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Received: 26 November 2022 / Accepted: 20 June 2023 / Published online: 26 July 2023
© The Author(s) 2023

Abstract
The aim of this paper is to classifymildly singular Calabi–Yau threefolds fibred in low-degree
weighted K3 surfaces and embedded as anticanonical hypersurfaces in weighted scrolls,
extending results of Mullet. We also study projective degenerations, revisiting an example
due to Gross and Ruan. Finally we briefly discuss the general question of embedding a
projective fibration into a weighted scroll.

Keywords K3 fibration · Calabi-Yau threefold · Weighted scroll

1 Introduction

Let (X , D) be a polarized projective variety over C: a pair consisting of a normal projective
C-variety X and an ample Q-Cartier Weil divisor D on X , with associated divisorial sheaf
OX (D). We can then consider the graded C-algebra

R =
∞⊕

m=0

H0(X ,OX (m D)).

Ampleness of D is equivalent to an isomorphism X ∼= Proj R; in particular, the algebra R
is finitely generated. Choosing a set of algebra generators r1, . . . , rn ∈ R of positive integer
weights c1, . . . , cn gives a surjection

S = C[x1, . . . , xn] � R

of graded algebras, and a corresponding embedding

(X , D) ↪→ (
P

n−1[c1, . . . , cn],O(1)
)

(1)
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into a weighted projective space. Under suitable vanishing assumptions, the dimension of the
m-th graded piece of R is given by a Riemann–Roch type formula, allowing the computation
of the Hilbert series of R.

Miles Reid’s graded ring method studies classes of projective varieties of increasing
complexity according to their codimension in the embedding (1), using the information
derived from the Hilbert series. Well-studied classical examples include the “famous 95” K3
hypersurfaces in weighted projective 3-space due to Iano-Fletcher and Reid [15, Sect.13.3]
and the associated families ofQ-Fano 3-folds [15, Sect.16.6], [3]; the codimension 2 complete
intersection K3 surfaces of Iano-Fletcher [15, Sect.13.8]; the codimension 3 Pfaffian K3
families [1] and others. The current state of the art is contained in the Graded Ring Database
[6, 10].

In a paper [17] by Mullet, the first steps were taken to study a relative version of these
constructions: the case of a polarized projective fibration f : X → B over a polarized base B.
In that paper, the following specific setup was studied:

(i) the base B ∼= P
1;

(ii) the general fibre of f is one of the “famous 95” list of Iano-Fletcher–Reid;
(iii) the fibration f : X → P

1 embeds into a weighted scroll π : F → P
1 as a quasi-smooth

anticanonical Calabi–Yau 3-fold.

Here, and for the rest of the paper, aCalabi–Yau n-fold X is an n-dimensional normal complex
projective variety with canonical singularities, trivial dualizing sheaf, and Hi (X ,OX ) = 0
for 0 < i < n. (Note that Mullet does not assume projectivity, but as all weighted scrolls are
projective varieties, this condition also holds in all his examples.)

Our aim is to study this problem further, extending the study of K3 hypersurface-fibred
Calabi–Yau threefolds in two ways. On the one hand, we return to the first few cases of
the Iano-Fletcher–Reid list, and for these fibres relax assumption (iii), to allow for at most
isolated singularities along the base locus. This allows for a longer list of examples, with
some new cases of potential further interest; all our examples have projective Calabi–Yau
resolutions. On the other hand, we use the explicit realisation of some of the threefolds
as hypersurfaces in scrolls to study their projective geometry including degenerations, re-
visiting fromadifferent point of view an example due toGross [13], also studied byRuan [21].
We begin in Sect. 2 by recalling the definition and basic properties of weighted scrolls, and
discuss their toric geometry and anticanonical hypersurfaces. Our main results are contained
in Sect. 3. In Theorems 4 and 11, we classify K3-fibred Calabi–Yau threefolds with mild
singularities embedded in weighted scrolls over P1, whose generic fibres are quartic, quintic
or sextic weighted K3’s. We also study aspects of the projective geometry of some of our
examples.

Other searches of a similar nature are also of interest; the first author’s thesis [16] studies,
and lists, polarized elliptic K3 surfaces with rational double point singularities, as well as
some higher codimension examples.

