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Abstract
We identify Fock-type spaces F(m,p) on which the differentiation operator D has closed
range. We prove that D has closed range only if it is surjective, and this happens if and
only if m = 1. Moreover, since the operator is unbounded on the classical Fock spaces, we
consider the modified or the weighted composition–differentiation operator, D(u,ψ,n) f =
u · (

f (n) ◦ ψ
)
, on these spaces and describe conditions under which the operator admits

closed range, surjective, and order bounded structures.

Keywords Fock-type spaces · Closed range · Differentiation operator · Surjective · Order
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1 Introduction

The differentiation operator, Df = f ′, often appears as an example of unbounded linear
operators in many Banach spaces, including Hardy spaces and Bergman spaces [11], Fock
spaces and Fock-type spaces, where the weight decays faster than the Gaussian weight [17],
and Fock–Sobolev spaces, where the weights decay slower than the Gaussian weight [16].
Inspired by all these developments, the question whether there could exist Fock-type spaces
on which D admits basic operator-theoretic structures was investigated in [14]. To answer
the question, the author considered the space

F(m,p) :=
{
f ∈ H(C) : ‖ f ‖p

(m,p) =
∫

C

| f (z)|pe−p|z|m d A(z) < ∞
}
,

whereH(C) denotes the set of entire functions on the complex planeC,m > 0, 1 ≤ p < ∞,
and A is the usual Lebesgue area measure. Then the following basic property was proved.

Theorem 1.1 [14, Theorem 1.1] Let 1 ≤ p, q < ∞ and m > 0.
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(i) If p ≤ q, then D : F(m,p) → F(m,q) is bounded if and only if

m ≤ 2 − pq

pq + q − p
, (1.1)

and compact if and only if the inequality in (1.1) is strict.
(ii) If p > q, then D : F(m,p) → F(m,q) is bounded (compact) if and only if

m < 1 − 2
( 1
q

− 1

p

)
.

For p = q , the inequality in (1.1) simplifies to m ≤ 1, which is stronger than the
boundedness condition for p < q . On the corresponding growth type space,

F(m,∞) := {
f ∈ H(C) : ‖ f ‖(m,∞) = sup

z∈C
| f (z)|e−|z|m < ∞}

,

the boundedness of D was characterized by the same condition m ≤ 1; see [2, 3, 10]. If D
acts between two different Fock-type spaces F(m,p) and F(m,q), where one of the spaces is
growth type, then a simple variant of the proof of Theorem 1.1 in [14] gives the following
result.

Corollary 1.2 Let 1 ≤ p < ∞ and m > 0. Then the operator

(i) D : F(m,p) → F(m,∞) is bounded if and only if

m ≤ 2 − p

p + 1
, (1.2)

and compact if and only if the inequality in (1.2) is strict.
(ii) D : F(m,∞) → F(m,p) is bounded (compact) if and only if m < 1 − 2

p .

For more related results, we refer the interested readers to [4, 14] and the references
therein. One of the main objectives of this work is to identify Fock-type spaces on which the
differentiation operator admits closed range structure. Our next main result shows there exists
no closed range differentiation operator acting between two different Fock-type spaces.

Theorem 1.3 Let 1 ≤ p, q ≤ ∞, m > 0, and D : F(m,p) → F(m,q) be bounded. Then the
following statements are equivalent.

(i) D has closed range;
(ii) p = q and m = 1;
(iii) D is surjective.

The result identifies F(1,p) as the only Fock-type space supporting closed range structure
for the operator D. The proof of the result will be presented in Sect. 2.

As mentioned earlier, D is not bounded on the classical Fock spaces. In [15], the author
studied whether simply modulating the classical Gaussian weight function |z|2/2 by positive
parameters α would produce a bounded D on the spaces

F p
α :=

{
f ∈ H(C) :

∫

C

| f (z)|pe− pα
2 |z|2d A(z) < ∞

}
.

It follows that for positive parameters α and β, D : F p
α → Fq

β is bounded if and only if
α < β and p ≤ q . This condition equivalently describes the compactness of the operator.
Consequently, as it will be explained later in the proof of Theorem 1.3, suchmodulated spaces
support no closed range compact differentiation operator.
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1.1 Weighted composition–differentiation operator

In the preceding section, we considered Fock-type spaces on which the differentiation oper-
ator is bounded, and we classified them based on whether they support closed range structure
for D or not. In this section, we modify the operator itself and study the closed range and
surjectivity problems on the classical Fock spaces.

For each n ∈ N0 = {0, 1, 2, ...} and u, ψ in H(C), we define the weighted composition–
differentiation operator D(u,ψ,n) by

D(u,ψ,n) f = u · (
f (n) ◦ ψ

)
,

where f (n) is the nth order derivative of the function f and f (0) = f . Then we investigate
when the operator D(u,ψ,n) admits closed range structure on the classical Fock spaces. This
class of operators has lately attracted a considerable amount of attention; see for example
[22] and the references therein.

For 1 ≤ p ≤ ∞, recall that the Fock spaces Fp are defined by

Fp := {
f ∈ H(C) : ‖ f ‖p < ∞}

,

where

‖ f ‖p :=

⎧
⎪⎨

⎪⎩

(
p
2π

∫
C

| f (z)|pe− p
2 |z|2d A(z)

) 1
p

< ∞, 1 ≤ p < ∞
supz∈C | f (z)|e− 1

2 |z|2 < ∞, p = ∞.

