∂zu = 0 at the inlet and at
the outlet of the annular gap, respectively. While the outer
cylinder is assumed adiabatic, the gas temperature at the
inlet (z = 0) and the outlet (z = ltotal = lcold + llb + lhot)

are assumed to equal the respective temperatures of the
cylindrical rods. On the axis at r = 0 an axisymmetric flow
requires

u = ∂rw = ∂rT = 0. (2)

On the a priori unknown location of the liquid–gas
interface, three kinds of boundary conditions have to be
satisfied. The thermal boundary conditions

T = T g and kn · ∇T = kgn · ∇T g (3)

Fig. 1 Computational domain: liquid and gaseous phase; dash-dotted line: axis of symmetry; radius of the rods: ri , radius of the outer cylinder:
ro, length of the liquid bridge: llb, lengths of the cold and hot rod, respectively: lcold and lhot
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ensure continuity of the temperature and the heat flux across
the interface, where n is the outward-pointing unit normal
vector to the interface. Here, k and kg denote the heat
conductivities of the liquid and of the gas, respectively. The
kinematic boundary conditions

u = ug, w = wg, u/w = ∂zhsf (4)

imply not only the no-slip condition at the interface, but also
define the axisymmetric shape of the liquid bridge hsf(z) to
be a streamline. We consider the volume ratio

V =
∫ llb
0 h2sf(s) ds

r2i llb
= 1, (5)

which is the liquid volume normalized by the volume of
the cylindrical gap between the two rods. The dynamic
boundary condition

S · n + σ (∇ · n)n − (I − nn) · ∇σ = Sg · n (6)

expresses the continuity of stresses, with I being the identity
matrix and S = pI + μ

[ ∇u + (∇u)T
]
the stress tensor

(Kuhlmann 1999).
After solving the axisymmetric version of (1.b) – (1.c)

simultaneously for both phases, coupled by the interface
boundary conditions (3) – (6), we perform a linear stability
analysis of the obtained solution (basic state). To this end
the variables q = (u, p, T ,ug, pg, T g) of the total flow

q = q0(r, z) + q̃(r, ϕ, z, t) (7)

are decomposed into an axisymmetric part q0 =
(u0, p0, T0,ug, pg, T g) and time-dependent three dimen-
sional perturbations q̃ = (ũ, p̃, T̃ , ũg, p̃g, T̃ g). Inserting
ansatz (7) into the time-dependent three-dimensional ver-
sion of (1.a-c), one obtains, after linearization with respect
to the infinitesimal perturbations, a set of linear differential
equations. This can be solved by the normal-mode ansatz

q̃ =
∑
j,m

q̂j,m(r, z)eγj,mt+imϕ + c.c., (8)

resulting in an eigenvalue problem for the complex
amplitudes q̂j,m, where γj,m is the complex growth rate,
m the azimuthal wave number and the index j numbers
the discrete part of the spectrum. Varying the imposed
temperature difference ΔT between the two rods, one
can find a solution q̂j,m with maxj,m �(γj,m) = 0. The
corresponding critical temperature difference ΔTc is of key
interest to our investigation.

Due to the temperature dependence of the thermophysi-
cal properties, one cannot take advantage of reformulating
the governing equations including the boundary conditions
in non-dimensional form. Thus, we solve all equations in

Table 1 Geometrical parameters. All dimensions are given in mm

lcold llb lhot ri ro

5 {5; 9} 5 5 15

dimensional form and compute the critical thermocapillary
Reynolds number

Rec = γ llbΔTc

μ2
0/�0

(9)

a posteriori. The dimensions of the geometry are given in
Table 1. In the planned space experiment, the distance llb
between the two rods will be adjustable such that different
aspect ratios 	 = llb/ri can be realized. In this study we
focus on two aspect ratios 	 = 1 and 	 = 1.8.