In the closing Sect. 4, we speculate on how far the conditions (i)–(iii) can be relaxed to
find interesting examples of projective fibrations, leaving detailed investigations of these
questions to future work.
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2 Preliminaries on weighted scrolls

2.1 Basics

We write this section in the generality needed for our examples, in order not to over-burden
notation, following the treatment in [18] in the unweighted case. Fix an integer n > 1, a
set of positive integer weights (b1, b2, . . . , bn) and arbitrary integer twists (a1, . . . , an). To
simplify the situation and because this is the case in all our applications, we assume from the
outset that the first weight b1 = 1; as usual, the remaining weights will be ordered in weakly
increasing order.

Consider the action

(λ, μ) : (t1, t2; x1, . . . , xn) �→ (λt1, λt2; λ−a1μb1x1, . . . , λ
−an μbn xn) (2)

of (C∗)2 on affine space C2 × C
n . This action preserves the open subset

U = (C2 \ {0}) × (Cn \ {0}).
We define the weighted scroll of type (a1, . . . , an | b1, . . . , bn) to be the quotient

F(a1, . . . , an | b1, . . . , bn) = U/(C∗)2.

with quotient map

q : U → F(a1, . . . , an | b1, . . . , bn).

The (C∗)2-orbits are easily checked to be closed on U , and it is known that q is a geometric
quotient. The (C∗)2-action has finite stabilizers along certain loci in U , leading to finite
quotient singularities on F(a1, . . . , an | b1, . . . , bn). There are no stabilisers if b2 = . . . =
bn = 1 also.

It is clear that first projection on U ⊂ C
2 × C

n is compatible with taking a quotient, so
we get a morphism

π : F(a1, . . . , an | b1, . . . , bn) → P
1

with fibres that are all isomorphic to the weighted projective space Pn−1[b1, b2, . . . .bn].
Note that given weights (1, b2, . . . , bn), replacing a set of twists (a1, . . . , an) by the set

(a1 + k, a2 + kb2 . . . , an + kbn) leads to an isomorphic quotient. Thus, assuming b1 = 1 as
we do, we may also assume a1 = 0.

Algebraically, we can consider the coordinate algebra

S = C[t1, t2, x1, . . . , xn] (3)

of C2 ×C
n . The (C∗)2-action translates into the bigrading on S that assigns degree (1, 0) to

the generators t1, t2 and (−ai , bi ) to each generator xi .

2.2 The toric description

Weighted scrolls are clearly toric varieties; in this section, we make this explicit. For sim-
plicity, in this section F denotes a scroll F(a1, . . . , an | b1, . . . , bn) over P1 given by twists
and weights as above, with b1 = 1.

Start with the exact sequence of abelian groups

0 −→ Z
2 −→ Z

2+n −→ N −→ 0, (4)
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624 G. Mboya and B. Szendrői

where the first map maps the standard generators of Z2 to the vectors (1, 1,−a1, . . . ,−an)

and (0, 0, 1, b2, . . . , bn) respectively. Note that by assuming b1 = 1, we automatically get
that N is a freeZ-module. The standard lattice generators ofZ2+n project to elements of N that
we denote by σ1, σ2, ρ1, . . . , ρn . Note that by our definition of N , they satisfy the relations

σ1 + σ2 −
n∑

j=1

a jρ j = 0,
n∑

j=1

b jρ j = 0.

So with b1 = 1, we see that {σ2, ρ2, . . . , ρn} is a Z-basis of N .
We define a fan � in the n-dimensional real space NR by declaring the maximal dimen-

sional cones to be

τi, j = Span(σi , ρ1, . . . , ρ j−1, ρ j+1 . . . , ρn);
it is easy to check that this is indeed a fan.

Proposition 1 Using standard toric notation, the toric variety X N ,� is isomorphic to the
scroll F = F(a1, . . . , an | b1, . . . , bn) defined above, whereas the bigraded algebra S in (3)
becomes the Cox ring [8] of this toric variety.

Proof This is standard toric geometry [8, 14]. 	


