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Abstract
This article is devoted to the generalization of the Drazin pre-order and the G-Drazin par-
tial order to Core-Nilpotent endomorphisms over arbitrary k-vector spaces, namely, infinite
dimensional ones. The main properties of this orders are described, such as their respective
characterizations and the relations between these orders and other existing ones, generalizing
the existing theory for finite matrices. In order to do so, G-Drazin inverses are also studied in
this framework. Also, it includes a generalization of the space pre-order to linear operators
over arbitrary k-vector spaces.
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1 Introduction

The theory ofMatrix Partial Orders has been flourishing alongside advances inMatrix Gener-
alized Inverses, with numerous applications during the past years. See for instance, [9], with
the use of the sharp order for the study of autonomous systems, [20], where matrix partial
orders are used to study matrix equations and inequations or [5], in which control systems are
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studied using this theories. The vast amount of its applications makes this a topic in which
it is specially important to obtain as much information from each of the partial orders as
possible. Therefore, following the philosophy of [1], this article presents the generalization
of some of the most used pre-orders and partial orders to arbitrary vector spaces, usually
infinite dimensional ones, over fields of arbitrary characteristic. This new insight has turned
to be a powerful tool in such a way that, after generalizing the known theories, one can obtain
new results for finite square matrices by specialization and one is able to proof the existing
ones on more natural ways.

Let us consider an arbitrary (n × n)-matrix A with entries in a general field k. In [11,
Theorem 2.2.21], it has been proven that A can be written as the sum of two matrices A1 and
A2 such that

• rk (A1) = rk (A2
1
) (where rk denotes the rank of the matrix);

• A2 is nilpotent;
• A1 A2 = A2 A1 = 0.

The matrices A1 and A2 are called the core and nilpotent parts of A, respectively, and this
decomposition is unique. This ideas were generalized to arbitrary vector spaces (in general,
of infinite dimension, see [13, 14], for details), leading to a new theory of Core-Nilpotent
endomorphisms. The main idea in this notes is to generalize: the theory presented in [11,
Section 3.2], about the space pre-order, to linear operators over arbitrary vector spaces,
some of the results in [11, Section 4.4] dealing with the Drazin pre-order; to Core-Nilpotent
endomorphisms and finally the G-Drazin partial order, [21, Section 3], to Core-Nilpotent
endomorphisms.

The paper is organized as follows.
In Sect. 2, basic definitions and results of the theory of finite potent endomorphisms, Core-

Nilpotent endomorphisms, Generalized Inverses and Matrix Partial Orders are summarized.
In Sect. 3, the space pre-order is generalized to linear operators over arbitrary k-vector

spaces. It is worth noting that in Theorem 3.18 a characterization of the space pre-order is
presented, showing its strong relation to the study of 1-inverses.

Section4 deals with the generalization of the Drazin pre-order to Core-Nilpotent endo-
morphisms. Briefly, it contains the relation of this pre-order with the sharp order (and to
g-commuting inverses), with the Drazin inverse and the class of all endomorphisms above a
Core-Nilpotent endomorphism from this order is presented. Also, the relations between the
AST-decompositions of two Core-Nilpotent endomorphisms related by this order is studied
in depth, reaching a complete description of how the k-vector spaces are decomposed, see
Propositions 4.16 and 4.19.

As one of the main objectives of this work was to study the G-Drazin partial order in
the framework of Core-Nilpotent endomorphisms, the study of G-Drazin inverses for Core-
Nilpotent endomorphisms was mandatory. Section5 is related to this task. It contains a
characterization of G-Drazin inverses in terms of the AST-decomposition induced in a vector
space by a Core-Nilpotent endomorphism.

In Sect. 6 the G-Drazin partial order is generalized to Core-Nilpotent endomorphisms.
Among other results, it contains the relation between this partial order and other studied
pre-orders with constraints, several characterizations of the order, the relation between the
G-Drazin inverses of two Core-Nilpotent endomorphisms related by the order... The proof
that this order is indeed a partial order on the set of Core-Nilpotent endomorphisms (Theo-
rem 6.14) relies heavily on all the previous study of the space pre-order, G-Drazin inverses
and the exhaustive description of the AST-decompositions.
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In Sect. 7 some remarks and considerations are included, as well as some open questions
dealing with the previous work.

As far as the author knows, the study of all these topics (using linear algebra techniques)
on infinite dimensional vector spaces is not present in literature. It is also worth mentioning
that all the generalizations done here are compatible with the theory exposed in literature for
finite matrices.

2 Preliminaries

Firstly, let us point out some notations that will appear all through the monograph. The
use of k will denote a field of arbitrary characteristic, V will stand for an arbitrary k-
vector space (in general, infinite dimensional) and, fixing an endomorphism ϕ ∈ Endk(V ),

then Xϕ(1), Xϕ(1, 2), Xϕ(g−), Xϕ(GD), denote the sets of 1-inverses, reflexive generalized
inverses, g-commuting inverses and G-Drazin inverses of the endomorphism ϕ, in whatever
way one could define them.

2.1 Finite potent endomorphisms

Let k be an arbitrary field and let V be a k-vector space. Let us now consider an endomorphism
ϕ of V . We say that ϕ is “finite potent” if ϕnV is finite dimensional for some n. This definition
was introduced by Tate [19] as a basic tool for his elegant definition of Abstract Residues.

In 2007,M.Argerami, F. Szechtman andR.Tifenbach showed in [2] that an endomorphism
ϕ is finite potent if and only if V admits a ϕ-invariant decomposition V = Uϕ ⊕ Wϕ such

that ϕ|Uϕ
is nilpotent, Wϕ is finite dimensional and ϕ|Wϕ

: Wϕ
∼−→ Wϕ is an isomorphism.

Indeed, if k[x] is the algebra of polynomials in the variable x with coefficients in k, we
may view V as a k[x]-module via ϕ, and the explicit definition of the above ϕ-invariant
subspaces of V is:

• Uϕ = {v ∈ V such that ϕm(v) = 0 for some m};
• Wϕ =

{
v ∈ V such that p(ϕ)(v) = 0 for some p(x) ∈ k[x]
relatively prime to x

}
.

Note that if the annihilator polynomial of ϕ is xm · p(x) with (x, p(x)) = 1, then Uϕ =
Ker ϕm and Wϕ = Ker p(ϕ).

Hence, this decomposition is unique. We shall call this decomposition the ϕ-invariant
AST-decomposition of V .

Moreover, we shall call “index of ϕ”, i(ϕ), to the nilpotent order of ϕ|Uϕ
. One has that

i(ϕ) = 0 if and only if V is a finite-dimensional vector space and ϕ is an automorphism.
Basic examples of finite potent endomorphisms are all endomorphisms of a finite-

dimensional vector spaces and finite rank or nilpotent endomorphisms of infinite-dimensional
vector spaces.

2.2 Core-Nilpotent endomorphisms

Let us consider a square matrix A with entries in a general field k. The index of A, i(A) ≥ 0,
is the smallest integer such that rk(Ai(A)) = rk(Ai(A)+1). In [11, Theorem 2.2.21], it has
been proven that A can be written as the sum of two matrices A1 and A2 such that
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• rk(A1) = rk(A2
1
) i.e. i(A1) ≤ 1;

• A2 is nilpotent;
• A1 A2 = A2 A1 = 0.

The matrices A1 and A2 are called the core and nilpotent parts of A, respectively, and this
decomposition is unique.

If k is a field, given a finite-dimensional k-vector space E we can define the index of an
endomorphism f ∈ Endk(E), i( f ), as the smallest integer such that Im f i( f ) = Im f i( f )+1.

Bearing in mind the well known relationship between endomorphisms and matrices one can
easily translate the previous theory to endomorphisms on a finite dimensional k-vector space.

Let us now consider an arbitrary k-vector space V (in general, infinite dimensional). In
[14], the general theory of core-nilpotent endomorphisms of arbitrary vector spaces was
developed.

If we denote by Autk(V ) the group of k-linear automorphisms of a vector space V then
one has the following:

Definition 2.1 [14, Definition 3.2] An endomorphism ϕ ∈ Endk(V ) has index 0 when ϕ ∈
Autk(V ). Given m ∈ N, an endomorphism ϕ ∈ Endk(V ) has index m when Ker ϕm �=
Ker ϕm−1 or Im ϕm �= Im ϕm−1, Ker ϕm = Ker ϕm+1 and Im ϕm = Im ϕm+1. The index of
an endomorphism ϕ is denoted by i(ϕ).

Definition 2.2 [14, Definition 3.4] We say that an endomorphism ϕ ∈ Endk(V ) is core-
nilpotent (CN-endomorphism) when there exist two endomorphisms ϕ1 , ϕ2 ∈ Endk(V ) such
that

• ϕ = ϕ1 + ϕ2 ;
• i(ϕ1) ≤ 1;
• ϕ2 is nilpotent;
• ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1 = 0.

Basic examples of CN-endomorphisms are all endomorphisms of a finite dimensional
vector space, finite potent endomorphisms, automorphisms and nilpotent endomorphisms
of infinite-dimensional vector spaces. Several results were given, as the characterization of
CN-endomorphisms:

Theorem 2.3 [14, Theorem 3.6] If ϕ ∈ Endk(V ), then the following conditions are equiva-
lent:

(1) ϕ is a CN-endomorphism.
(2) Ker ϕm = Ker ϕm+1 and Im ϕm = Im ϕm+1 for a certain m ∈ N.
(3) V = Ker ϕm ⊕ Im ϕm for a certain m ∈ N.

(4) There exists a unique decomposition V = Wϕ ⊕Uϕ, where Wϕ and Uϕ are ϕ-invariant
k-subspaces of V , ϕ|Wϕ

∈ Autk(Wϕ) and ϕ|Uϕ
is nilpotent.

One obtains as a corollary that the core-nilpotent decomposition of a core-nilpotent endo-
morphism is unique.

Following the parallelism with matrix theory, we will refer to ϕ1 or ϕ|Wϕ
as the core part

of the endomorphism and to ϕ2 or ϕ|Uϕ
as the nilpotent part of the endomorphism.

From this characterization, several properties of Core-Nilpotent endomorphisms were
studied, in particular, it was shown that:

Lemma 2.4 [14, Lemma 3.13] The index of an endomorphism ϕ ∈ Endk(V ) exists if and
only if ϕ is a Core-Nilpotent endomorphism.

123



On some pre-orders and partial orders of linear operators on…

2.2.1 CN decomposition of a finite potent endomorphism

Let V be again an arbitrary k-vector space.Given a finite potent endomorphismϕ ∈ Endk(V ),
there exists a unique decomposition ϕ = ϕ1 + ϕ2 , where ϕ1 , ϕ2 ∈ Endk(V ) are finite potent
endomorphisms satisfying that:

• i(ϕ1) ≤ 1;
• ϕ2 is nilpotent;
• ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1 = 0.