The space F2 is a reproducing kernel Hilbert space with kernel and normalized reproducing
kernel functions

Kw(z) = ewz and kw(z) = ‖Kw‖−1
2 Kw(z) = ewz− |w|2

2

for all z, w ∈ C. A straightforward calculation shows ‖kw‖p = 1 for all p. For more details,
we refer to the book [23].

Note that for each f ∈ H(C) and p 	= ∞, by [23, p. 37] the local estimate

| f (z)| ≤ e
|z|2
2

r2

( ∫

D(z,r)
| f (w)|pe− p|w|2

2 d A(w)

)1/p

(1.3)

holds, where D(z, r) is a disc of center z and radius r . For r = 1, this estimate gives

| f (z)| ≤ e
|z|2
2 ‖ f ‖p. (1.4)

By definition of the norm, the estimate in (1.4) holds for p = ∞ as well.
We note that the result in [17] addresses the unboundedness of only the first order differ-

entiation operator D on Fock spaces. A simple argument shows the nth order differentiation
operator, Dn f = f (n), is not bounded for all n ∈ N either. Indeed, using the kernel function
Kw, we observe

‖DnKw‖q
‖Kw‖p

= |w|n ‖Kw‖q
‖Kw‖p

= |w|n → ∞,

when |w| → ∞ independently of the exponents p and q . On the other hand, an easy
computation using the equivalent norms in (2.9) below shows the composed differentiation
operator, DnCψ f = f (n) ◦ ψ , is bounded on Fock spaces for every ψ(z) = az and 0 <
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|a| < 1. Motivated by this, in [22] the bounded and compact structures of D(u,ψ,n) were
described in terms of the function

L(u,ψ,n)(z) := |u(z)||ψ(z)|ne 1
2 (|ψ(z)|2−|z|2)

for each z ∈ C. For further referencing, we state the result below.

Theorem 1.4 [22, Theorem 1.3] Let u, ψ ∈ H(C), n ∈ N0, and 1 ≤ p, q ≤ ∞.

(i) If p ≤ q, then D(u,ψ,n) : Fp → Fq is bounded if and only if Ln :=
supz∈C L(u,ψ,n)(z) < ∞, and compact if and only if L(u,ψ,n)(z) → 0 when |z| → ∞.

(ii) If p > q, then D(u,ψ,n) : Fp → Fq is bounded (compact) if and only if L(u,ψ,n) ∈
L

pq
p−q (C, d A) for p < ∞ and L(u,ψ,n) ∈ Lq(C, d A) for p = ∞.

A bounded D(u,ψ,n) implies ψ(z) = anz + bn , an, bn ∈ C and |an | ≤ 1: see [22] for the
details. For simplicity, we write ψ(z) = az + b, a, b ∈ C. If |a| = 1, then

L(u,ψ,n)(z) = |u(z)||ψ(z)|ne 1
2 (|ψ(z)|2−|z|2) = |u(z)ψn(z)Kab(z)|e |b|2

2 ≤ Ln

for all z ∈ C, n ∈ N0, and Ln as in Theorem 1.4. Consequently,

|u(z)ψn(z)Kab(z)| ≤ Lne
− |b|2

2 .

By Liouville’s theorem, it follows that uψnKab is a constant Cn and hence u(z)ψn(z) =
CnK−ab(z). Setting z = 0, we get Cn = bnu(0). Therefore,

u(z)ψn(z) = bnu(0)K−ab(z). (1.5)

The representation in (1.5) will be needed later.
For an f ∈ H(C) and a positive r , we set M f (r) = max{| f (z)| : |z| = r}. Then the order

ρ( f ) of f is defined by

ρ( f ) = lim sup
r→∞

log
(
logM f (r)

)

log r
.

Now by Theorem 1.4,

|u(z)||ψ(z)|n ≤ Lne
1
2 (|z|2−|az+b|2) (1.6)

for all z ∈ C. It follows that uψn is of order at most 2. Consequently, a simple variant of the
proof of [5, Theorem 3.2] gives the following representation whenever uψn is non-vanishing.

Lemma 1.5 Let u, ψ ∈ H(C), n ∈ N0, and 1 ≤ p ≤ ∞. Let D(u,ψ,n) be bounded on Fp

and hence ψ(z) = az + b for some a, b ∈ C such that |a| ≤ 1. If 0 ≤ |a| < 1 and uψn is
non-vanishing, then

(i) D(u,ψ,n) is compact if and only if uψn has the form

u(z)ψn(z) = ea0n+a1n z+a2n z2 (1.7)

for some constants a0n, a1n, a2n in C such that |a2n | <
1−|a|2

2 .
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(ii) D(u,ψ,n) is bounded but not compact if and only if uψn has the form in (1.7) with

|a2n | = 1−|a|2
2 and either a1n + ab = 0 or a1n + ab 	= 0 and

a2n = − (1 − |a|2)(a1n + ab)2

2|a1n + ab|2 .

By Theorem 1.4 we get that for u(z) = 1 and ψ(z) = az + b with |a| < 1 the operator
D(1,ψ,n) is compact. In this case, the operator is quasinilpotent, that is, its spectral radius is
zero. Indeed, if λ is an eigenvalue, then

D(1,ψ,n) f = f (n)(az + b) = λ f (z)

for some nonzero function f ∈ Fp . Differentiating m times both sides of the equation gives

am f (n+m)(az + b) = λ f (m)(z).