Let Cl(F) denote the group of Weil divisors of F. The one-dimensional cones in our fan
give us divisors Dσi = {ti = 0} and Dρ j = {x j = 0} on F. Let L = [Dσ1 ] ∈ Cl(F) and
M = [Dρ1 ] ∈ Cl(F).

Assume that, using b1 = 1, we have adjusted the twist so that a1 = 0. The following
statements also follow from standard results [14].

Proposition 2 We have

Cl(F) ∼= ZL ⊕ ZM .

For n, m ∈ Z, we have

H0(F, nL + mM) ∼= Sn,m,

the bidegree (n, m) piece of the graded algebra S. The canonical class of F is given by

KF =
⎛

⎝−2 +
n∑

j=2

a j

⎞

⎠ L −
⎛

⎝−1 −
n∑

j=2

b j

⎞

⎠ M ∈ Cl(F). (5)

Finally, F is Q-factorial: every divisor on it is Q-Cartier.

2.3 Generalities on anticanonical sections

Fix a weighted scroll

π : F = F(a1, . . . , an | b1, . . . , bn) → P
1.

Assume that the anticanonical system |−KF| is nonempty. Denote B = Bs (|−KF|) its base
locus.
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Throughout this paper, we are interested in general anticanonical hypersurfaces X ∈
|−KF|, which are themselves be fibered over P1. To fix notation, let

d = 2 −
n∑

j=1

a j , e =
n∑

j=1

b j

be the negatives of the integer constants appearing in (5) above, so that

−KF = d L + eM ∈ Cl(F).

The hypersurface X is then defined inside F as the zero locus of a general bihomogeneous
section f (ti , x j ) ∈ Sd,e.

We have to be more explicit about the equation f . Recall that S is bigraded, with ti ,
x j having degree (1, 0) and (−a j , b j ) respectively. For an n-tuple of non-negative integers
q = (q1, q2, . . . , qn), write q �w e to mean that q is a (b1, . . . , bn)-weighted partition of e,
in other words

n∑

j=1

b j q j = e.

It is then easy to see that the polynomial f must have the form

f (ti , x j ) =
∑

q�we

αq(ti )
n∏

j=1

x
q j
j ,

where αq(ti ) is a homogeneous polynomial of the variables (t1, t2) of degree

degαq = d +
n∑

j=1

a j q j = 2 +
n∑

j=1

(q j − 1)a j ,

as long as this expression is non-negative; otherwise of course the monomial
∏n

j=1 x
q j
j does

not appear in f .
Recall the quotient construction F = U/(C∗)2 together with the quotient map q : U → F,

and let X̃ = q−1(X) ⊂ U , the zero-locus of the polynomial f inside the set U ⊂ A
2+n .

Let Z ⊂ F be a T -invariant closed subvariety. We call a hypersurface X ⊂ F quasismooth
away from Z , if q−1(X\Z) ⊂ q−1(F\Z) is nonsingular. In this case, the only singularities
of X away from Z are finite quotient singularities arising from finite stabiliser subgroups
inside (C∗)2.

We recall also that X ⊂ F is well-formed, if the codimension of Sing(F) ∩ X in X is at
least two.

Proposition 3 (i) The subset B ⊂ F is T -invariant.
(ii) The general anticanonical hypersurface X ⊂ F is quasismooth away from B.
(iii) If X is well-formed, and has canonical singularities along B, then it is a Calabi–Yau

n-fold.

Proof (i) is in fact true more generally for any divisor class, and follows from the fact that
the torus T acts trivially on the discrete group Cl(F). (ii) is [Mullet, Prop. 6.7]. (iii) is a mild
generalization of [17, Thm.8.3] and the proof there applies verbatim; note that projectivity
is once again automatic. 	
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626 G. Mboya and B. Szendrői

Thus as long as the singularities of X are mild, it is a Calabi-Yau n-fold fibred over P1,
with fibres Xt ⊂ P

n−1[b1, . . . , bn] for t ∈ P
1 that are themselves Calabi–Yau hypersurfaces.

In order to find not-too-singular hypersurfaces X ⊂ F, we thus need to focus on the possible
singularities of q−1(B) ∩ X̃ .