Also, the following hold:

ϕ = ϕ1 ⇐⇒ Uϕ = Ker ϕ ⇐⇒ Wϕ = Im ϕ ⇐⇒ i(ϕ) ≤ 1. (2.1)

Moreover, if V = Wϕ ⊕Uϕ is the AST-decomposition of V induced by ϕ, then ϕ1 and ϕ2

are the unique linear maps such that:

ϕ1(v) =
{

ϕ(v) if v ∈ Wϕ

0 if v ∈ Uϕ

and ϕ2(v) =
{

0 if v ∈ Wϕ

ϕ(v) if v ∈ Uϕ

. (2.2)

2.2.2 Jordan bases of a nilpotent endomorphism

Let V be a vector space over an arbitrary field k and let g ∈ Endk(V ) be a nilpotent endo-
morphism. If m is the nilpotency index of g, according to the statements of [12], setting
Ug
i = Ker gi/[Ker gi−1 + g(Ker gi+1)] with i ∈ {1, 2, . . . ,m}, μi (V , g) = dimkU

g
i and

Sμi (V ,g) a set such that #Sμi (V ,g) = μi (V , g) with Sμi (V ,g) ∩ Sμ j (V ,g) = ∅ for all i �= j , one
has that there exists a family of vectors {vsi } that determines a Jordan basis of g:

B =
⋃

si ∈ Sμi (V ,g)

1 ≤ i ≤ m

{vsi , g(vsi ), . . . , gi−1(vsi )}. (2.3)

Moreover, if we write Hg
si = 〈vsi , g(vsi ), . . . , gi−1(vsi )〉, the basis B induces a decomposi-

tion

V =
⊕

si ∈ Sμi (V ,g)

1 ≤ i ≤ m

Hg
si . (2.4)

2.2.3 Bases of a finite potent endomorphism

Let us now consider a finite potent endomorphism ϕ ∈ Endk(V ) with CN-decomposition
ϕ = ϕ1 + ϕ2 and that induces the AST-decomposition V = Uϕ ⊕ Wϕ . Keeping the above
notation, if m is the nilpotency order of ϕ2, we can construct a basis BV = BWϕ ∪ BUϕ of V
where

BWϕ = {w1, . . . , wr }
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is a basis of Wϕ (r = dimk Wϕ) and

BUϕ =
⋃

si ∈ Sμi (Uϕ,ϕ)

1 ≤ i ≤ m

{vsi , ϕ(vsi ), . . . , ϕ
i−1(vsi )}

is a Jordan basis of Uϕ determined by ϕ|Uϕ
.

If ϕ = ϕ1 + ϕ2 is the CN-decomposition of ϕ, it is clear that

BUϕ =
⋃

si ∈ Sμi (Uϕ,ϕ)

1 ≤ i ≤ m

{vsi , ϕ2(vsi ), . . . , ϕ
i−1
2

(vsi )}

and

Ker ϕ =
⊕

si ∈ Sμi (Uϕ,ϕ)

1 ≤ i ≤ m

〈ϕi−1(vsi )〉 =
⊕

si ∈ Sμi (Uϕ,ϕ)

1 ≤ i ≤ m

〈ϕi−1
2

(vsi )〉.

2.3 Generalized inverses

If A ∈ Matn×m(k) is a matrix with entries in an arbitrary field k, a matrix A− ∈ Matm×n(k)
is a 1-inverse of A when AA−A = A. Moreover, we say that a matrix A+ ∈ Matm×n(k) is a
reflexive generalized inverse of A when A+ is a 1-inverse of A and A is a 1-inverse of A+,

this is, AA+A = A and A+AA+ = A+. Similarly, given two k-vector spaces V and W and
a linear map ϕ : V → W , we will say thay a morphism ϕ− : W → V is a 1-inverse of ϕ

when ϕ ◦ ϕ− ◦ ϕ = ϕ and that a linear map ϕ+ : W → V is a reflexive generalized inverse
of ϕ when ϕ+ is a 1-inverse of ϕ and ϕ is a 1-inverse of ϕ+.

2.3.1 Drazin generalized inverse

Given a matrix A ∈ Matn×n(k), M.P Drazin studied, in [4], the existence of an unique
matrix that he denoted AD ∈ Matn×n(k) and later was named in his honour as Drazin
inverse, satisfying the following equations:

AD AAD = AD;
AD A = AAD;

Am+1AD = Am, for i(A) = m.

(2.5)

S.L. Campbell, in 1976, approached firstly the study of a Drazin inverse for ”infinite-
dimensional” complex matrices in [3]. Considering an arbitrary k-vector space and a finite
potent endomorphism, F. Pablos Romo proved the existence and uniqueness of the Drazin
inverse of a finite potent endomorphism in [16], as well as some important properties that
are briefly recalled here:
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Theorem 2.5 [16, Theorem 3.4] For each finite potent endomorphism ϕ ∈ Endk(V ), there
exists an unique finite potent endomorphism ϕD ∈ Endk(V ) satisfying:

ϕDϕϕD = ϕD;
ϕDϕ = ϕϕD;

ϕm+1ϕD = ϕm, .

(2.6)

for i(ϕ) = m the index of ϕ (Definition 2.1).

Thus, if the AST-decomposition induced by ϕ is V = Wϕ ⊕ Uϕ, the unique linear map
ϕD that could satisfy the three conditions of the previous theorem is:

ϕD(v) =
{

(ϕ|Wϕ
)−1(v) if v ∈ Wϕ

0 if v ∈ Uϕ
(2.7)

for any v ∈ V .

Indeed:

Theorem 2.6 [16, Theorem 4.8] An endomorphism ϕ ∈ Endk(V ) has a Drazin inverse if and
only if ϕ is a Core-Nilpotent endomorphism.

As a direct result of this theorem the uniqueness of the Drazin inverse for Core-Nilpotent
endomorphisms is guaranteed.

2.3.2 Group inverse

Given a matrix A ∈ Matn×n(k), it is known that the system of equations:

AX A = A;
X AX = X;
AX = X A,

(2.8)

has a solution if and only if i(A) ≤ 1 and the solution is unique. The solution to this system
is known as the group inverse of A and it is denoted as A#. Following the philosophy of
the previous section, the author of [15], generalized the notion of group inverse of a matrix
to arbitrary k-vector spaces. Consequently, given an arbitrary k-vector space, he proved that
given a finite potent endomorphism ϕ ∈ Endk(V ), if there exists a group inverse ϕ# ∈
Endk(V ), then i(ϕ) ≤ 1, see [15] for details. Moreover, the following theorem was given:

Theorem 2.7 If ϕ ∈ Endk(V ) is a finite potent endomorphism with i(ϕ) ≤ 1, then ϕD = ϕ#

is the unique group inverse of ϕ, where ϕD is its Drazin inverse.

2.3.3 G-Drazin inverse of a finite matrix

Given A ∈ Matn×n(C) with i(A) = m, H.Wang and X.Liu introduced in [21] the concept
of G-Drazin inverse of A as a solution X of the system

AX A = A;
X Am+1 = Am;
Am+1X = Am,

(2.9)
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where X is a (n × n)-matrix with entries in C.

Given the following matricial system:

AX A = A;
X Am = AmX

(2.10)

C. Coll, M.Lattanzi and N.Thome proved in [6] that a matrix X ∈ Matn×n(C) is a solution
of the system (2.9) if and only if it is a solution of system (2.10).

In fact, recall that if J is the Jordan matrix associated with A ∈ Matn×n(C), such that
A = B · J · B−1, with B being a non-singular matrix and

J =
(
J1 0
0 J0

)
,

with J0 and J1 being the parts of J corresponding to zero and non-zero eigenvalues respec-
tively, one can obtain a G-Drazin inverse as

AGD = B ·
(
J−1
1 0
0 J−

0

)
· B−1,

where J−
0 is a 1-inverse of J0.

2.3.4 1-inverses

Recently, F. Pablos Romo and the author of the present paper have been able to offer a
method for the explicit computation of all 1-inverses of an arbitrary square matrix. The
main tool to obtain this algorithm was the characterization of the set of 1-inverses of a finite
potent endomorphism. Let us briefly recall one result presented in [17] that will enable us to
generalize the characterization of the set of 1-inverses for Core-Nilpotent endomorphisms.

Let us consider a finite potent endomorphism ϕ ∈ Endk(V ) that induces an AST-
decomposition V = Wϕ ⊕ Uϕ. Bearing in mind the basis of a finite potent endomorphism,
Sect. 2.2.3, and the well known definition of 1-inverse (to witness, ϕ− ∈ Endk(V ) is a
1-inverse of ϕ if ϕϕ−ϕ = ϕ):

Proposition 2.8 [17, Proposition 3.3] If ϕ ∈ Endk(V ) is a finite potent endomorphism, then
an endomorphism ϕ− ∈ Endk(V ) is a 1-inverse of ϕ if and only if ϕ− satisfies that

• ϕ−(wh) = (ϕ|Wϕ
)−1(wh) + uh for each h ∈ {1, . . . , r};

• ϕ−(ϕ j (vsi )) = ϕ j−1(vsi ) + u j
si for every si ∈ Sμi (Uϕ,ϕ) and j ∈ {1, . . . , i − 1};

• ϕ−(vsi ) = ṽsi for every si ∈ Sμi (Uϕ,ϕ);

where ṽsi ∈ V and uh, u
j
si ∈ Ker ϕ for each h ∈ {1, . . . , r} and for every si ∈ Sμi (Uϕ,ϕ) and

j ∈ {1, . . . , i − 1}.
Let us point that Core-Nilpotent endomorphisms have not been classified. More precisely,

bearing in mind the characterization of Core-Nilpotent endomorphisms presented in state-
ment (4) of Theorem 2.3 and the fact that nilpotent endomorphisms over arbitrary k-vector
spaces have been classified (recall Sect. 2.2.2), arbitrary isomorphisms of k-vector spaces
have not been classified. In other terms, we do not have a Jordan basis for them. For instance,
if we consider the R-vector space of countable dimension

V =
⊕
i∈N

< vi >;
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then the endomorphism ϕ : kN → kN defined as:

ϕ(vi ) =
{
i · vi if i > 1
0 if i = 1

,

is a Core-Nilpotent endomorphism as V = Ker ϕ ⊕ Im ϕ but it does not admit annihilator
polynomial as it has infinite eigenvalues.

Despite this fact, the idea that ϕ|Wϕ
still remains an isomorphism of k-vector spaces is

still a powerful tool to work. In particular, it enables to characterize the 1-inverses of a
Core-Nilpotent endomorphism in an analogous way as the mentioned Proposition 2.8.

Proposition 2.9 If ϕ ∈ Endk(V ) is a Core-Nilpotent endomorphism, then an endomorphism
ϕ− ∈ Endk(V ) is a 1-inverse of ϕ if and only if ϕ− satisfies that

• ϕ−(wz) = (ϕ|Wϕ
)−1(wz) + uz for each wz ∈ Wϕ;

• ϕ−(ϕ j (vsi )) = ϕ j−1(vsi ) + u j
si for every si ∈ Sμi (Uϕ,ϕ) and j ∈ {1, . . . , i − 1};

• ϕ−(vsi ) = ṽsi for every si ∈ Sμi (Uϕ,ϕ);

where ṽsi ∈ V and uz, u
j
si ∈ Ker ϕ for every si ∈ Sμi (Uϕ,ϕ) and j ∈ {1, . . . , i − 1}.

Remark 2.10 However, we must point out that one can not obtain results in the line of [17,
Theorem 3.4], about the structure of the set of 1-inverses of Core-Nilpotent endomorphisms,
because for obvious reasons we do not have tools to give information about the cardinal of
ϕ|Wϕ

in a general way.

2.3.5 1-Inverses of nilpotent endomorphisms on arbitrary vector spaces

Let V denote an arbitrary k-vector space and let ϕ ∈ Endk(V ) be a nilpotent endomorphism,
this is, there exists some non-negative integer m such that ϕm = 0 (where we denote ϕm =
ϕ◦ m. . . ◦ϕ). With this conditions, the AST decomposition of V is V = Uϕ. Hence, following
the notations of Sect. 2.2.2, we know that a basis of V is:

BV =
⋃

si ∈ Sμi (V ,g)

1 ≤ i ≤ m

{vsi , ϕ(vsi ), . . . , ϕ
i−1(vsi )}.

for certain family of vectors {vsi }.Note that nilpotent endomorphisms over arbitrary k-vector
spaces are examples of Core-Nilpotent endomorphisms and finite potent endomorphisms.
Therefore, from Proposition 2.9 we immediately deduce that:

Corollary 2.11 If ϕ ∈ Endk(V ) is a nilpotent endomorphism, then an endomorphism ϕ− ∈
Endk(V ) is a 1-inverse of ϕ if and only if ϕ− satisfies the following conditions:

• ϕ−(ϕ j (vsi )) = ϕ j−1(vsi ) + u j
si ;• ϕ−(vsi ) = ṽsi ;

for every si ∈ Sμi (Uϕ,ϕ), where ṽsi ∈ Uϕ and u j
si ∈ Ker ϕ for every si ∈ Sμi (Uϕ,ϕ) and

j ∈ {1, . . . , i − 1}.
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2.4 Matrix partial orders

Let us recall some of the main matrix partial orders that are going to be present all along this
article. Note that a binary relation is called a pre-order if it is reflexive and transitive and it
is called a partial order if it is reflexive, transitive and antisymmetric on a non-empty set. As
it is usual in literature, we will denote by I1,m the set of all m × m matrices of index ≤ 1.
For matrices A, B ∈ Matm×m(k), we say:

• A is below B under the minus partial order and it is usually denoted as A <− B, if
A−A = A−B and AA= = BA=, for some 1-inverses of A A−, A=. [8].