Numerical Methods and Code Verification

The governing set of equations is discretized using
second-order finite volumes on a staggered grid. A
structured mesh with approximately 100.000 cells is used
with a hyperbolic-tangent type of refinement towards all
boundaries (Thompson et al. 1985). In order to resolve
the thin thermal boundary layer occurring in high-Prandtl-
number flows (Kuhlmann 1999) we choose a minimal cell
size of Δmin = 5 × 10−5 × llb on all boundaries of
the liquid bridge except for the axis of symmetry. Such a
small cell size is required near the boundaries to obtain
grid convergence. Furthermore, we introduce body-fitted
coordinates (ξ, η)

ξ = r

hsf
and η = z

ltotal
, (10)

in order to map the computational domain for arbitrary
interface shapes hsf to a rectangular domain (see Fig. 2).

The resulting non-linear equations for the basic state
are solved by the Newton-Raphson iteration. For the
linear stability analysis the same discretization and solution
methods are used.

Due to the lack of data in the literature for Pr = 68,
the basic state obtained by our code for an indeformable
interface has been compared by independent calculations of
F. Romanò (private communication, see also Romanò et al.
(2017)). All results compare very well qualitatively as well
as quantitatively, even though both codes differ and different
grids have been used.

To verify the flow-induced interface deformations hsf −
ri , we have compared our results with the asymptotic
solution of Kuhlmann and Nienhüser (2002) who provided
explicit data for the thermocapillary low-Reynolds number
flow with Re = 10−4 and Pr = 0.02 (see Fig. 2 in
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Fig. 2 Example for the
body-fitted computational grid

Kuhlmann and Nienhüser (2002)). An excellent agreement
was found. It would also be interesting to further compare
the shape of the liquid–gas interface with experimental
measurements of Matsunaga et al. (2012) for an isothermal
liquid bridge under normal gravity.

Results

Modes of neutral stability are found for different azimuthal
wave numbers m. Figure 3 shows the corresponding neutral
thermocapillary Reynolds numbers as function of the

strength of the gas flow (wgllb) for 	 = 1, where wg is the
mean inlet velocity of the forced gas stream, i.e.

wg = 2

r2o − r2i

∫ ro

ri

wg(r)
∣∣
z=0r dr . (11)

As can be seen, the critical mode belongs to m = 1
for the whole range of mean inlet velocities considered.
While positive values on the abscissa denote a gas stream
which opposes the thermocapillary stresses on the interface

Fig. 3 Stability diagram for
	 = 1: Neutral and critical
Reynolds numbers Rec as
functions of wgllb; vertical
dashed lines and yellow dots
indicate reference values of the
mean inlet gas velocity
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Fig. 4 Stability diagram for
	 = 1.8: Neutral and critical
Reynolds numbers Rec as
functions of wgllb; vertical
dashed lines and yellow dots
indicate reference values of the
mean inlet gas velocity

(typically a counterflow situation), negative values indicate
the gas flow is assisting thermocapillary stresses on the
interface (typically a co-flow situation, inset in Fig. 3).
Figure 3 reveals that co-flow of the gas has a stabilizing
effect on the basic state: The critical Reynolds number
sharply increases as wgllb is decreased from zero. In
contrast, positive mean inlet velocities (counter-flow) leads
to a significant destabilization of the basic state, even for a
weak gas flow. Note the Reynolds number in Fig. 3 is shown
on a logarithmic scale. We find Rec(w

g = 0) = 527 with a
remarkable slope of ∂Rec/∂(w

g

0 llb)
∣∣
w

g
0=0 = 11 s/mm2.

The vertical dashed lines and yellow dots in Fig. 3
indicate the reference gas-flow velocities wg = {0; ±10;
±100} mm/s for a comparison with future experiments.
In order to relate the Reynolds number to the temperature
difference ΔT the horizontal dashed line marks a temper-
ature difference of ΔT = 100 ◦C. Such large temperature
difference will be difficult if not impossible to achieve in
experiments, because the correspondingly low Tcold in a
normal environment may not be easily achievable and the
associated high Thot will result in a significant evapora-
tion of the liquid, which is not considered in the present
model. Hence, the onset of three-dimensional flow (in case
the bifurcation is supercritical) will hardly be observable
experimentally for wg = −100mm/s.