3 Mildly singular threefold families of K3 surfaces

3.1 Families of quartic K3s

The easiest example of a K3 surface, also the first entry in the Iano-Fletcher–Reid list, is
the quartic surface S4 ⊂ P

3. The simplest example of a family of anticanonical Calabi–Yau
hypersurfaces fibred in K3 surfaces is the anticanonical family X ⊂ P

1 × P
3. Mullet finds

eight further scrolls containing nonsingular Calabi–Yau hypersurfaces, which are listed in
Table 1 below as familes 1–9. In this case, we find one further example; note that one member
of this family was discussed from a different point of view in [2, Rem.2.5].

Theorem 4 There exists exactly one family of quartic K3-fibred anticanonical hypersurfaces
X ∈ |−KF| with the general member having a non-empty set of isolated canonical singu-
larities along the base locus B = Bs (|−KF|) and quasi-smooth outside B: the family of
anticanonical hypersurfaces

X ⊂ F(0, 0, 1, 2).

A general variety X in this family has 3 threefold ordinary double points along the base
surface B ∼= P

1 × P
1, and is nonsingular elsewhere. Blowing up B in X gives a small

projective Calabi–Yau resolution Y → X.

The complete list of quartic families with at worst isolated canonical singularities is given
in Table 1. The last column of the table contains the dimension of MX⊂F, the space of
embedded deformations of the anticanonical hypersurface X in the respective scroll F; this
number is easy to calculate as the difference between the number of parameters in F and the
dimension of its automorphism group. Note that this is only a lower bound for the dimension
of the space of all deformations of X , which is the Hodge number h2,1 of (a smooth model
of) X .

Proof of Theorem 4 By complete symmetry of the weights b1 = . . . = b4 = 1, we can
assume that the twists are 0 = a1 ≤ a2 ≤ a3 ≤ a4. Denoting F = F(0, a2, a3, a4) as before,
we have

−KF = (2 − a2 − a3 − a4)L + 4M ∈ Cl(F).

The equation of an anticanonical hypersurface is

f (ti , x j ) =
∑

q�4
αq(ti )

4∏

j=1

x
q j
j ,

where q = (q1, . . . , q4) is a partition of 4, and αq(ti ) is a homogeneous polynomial of the
variables (t1, t2) of degree

degαq = 2 + (q2 − 1)a2 + (q3 − 1)a3 + (q4 − 1)a4,
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Table 1 Fourfold scrolls with general anticanonical hypersurfaces fibred in quartic K3 surfaces with at worst
isolated canonical singularities along the base locus

Scroll F Description of Bs (|−KF|) and general X ∈ |−KF| dimMX⊂F

1 F(0, 0, 0, 0) Bs (|−KF|) = ∅, general X nonsingular 86

2 F(0, 0, 0, 1) Bs (|−KF|) = ∅, general X nonsingular 118

3 F(0, 0, 0, 2) Bs (|−KF|) = ∅, general X nonsingular 83

4 F(0, 0, 1, 1) Bs (|−KF|) = ∅, general X nonsingular 86

5 F(0, 1, 1, 1) dim Bs (|−KF|) = 1, general X nonsingular 73

6 F(0, 1, 1, 2) dim Bs (|−KF|) = 1, general X nonsingular 86

7 F(0, 1, 1, 3) dim Bs (|−KF|) = 1, general X nonsingular 89

8 F(0, 1, 1, 4) dim Bs (|−KF|) = 1, general X nonsingular 95

9 F(0, 0, 2, 2) dim Bs (|−KF|) = 2, general X nonsingular 91

10 F(0, 0, 1, 2) dim Bs (|−KF|) = 2,
general X has 3 ODP singularities along Bs (|−KF|)

86

as long as this quantity is non-negative. The degree degαq increases as more of the higher
indexed x variables appear in a monomial

∏4
j=1 x

q j
j .

By Proposition 3(i), the base locus B = Bs (|−KF|) is defined by setting some of the Cox
variables to 0. Let us consider cases according to the dimension of B. If dim B = 3, then there
is a fixed divisor in each member of the linear system, and so the general section is reducible.
The cases where B = ∅ have already been classified by Mullet. The case dim B = 0 is not
possible because of the symmetry of the t1, t2 variables: the toric base locus B cannot be an
isolated point.