It follows that

f (n+m)(az + b) = D(1,ψ,n)) f
(m)(z) = λ

am
f (m)(z).

This shows f cannot be a polynomial and f (m) cannot be zero. Thus, λ/am forms a sequence
of eigenvalues for D(1,ψ,n), which is a contradiction since λ/am → ∞ as m → ∞.

1.2 Order bounded D(u,Ã,n)

Another interestingnotion closely related to boundedness of anoperator is order boundedness.
The notion finds applications due to its close relation to absolutely summing operators [7,
8]. We say that an operator T : Fp → Fq is order bounded if there exists a positive function

h ∈ Lq
(
C, e− q

2 |z|2d A(z)
)
such that for all f ∈ Fp with ‖ f ‖p ≤ 1

|T ( f (z))| ≤ h(z)

almost everywherewith respect to themeasure A. This definitionwas introduced byHunziker
and Jarchow in [12]. For some recent work on the subject, we refer the interested reader to
[19, 21] and the references therein. For the operator D(u,ψ,n), we provide the following
characterization.

Theorem 1.6 Let u, ψ ∈ H(C), n ∈ N0, and 1 ≤ p, q ≤ ∞. Then D(u,ψ,n) : Fp → Fq is
order bounded if and only if L(u,ψ,n) ∈ Lq(C, d A).

By the discussion after Theorem 1.4, we observe that the order bounded condition implies
ψ(z) = az + b and |a| < 1. Note that if |a| = 1, then by (1.5)

L(u,ψ,n)(z) = |u(z)ψn(z)Kab(z)|e |b|2
2 = |bnu(0)||K−ab(z)Kab(z)|e |b|2

2 = |bnu(0)|e |b|2
2

and hence the condition in the theorem fails to hold. On the other hand, for q = ∞, the
boundedness and order boundedness conditions coincide. This together with Theorem 1.4
implies every order bounded operator D(u,ψ,n) is compact. By [22, Theorem 1.8], we also
observe that the order bounded D(u,ψ,n) are exactly those which are Hilbert-Schmidt in F2.

If n = 0, then D(u,ψ,n) reduces to the weighted composition operator D(u,ψ,0) f = u ·
( f ◦ ψ) = W(u,ψ). Thus, Theorem 1.6 describes the order bounded weighted composition
operators on Fock spaces, which we state it as follows.

123



T.Mengestie

Corollary 1.7 Let u, ψ ∈ H(C) and 1 ≤ p, q ≤ ∞. Then W(u,ψ) : Fp → Fq is order
bounded if and only if m(u,ψ) ∈ Lq(C, d A), where

m(u,ψ)(z) = |u(z)|e 1
2 (|ψ(z)|2−|z|2)

for all z ∈ C.

If u = 1, then we set D(ψ,n) := D(1,ψ,n), and Theorem 1.6 implies the following result
about the composition-differentiation operator.

Corollary 1.8 Let ψ ∈ H(C) and 1 ≤ p, q ≤ ∞. Then for each n ∈ N0, the following
statements are equivalent.

(i) D(ψ,n) : Fp → Fq is bounded;
(ii) D(ψ,n) : Fp → Fq is order bounded;
(iii) ψ(z) = az + b and |a| < 1.

1.3 Closed range D(u,Ã,n)

We now study the closed range property of D(u,ψ,n). If ψ = b ∈ C, then D(u,ψ,n) f =
u f (n)(b), and hence the range,

R(D(u,ψ,n)) = {
u f (n)(b) : f ∈ Fp

}
,

is closed. Thus, we assume that ψ is not a constant in the rest of the manuscript. The next
proposition shows a nontrivial D(u,ψ,n) cannot have closed range if it acts between two
different Fock spaces.

Proposition 1.9 Let u, ψ ∈ H(C) such that ψ is not a constant, 1 ≤ p, q ≤ ∞, and n ∈ N0.
Then a bounded D(u,ψ,n) : Fp → Fq has closed range only if p = q.

The proof of the proposition will be given later in Sect. 2.3.
We now recall the notion of sampling sets for Banach spaces. The notion was introduced

by Ghatage, Zheng and Zorboska [9] as a tool to study bounded below composition operators
on Bloch spaces. Since then, it has been used to study both the bounded below and closed
range properties of several operators on spaces of analytic functions. There have been also
various ways of defining the notion; see for example [9, 18]. On Fock spaces, we provide the
following unified and general definition. Let 1 ≤ p ≤ ∞, k ∈ N0 and M be a non-empty
subset ofFp . A subset S ofC is a (p, k) sampling set for M if there exists a positive constant
δk such that

δk‖ f ‖p ≤

⎧
⎪⎨

⎪⎩

supz∈S
| f (k)(z)|
(1+|z|)k e

− |z|2
2 , p = ∞

( ∫
S

| f (k)(z)|p
(1+|z|)kp e

− p
2 |z|2d A(z)

) 1
p
, p < ∞.

(1.8)

for all f in M . For each positive εn, n ∈ N0, we also define the sets



εn
(u,ψ,n) := {z ∈ C : L(u,ψ,n)(z) > εn}, Gεn

(u,ψ,n) := ψ
(



εn
(u,ψ,n)

)
.