• A is below B under the sharp partial order i.e. A <# B, if A, B ∈ I1,m, A#A = A#B
and AA# = BA# [1].

• A is below B under the C-N partial order i.e. A <#,− B, if A, B ∈ I1,m, A1 <# B1

and A2 <− B2, in which A = A1 + A2 and B = B1 + B2 are the core-nilpotent
decompositions of A and B, respectively. This orderwas introduced byMitra andHartwig
[10], and it is known that it implies the minus partial order [10, 11].

• A is below B under the Drazin pre-order i.e. A <D B, if AD A = ADB, AAD = BAD,

where AD denotes de Drazin inverse of A (see [11] for details).

2.4.1 G-Drazin partial order for matrices

Let us briefly recall the main ideas of the G-Drazin partial order, which was introduced in
[21, Section 3]. It will be later studied in depth for Core-Nilpotent endomorphisms in Sect. 6.

Definition 2.12 Let A, B ∈ Matm×m(C). Then A is said to be below B under the G-Drazin
order if there exist G-Drazin inverses A−

GD and A=
GD of A such that

A−
GD A = A−

GDB;
AA=

GD = BA=
GD .

(2.11)

When A is below B under the G-Drazin order, we denote A <GD B. It can be seen that if
A−
GD, A=

GD ∈ A{GD} (where we are denoting by A{GD} the set of G-Drazin inverses of
matrix A) then

AGD = A=
GD · A · A−

GD ∈ A{GD}.
This result enables to rewrite the conditions of Definition 2.11 and to obtain the first charac-
terization of the order. It follows that A <GD B if and only if there exists a G-Drazin inverse
AGD such that AGD A = AGDB and AAGD = BAGD .

Moreover, the following characterization of the G-Drazin order was offered:

Theorem 2.13 [21, Theorem 3.1] Let A, B ∈ Matm×m(C) and let the Jordan decomposition
of A be expressed as:

A = P ·
(
C 0
0 N

)
P−1,

where P and C are nonsingular and N is nilpotent. Then A <GD B if and only if

B = P ·
(
C 0
0 B4

)
· P−1,

where N <− B4.
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Moreover, in the same paper, it was proven that the order given in Definition 2.12 was
indeed a matrix partial order, for details see [21, Theorem 3.3].

2.4.2 Sharp partial order for Core-Nilpotent endomorphisms

In [1], the author of the present paper generalized the study of the sharp partial order of
matrices to Core-Nilpotent endomorphisms. Firstly, in order to do so, the g-commuting
inverses of Core-Nilpotent endomorphisms where characterized and studied in depth.

Definition 2.14 An endomorphism ψ ∈ Endk(V ) is a g-commuting inverse of ϕ when:

ϕ ◦ ψ ◦ ϕ = ϕ;
ϕ ◦ ψ = ψ ◦ ϕ.

Some of the results that are present in that article and that should be recalled now are the
following:

Definition 2.15 [1, Definition 4.2] Let us consider two Core-Nilpotent endomorphisms
ϕ,ψ ∈ Endk(V ) with i(ϕ) = i(ψ) ≤ 1. We say that ϕ is under ψ for the sharp order
if there exist Core-Nilpotent g-commuting inverses g1, g2 of ϕ such that ϕg1 = ψg1 and
g2ϕ = g2ψ.

When ϕ is below ψ under the sharp order, we write, as usual, ϕ <# ψ.

Some characterizations of the sharp order that were offered in [1] are:

Proposition 2.16 [1, Proposition 4.5, Corollary 4.6] Let ϕ and ψ be two Core-Nilpotent
endomorphisms. Then,

• ϕ <# ψ if and only if ϕ ◦ ϕ# = ψ ◦ ϕ# = ϕ# ◦ ψ = ϕ# ◦ ϕ;
• ϕ <# ψ if and only if ϕ2 = ϕψ = ψϕ.

Moreover, one has that:

Theorem 2.17 [1, Theorem 4.18] The relation <# (Definition 2.15) defines a partial order
in the set of Core-Nilpotent endomorphisms of index ≤ 1.

3 Space pre-order for linear operators on arbitrary vector spaces

This section contains a generalization of the Space pre-order to linear operators over arbitrary
k-vector spaces. This matrix pre-order was introduced in [11, Section 3.2] as a tool to study
most on the matrix partial orders that include 1-inverses on their respective definitions. The
original definition of the order involves the transpose matrix, therefore, as our interest deals
with linear operators on arbitrary vector spaces (in general, infinite dimensional ones), we
shall give a slightly different definition in the more general setting that specializes to the one
offered in [11, Definition 3.2.1].

Definition 3.1 [11, Definition 3.2.1] Let A and B be matrices (possibly rectangular) having
the same order. Then A is said to be below B under the space pre-order, if C(A) ⊆ C(B)

and C(At ) ⊆ C(Bt ) (where by C(A) we denote the column space of matrix A and by At we
mean the usual transpose matrix). We denote the space pre-order by <s and write A <s B,

whenever A is below B under <s .
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Let V be an arbitrary k-vector space.

Definition 3.2 Let us consider two linear operators ϕ,ψ ∈ Endk(V ). The linear operator ϕ

is said to be below the linear operator ψ under the space pre-order if:

Im(ϕ) ⊆ Im(ψ);
Ker(ψ) ⊆ Ker(ϕ).

When this happens we write ϕ <s ψ.

Remark 3.3 If E is a k-vector space of finite dimension and f ∈ Endk(E) is a linear operator,
then we know that

• Im f ∗ = (Ker f )◦.
• Given two subspaces of a vector space of finite dimension (in fact, this statement is true

in arbitrary dimension) H1, H2 ⊆ E, if H1 ⊆ H2 then (H2)
◦ ⊆ (H1)

◦.
• For any subspace of a vector space of finte dimension, H ⊆ E, then ((H)◦)◦ = H ,

where f ∗ is the transpose of f and H◦ is the incident subspace of H ⊆ E .

It is now easy to check that given two linear operators f , g ∈ Endk(E) then

Im f ∗ ⊆ Im g∗ if and only if Ker g ⊆ Ker f .

Accordingly, Definition 3.2 generalizes Definition 3.1 to arbitrary k-vector spaces.

Lemma 3.4 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms with V = Wϕ ⊕Uϕ

the AST decomposition induced by ϕ. If ϕ <s ψ then:

Wϕ ⊆ Im(ψ);
Ker(ψ) ⊆ Uϕ.

Proof This is an immediate consequence of Definition 3.2 and the following chains of
inclusions that are satisfied by every endomorphism. For i(ϕ) the index (Definition 2.1),

Ker ϕ ⊆ Ker ϕ2 ⊆ · · · ⊆ Ker ϕi(ϕ) = Ker ϕi(ϕ)+1 = Uϕ

and

Im ϕ ⊇ Im ϕ2 ⊇ · · · ⊇ Im ϕi(ϕ) = Im ϕi(ϕ)+1 = Wϕ.

��
Lemma 3.5 [17, Lemma 3.2] Given a linear operator ϕ ∈ Endk(V ) one has that ϕ− ∈
Endk(V ) is a 1-inverse of ϕ if and only if for every v ∈ V we have that

ϕ−(ϕ(v)) = v + u,

with u ∈ Ker(ϕ).

Lemma 3.6 Let ϕ,ψ ∈ Endk(V ) be two linear operators. Then

Im(ϕ) ⊆ Im(ψ) if and only if ϕ = ψψ−ϕ,

where ψ− ∈ Xψ(1).
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Proof Notice that if ϕ = ψψ−ϕ then, if v ∈ Im(ϕ), with v = ϕ(v′), we can write v =
ψ(ψ−ϕ(v′)) and v ∈ Im(ψ). Conversely, if Im(ϕ) ⊆ Im(ψ), then every v ∈ Im(ϕ) ⊆
Im(ψ) satisfies that v = ϕ(v′) = ψ(v̄) for some v′, v̄ ∈ V . Hence,

ψψ−ϕ(v′) = ψψ−ψ(v̄) = ψ(v̄) = ϕ(v′),

and the claim is deduced. ��
Lemma 3.7 Let ϕ,ψ ∈ Endk(V ) be two linear operators. Then

Ker(ψ) ⊆ Ker(ϕ) if and only if ϕ = ϕψ−ψ,

where ψ− ∈ Xψ(1).

Proof Firstly, let us suppose that Ker(ψ) ⊆ Ker(ϕ). For any v ∈ V , one has that

ψ−ψ(v) = v + u

with u ∈ Ker(ψ) ⊆ Ker(ϕ), so

ϕ(ψ−ψ(v)) = ϕ(v)

and we conclude. Conversely, let us suppose that ϕ = ϕψ−ψ, and v ∈ Ker(ψ). Clearly,

ϕ(v) = ϕψ−ψ(v) = 0,

so v ∈ Ker(ϕ) and the statement is proved. ��
Theorem 3.8 (Weak characterization of space pre-order) Let ϕ,ψ ∈ Endk(V ) be two linear
operators. Then

ϕ <s ψ if and only if ϕ = ψψ−ϕ = ϕψ−ψ,

where ψ− ∈ Xψ(1).

Proof The proof is a direct consequence of Lemma 3.6 and Lemma 3.7. ��
By substitution in the expression of ϕ in the last theorem one obtains the following:

Corollary 3.9 Let ϕ,ψ ∈ Endk(V ) be two linear operators. Then

ϕ <s ψ if and only if ϕ = ψψ−ϕψ−ψ,

where ψ− ∈ Xψ(1).

Remark 3.10 Let ϕ,ψ ∈ Endk(V ) be two linear operators and suppose that Xψ(1) ⊆ Xϕ(1).
Then

ϕ <s ψ if and only if ϕ = ψϕ̂ψ,

with ϕ̂ = ψ−ϕψ− ∈ Xϕ(1, 2).

Lemma 3.11 Let ϕ, φ ∈ Endk(V ) be linear operators over an arbitrary k-vector space. If
ϕψφ = 0 for every ψ ∈ Endk(V ) and φ �= 0, then ϕ = 0.

Proof Let v ∈ V such that ϕ(v) �= 0. We choose a suitable ψ such that v = ψ(w) for
w ∈ Im φ. Then, by hypothesis, it is

0 = ϕψφ(z) = ϕψ(w) = ϕ(v) �= 0,

and we conclude by contradiction. ��
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Corollary 3.12 If ϕ, φ ∈ Endk(V ) are two linear operators of a k-vector space V , such that
ϕψφ = 0 for every ψ ∈ Endk(V ) and ϕ �= 0, then φ = 0.

Proof It is a direct consequence of Lemma 3.11. ��
Theorem 3.13 The relation <s defines a pre-order in the set of linear operators.