Neutral and critical Reynolds numbers for a longer liquid
bridge with 	 = 1.8 are shown in Fig. 4. Qualitatively,
the behavior of Re for co- and counter-flow situations is
comparable to the previous case, with m = 1 again being the
critical wave number. Neutral Reynolds numbers for larger
wave numbers m > 1 are relatively insensitive to the gas flow

rate. The critical curve (blue, m = 1), however, exhibits
sharp cusps. The critical mode changes discontinuously at
the respective gas-flow rates.

Discussion and Conclusion

All results presented have been obtained with our in-house
code written in MATLAB. It has been extensively verified
and validated. The code is capable of taking into account
flow-induced surface deformations as well as temperature-
dependent properties and is thus applicable in a wide range
of flow parameters.

For both aspect ratios investigated, the neutral curves
depend sensitively on the gas-flow direction. The forced gas
flow has a significant stabilizing effect on the axisymmetric
basic state if the gas stream is directed parallel to the
thermocapillary stresses. In that case, the heat loss of the
liquid phase to the gas phase through the free surface
is reduced and may even be inverted such that the
liquid becomes heated by the hot gas. In the counterflow
configuration, on the other hand, the heat loss of the liquid
phase to the gas through the free surface is enhanced, thus
increasing temperature gradients in the liquid which leads
to a destabilization of the basic flow.

Considering 	 = 1.8, there exist ranges of the gas
flow rate, e.g. at wgllb = −4000mm2/s, at which we
find three neutral Reynolds numbers. If the basic flow is
destabilized at the lowest critical Reynolds number, it may
possibly be re-stabilized at the middle neutral Reynolds
number to again become unstable at the third (largest neutral
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Reynolds number). Since the scenario will very much
depend on the nonlinear behavior of the three-dimensional
flow, it would be very interesting to investigate such case
experimentally and numerically. Another interesting feature
is the appearance of three cusps for of the critical curve
for m = 1. These are absent for 	 = 1. These cusps
are caused by changes of the critical mode. Therefore,
an interesting nonlinear dynamics of the three-dimensional
flow is expected near these parameters.

For a gas flow parallel to the thermocapillary stresses
very high critical temperature differences are predicted by
the current flow model. It would be interesting to investigate
these parameters experimentally to validate our model
for such extreme parameters. Most likely, for temperature
differences of ΔTc = 100◦C or larger, other effects must
be included in the numerical model. Candidates for such
physical effects are evaporation of liquid (Simic-Stefani
et al. 2006) and radiative heat exchange (Shitomi et al.
2019).

The critical Reynolds number is found to depend very
sensitively on the gas flow rate near the limiting case
of wg = 0. Therefore, in order to be able to compare
with experiments, the experimental gas flow must be
homogenous in the azimuthal direction ϕ and in time.
Moreover, it is recommended to accurately determine the
velocity profile wg(r) of the gas flow at some stage z before
reaching the liquid bridge.

Under zero gravity and in the absence of a forced
gas flow the dynamic surface deformations are very
small (Kuhlmann and Nienhüser 2002). The dynamic
deformations due to the imposed gas flow, however, can
reach up to 1% of ri for the considered range of mean inlet
velocities, depending on the gas flow rate and its direction.
As expected, the deformations increase for an increasing
aspect ratio 	. When the dynamic surface deformation is
taken into account in the basic state the critical Reynolds
number changes by less than ±0.8% compared to the case
of a cylindrical interface. This change in Rec is comparable
to the magnitude of the shape change. However, the largest
change of Rec does not generally arise for the gas flow rate
at which the dynamic interfacial deformation is largest.

Finally, we note that all results have been obtained
for temperature-dependent material properties. This more
accurate modeling is required to be able to predict the
critical Reynolds number for the liquid bridges foreseen in
the JEREMI experiment. These liquid bridges are relatively
small and have a very high Prandtl number, thus a high
viscosity. As a certain drawback, the results, in particular
the critical Reynolds number, may depend on the size of
the liquid bridge. The variation with temperature of the
material properties can be disregarded thus facilitating the
numerical modeling, if larger and less viscous liquid bridges
are studied, because for a given critical Reynolds number

Rec the required temperature difference is much smaller, see
(9).
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