We now state our next main result.
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Theorem 1.10 Let u, ψ ∈ H(C) such that ψ is not a constant, 1 ≤ p ≤ ∞, n ∈ N0, and
D(u,ψ,n) be bounded on Fp. Then D(u,ψ,n) has closed range if and only if there exists εn > 0
such that Gεn

(u,ψ,n) is a (p, n) sampling set for F0
(p,n), where

F0
(p,n) := { f ∈ Fp : f (0) = f ′(0) = ... = f (n−1)(0) = 0}.

1.4 Surjective D(u,Ã,n)

In this section we consider the question of when the operator D(u,ψ,n) is surjective on Fock
spaces. To state our result, we may first recall the notation of essential boundedness.We say a
non-zero function g inH(C) is essentially bounded away from zero if there exists a constant
δ > 0 such that the measure of the set {z ∈ C : |g(z)| < δ} is zero.

Theorem 1.11 Let u, ψ ∈ H(C) such that ψ is not a constant, 1 ≤ p ≤ ∞, and n ∈ N0. Let
D(u,ψ,n) be bounded on Fp and hence ψ(z) = az + b for some a, b ∈ C and |a| ≤ 1. Then
the following statements are equivalent.

(i) L(u,ψ,n) is essentially bounded away from zero on C;
(ii) D(u,ψ,n) is surjective;
(iii) |a| = 1.

We close this section with a word on notation. The notion U (z) � V (z) (or equivalently
V (z) � U (z)) means that there is a constant C > 0 such that U (z) ≤ CV (z) holds for all z
in the set of question. We write U (z) 
 V (z) if both U (z) � V (z) and V (z) � U (z).

2 Proof of the results

In this section, we present the proofs of the results. We begin by reminding the connection
between the closed range problem and the bounded below property of a linear operator on
Banach spaces. Let H1 and H2 be two Banach spaces. An operator T : H1 → H2 is said
to be bounded below if there exists a positive constant C such that ‖T f ‖H2 ≥ C‖ f ‖H1 for
every f ∈ H1. As known from an application of the Open Mapping Theorem, an injective
bounded operator on Banach spaces has closed range if and only if it is bounded below; see
for example [1, Theorem 2.5]. The operator D maps all constants to the zero function and
fails to be injective unless its action is restricted to the spaces modulo the constants or

F0
(m,p) := {

f ∈ F(m,p) : f (0) = 0
}
.

In the latter case, D has closed range if and only if it is bounded below. On the other hand, for
each f ∈ F(m,p), the function f − f (0) belongs to F0

(m,p), and D( f ) = D( f − f (0)) = f ′.
Thus, D has closed range on F0

(m,p) if and only if it has closed range on F(m,p). For the sake
of further referencing, we record this useful observation below.

Lemma 2.1 Let 1 ≤ p, q ≤ ∞ and m > 0. Then D : F0
(m,p) → F(m,q) is bounded below if

and only if D : F(m,p) → F(m,q) has closed range.

The lemma will be used in our next proof.
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2.1 Proof of Theorem 1.3

Note that (iii) obviously implies (i). Let us see (i) ⇒ (ii) and (ii) ⇒ (iii). From [6, 17], for
each f ∈ F(m,p) we have

‖ f ‖(m,p) 


⎧
⎪⎨

⎪⎩

(
| f (0)|p + ∫

C

| f ′(z)|pe−p|z|m

(1+|z|)p(m−1) d A(z)
) 1

p
, p < ∞

| f (0)| + supz∈C
| f ′(z)|e−|z|m

(1+|z|)(m−1) , p = ∞.

(2.1)

We first consider the case when either p > q or p ≤ q and m < 2 − pq
pq+q−p . Then by

Theorem 1.1, the operator is compact. It is known that a compact operator has closed range
if and only if its range is finite dimensional. On the other hand, D is injective on an infinite
dimensional set F0

(m,p). Therefore, the operator has no closed range in this case.

Next, we consider p ≤ q < ∞ andm = 2− pq
pq+q−p . For this case, we prove the operator

is not bounded below unless p = q . The norms of the monomials are estimated by

‖zn‖(p,m) 

(

n

me

) n
m + 2

mp − 1
2p

. (2.2)

See [10] for the details. For p = ∞, the corresponding estimate becomes

‖zn‖(∞,m) 

(

n

me

) n
m

. (2.3)

We may now use Lemma 2.1 and suppose p ≤ q < ∞ and the operator is bounded below.
Then there exists a positive constant ε such that for all n ∈ N

‖Dzn‖(q,m) = n‖zn−1‖(q,m) ≥ ε‖zn‖(p,m). (2.4)

This and (2.2) imply

n‖zn−1‖(q,m)

‖zn‖(p,m)


 n(n − 1)
n−1
m + 2

mq − 1
2q

n
n
m + 2

mp − 1
2p


 n
m−1
m + 2

mq − 1
2q

n
2
mp − 1

2p

� ε (2.5)

for all n ∈ N. Now setting m = 2 − pq
pq+q−p and simplifying further, the relation in (2.5)

holds onlywhen n
p−q
2pq � ε,which implies p = q and hencem = 2− pq

pq+q−p = 1. Similarly,
if p ≤ q = ∞, then

n‖zn−1‖(∞,m)

‖zn‖(p,m)


 n(n − 1)
n−1
m

n
n
m + 2

mp − 1
2p


 n1−
1
m + 1

2p − 2
mp = n− 1

2p � ε,

which implies p = q and hence m = 1.
Next, we show (ii) implies (iii). Let now p = q and m = 1. We need to show the range

of the operator is F(1,p). For each f ∈ F(1,p), consider the entire function

h f (z) =
∫ z

0
f (w)dw.