Assume that dim B = 2. This means that f cannot be divisible by any of the xi variables.
Looking at degrees of coefficients, f must have nonzero coefficients at least for x43 and x44 ,
giving us the inequality

2 − a2 + 3a3 − a4 ≥ 0. (6)

This also means that the base locus must be

B = {x3 = x4 = 0} ⊂ F,

and we cannot have any terms in f only involving x1 and x2. This gives us the inequality

2 + 3a2 − a3 − a4 < 0. (7)

Let us now investigate potential singularities along the base locus. We have

Sing(X) ∩ B = V

(
∂ f

∂x3

∣∣∣∣
x3=x4=0

,
∂ f

∂x4

∣∣∣∣
x3=x4=0

, x3, x4

)

with

∂ f (ti , x j )

∂x3

∣∣∣∣
x3=x4=0

= α3010(t1, t2)x31 + . . . + α0310(t1, t2)x32

and

∂ f (ti , x j )

∂x4

∣∣∣∣
x3=x4=0

= α3001(t1, t2)x31 + . . . + α0301(t1, t2)x32 .
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628 G. Mboya and B. Szendrői

To get isolated singularities along B, these two equationsmust give an isolated set of solutions
on B, equivalently they should not have a common factor. This is easily seen to be equivalent
to one of them being not divisible by x2; the other equation can be reducible. Recalling
degrees, the condition for this is that the coefficients α0310(t1, t2) and α3001(t1, t2) should be
nonzero, giving us the last set of inequalities

2 + 2a2 − a4 ≥ 0 (8)

and

2 − a2 − a3 ≥ 0. (9)

Together with 0 ≤ a2 ≤ a3 ≤ a4, it can be checked that the only solutions to the (redundant)
set of inequalities (6),(7),(8) and (9) are F = F(0, 0, 2, 2) and F = F(0, 0, 1, 2). The former
already appeared in Mullet’s list and indeed in this case there are no solutions to the last two
equations and thus Sing(X) ∩ B = ∅. In the final case, a quick degree count shows that for
general f , there exist three isolated solutions. A straightforward local analysis shows that the
resulting singularities on X are ordinary double points, and B is a non-Cartier Weil divisor
at each singular point. Thus blowing up B gives a projective small resolution of X .

The analysis in the case dim B = 1 is analogous; we omit the details. We do not find any
new examples beyond Mullet’s in this case. 	


Remark 5 In families 1–2 of Table 1, the anticanonical divisor class is very ample, so by
Lefschetz, the corresponding Calabi–Yau threefolds have Picard number ρ(X) = 2. For
families 3 and 4, the anticanonical map is a semismall morphism, so the anticanonical divisor
class is lef, in the language of [9]. Hence by [ibid, Prop.2.1.5], Lefschetz still applies, and so
again ρ(X) = 2. The same was proved for family 6 in [21, App.A]. It seems possible that
ρ(X) = 2 in families 1–8. However, in families 9–10 it is easy to see that the base locus B,
or its proper transform, give an extra divisor class in X or its resolution Y which cannot come
from the ambient space, so the Picard number of the smooth models is at least (and likely to
be equal to) 3.

One can also ask about the dimension of the space of complex deformations, the Hodge
number h2,1. For families 1–2, the dimension of the spaceMX⊂F of embedded deformations
is 86, respectively 118, and these values agree with the corresponding Hodge numbers. Once
again, this is known to be the case also for family 8, with the dimension being also 86.
However, in the other cases, especially families 9–10, the determination of thisHodge number
appears more difficult.

3.2 Projective degenerations

We look at three of the families from Table 1 in some more detail, numbered 1, 6 and 9: the
families of anticanonical hypersurfaces in P

1 × P
3 and the scrolls

F(0, 1, 1, 2) ∼= P
(OP1(−1) ⊕ OP1 ⊕ OP1 ⊕ OP1(1)

)

and

F(0, 0, 2, 2) ∼= P
(OP1(−1) ⊕ OP1(−1) ⊕ OP1(1) ⊕ OP1(1)

)
.