Proof Reflexivity holds trivially. For transitivity, if ϕ,ψ, γ ∈ Endk(V ) are three linear
operators such that ϕ <s ψ and ψ <s γ then clearly

Im(ϕ) ⊆ Im(ψ) ⊆ Im(γ );
Ker(γ ) ⊆ Ker(ψ) ⊆ Ker(ϕ),

and from Definition 3.2 we deduce that ϕ <s γ. ��
Remark 3.14 Readers can find a counterexample for the anti-symmetric property in [11,
Section 3.2] that works for matrices and hence for linear operators.

Proposition 3.15 Let ϕ ∈ Endk(V ). Then, for every fixed ϕ− ∈ Xϕ(1) one has a bijection

ηϕ− : Endk(V ) � Xϕ(1)
φ �→ ϕ− + φ − ϕ−ϕφϕϕ−

ϕ−
2 − ϕ− ← � ϕ−

2

Proof Let us consider any φ ∈ Endk(V ) and let us fix ϕ− ∈ Xϕ(1). It is clear that

ϕ(ϕ− + φ − ϕ−ϕφϕϕ−)ϕ = ϕ + ϕφϕ − ϕφϕ = ϕ,

from where we deduce that ϕ− + φ − ϕ−ϕφϕϕ− is a 1-inverse of ϕ for any φ and ηϕ− is
well defined. Let ϕ−

2 ∈ Xϕ(1) be an arbitrary 1-inverse of ϕ. Now, taking φ = ϕ−
2 − ϕ− one

obtains:

ϕ−
2 = ϕ− + (ϕ−

2 − ϕ−) − ϕ−ϕ(ϕ−
2 − ϕ−)ϕϕ−;

and hence

ϕ−
2 = ϕ− + φ − ϕ−ϕφϕϕ−

as we wanted to show. By the election of φ we also conclude that φ is unique for every ϕ. ��
If we denote by I d to the identity endomorphism I d : V → V , then one can prove the

following result.

Corollary 3.16 Let ϕ ∈ Endk(V ). Then for every fixed ϕ− ∈ Xϕ(1), one has that the map

�ϕ− : Endk(V ) × Endk(V ) → Xϕ(1)
(γ, β) �→ ϕ− + (I d − ϕ−ϕ)γ + β(I d − ϕϕ−).

is surjective.

Proof Firstly, let us check that �ϕ− is well defined. For any γ, β ∈ Endk(V ), one has that

ϕ(ϕ− + (I d − ϕ−ϕ)γ + β(I d − ϕϕ−))ϕ = ϕ + ϕγϕ − ϕγϕ + ϕβϕ − ϕβϕ = ϕ;
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so �ϕ−(γ, β) ∈ Xϕ(1) for any γ, β ∈ Endk(V ). For surjectivity, let us consider any ϕ−
2 ∈

Xϕ(1). By Proposition 3.15, we know that there exists a unique φ ∈ Endk(V ) such that
ϕ−
2 = ηϕ−(φ). Taking γ = φϕϕ− and β = φ, we get that

(I d − ϕ−ϕ)γ + β(I d − ϕϕ−) = φϕϕ− − ϕ−ϕφϕϕ− + φ − φϕϕ− = φ − ϕ−ϕφϕϕ−;
so

�ϕ−(φϕϕ−, φ) = ηϕ−(φ) = ϕ−
2 ,

and we conclude.
In general, �ϕ− is not bijective. A counterexample is the following: given ϕ̂ ∈ Xϕ(1, 2),

then

�ϕ−(ϕ̂, ϕ̂) = �ϕ−(0, 0) = ϕ̂.

��
Theorem 3.17 Let ϕ,ψ, φ ∈ Endk(V ) be linear operators with ψ �= 0 �= φ. Then, for any
ϕ− ∈ Xϕ(1), ψϕ−φ is invariant under the election of ϕ− if and only if Im φ ⊆ Im ϕ and
Ker ϕ ⊆ Kerψ.

Proof Let ϕ− ∈ Xϕ(1). Notice that

ϕ− + (I d − ϕ−ϕ)γ + β(I d − ϕϕ−)

is a 1-inverse of ϕ for any γ, β ∈ Endk(V ), as it was shown in the proof of Corollary 3.16.
By hypothesis, one obtains that

ψ(ϕ− + (I d − ϕ−ϕ)γ + β(I d − ϕϕ−))φ = ψϕ−φ

for any γ, β ∈ Endk(V ), and hence:

ψ((I d − ϕ−ϕ)γ + β(I d − ϕϕ−))φ = 0; (3.1)

for any γ, β ∈ Endk(V ). Thus, taking β = 0 in (3.1) yields

ψ(I d − ϕ−ϕ)γ φ = 0

for any γ ∈ Endk(V ). As φ is not null then it must be ψ(I d − ϕ−ϕ) = 0 by Lemma 3.11
and therefore

ψ = ψϕ−ϕ,

so by Lemma 3.7 one gets that Ker ϕ ⊆ Kerψ. Similarly, by taking γ = 0 in (3.1), from
Corollary 3.12, we get that

φ = ϕϕ−φ

and by Lemma 3.6 one concludes that Im φ ⊆ Im ϕ and the claim is proved.
Conversely, let us suppose that Im φ ⊆ Im ϕ and Ker ϕ ⊆ Kerψ. Then, in virtue of

Lema 3.5 and as Im φ ⊆ Im ϕ, for any v = φ(v′) = ϕ(v̄) one gets:

ψϕ−(v) = ψϕ−(φ(v)) = ψϕ−(ϕ(v̄)) = ψ(v + u) = ψ(v), as u ∈ Ker ϕ ⊆ Kerψ,

for any 1-inverse ϕ− ∈ Xϕ(1). ��
Theorem 3.18 (Characterization of the space pre-order) Let ϕ,ψ ∈ Endk(V ) be two linear
operators. The following are equivalent:
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(I) ϕ <s ψ,

(II) ϕ = ψψ−ϕ = ϕψ−ψ for a ψ− ∈ Xψ(1),
(III) ϕ = ψψ−ϕ = ϕψ−ψ for any ψ− ∈ Xψ(1).

Proof Firstly notice that I if and only if I I I is a consequence of Theorem 3.8 and Theo-
rem 3.17.

The fact that I I I implies I I is obvious. Finally, let us see that I I implies I I I . In order
to do so, let us suppose that the following equations hold for a fixed ψ−

ϕ ∈ Xψ(1) :
ϕ = ψψ−

ϕ ϕ = ϕψ−
ϕ ψ. (3.2)

In virtue of Proposition 3.15, we know that for any ψ− ∈ Xψ(1), it is

ψ− = ψ−
ϕ + φ − ψ−

ϕ ψφψψ−
ϕ ,

for an arbitrary φ ∈ Endk(V ). Hence, on one side we get

ψψ−ϕ = ψψ−
ϕ ϕ + ψφϕ − ψφψψ−

ϕ ϕ, (3.3)

and, on the other side

ϕψ−ψ = ϕψ−
ϕ ψ + ϕφψ − ϕψ−

ϕ ψφψ. (3.4)

Now, using (3.2) in (3.3) one gets:

ψψ−ϕ = ϕ + ψφψψ−
ϕ ϕ − ψφψψ−

ϕ ϕ = ϕ.

Similarly, using again (3.2) in (3.4), it is:

ϕψ−ψ = ϕ + ϕψ−
ϕ ψφψ − ϕψ−

ϕ ψφψ = ϕ.

So, in short, it is

ϕ = ϕψ−ψ = ψψ−ϕ

for any ψ− ∈ Xψ(1) as we wanted to prove. ��

4 Drazin pre-order for Core-Nilpotent endomorphisms

The aim of the present section is to generalize the study of the Drazin pre-order that was
presented in [11, Section 4.4] for finite matrices to arbitrary k-vector spaces, in general,
infinite dimensional, using Core-Nilpotent endomorphisms.

Firstly, let us recall the basic definition of this order for matrices:

Definition 4.1 [11, Definition 4.4.1] Let A and B be square matrices of the same order. Let
A = A1+A2 and B = B1+B2 be the core-nilpotent decompositions of A and B respectively,
where A1, B1 are the core parts of A and B respectively and A2, B2 are the nilpotent parts of
A and B respectively. The matrix A is said to be below matrix B under the Drazin pre-order
if A1 <# B1.

When this happens we write A <d B.

Let V be an arbitrary k-vector space.
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Definition 4.2 Let us consider two Core-Nilpotent endomorphisms ϕ,ψ ∈ Endk(V ). Let
ϕ = ϕ1 +ϕ2 and ψ = ψ1 +ψ2 be the core-nilpotent decomposition of ϕ and ψ respectively
(as presented in Definition 2.2). The endomorphism ϕ is said to be below endomorphism ψ

under the Drazin pre-order if ϕ1 <# ψ1 (Definition 2.15).
When this happens we write ϕ <d ψ.

Notice that this definition makes sense with the one given for the Sharp Partial order in [1,
Definition 4.2], as, by construction, the core-nilpotent decomposition of any endomorphism
guarantees the index of the core part, in this case, ϕ1 and ψ1 respectively, is less or equal to
1 in both cases (recall Definition 2.2).

Remark 4.3 Let ϕ,ψ ∈ Endk(V ) be Core-Nilpotent endomorphisms with ϕ1 and ψ1 being
their respective core parts. Then, in particular, ϕD = ϕ#

1 , as it was stated in Theorem 2.7 and
(ϕD)# = ϕ1. Analogously, (ψD)# = ψ1, and therefore:

ϕ <d ψ if and only if ϕD <# ψD,

this is, the Drazin order is the study of the Sharp order for the Drazin inverse.

Although Definition 4.2 is useful in such a way that it enables to study the Drazin order,
when working in the theory of matrix partial orders and, in general, in partial orders on
arbitrary k-vector spaces, the natural definitions of the orders are those that are stated in terms
of one (or more, but only) generalized inverses. Nevertheless, one fundamental problem in
this theory is to characterize the orders in terms of other orderswith constraints, Definition 4.2
goes more on the line of this thinking and the following proposition aims to establish the
natural (and studied) definition of the Drazin order.

Proposition 4.4 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms. Then:

ϕ <d ψ if and only if ϕϕD = ψϕD = ϕDψ = ϕDϕ.

Proof Notice that ϕϕD = ϕ1ϕ
#
1 . By hypothesis, ϕ1 <# ψ1, so the following holds:

ϕ#
1ψ1 = ϕ#

1ϕ1 = ϕ1ϕ
#
1 = ψ1ϕ

#
1 ,

(recall Proposition 2.16). Since

ϕϕ#(V ) = (ϕ1ϕ
#
1 )(V ) = Wϕ = Im ϕ1

and

ϕ1ϕ
#
1 (V ) = (ψ1ϕ

#
1 )(V ) = ψ1(Wϕ) ⊆ Imψ1,

we get that

Im ϕ1 ⊆ Imψ1.

As Im ϕ#
1 = Im ϕ1, and by construction of the core-nilpotent decomposition (ϕ1ϕ2 = ϕ2ϕ1 =

ψ1ψ2 = ψ2ψ1 = 0), one obtains that

ψ2| Im ϕ1
= 0 and ϕ#

1| Imψ2
= 0

this is, ψ2ϕ
#
1 = 0 = ϕ#

1ψ2. Hence,

ϕϕD = ϕ1ϕ
#
1 = ψ1ϕ

#
1 = ψϕ#

1 = ψϕD .

123



D. A. Alonso

Similarly,

ϕ#
1ψ1 = ϕ#

1ϕ1 = ϕ1ϕ
#
1 ,

so ϕDψ = ϕDϕ = ϕϕD . Therefore,

ψϕD = ϕϕD = ϕDϕ = ϕDψ.

��
Proposition 4.5 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms with i(ϕ) = m
the index of ϕ (Definition 2.1). Then:

ϕ <d ψ if and only if ϕm+1 = ϕmψ = ψϕm .

Proof Firstly, let us suppose ϕ <d ψ with the characterization that Proposition 4.4 gives. By
definition of Drazin inverse ϕm+1ϕD = ϕm . Then,

ϕm+1 = ϕm+1ϕϕD = ϕm+1ϕDψ = ϕmψ.