Applying (2.1),

‖h f ‖p
(1,p) 


∫

C

| f (z)|pe−p|z|d A(z) 
 ‖ f ‖p
(1,p) < ∞,

and hence h f ∈ F(1,p). Furthermore, Dh f = f and completes the proof.
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Remark 1

The same argument used above to show that a compact D cannot have closed range on the
Fock-type spaces will be used in the sequel for the operator D(u,ψ,n).

2.2 Proof of Theorem 1.6

First note that for n ∈ N0 and |z| ≤ 1, using the Cauchy integral formula and (1.4) we have

| f (n)(z)| ≤ n!
2π

∫

|w−z|=1

| f (w)|
|w − z|n+1 |dw| ≤ n!‖ f ‖p max|w−z|=1

e
|w|2
2

≤ n!e3/2e |z|2
2 ‖ f ‖p (2.6)

for all f ∈ Fp . Similarly, for |z| > 1,

| f (n)(z)| ≤ n!
2π

∫

|w−z|=1/|z|
| f (w)|

|w − z|n+1 |dw| ≤ n!|z|n‖ f ‖p max|w−z|=1/|z| e
|w|2
2

≤ n!e3/2|z|ne |z|2
2 ‖ f ‖p. (2.7)

Combining (2.6) and (2.7), we get

| f (n)(z)| ≤ n!e3/2(1 + |z|)ne |z|2
2 ‖ f ‖p,

and hence

|D(u,ψ,n) f (z)| = |u(z) f (n)(ψ(z))| ≤ n!e3/2|u(z)|(1 + |ψ(z)|)ne |ψ(z)|2
2 ‖ f ‖p. (2.8)

Suppose now that D(u,ψ,n) is order bounded. Then there exists a positive function hn ∈
Lq

(
C, e− q

2 |z|2d A(z)
)
such that

|D(u,ψ,n) f (z)| ≤ hn(z)

for almost all z ∈ C and ‖ f ‖p ≤ 1. Applying this inequality to the normalized kernel
functions kw,w ∈ C, we get

|D(u,ψ,n)kw(z)| = |u(z)k(n)
w (ψ(z))| = ∣∣u(z)wn

∣∣∣∣ewψ(z)−|w|2/2∣∣ ≤ hn(z)

for almost all z ∈ C. For w = ψ(z) in particular,

∣∣u(z)wnewψ(z)− |w|2
2

∣∣ = |u(z)ψ(z)n |e |ψ(z)|2
2 = L(u,ψ,n)(z)e

|z|2
2 ≤ hn(z)

from which the necessity of the condition follows.
To prove the converse, setting

hn(z) := n!e2|u(z)|(1 + |ψ(z)|)ne |ψ(z)|2
2 
 n!e2L(u,ψ,n)(z)e

|z|2
2 ,

we observe that the assumption on L(u,ψ,n) implies hn ∈ Lq
(
C, e− q

2 |z|2d A(z)
)
. Furthermore,

by (2.8)

|D(u,ψ,n) f (z)| ≤ n!e3/2|u(z)|(1 + |ψ(z)|)ne |ψ(z)|2
2 ≤ hn(z)

for any f ∈ Fp such that ‖ f ‖p ≤ 1, and completes the proof of the theorem.
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The next basic lemma connects the closed range problem and boundedness from below
of the operator D(u,ψ,n).

Lemma 2.2 Let u, ψ ∈ H(C) such that ψ is not a constant, 1 ≤ p ≤ ∞, and n ∈ N0.
Then a bounded D(u,ψ,n) : Fp → Fp has closed range if and only if the restriction operator
D(u,ψ,n) : F0

(p,n) → Fp is bounded from below, where

F0
(p,n) := {

f ∈ Fp : f (0) = f ′(0) = ... = f (n−1)(0) = 0
}
.

Proof Note that D(u,ψ,n) is injective on F0
(p,n) but not on Fp . Thus, as explained in the

preceding section, D(u,ψ,n) has closed range on F0
(p,n) if and only if it is bounded below.

On the other hand, for each f ∈ Fp , the function f − Sn f belongs to F0
(p,n), where Sn f

refers to the first n terms of the Taylor series expansion of the function f . Now, D(u,ψ,n) f =
D(u,ψ,n)( f − Sn f ), from which and the connection between the closed range problem and
boundedness below, the claim follows.

2.3 Proof of Proposition 1.9

Let 1 ≤ p ≤ ∞. From [13, 20], the estimate

‖ f ‖p 

⎧
⎨

⎩

∑n−1
j=0 | f ( j)(0)| +

( ∫
C

| f (n)(z)|p
(1+|z|)np e

− p
2 |z|2d A(z)

) 1
p
, p < ∞

∑n−1
j=0 | f ( j)(0)| + supz∈C

| f (n)(z)|
(1+|z|)n e

− 1
2 |z|2 , p = ∞

(2.9)

holds. We will appeal to this estimate several times in the sequel.
Let us consider first the case p < q < ∞ and assume D(u,ψ,n) : Fp → Fq has closed

range. By Lemma 2.2, the operator is bounded below on F0
(p,n). We consider the sequence

of the monomials fk(z) = zk, k ∈ N0, k ≥ n. Using Stirling’s approximation formula again