In this section, we use computer algebra, specifically Macaulay2 [12] and polymake [4, 11],
to prove some of our statements.
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The first two of these families has in fact appeared some time ago in the papers of
Gross [13] and Ruan [21]. Gross noted that by considering the universal extension over the
one-dimensional space Ext1(OP1(1),OP1(−1)), adding two copies of a trivial bundle and
projectivizing, one gets a deformation family F → A

1 with central fibre F0 ∼= F(0, 1, 1, 2)
and all other fibres isomophic to F1 ∼= P

1 × P
3. However, while general members of the

anticanonical families X1 ⊂ F1, X0 ⊂ F0 in the two spaces are nonsingular, as seen above,
they cannot be smoothly deformed into each other via this construction. A general anti-
canonical section X1 in the general fibre F1 specialises in the deformation family F to a
singular Calabi–Yau threefold X0, with a curve of canonical singularities along the base
locus B ∼= P

1 ⊂ F(0, 1, 1, 2) of the anticanonical system of the central fibre. It is in fact
known that the general anticanonical sections X1, X0 are diffeomorphic, with Hodge num-
bers (2, 86), but not symplectic deformation equivalent [21, Thm.A.4.3.], so not algebraic
deformation equivalent. The local deformation space of the singular threefold X̄0, in turn,
has (at least) two components in its local deformation space, deforming to the general X0,
respectively X1, and thus has obstructed deformation theory [13, Thm.2.2].

We describe a projective version of this specialisation, based on natural maps defined
on our scrolls in terms of bi-homogeneous coordinates. As a starting point, consider the
half-anticanonical embedding of F1 = P

1 × P
3

φ1 = φ|− 1
2 K

P1×P3 | : P1 × P
3 ↪→ P

19

defined, using a slight abuse of notation, by

(t1, t2 ; x1, x2, x3, x4) �→ (S1(t1, t2) ⊗ S2(x1, x2, x3, x4)).

We find it convenient to use variables zi jkl on P19 with i, j either 0 or 1, summing to 1, and

(k, l) are symmetric, with the map φ1 defined by zi jkl = t i
1t j
2 xk xl . Consider the matrix

M1 =

⎡

⎢⎢⎣

z1011 z1012 z1013 z1014 z0111 z0112 z0113 z0114
z1012 z1022 z1023 z1024 z0112 z0122 z0123 z0124
z1013 z1023 z1033 z1034 z0113 z0123 z0133 z0134
z1014 z1024 z1034 z1044 z0114 z0124 z0134 z0144

⎤

⎥⎥⎦ ,

joined from two 4× 4 symmetric matrices with independent entries. The following is imme-
diate.

Proposition 6 The image of φ1 inside P
19 is described (scheme-theoretically) by the ideal

generated by 2 × 2 minors of the matrix M1:

im φ1 ∼= V
(∧2M1

) ⊂ P
19.

Next, consider the half-anticanonical map

φ0 = φ|− 1
2 KF| : F(0, 1, 1, 2) ��� P

19

on the scroll F0 ∼= F(0, 1, 1, 2), defined in Cox coordinates (t1, t2; x1, x2, x3, x4) by

(ti ; x j ) �→ (x1x2, x1x3, S1(ti )x1x4, S1(ti ) ⊗ S2(x2, x3), S2(ti )x2x4, S2(ti )x3x4,
S3(ti )x24 ).

On the target P19, we are going to use coordinates yi jmn corresponding to a monomial basis

yi jmn = t i
1t j
2 xm xn of H0

(− 1
2 K X

)
.

The variety F(0, 1, 1, 2) is not Fano, the rational map φ0 has indeterminacy locus given
by the rational curve B = {x2 = x3 = x4 = 0} ⊂ F(0, 1, 1, 2), the base locus of its (half)
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630 G. Mboya and B. Szendrői

anticanonical system. Denote by Q = im φ0 ⊂ P
19 the closure of the image of φ0. We

give descriptions of Q both as an embedded projective variety, and as a toric variety. First,
consider the matrix

M0 =

⎡

⎢⎢⎣

y0012 y1022 y1023 y0122 y0123 y2024 y1124 y0224
y0013 y1023 y1033 y0123 y0133 y2034 y1134 y0234
y1014 y2024 y2034 y1124 y1134 y3044 y2144 y1244
y0114 y1124 y1134 y0224 y0234 y2144 y1244 y0234

⎤

⎥⎥⎦ .