Analogously, one has that

ϕm+1 = ϕDϕϕm+1 = ψϕDϕm+1 = ψϕm .

Conversely,

(ϕD)m+1ϕmψ = (ϕD)m+1ϕm+1 = ϕDϕ,

using the definition of Drazin inverse. Reasoning in the same way we obtain (ϕD)m+1ϕm =
ϕD . Therefore, we get that

ϕϕD = ϕDϕ = ϕDψ.

Similarly, from ψϕm = ϕm+1 we obtain that

ψϕD = ϕϕD

and the claim is proved. ��
The next step is to prove that the Drazin order is a pre-order in the set of Core-Nilpotent

endomorphisms.

Theorem 4.6 The relation<d (Definition 4.2) defines a pre-order in the set of Core-Nilpotent
endomorphisms.

Proof Reflexivity holds directly by definition of Drazin inverse and Proposition 4.4. Transi-
tivity is a direct consequence of Definition 4.2 and Theorem 2.17. ��
Remark 4.7 One can check in [11, Example 4.4.5] a counterexample for the anti-symmetric
property for finitematrices which is valid for Core-Nilpotent endomorphisms bearing inmind
the well known relation between finite matrices and endomorphisms.

Let us clarify evenmore the relationship between the Drazin pre-order and the sharp order.

Corollary 4.8 Let ϕ,ψ ∈ Endk(V ) be Core-Nilpotent endomorphisms. Then ϕ <d ψ if and
only if ψ is a g-commuting inverse of ϕD (Definition 2.14).
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Proof If ϕ <d ψ, using Proposition 4.4, we know that ϕϕD = ψϕD = ϕDϕ = ϕDψ, so:
ϕD = ϕDψϕD and ψϕD = ϕDψ. Conversely, we have that ϕDψϕD = ϕD and ϕDψ =
ψϕD . Therefore, composing with ϕ and by definition of Drazin inverse, we can obtain:

ϕϕD = ϕ(ϕDψϕD) = ϕDϕψϕD = ϕDϕϕDψ = ϕDψ.

Similarly, one proves that ϕDϕ = ψϕD and the result is proved. ��
Corollary 4.9 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms. Then:

• If ψ(ϕD)r+1 = (ϕD)r+1ψ = (ϕD)r for a positive integer r , then ϕ <d ψ.

• If ϕ <d ψ, then ψ(ϕD)r+1 = (ϕD)r+1ψ = (ϕD)r for every positive integer r .

Proof It follows directly from Corollary 4.8. ��
Corollary 4.10 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms. Then ϕ <d ψ

if and only if ψ(ϕD)r+1 = (ϕD)r+1ψ = (ϕD)r for a positive integer r .

Now, let us fix a Core-Nilpotent endomorphism ϕ and let us study the class of all endo-
morphisms ψ above ϕ for the Drazin pre-order, following the ideas of [11].

Lemma 4.11 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms, being V = Wϕ ⊕
Uϕ the AST- decomposition induced by ϕ. If ϕ <d ψ then:

ϕ|Wϕ
= ψ|Wϕ

.

Proof It follows directly from ϕϕD = ψϕD using the characterization of the Drazin inverse
of a Core-Nilpotent endomorphism. ��
Theorem 4.12 Let ϕ ∈ Endk(V ) be a Core-Nilpotent endomorphism and let V = Wϕ ⊕Uϕ

be the AST-decomposition it induces. Then, the class of all endomorphisms ψ above ϕ for
the Drazin pre-order, ϕ <d ψ, are the ones satisfying:

ψ(v) =
{

ϕ(v) if v ∈ Wϕ

ṽ if v ∈ Uϕ
,

with ṽ ∈ Uϕ.

Proof If ϕ <d ψ then

ϕ|Wϕ
= ψ|Wϕ

as it follows from Lemma 4.11. As ϕDψ = ϕDϕ, if v ∈ Uϕ then

ϕD(ψ(v)) = ϕD(ϕ(v)) = ϕ(ϕD(v)) = 0,

hence

ψ(v) ∈ Ker ϕD = Uϕ.

Conversely, given any ψ ∈ Endk(V ) as in the statement, then it is clear that, firstly; given
w ∈ Wϕ and using the characterization of the Drazin inverse presented in (2.7) we have:

ψϕD(w) = ψ(ϕ|Wϕ
)−1(w) = w = ϕDϕ(w) = ϕϕD(w),

and that if u ∈ Uϕ, then:

ϕDψ(u) = 0 = ψϕD(u) and ϕϕD(u) = 0 = ϕDϕ(u).

��
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As a direct consequence of this characterization, we obtain the following two corollaries:

Corollary 4.13 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms such that ϕ <d

ψ. Then the AST -decomposition induced by ϕ in V is ψ-invariant.

Corollary 4.14 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms. The class of ψ
such that ϕ <d ψ is given by the endomorphisms satisfying:

ψ|Wϕ
= ϕ|Wϕ

and (ϕDψ)|Uϕ
= 0.

4.1 Relation between the AST decompositions in the Drazin pre-order

Let us recall that given a Core-Nilpotent endomorphism ϕ ∈ Endk(V ) it induces the AST
decomposition V = Wϕ ⊕ Uϕ. In particular, if i(ϕ) = m then Wϕ = Im ϕm and Uϕ =
Ker ϕm . Let us suppose ϕ,ψ ∈ Endk(V ) are two Core-Nilpotent endomorphisms such that
ϕ <d ψ. The objective of the present section is to obtain the explicit relation between the
AST decompositions of ϕ and ψ under this hypothesis.

Before continuing, let us point out the following property of Core-Nilpotent endomor-
phisms. Once fixed a Core-Nilpotent endomorphism ϕ ∈ Endk(V ), then the k-subspace Wϕ

is the largest k-subspace of V such that when we restrict ϕ to it, we obtain an automorphism.
The use of the word largest in this context must be clarified. It means that there does not
exist any other k-subspace, for instance Ŵ ⊆ V , such that ϕ|Ŵ ∈ Autk(Ŵ ) with Wϕ ⊂ Ŵ .

If any Ŵ with the previous properties did exist, then, in virtue of the AST decomposition:
Ŵ ∩ Uϕ �= {0} and therefore ϕ|WŴ

would contain nilpotent elements and so contradicting
the fact that ϕ|Ŵ is an automorphism. Henceforth, we will refer to this as the maximality
property of the core part of a Core-Nilpotent endomorphism. Notice that we can also state
this property by saying that if W ′ ⊆ V is a k-subspace such that ϕ|W ′ ∈ Autk(W ′) then
necessarily W ′ ⊆ Wϕ (equality holds precisely when W ′ +Uϕ = V ).

Lemma 4.15 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms, being V = Wϕ ⊕
Uϕ = Wψ ⊕Uψ their respective AST decompositions. If ϕ <d ψ then:

Wϕ ⊆ Wψ.

Proof Let us suppose that ϕ <d ψ, then, by Lemma 4.11, ϕ|Wϕ
= ψ|Wϕ

and moreover

(ϕ|Wϕ
)−1 = (ψ|Wϕ

)−1. Therefore, for every element w ∈ Wϕ there exists a unique (by
definition of Wϕ) w′ ∈ Wϕ such that

ψ(w) = ϕ(w) = w′;
ψ−1(w′) = ϕ−1(w′) = w.

Hence,Wψ ⊆ Wϕ in virtue of the maximality property of the core part of ψ and the previous
calculation. ��
Proposition 4.16 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms, being V =
Wϕ ⊕Uϕ = Wψ ⊕Uψ their respective AST decompositions. If ϕ <d ψ then:

Wψ = Wϕ ⊕ (Uϕ ∩ Wψ).

Proof We shall see thatWϕ + (Uϕ ∩Wψ) = Wψ andWϕ ∩ (Uϕ ∩Wψ) = {0}. Let w̄ ∈ Wψ,

using the AST decomposition induced by ϕ, we write w̄ = w + u with w ∈ Wϕ and
u ∈ Uϕ. Therefore, u = w̄ − w ∈ Uϕ ∩ Wψ because Wϕ ⊆ Wψ by Lemma 4.15. Finally,
Wϕ ∩ (Uϕ ∩ Wψ) ⊆ Wϕ ∩Uϕ = {0}, and the claim is proved. ��
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Proposition 4.17 Letϕ,ψ ∈ Endk(V )be twoCore-Nilpotent endomorphismswith i(ψ) = s.
If ϕ <d ψ then

ϕDϕs = ϕDψ s = ϕsϕD = ψ sϕD .

Proof Since ϕ <d ψ, we have that ϕϕD = ψϕD = ϕDψ = ϕDϕ using Proposition 4.4.
Then, it is:

ϕDϕs = ϕDψϕs−1 = ψϕDϕs−1 = ψϕDϕϕs−2 = · · · =
= ψ sϕD .

Analogously, one can check that ϕsϕD = ψ sϕD . To conclude it suffices to use the definition
of Drazin inverse and check that ϕDϕs = ϕsϕD . ��
Lemma 4.18 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms, being V = Wϕ ⊕
Uϕ = Wψ ⊕Uψ their respective AST decompositions with i(ψ) = s. If ϕ <d ψ then:

Uψ ⊆ Uϕ.

Proof Bearing in mind that Uψ = Kerψ s, then, using Proposition 4.17

0 = ϕDψ s(Uψ) = ψ sϕD(Uψ),

so ϕD(Uψ) ⊆ Uψ. Moreover from the expression of the Drazin inverse of a Core-Nilpotent
endomorphism (recall (2.7)) and Lemma 4.15, one has that

Im ϕD = Wϕ ⊆ Wψ.

Therefore, ϕD(Uψ) = 0 and one concludes that

Uψ ∈ Ker ϕD = Uϕ,

as desired. ��
Proposition 4.19 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms, being V =
Wϕ ⊕Uϕ = Wψ ⊕Uψ their respective AST decompositions with i(ψ) = s. If ϕ <d ψ then:

Uϕ = Uψ ⊕ (Uϕ ∩ Wψ).

Proof Again, let us recall that we shall prove that Uψ + (Uϕ ∩ Wψ) = Uϕ and Uψ ∩ (Uϕ ∩
Wψ) = {0}. Let us express any ū ∈ Uϕ using the AST decomposition induced by ψ as
ū = w + u with w ∈ Wψ and u ∈ Uψ. Therefore, using Lemma 4.18 one has:

w = u − w2 ∈ Uϕ ∩ Wψ.

Finally, it is clear that

Uψ ∩ (Uϕ ∩ Wψ) ⊆ Uψ ∩ Wψ = {0},
and the claim is proved. ��
Proposition 4.20 Letϕ,ψ ∈ Endk(V ) be twoCore-Nilpotent endomorphismswith i(ϕ) = m
and i(ψ) = s. Then

ϕ <d ψ if and only if ϕ|Wϕ
= ψ|Wϕ

and Uϕ is ψ − invariant.
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Proof Let us suppose that ϕϕD = ψϕD = ϕDψ = ϕDϕ, in virtue of Proposition 4.4. Then,
bearing in mind the expression of the Drazin inverse for Core-Nilpotent endomorphisms, if
w ∈ Wϕ and u ∈ Uϕ, it is:

w = ϕϕD(w) = ψϕD(w);
0 = ψ(ϕD(u)) = ϕD(ψ(u)),

and the claim is deduced because ψ(u) ∈ Ker ϕD = Uϕ .
Conversely, let us suppose that ϕ|Wϕ

= ψ|Wϕ
and that Uϕ is ψ-invariant. Then, for w ∈ Wϕ

and u ∈ Uϕ :
ψϕD(w) = (ψ(ϕ|Wϕ

)−1)(w) = (ϕ(ϕ|Wϕ
)−1)(w) = w;

ϕDψ(w) = (ϕ|Wϕ
)−1ψ(w) = (ϕ|Wϕ

)−1ϕ(w) = w;
ψϕD(u) = 0 = ϕϕD(u);
ϕDψ(u) = 0 = ϕDϕ(u);

using the expression of the Drazin inverse for Core-Nilpotent endomorphisms (recall (2.7))
and the statement is deduced. ��

5 G-Drazin inverse for Core-Nilpotent endomorphisms

The aim of this section is to characterize the set of G-Drazin inverses of a Core-Nilpotent
endomorphism, this is, to state explicitly the conditions required for them to exist and their
expression.