‖ fk‖p
p = p

∫ ∞

0
rkp+1e−pr2/2dr = (

1/p
)kp/2

�
(
(kp + 2)/2

) 
 (
k/e

) kp
2
√
k. (2.10)

See also [23, p. 40]. Now applying (2.9) and Theorem 1.4,

‖D(u,ψ,n) fk‖qq = q

2π

∫

C

|u(z)|q | f (n)
k (az + b)|qe− q

2 |z|2d A(z)

= q

2π

∫

C

|u(z)|q(1 + |az + b|)nq | f (n)
k (az + b)|q

(1 + |az + b|)nq e
− q

2 |z|2d A(z)



∫

C

Lq
(u,ψ,n)(z)

| f (n)
k (az + b)|q

(1 + |az + b|)nq e
− q

2 |az+b|2d A(z)

� Lq
n

∫

C

| f (n)
k (az + b)|q

(1 + |az + b|)nq e
− q

2 |az+b|2d A(z) � Lq
n‖ fk‖qq � ‖ fk‖qq ,

where Ln is a constant as in Theorem 1.4. This and boundedness below imply there exists
εn > 0 for which

‖ fk‖q ≥ εn‖ fk‖p. (2.11)
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Now, applying (2.10), the estimate in (2.11) holds only if k
1
2q − 1

2p ≥ εn for all k ∈ N0, k ≥ n.
This gives a contradiction when k → ∞.
Similarly, for p < q = ∞, we have ‖ fk‖∞ = (

k/e
)k/2

. By (2.9) and Theorem 1.4,

‖D(u,ψ,n) fk‖∞ 
 sup
z∈C

L(u,ψ,n)(z)
| f (n)

k (az + b)|
(1 + |az + b|)n e

− 1
2 |az+b|2 � Ln‖ fk‖∞.

Therefore,

(k
e

) k
2 = ‖ fk‖∞ ≥ εn‖ fk‖p 
 εn

(k
e

) k
2
k

1
2p

for some εn > 0. This gives a contradiction when k → ∞ again. If p > q , then by
Theorem 1.4, D(u,ψ,n) : Fp → Fq is compact and injective on an infinite dimensional space
F0

(p,n). By Remark 1, it follows that the range of the operator cannot be closed.

2.4 Proof of Theorem 1.10

By Lemma 2.2, it is enough to show that D(u,ψ,n) has closed range on F0
(p,n) if and only if

there exists a constant εn > 0 such that Gεn
(u,ψ,n) is a (p, n) sampling set for F0

(p,n).

Suppose Gεn
(u,ψ,n) is a (p, n) sampling set for some εn > 0. If p < ∞, then there exists

δn > 0 such that for each f ∈ F0
(p,n),

δn‖ f ‖p
p ≤

∫

Gεn
(u,ψ,n)

| f (n)(z)|p
(1 + |z|)np e

− p
2 |z|2d A(z). (2.12)

It follows that

‖D(u,ψ,n) f ‖p
p = p

2π

∫

C

∣∣u(z) f (n)(ψ(z))
∣∣pe− p

2 |z|2d A(z)

≥ p

2π

∫



εn
(u,ψ,n)

∣∣u(z) f (n)(ψ(z))
∣∣pe− p

2 |z|2d A(z)

≥ p

2π

∫



εn
(u,ψ,n)

L p
(u,ψ,n)(z)

| f (n)(ψ(z))|p
(1 + |ψ(z)|)np e

− p
2 |ψ(z)|2d A(z).

By (2.12), the last right-hand integral above is bounded below by

pε p
n

2π |a|2
∫

Gεn
(u,ψ,n)

| f (n)(z)|p
(1 + |z|)np e

− p
2 |z|2d A(z) ≥ pε p

n

2π |a|2 δn‖ f ‖p
p. (2.13)

Similarly, for p = ∞, there exists δn such that for each f ∈ F0
(p,n),

‖D(u,ψ,n) f ‖∞ = sup
z∈C

∣∣u(z) f (n)(ψ(z))
∣∣e− 1

2 |z|2

≥ sup
z∈


εn
(u,ψ,n)

L(u,ψ,n)(z)(1 + |ψ(z)|)−n | f (n)(ψ(z))|e− 1
2 |ψ(z)|2

≥ εn sup
z∈Gεn

(u,ψ,n)

(1 + |z|)−n | f (n)(z)|e− 1
2 |z|2 � δnεn‖ f ‖∞. (2.14)
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From (2.13), (2.14) and Lemma 2.2, the sufficiency of the condition follows.
Conversely, let n be fixed and supposeGε

(u,ψ,n) is not a (p, n) sampling set for each ε > 0.

Let p < ∞. Then there exists a unit norm sequence ( fk)k∈N in F0
(p,n) such that

∫

G1/k
(u,ψ,n)

| f (n)
k (z)|p

(1 + |z|)np e
− p

2 |z|2d A(z) → 0 as k → ∞.