Proposition 7 1. The closure Q = im φ0 ⊂ P
19 is described (scheme-theoretically) by the

ideal generated by 2 × 2 minors of the matrix M0:

Q = im φ0 ∼= V
(∧2M0

) ⊂ P
19.

2. There is a distinguished divisor P
3 ∼= D ⊂ Q ⊂ P

19 embedded in P
19 as a projective

linear subspace, defined by the condition that all variables except those in the first column
of M0 vanish.

3. The Hilbert polynomials of Q ⊂ P
19 and F(0, 1, 1, 2) ⊂ P

19 agree.

Proof To prove (1), note that on the image of φ0 the rows, respectively columns, of M0 are
proportional to each other. So im φ0 ⊂ V

(∧2M0
)
. By Macaulay2, the quadrics in ∧2M0

define a 4-dimensional irreducible variety in P
19, so we deduce the first statement. (2) is

immediate. (3) can be checked by Macaulay2. 	

Although not strictly necessary for what follows, we also give a description of the projec-

tive variety Q as a toric variety, to make contact with the discussion in [21, App.A]. First,
recall the toric description ofF0 ∼= F(0, 1, 1, 2) fromSect. 2.2:we have one-dimensional rays
σ1, σ2, ρ1, . . . , ρ4 ∈ N in a rank-4 lattice N based by σ2, ρ2, ρ3, ρ4, with ρ1 = −ρ2−ρ3−ρ4
and σ1 = −σ2 + ρ2 + ρ3 + 2ρ4. The fan � with eight maximal dimensional cones

τ1=(σ1, ρ1, ρ2, ρ3), τ2=(σ1, ρ1, ρ2, ρ4), τ3=(σ1, ρ1, ρ3, ρ4), τ4=(σ1, ρ2, ρ3, ρ4)

and

τ5=(σ2, ρ1, ρ2, ρ3), τ6=(σ2, ρ1, ρ2, ρ4), τ7=(σ2, ρ1, ρ3, ρ4), τ8=(σ2, ρ2, ρ3, ρ4)

defines a toric variety X N ,� isomorphic to F(0, 1, 1, 2).
Define a new ray ρ5 = −ρ1 = ρ2 + ρ3 + ρ4. Consider the cones τ1, τ2, τ3, τ5, τ6, τ7, as

well as new cones

τ9 = (σ2, ρ2, ρ3, ρ5), τ10 = (σ1, ρ2, ρ3, ρ5), τ11 = (σ1, σ2, ρ2, ρ4, ρ5),

τ12 = (σ1, σ2, ρ3, ρ4, ρ5).

It can be checked that these 10 cones also give a fan �′ for the same lattice N .

Proposition 8 The projective variety Q is isomorphic to the toric variety X N ,�′ . The toric
divisor corresponding to the new ray ρ5 is the distinguished divisor P3 ∼= D ⊂ Q.

Proof By standard toric geometry, the sections of the half-canonical linear systemon X N ,�
∼=

F(0, 1, 1, 2) are the lattice points contained in a certain rational polytope P1 ⊂ MR, where
M is the dual lattice of N . This polytope can be computed explicitly by polymake: it is a
rational, non-integral polytope with 20 lattice points as expected. The convex hull P2 of the
lattice points in P1 is a normal lattice polytope; the corresponding projective toric variety is
thus our variety Q ⊂ P

19. The dual fan, computed also by polymake, has 10 maximal cones,
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and can be identified with the fan �′ described above. A check through the construction
shows that the distinguished divisor P3 ∼= D ⊂ Q is toric; it is then easy to see that it must
be the divisor corresponding to the ray ρ5. 	