5.1 G-Drazin inverse for Core-Nilpotent endomorphisms

Let V be an arbitrary k-vector space. We define the G-Drazin inverse for a Core-Nilpotent
endomorphism on an analogous way as the author of [18] did in his study of the G-Drazin
inverse for finite potent endomorphisms. Moreover, his work is followed in order to reach
the desired characterization.

Definition 5.1 Given a Core-Nilpotent endomorphism ϕ ∈ Endk(V ), we say that an endo-
morphism ϕGD ∈ Endk(V ) is a G-Drazin inverse of ϕ when it satisfies that

ϕ ◦ ϕGD ◦ ϕ = ϕ;
ϕGD ◦ ϕm = ϕm ◦ ϕGD,

where i(ϕ) = m.

In 2018,C.Coll,M.Lattanzi andN.Thomeproved in [6,Theorem2.2] that there are several
equivalent definitions of the G-Drazin inverse of a matrix, this is, that the G-Drazin inverse
is the solution to two different, but equivalent, systems of equations. In the theory of Core-
Nilpotent endomorphisms, this idea is generalized naturally using the AST-decomposition
as it is shown in the following lemma.

Lemma 5.2 Let ϕ ∈ Endk(V ) be a Core-Nilpotent endomorphism of index m, then ϕGD ∈
Endk(V ) is a G-Drazin inverse of ϕ (in the sense of Definition 5.1) if and only if ϕGD satisfies
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the following conditions:

ϕ ◦ ϕGD ◦ ϕ = ϕ;
ϕGD ◦ ϕm+1 = ϕm;
ϕm+1 ◦ ϕGD = ϕm .

Proof Firstly, let us suppose that ϕGD is a G-Drazin inverse in the sense of Definition 5.1.
Then:

ϕGDϕm+1 = ϕGDϕmϕ = ϕmϕGDϕ = ϕm−1(ϕϕGDϕ) = ϕm,

and, similarly,

ϕm+1ϕGD = ϕϕmϕGD = ϕϕGDϕm = (ϕϕGDϕ)ϕm−1 = ϕm .

Conversely, let us suppose that ϕGD satisfies the three equations of the statement. By hypoth-
esis V = Wϕ ⊕Uϕ. If u ∈ Uϕ it is clear that:

0 = ϕGDϕm(u) = ϕGDϕm+1ϕGD(u) = ϕmϕGD(u).

On the other hand, if w ∈ Wϕ with w = ϕm(w′) then:

ϕGDϕm(w) = ϕGDϕm+1ϕm−1(w′) = ϕm(ϕm−1(w′)) = ϕm−1(w);
ϕmϕGD(w) = ϕmϕGDϕm(w′) = ϕm−1ϕϕGDϕϕm−1(w′) = ϕm−1(w),

so we conclude. ��

Lemma 5.3 Letϕ ∈ Endk(V ) be aCore-Nilpotent endomorphismwith i(ϕ) = m and let V =
Wϕ ⊕Uϕ be the AST-decomposition determined by ϕ. If ψ ∈ Endk(V ) is an endomorphism
such that ψϕm = ϕmψ, then Wϕ and Uϕ are both ψ-invariant.

Proof By definition ϕ|Wϕ
∈ Autk(Wϕ). If w ∈ Wϕ, (recall that as i(ϕ) = m then Wϕ =

Im ϕm) with ϕm(w′) = w, then

ψ(w) = (ψϕm)(w′) = (ϕmψ)(w′) ∈ Wϕ.

So, Wϕ is ψ-invariant.
Now, if u ∈ Uϕ, then

(ψϕm)(u) = (ϕmψ)(u) = 0

and therefore ϕ(u) ∈ Uϕ. Hence, Uϕ is also ψ invariant. ��

Theorem 5.4 Given a Core-Nilpotent endomorphism ϕ ∈ Endk(V ), with i(ϕ) = m, then
ϕGD ∈ Endk(V ) is a G-Drazin inverse of ϕ if and only if both Uϕ and Wϕ are ϕGD- invariant
and ϕGD is characterized by:

ϕGD(v) =
{

(ϕ|Wϕ
)−1(v) if v ∈ Wϕ

(ϕ|Uϕ
)−(v) if v ∈ Uϕ

,

where (ϕ|Uϕ
)− is a 1-inverse of ϕ|Uϕ

.
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Proof Let ϕGD ∈ Endk(V ) be a G-Drazin inverse of ϕ. By definition, it is a direct conse-
quence of Lemma 5.3 that bothWϕ andUϕ are ϕGD-invariant. Since ϕϕGDϕ = ϕ, it is clear
that (ϕGD)|Wϕ

= (ϕ|Wϕ
)−1 and (ϕGD)|Uϕ

= (ϕ|Uϕ
)−, where (ϕ|Uϕ

)− is a 1-inverse of ϕUϕ
.

Conversely, let ψ ∈ Endk(V ) be an endomorphism satisfying that both Wϕ and Uϕ are ψ-
invariant,ψ|Wϕ

= (ϕ|Wϕ
)−1 andψ|Uϕ

= (ϕ|Uϕ
)− with (ϕ|Uϕ

)− a 1-inverse of ϕ|Uϕ
. Ifw ∈ Wϕ

with w = ϕm(w′) and u ∈ Uϕ, bearing in mind Lemma 5.2, the following hold:

ϕψϕ(w) = ϕψϕm(ϕ(w′)) = ϕϕm−1(ϕ(w′)) = ϕ(ϕm(w′)) = ϕ(v);
ϕψϕ(u) = ϕ(u) by construction.

Moreover, by definition, (ϕr )|Uϕ
= 0, so, by the properties of the aforementioned ψ, if

w ∈ Wϕ with w = ϕm(w′) we deduce that:

ψϕm(w) = ϕm−1(w) = ϕm(ϕm−1(w′)) = ϕmψ(ϕm(w′)) = ϕmψ,

from where we get that

ψϕm = ϕmψ

and the statement is proved bearing in mind Definition 5.1. ��
Corollary 5.5 An arbitrary endomorphism ϕ ∈ Endk(V ) admits G-Drazin inverses if and
only if ϕ is a Core-Nilpotent endomorphism.

Recall that if ϕ is a Core-Nilpotent endomorphism of index i(ϕ) = m then it induces a
decomposition V = Ker ϕm ⊕ Im ϕm which is precisely the AST decomposition presented
in (4) of Theorem 2.3 where Uϕ = Ker ϕm and Wϕ = Im ϕm . Therefore, bearing in mind
the Jordan Bases of a nilpotent endomorphism, recall Sect. 2.2.2, using the characterization
of 1-inverses presented in Proposition 2.9 and the recently proved Theorem 5.4 we are able
to explicit the characterization of G-Drazin inverses:

Proposition 5.6 (Characterization of G-Drazin inverses) Let ϕ ∈ Endk(V ) be a Core-
Nilpotent endomorphism of index i(ϕ) = m. Then, ϕGD ∈ Endk(V ) is a G-Drazin inverse
of ϕ if and only if ϕGD verifies:

• ϕGD(w) = (ϕ|Wϕ
)−1(w) for any w ∈ Wϕ;

• ϕGD(ϕ j (vsi )) = ϕ j−1(vsi ) + u j
si , with u j

si ∈ Ker ϕ for every si ∈ S
μi (Uϕ,ϕ), j ∈

{1, . . . , i − 1};
• ϕGD(vsi ) = ṽsi for every si ∈ S

μi (Uϕ,ϕ);
where ṽsi ∈ Uϕ.

Remark 5.7 The proposition that has just been proved shows how to understand the subset
of G-Drazin inverses on the set of 1-inverses. The set of G-Drazin inverses of a given Core-
Nilpotent endomorphism ϕ ∈ Endk(V ) is precisely the set of 1-inverses of ϕ that leave
the AST-decomposition induced by ϕ invariant, as it can be deduced immediately from the
structure of the AST-decomposition of a Core-Nilpotent endomorphism ((4) of Theorem 2.3)
and the structure of the nilpotent basis of an arbitrary endomorphism (Sect. 2.2.2) together
with Proposition 2.9 and Proposition 5.6.

Analogously to the results proven in [18]:
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Corollary 5.8 (Equation for G-Drazin inverses). Let ϕ ∈ Endk(V ) be a Core-Nilpotent endo-
morphism. If ϕGD is a G-Drazin inverse of ϕ, then one has that

ϕGD = ϕD + ϕ−
GD,

where ϕD is the Drazin inverse of ϕ, and ϕ−
GD ∈ Endk(V ) is the unique linear map satisfying

that

ϕ−
GD(v) =

{
0 if v ∈ Wϕ

(ϕGD)|Uϕ
(v) if v ∈ Uϕ

,

which is a G-Drazin inverse of ϕ2.

Corollary 5.9 If ϕ = ϕ1 +ϕ2 is the Core-Nilpotent decomposition of a Core-Nilpotent endo-
morphism ϕ ∈ Endk(V ), then the Drazin inverse ϕD is a G-Drazin inverse of ϕ1.

6 G-Drazin Partial Order for Core-Nilpotent endomorphisms

The main goal of this section is to generalize the theory presented in [21, Section 3] about
the G-Drazin order for finite matrices to Core-Nilpotent endomorphisms. This theory will be
valid for arbitrary vector spaces over fields of arbitrary characteristic, in particular, infinite
dimensional ones.

6.1 G-Drazin Partial order for Core-Nilpotent endomorphisms

Let V denote an arbitrary k-vector space.

Definition 6.1 Let us consider two Core-Nilpotent endomorphisms ϕ,ψ ∈ Endk(V ).We say
ϕ is under ψ for the G-Drazin order if there exist ϕGD

− , ϕGD
= ∈ Endk(V ) G-Drazin inverses

of ϕ such that:

ϕϕGD
− = ψϕGD

− ,

ϕGD
= ϕ = ϕGD

= ψ.

When ϕ is under ψ for the G-Drazin order, it will be denoted as ϕ <GD ψ.

Lemma 6.2 Let ϕ ∈ Endk(V ) be a Core-Nilpotent endomorphism and let ϕGD
− , ϕGD

= ∈
Endk(V ) be two G-Drazin inverses of ϕ. Then:

ϕGD = ϕGD
= ϕϕGD

−

is a G-Drazin inverse of ϕ.

Proof Let us show that the three conditions of Proposition 5.6 hold. Bearing in mind that
ϕGD leaves both Wϕ and Uϕ invariant, then, if w ∈ Wϕ :

ϕGD
= ϕϕGD

− (w) = ϕGD
= ϕ(ϕ|Wϕ

)−1(w) = ϕGD
= (w) = (ϕ|Wϕ

)−1(w).

Now, if vsi ∈ Uϕ, one gets:

ϕGD
= ϕϕGD

− (ϕ j (vsi )) = ϕGD
= ϕ(ϕ j−1(vsi ) + u j

si ) = ϕGD
= (ϕ j (vsi )) = ϕ j−1(vsi ) + u j

si ;
ϕGD

= ϕϕGD
− (vsi ) = ϕGD

= ϕ(ṽsi ) = ṽsi + ũsi ∈ Uϕ;
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with ũsi , u
j
si ∈ Ker ϕ ⊆ Uϕ for every si ∈ S

μi (Uϕ,ϕ) and j ∈ {1, . . . , i − 1}. Therefore, the
statement is proved. ��

The next corollary will be taken as the definition of the G-Drazin order in the rest of the
monograph. Simply, we can state Definition 5.1 in terms of the same G-Drazin inverse.