It follows that

‖D(u,ψ,n) fk‖p
p = p

2π

∫

C

|u(z)|p| f (n)
k (ψ(z))|pe− p

2 |z|2d A(z)

= p

2π

∫

C

L p
(u,ψ,n)(z)

| f (n)
k (ψ(z))|p

(1 + |ψ(z)|)np e
− p

2 |ψ(z)|2d A(z) = I1n + I2n,

where we set

I1n = p

2π

∫



1/k
(u,ψ,n)

L p
(u,ψ,n)(z)

| f (n)
k (ψ(z))|p

(1 + |ψ(z)|)np e
− p

2 |ψ(z)|2d A(z)

≤ pL p
n

2π

∫



1/k
(u,ψ,n)

| f (n)
k (ψ(z))|p

(1 + |ψ(z)|)np e
− p

2 |ψ(z)|2d A(z)

= pL p
n

2π |a|2
∫

G1/k
(u,ψ,n)

| f (n)
k (z)|p

(1 + |z|)np e
− p

2 |z|2d A(z) → 0

as k → ∞. To estimate the remaining integral, we eventually apply (2.9) and

I2n �
∫

C\
1/k
(u,ψ,n)

L p
(u,ψ,n)(z)

| f (n)
k (ψ(z))|p

(1 + |ψ(z)|)np e
− p

2 |ψ(z)|2d A(z)

≤ 1

k p

∫

C\
1/k
(u,ψ,n)

| f (n)
k (ψ(z))|p

(1 + |ψ(z)|)np e
− p

2 |ψ(z)|2d A(z)

≤ 1

k p

∫

C

| f (n)
k (ψ(z))|p

(1 + |ψ(z)|)np e
− p

2 |ψ(z)|2d A(z)


 ‖ fk‖p
p

k p

 1

k p
→ 0 as k → ∞.

This contradicts the assumption that the operator is bounded below.
Next, consider p = ∞ and suppose D(u,ψ,n) is bounded below.Then there exists a constant

δn > 0 such that for each f ∈ F0
(∞,n)

sup
z∈C

|u(z)|| f (n)(ψ(z))|e− |z|2
2 ≥ δn‖ f ‖∞.

Then, by definition of supremum for each f there exists w f ∈ C such that

|u(w f )|| f (n)(ψ(w f ))|e− |w f |2
2 >

δn

2
‖ f ‖∞. (2.15)
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On the other hand, by (2.9) again

|u(w f )|| f (n)(ψ(w f ))|e− |w f |2
2 � L(u,ψ,n)(w f )

| f (n)(ψ(w f ))|
(1 + |ψ(w f )|)n e

− |ψ(w f )|2
2

≤ L(u,ψ,n)(w f )‖ f ‖∞

and with (2.15), we deduce

L(u,ψ,n)(w f ) >
δn

2
.

Setting εn = δn/2, we observe that w f ∈ 

εn
(u,ψ,n) and using (2.15)

‖ f ‖∞ ≤ 2|u(w f )|
δn

| f (n)(ψ(w f ))|e− |w f |2
2

� 2L(u,ψ,n)(w f )

δn

| f (n)(ψ(w f ))|
(1 + |ψ(w f )|)n e

− |ψ(w f )|2
2

� 2Ln

δn

| f (n)(ψ(w f ))|
(1 + |ψ(w f )|)n e

− |ψ(w f )|2
2

≤ 2Ln

δn
sup

z∈Gεn
(u,ψ,n)

| f (n)(z)|
(1 + |z|)n e

− |z|2
2

and completes the proof.

2.5 Proof of Theorem 1.11

Let p < ∞. We prove first the implication (i)⇒(ii) and suppose γn is an essential lower
bound for L(u,ψ,n). Then for each f ∈ Fp , consider the function

h f (z) =
{
g(z) u(z) 	= 0

limw→z g(w), u(z) = 0,

where we set

g(z) =
∫ z

0

∫ z1

0

∫ z2

0
...

∫ zn−1

0

f (ψ−1(w))

u(ψ−1(w))
d A(w)d A(zn−1)...d A(z2)d A(z1).

Clearly, D(u,ψ,n)h f = f . Since u is entire and vanishes at most in a set of measure zero, we
estimate

‖h f ‖p
p 


∫

C

|g(n)(z)|p
(1 + |z|)np e

− p
2 |z|2d A(z) 


∫

C

| f (ψ−1(z))|pe− p
2 |z|2

(1 + |z|)np|u(ψ−1(z))|p d A(z)

≤
∫

C

| f (z)|pe− p
2 |ψ(z)|2

(1 + |ψ(z)|)np|u(z)|p d A(z)

�
∫

C

L−p
(u,ψ,n)(z)| f (z)|pe− p

2 |z|2d A(z)

≤ 2πγ
−p
n p−1‖ f ‖p

p < ∞,
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from which the statement in (ii) follows.
Next, we prove (i i) ⇒ (i i i), and suppose on the contrary |a| < 1. The surjectivity of

the operator implies there exists some f ∈ Fp such that 1 = D(u,ψ,n) f . It follows that
u has no zeros in C, and uψn has a zero set of measure zero which does not affect our
integral approach below in (2.16). Thus, we can assume that uψn is non-vanishing. Then by
Lemma 1.5, it follows that uψn(z) = ea0n+a1n z+a2n z2 , for some constants a0n, a1n, a2n ∈ C

such that |a2n | ≤ 1−|a|2
2 . Using this, we write

L(u,ψ,n)(z) = |u(z)ψn(z)|e 1
2 (|az+b|2−|z|2)

= e�(a0n+a1n z+a2n z2)e
1
2 (|az+b|2−|z|2)

= Ce�((a1n+ab)z)+�(a2n z2)+ |a|2−1
2 |z|2

for all z ∈ C, where C = e�(a0n)+ |b|2
2 . By surjectivity, for each h ∈ Fp , there exists some

f ∈ Fp such that D(u,ψ,n) f (z) = u(z) f (n)(az + b) = h(z) for all z ∈ C. This implies

∫

C

| f (n)(az + b)|pe− p
2 |az+b|2

(1 + |ψ(z)|)np d A(z) =
∫

C

|h(z)|pe− p
2 |z|2

L p
(u,ψ,n)(z)

d A(z). (2.16)

By (2.9), the right-hand integral in (2.16) should be finite for each h ∈ Fp . The plan is now
to show the existence of some functions h in the space for which this integral diverges.