Corollary 6.3 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms. Then ϕ <GD ψ

(in the sense of Definition 5.1) if and only if there exists a G-Drazin inverse ϕGD ∈ Endk(V )

of ϕ such that:

ϕϕGD = ψϕGD,

ϕGDϕ = ϕGDψ.

Proof If ϕ <GD ψ then, using both G-Drazin inverses from Definition 6.1 one gets the
desired result by applying Lemma 6.2. Conversely, is immediate. ��
Proposition 6.4 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms. If ϕ <GD ψ,

then the AST-decomposition induced by ϕ is ψ-invariant. In particular:

• ψ(Wϕ) = Wϕ;
• ψ(ϕ j−1(vsi + u j

si )) = ϕ j (vsi ), with u j
si ∈ Ker ϕ for every si ∈ S

μi (Uϕ,ϕ) and j ∈
{1, . . . , i − 1}.

Proof Bearing in mind the characterization given for G-Drazin inverses of Core-Nilpotent
endomorphisms in Proposition 5.6, then, if ϕ <GD ψ and w ∈ Wϕ, it is clear that:

ψϕGD(w) = ϕϕGD(w) = w

therefore:

(ψϕGD)|Wϕ
= I d|Wϕ

.

With the same reasoning,

ψϕGD(vsi ) = ϕϕGD(vsi ) = ϕ(ṽsi ) ∈ Uϕ;
ψ(ϕ j−1(vsi ) + u j

si ) = ψϕGD(ϕ j (vsi )) = ϕϕGDϕ j (vsi ) = ϕ j (vsi );

with u j
si ∈ Ker ϕ for every si ∈ S

μi (Uϕ,ϕ) and j ∈ {1, . . . , i −1}, so all the claims are proved.
��

Let us now offer the characterization of the G-Drazin order for Core-Nilpotent endomor-
phisms, which is presented in the following theorem.

Theorem 6.5 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms and let V =
Wϕ ⊕Uϕ be the AST-decomposition induced by ϕ. Then ϕ <GD ψ if and only if

• ϕ|Wϕ
= ψ|Wϕ

;
• There exists a 1-inverse ϕ− ∈ Endk(Uϕ) of ϕ such that:

(ϕϕ−)|Uϕ
= (ψϕ−)|Uϕ

;
(ϕ−ϕ)|Uϕ

= (ϕ−ψ)|Uϕ
.
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Proof Let ϕ <GD ψ with the conditions aforementioned. The first claim was proved in
Lemma 4.11. Recalling Theorem 5.4, one has that, in particular, ϕGD is a 1-inverse of ϕ

when restricted to Uϕ, so taking as ϕ− = (ϕGD)|Uϕ
enables us to conclude the first claim.

Conversely, let us define:

ϕ̃GD(v) =
{

(ϕ|Wϕ
)−1(v) if v ∈ Wϕ

ϕ−(v) if v ∈ Uϕ
,

with ϕ− ∈ Endk(Uϕ) the endomorphism satisfying the second condition in the statement of
the theorem.

In particular, one deduces that ϕ̃GD leaves the AST-decomposition induced by ϕ invariant
and in virtue of the Proposition 5.6, ϕ̃GD is in fact a G-Drazin inverse of ϕ.

Let us check that the conditions of the order are satisfied (precisely, the ones given by
Corollary 6.3), using ϕ̃GD and theψ in the hypothesis. InUϕ it is automatic by the construction
of ϕ̃GD and ψ. On the other hand, if w ∈ Wϕ we get:

ϕϕ̃GD(w) = ϕ(ϕ|Wϕ
)−1(w) = w;

ψϕ̃GD(w) = ψ(ϕ|Wϕ
)−1(w) = w,

where in the second calculation we are using that (ϕ|Wϕ
)−1(w) ∈ Wϕ and that by hypothesis

ϕ|Wϕ
= ψ|Wϕ

. Similarly, one checks that ϕ̃GDϕ(w) = w and, using Proposition 6.4 and

again the hypothesis, ϕ̃GD(ψ(w)) = w, so we get what desired. ��
The main task from now on is to prove that the G-Drazin order is indeed a partial order

in the set of Core-Nilpotent endomorphisms. In order to do so, we must solve two main
problems. Firstly, to enunciate the G-Drazin order in terms of other orders with constraints.
Secondly, if ϕ,ψ ∈ Endk(V ) are two Core-Nilpotent endomorphisms such that ϕ <GD ψ ,
we shall understand the relations between the AST-decompositions of both endomorphisms.
This will show the existing relation between the G-Drazin inverses of ψ and those of ϕ.

Let us start illustrating these ideas to the reader with the following theorem, which comes
motivated by [21, Theorem 3.4, (IV,V)].

Theorem 6.6 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms with i(ϕ) = m.
Then, the following conditions are equivalent:

(I) ϕ <GD ψ;
(II) ϕm+1 = ϕmψ = ψϕm and there exists a 1 − inverse ϕ− ∈ Endk(Uϕ) of ϕ such that:

(ϕϕ−)|Uϕ
= (ψϕ−)|Uϕ

;
(ϕ−ϕ)|Uϕ

= (ϕ−ψ)|Uϕ
.

III.) ϕ <d ψ and there exists a 1 − inverse ϕ− ∈ Endk(Uϕ) of ϕ such that:

(ϕϕ−)|Uϕ
= (ψϕ−)|Uϕ

;
(ϕ−ϕ)|Uϕ

= (ϕ−ψ)|Uϕ
.

Proof Firstly, let us check that I implies I I .Let us suppose thatϕ <GD ψ with the conditions
given by Corollary 6.3, this is ϕϕGD = ψϕGD and ϕGDϕ = ϕGDψ. Then:

ϕm+1 = ϕϕGDϕm+1 = ψϕGDϕm+1 = ψϕm;
ϕm+1 = ϕm+1ϕGDϕ = ϕm+1ϕGDψ = ϕmψ,
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using the equivalent definitions of the G-Drazin inverse given by Lemma 5.2. The existence
of a 1-inverse satisfying the conditions of the statement is deduced immediately by the
characterization of Theorem 6.5.

Let us now prove that I I occurs if and only if I I I occurs. This affirmation is exactly
Proposition 4.5.

Finally, let us show that I I I imply I . Let us suppose that ϕ <d ψ. Then, by Proposi-
tion 4.4 we know that ϕϕD = ψϕD and using the expression of the Drazin inverse (see,
(2.7)) we know that

ϕ|Wϕ
= ψ|Wϕ

.

Hence, the rest follows directly from the characterization of the G-Drazin order given in
Theorem 6.5. ��
Lemma 6.7 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms, being V = Wϕ ⊕
Uϕ = Wψ ⊕ Uψ their respective AST decompositions. If ϕ <GD ψ, then Uϕ ∩ Wψ is
ψ-invariant.

Proof The fact that Wψ is ψ-invariant is by definition of AST decomposition. Moreover, as
ϕ <GD ψ then we know that the AST decomposition induced by ϕ is ψ-invariant in virtue
of Proposition 6.4, so we conclude. ��
Proposition 6.8 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms, being V =
Wϕ ⊕Uϕ = Wψ ⊕Uψ their respective AST decompositions. If ϕ <GD ψ, then the restriction
map:

ψ : Uϕ ∩ Wψ −→ Uϕ ∩ Wψ

is an automorphism of k-vector spaces.

Proof The restriction mentioned in the statement makes sense due to Lemma 6.7. Since
Kerψ|Wϕ

= 0, then Kerψ|(Uϕ∩Wψ )
= 0 and ψ|(Uϕ∩Wψ )

is injective. For surjectivity let us

recall that if ϕ <GD ψ, then, for m = i(ϕ), we have that ϕm+1 = ϕmψ = ψϕm by I I of
Theorem 6.6. Let us consider any v̄ ∈ (Uϕ ∩ Wψ), such that ϕm(v̄) = 0 and v̄ = ψ(v′) for
a unique v′ ∈ Wψ . Therefore, it is:

0 = ϕm(v̄) = ϕm(ψ(v′)) = ψ(ϕm(v′)),

so ϕm(v′) ⊆ Kerψ ⊆ Uψ ⊆ Uϕ by Lemma 4.18. Then v′ ∈ Uϕ and v′ ∈ Uϕ ∩ Wψ, hence
surjectivity is proved. ��
Corollary 6.9 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms, being V = Wϕ ⊕
Uϕ = Wψ ⊕ Uψ their respective AST decompositions. If ϕ <GD ψ then ψ|Uϕ

is a Core-
Nilpotent endomorphism such that i(ψ|Uϕ

) = i(ψ).

Proof Notice that as ϕ <GD ψ then Uϕ = Uψ ⊕ (Uϕ ∩ Wψ) as it was proved in Propo-
sition 4.19. Therefore, the statement is a direct consequence of Proposition 6.8 as ψ|Uψ

is
nilpotent by definition of the AST decomposition induced by ψ. ��

Given a Core-Nilpotent endomorphism ϕ ∈ Endk(V ), recall that Xϕ(1) and Xϕ(GD)

denote the sets of 1-inverses of ϕ and G-Drazin inverses of ϕ respectively.
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Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms and suppose that there exists
a 1-inverse ϕ− ∈ Endk(Uϕ) of ϕ such that:

(ϕϕ−)|Uϕ
= (ψϕ−)|Uϕ

;
(ϕ−ϕ)|Uϕ

= (ϕ−ψ)|Uϕ
.

With this conditions, we have that

ϕ|Uϕ
= (ϕϕ−ϕ)|Uϕ

= (ψϕ−ϕ)|Uϕ
= (ϕϕ−ψ)|Uϕ

= (ψϕ−ψ)|Uϕ
. (6.1)

Lemma 6.10 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms and suppose that
there exists a 1-inverse ϕ− ∈ Endk(Uϕ) of ϕ such that:

(ϕϕ−)|Uϕ
= (ψϕ−)|Uϕ

;
(ϕ−ϕ)|Uϕ

= (ϕ−ψ)|Uϕ
.

If ψ− ∈ Endk(Uϕ), is such that ψ− ∈ Xψ|Uϕ
(1) then

ψ− ∈ Xϕ|Uϕ
(1).

Proof Let ψ− ∈ Xψ |Uϕ
(1). Then, applying the equalities of (6.1), when restricting to Uϕ ,

one gets:

ϕψ−ϕ = (ϕϕ−ψ)ψ−(ψϕ−ϕ) =
= ϕϕ−(ψψ−ψ)ϕ−ϕ =
= ϕϕ−ψϕ−ϕ = (ϕϕ−ψ)ϕ−ϕ = ϕϕ−ϕ = ϕ,

from where the claim is deduced. ��
Let us consider a Core-Nilpotent endomorphismψ ∈ Endk(V ). In virtue of Theorem 5.4,

we know the expression of any G-Drazin inverse of ψ, which is:

ψGD(v) =
{

(ψ|Wψ
)−1(v) if v ∈ Wψ

(ψ|Uψ
)−(v) if v ∈ Uψ

, (6.2)

with (ψ|Uψ
)− ∈ Xψ|Uψ

(1). Moreover, let us suppose that ϕ ∈ Endk(V ) is another Core-

Nilpotent endomorphism such that ϕ <GD ψ.By Proposition 4.16,Wψ = Wϕ ⊕(Uϕ ∩Wψ).

Therefore, bearing in mind the description of the G-Drazin inverses of ψ in (6.2), their
expression can be restated as:

ψGD(v) =

⎧⎪⎨
⎪⎩

(ψ|Wϕ
)−1(v) if v ∈ Wϕ

(ψ|(Uϕ∩Wψ )
)−1(v) if v ∈ (Uϕ ∩ Wψ)

(ψ|Uψ
)−(v) if v ∈ Uψ

, (6.3)

with (ψ|Uψ
)− ∈ Xψ|Uψ

(1).