Now, if |a2n | <
1−|a|2

2 , then the operator is compact and by Remark 1, its range is not

closed and the operator is not surjective. Thus, we set |a2n | = 1−|a|2
2 and consider the

following two cases following Lemma 1.5.
Case 1. For a1n + ab = 0, we have

L(u,ψ,n)(z) = Ce�(a2n z2)+ |a|2−1
2 |z|2 . (2.17)

We may also write a2n = |a2n |e−2iθ2n , where 0 ≤ θ2n < π .
Replacing z by eiθ2nw in (2.17)

L(u,ψ,n)(e
iθ2nw) = Ce

1−|a|2
2 (�(w2)−|w|2) (2.18)

for all w ∈ C. Setting w = x + iy, the relation in (2.18) implies

e− 1
2 |eiθ2nw|2

L(u,ψ,n)(eiθ2nw)
= 1

C
e( 12−|a|2)y2− 1

2 x
2
. (2.19)

fromwhichwe observe that the integral in (2.16) diverges for every nonzero constant function
h in the space whenever |a| < 1√

2
. Thus, the question is when |a| ≥ 1√

2
. We may consider

a function h(z) = hα(z) = eαz2 where α is a real number and |α| < 1
2 . A suitable α will be

chosen later. A straightforward calculation using (2.19) gives

∫ ∞

−∞

∫ ∞

−∞
|hα(eiθ2n (x + iy))|pe− p

2 |eiθ2n (x+iy)|2

L p
(u,ψ,n)(e

iθ2n (x + iy))
dxdy = 1

C

∫ ∞

−∞

∫ ∞

−∞
epβ(x,y)dxdy,

(2.20)
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where

β(x, y) :=
(

α cos(2θ2n) − 1

2

)
x2 +

(
1

2
− |a|2 − α cos(2θ2n)

)
y2

− 2αxy sin(2θ2n).

Since |α| < 1/2, it holds that α cos(2θ2n) − 1
2 < 0. Integrating with respect to x ,

∫ ∞

−∞
ep(α cos(2θ2n)− 1

2 )x2−2pαy sin(2θ2n)xdx =
∫ ∞

−∞
e−p( 12−α cos(2θ2n))x2−2pαy sin(2θ2n)xdx

= √
π

( p

2
− pα cos(2θ2n)

)− 1
2
e

α2 y2 p2 sin2(2θ2n )
p
2 −pα cos(2θ2n ) .

Taking this in (2.20), the coefficient of y2 becomes

p

2
− p|a|2 − pα cos(2θ2n) + α2 p2 sin2(2θ2n)

p
2 − pα cos(2θ2n)

= pα2 + p
4 − p|a|2

2 + pα cos(2θ2n)(|a|2 − 1)
1
2 − α cos(2θ2n)

. (2.21)

Now, if cos(2θ2n) ≤ 0, we choose a positive α such that

1

4
> α2 >

|a|2
2

− 1

4
. (2.22)

Note that such a choice is possible since |a| < 1. For such α, the expression in (2.21) is
nonnegative and hence the integral in (2.20) diverges. On the other hand, if cos(2θ2n) > 0,
we can choose a negative α such that (2.22) holds and hence the integral in (2.20) diverges
again.

Case 2. Let a1n + ab 	= 0 and

a2n = − (1 − |a|2)(a1n + ab)2

2|a1n + ab|2 .

Using this and a2n = |a2n |e−2iθ2n as above, we obtain

(a1n + ab)eiθ2n = ±i |a1n + ab|,
which is a purely imaginary number. Setting (a1n + ab)eiθ2n = iyn for some yn ∈ R,
w = x + iy, and z = eiθ2nw

L(u,ψ,n)(e
iθ2nw) = Ce−yn y−(1−|a|2)y2

and hence

e− 1
2 |eiθ2nw|2

L(u,ψ,n)(eiθ2nw)
= 1

C
eyn y+( 12−|a|2)y2− 1

2 x
2
.

This shows that if |a| ≤ 1√
2
, then the integral in (2.16) diverges for every nonzero constant

function h in the space again. For the rest, we consider a function hα(z) = eαz2 and argue
exactly in the same way as above.
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It remains to show (iii)⇒ (i). For |a| = 1, by (1.5) we have

L(u,ψ,n)(z) = |u(z)ψn(z)|e 1
2 (|az+b|2−|z|2) = |bnu(0)|e |b|2

2 .

Note that if bnu(0) = 0, then the function u vanishes since ψ is entire and nonzero. Hence
bnu(0) 	= 0 and L(u,ψ,n) is bounded away from zero.

For p = ∞, we simply replace the integral argument in the proof by the supremum.
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