Lemma 6.11 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms with V = Wϕ ⊕
Uϕ = Wψ ⊕ Uψ their respective AST decompositions. Let us define ψ̃ ∈ Endk(Uϕ) as
follows:

ψ̃(v) =
{

(ψ|(Uϕ∩Wψ )
)−1(v) if v ∈ Uϕ ∩ Wψ

(ψ|Uψ
)−(v) if v ∈ Uψ

,
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with (ψ|Uψ
)− ∈ Xψ|Uψ

(1). If ϕ <GD ψ, then ψ̃ ∈ Xψ|Uϕ
(1).

Proof By Proposition 4.19 we know that Uϕ = Uψ ⊕ (Uϕ ∩ Wψ). Hence, by Theorem 5.4
it is immediate that ψ̃ ∈ Xψ|Uϕ

(GD) ⊆ Xψ|Uϕ
(1). ��

Theorem 6.12 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms. If

ϕ <GD ψ then Xψ(GD) ⊆ Xϕ(GD).

Proof Let us suppose that ϕ <GD ψ. By I I I of Theorem 6.6, we know that ϕ <d ψ and
there exists a 1 − inverse ϕ− ∈ Endk(Uϕ) of ϕ such that:

(ϕϕ−)|Uϕ
= (ψϕ−)|Uϕ

;
(ϕ−ϕ)|Uϕ

= (ϕ−ψ)|Uϕ
.

By Proposition 4.20, we know that:

ϕ|Wϕ
= ψ|Wϕ

, (6.4)

and in particular, (ϕ|Wϕ
)−1 = (ψ|Wϕ

)−1. Moreover, by Propositions 4.16 and 4.19 the fol-
lowing decompositions hold:

Wψ = Wϕ ⊕ (Uϕ ∩ Wψ) and Uϕ = Uψ ⊕ (Uϕ ∩ Wψ). (6.5)

The expression of any G-Drazin inverse of ψ in this conditions is the one presented in (6.3).
In fact, by the condition mentioned in (6.4), the explicit expression of any G-Drazin inverse
of ψ can be written as:

ψGD(v) =

⎧⎪⎨
⎪⎩

(ϕ|Wϕ
)−1(v) if v ∈ Wϕ

(ψ|(Uϕ∩Wψ )
)−1(v) if v ∈ (Uϕ ∩ Wψ)

(ψ|Uψ
)−(v) if v ∈ Uψ

. (6.6)

Accordingly, for any v = w + u ∈ V = Wϕ ⊕Uϕ, we have that

ψGD(v) = ϕD(w) + ψ−
GD(u), (6.7)

(with the notations used in Corollary 5.8) with ψ−
GD ∈ Endk(Uϕ) and satisfying that ψ−

GD ∈
Xψ|Uϕ

(1) byLemma 6.11.Moreover, in virtue of Lemma 6.10 one gets thatψ−
GD ∈ Xϕ|Uϕ

(1).

Therefore, bearing in mind the expression of (6.7), one concludes that ψGD ∈ Xϕ(GD) as
desired. ��

The following theorem establishes the relationship between the space pre-order (Defi-
nition 3.2) and the G-Drazin order. Although there was an entire theorem dedicated to the
relation of the G-Drazin order with other pre-orders and orders, this result is strongly related
to the recent discussion dealing with G-Drazin inverses so its late appearance is justified.

Theorem 6.13 Let ϕ,ψ ∈ Endk(V ) be two Core-Nilpotent endomorphisms. Then,

ϕ <GD ψ if and only if ϕ <s ψ and Xψ(GD) ⊆ Xϕ(GD).

Proof Firstly, let us suppose that ϕ <GD ψ. The fact that Xψ(GD) ⊆ Xϕ(GD) was proven
in Theorem 6.12. We already know that Xψ(GD) ⊆ Xϕ(GD), so let us consider any
ψGD ∈ Xψ(GD) such that, as ϕ <GD ψ, then

ϕψGD = ψψGD (6.8)
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and

ψGDϕ = ψGDψ. (6.9)

From (6.8), we get that

ϕ = ψψGDϕ

and from (6.9) one obtains

ϕ = ϕψGDψ.

Therefore, it is

ϕ = ψψGDϕ = ϕψGDψ,

and ϕ <s ψ by I I of Theorem 3.18 as, in particular Xψ(GD) ⊆ Xϕ(GD) ⊆ Xϕ(1).
Conversely, let us suppose that ϕ <s ψ and Xψ(GD) ⊆ Xϕ(GD). We are going to

prove that ϕ <GD ψ using Definition 6.1, inspired by the proof of [7, Theorem 2.4]. Let
us fix ϕGD ∈ Xϕ(GD) and ψGD ∈ Xψ(GD) and let us consider: ϕ̃GD = ϕGDϕψGD and
ϕ̂GD = ψGDϕϕGD . As Xψ(GD) ⊆ Xϕ(GD), if i(ϕ) = m is the index of ϕ, one has:

ϕϕ̃GDϕ = ϕϕGDϕψGDϕ = ϕψGDϕ = ϕ;
ϕm ϕ̃GD = ϕmϕGDϕψGD = ϕGDϕmϕψGD = ϕGDϕϕmψGD =

= ϕGDϕψGDϕm = ϕ̃GDϕm,

so ϕ̃GD ∈ Xϕ(GD)byDefinition 5.1.An analogous calculation shows that ϕ̂GD ∈ Xϕ(GD).

If ϕ <s ψ, then for any 1-inverse of ψ it is ϕ = ϕψ−ψ = ψψ−ϕ as it was proved in I I I
of Theorem 3.18. Bearing this in mind, using that ϕ = ϕψ−ψ , we get that:

ϕ̃GDϕ = ϕGD(ϕψGDϕ) = ϕGDϕ = ϕGDϕψ−ψ =
= ϕGDϕψ−ψψGDψ = ϕGDϕψGDψ = ϕ̃GDψ.

On a similar way, using that ϕ = ψψ−ϕ, we obtain:

ϕϕ̂GD = ϕψGDϕϕGD = ϕϕGD = ψψ−ϕϕGD =
= ψψGDψψ−ϕϕGD = ψψGDϕϕGD = ψϕ̂GD,

and the claim is proved. ��
Theorem 6.14 The relation <GD defines a partial order in the set of Core-Nilpotent endo-
morphisms.

Proof Reflexivity holds immediately.
Antisymmetry. If ϕ <GD ψ and ψ <GD ϕ then, by Theorem 6.12 we know Xϕ(GD) =

Xψ(GD). Moreover, we know that

ϕφGD = ψφGD,

φGDϕ = φGDψ,

for a G-Drazin inverse φGD ∈ Endk(V ) of both ϕ,ψ. Hence:

ϕ = ϕφGDϕ = ψφGDϕ = ψφGDψ = ψ,

as every G-Drazin inverse is in particular a 1-inverse.
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Transitivity. Let ϕ <GD ψ and ψ <GD γ for ϕ,ψ, γ ∈ Endk(V ) Core-Nilpotent endo-
morphisms. In virtue of Theorem 6.13 we know that

ϕ <s ψ,ψ <s γ and that Xγ (GD) ⊆ Xψ(GD) ⊆ Xϕ(GD).

Therefore, we conclude because the relation<s is a pre-order, and in particular; it is transitive,
as it was shown in Theorem 3.13. We get ϕ <s γ and Xγ (GD) ⊆ Xϕ(GD) and again by
Theorem 6.13 ϕ <GD γ. ��

7 Final remarks and considerations

Let us conclude with some considerations.

Remark 7.1 Notice that if ϕ,ψ ∈ Endk(V ) are two Core-Nilpotent endomorphisms with
i(ϕ) = i(ψ) ≤ 1 then the Drazin pre-order and the sharp order coincide. This is a direct
consequence of Theorem 2.7. Therefore, the Drazin pre-order is a partial order in the set of
Core-Nilpotent endomorphisms of index less or equal than 1. In this conditions, the AST-
decompositions induced by ϕ and ψ are exactly:

V = Im ϕ ⊕ Ker ϕ = Imψ ⊕ Kerψ.

Moreover, one can check that the Lemmas 4.15,4.18 and the Propositions 4.11, 4.16, 4.19
just proved before make sense with [1, Lemmas 4.9, 4.10] and Propositions [1, Propositions
4.8,4.13,4.14]. This parallelism goes further as Proposition 4.20 restricts exactly to [1, Propo-
sition 4.5] when both endomorphisms involved are of index 1 and Proposition 4.5 is again
[1, Corollary 4.6] when (with the notations used in this paper) m ≤ 1.

Let us consider ϕ ∈ Endk(V ) a Core-Nilpotent endomorphism with i(ϕ) ≤ 1. From the
definition of G-Drazin inverse (Definition 6.1), we deduce that the set Xϕ(GD) of G-Drazin
inverses of ϕ coincides with the set of g-commuting inverses of ϕ, Xϕ(g−) (Definition 2.14).
In particular, in the frame of Core-Nilpotent endomorphisms, we know that these sets are
not empty, as the Drazin inverse exists (Theorem 2.6) and belongs to them. Thus, if ϕ,ψ ∈
Endk(V ) are two Core-Nilpotent endomorphisms with i(ϕ) = i(ψ) ≤ 1, the G-Drazin order
turns out to be equivalent to the Sharp partial order and hence, to the Drazin pre-order by the
previous observations, namely Theorem 2.7.

fact, it is easy to see that given two Core-Nilpotent endomorphisms ϕ,ψ ∈ Endk(V )with
i(ϕ) = i(ψ) ≤ 1, if ϕ2 = ϕ (commonly stated as ϕ being a projector), then ϕ <GD ψ if
and only if ψ ∈ Xϕ(GD).

Proof This is a direct consequence of the previous discussion and the result proven by the
author of this paper in [1, Lemma 4.21]. ��
Remark 7.2 Bearing inmind the definition of Core-Nilpotent endomorphism (Definition 2.2),
all the results that have been presented in the article can be used to obtain immediately the
theory of G-Drazin inverses and the G-Drazin partial order for nilpotent endomorphisms
over arbitrary vector spaces, finite potent endomorphisms and automorphisms over arbitrary
k-vector spaces.

Remark 7.3 Moreover, the obtained results generalize the theory of theG-Drazin partial order
for finite square matrices (see, for instance [21]) in such a way that using the well known
theory that relates square matrices with endomorphisms over vector spaces one can obtain
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new results from the main properties of the G-Drazin order and new proofs of the known
ones. For example, among others: the class of all endomorphisms ψ above a Core-Nilpotent
endomorphism ϕ for the Drazin pre-order is calculated on a natural way using the AST-
decomposition in Theorem 4.12; the relation between the AST decompositions in the Drazin
pre-order presented in Sect. 4.1, the relation between the G-Drazin partial order and other
pre-orders and orders stated in Theorem 6.6 and finally the relation between the G-Drazin
order and the G-Drazin inverses of the endomorphisms involved stated in Theorem 6.12.

Remark 7.4 Some remaining questions that the author think could be of interest, that are not
present in literature (as far as the author knows) and that can be approached using the theory
of Core-Nilpotent endomorphisms are the following:

• To give an algorithm to calculate explicitly all the endomorphisms ψ above a Core-
Nilpotent ϕ for the Drazin pre-order.

• To enunciate clearly the class of all endomorphisms ψ above a Core-Nilpotent ϕ for the
G-Drazin partial order.

• Accordingly, once the previous statement is achieved, to give an algorithm to calculate
explicitly all the endomorphisms ψ above a Core-Nilpotent ϕ for the G-Drazin partial
order.

• Specializing the previous points to the theory of finite square matrices.
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