Remark 9 Repeating the above analysis for the anticanonical map of F = F(0, 1, 1, 2), we
obtain the polytope 2 · P1 ⊂ MR, which is now integral, as well as normal. Its dual fan is
precisely the fan given by 9 maximal cones described by [21, App. A]; this gives the full
anticanonical model

Q̃ = Proj
(⊕m≥0H0(F,−mKF)

)

of F(0, 1, 1, 2). The polytope 2 · P1 has one extra lattice point compared to the polytope
2 · P2. The algebraic interpretation of these facts is that the space H0(F,−KF) needs one
extra generator compared to products of elements of H0(F,− 1

2 KF), and generates the full
anticanonical algebra. In particular, there exists an embedding of the anticanonical model

Q̃ ⊂ P
20[120, 2]

into a weighted projective space. The birational map Q̃ ��� Q is given by projection from
the point (0 : . . . : 0 : 1) ∈ P

20[120, 2], and has indeterminacy locus D ⊂ Q in its target. The
process that creates Q̃ from (Q, D) is similar to the unprojection construction [20] studied
by Reid.

Return to our projective models in P
19. Our main result in this section is the description

of an explicit family in P19 which exhibits a degeneration of its general fibre, isomorphic to
F1 ∼= P

1 ×P
3, to the half-anticanonical model Q of F0 ∼= F(0, 1, 1, 2). We also look at how

anticanonical hypersurfaces specialise in the family. Consider the 4 by 9 matrix

N =

⎡

⎢⎢⎣

y0012 y1022 y1023 y2024 y1124 + t y0012
y0013 y1023 y1033 y2034 y1134 + t y0013
y1014 y2024 y2034 y3044 y2144 + t y1014
y0114 y1124 + t y0012 y1134 + t y0013 y2144 + t y1014 y1244 + t y0114

y0122 y0123 y1124 − t y0012 y0224
y0123 y0133 y1134 − t y0013 z0234

y1124 − t y0012 y1134 − t y0013 y2144 − t y1014 y1244 − t y0114
y0224 z0234 y1244 − t y1014 y0344

⎤

⎥⎥⎦ .

Theorem 10 1. Define the variety Q ⊂ P
19 × A

1 over A1 by the equations

Q = V
(∧2N

) ⊂ P
19 × A

1.

Then the natural map Q → A
1 is a flat family of projective varieties, with central fibre

Q0 ∼= Q ⊂ P
19, and all other fibres isomorphic to Q1 ∼= P

1 × P
3 ⊂ P

19.
2. An anticanonical hypersurface X1 ⊂ Q1 ∼= P

1 × P
3 specialises in the family Q to a

reducible threefold X0 ⊂ Q, which contains a double copy of the distinguished toric
divisor P3 ⊂ Q.

Proof For (1), note that setting t = 0 in N , we recover the matrix M0 from Proposition 7
(with a repeated column), so indeed the central fibre of the family is isomorphic to Q. On the
other hand, for t �= 0, the first column of N |t is superfluous, as it is a linear combination of
other columns. The rest of the matrix has the structure of a join of two 4× 4 square matrices
with independent entries. An obvious linear change of variables brings it into the form of the

123



632 G. Mboya and B. Szendrői

M1 matrix from Proposition 6. Thus indeed all nonzero fibres are isomorphic to P1 ×P
3. All

fibres are projective with the same Hilbert polynomial, so the family is flat.
For (2), a detailed check shows that if one starts with any quadric monomial in the zi jkl

variables, performing the linear change of variables of the previous paragraph and setting
t = 0 gives a quadric in the yi jkl variables that vanishes on the distinguished P

3 ⊂ Q. This
means that for any degeneration to t = 0 of a quadric section of Q1 ∼= P

1 × P
3 in P

19, in
other words any degeneration of an anticanonical hypersurface in P1 ×P

3 in this family, the
flat limit X0 ⊂ Q0 ∼= Q at t = 0 contains the distinguished P3 ⊂ Q ⊂ P

19 as a component.
A Macaulay2 calculation shows that the multiplicity along this component is 2. 	

This is our analogue of Gross’ theorem about degenerations of anticanonical hypersurfaces
in the family: in the projective picture, the smooth Calabi-Yau X1 specialises to a reducible
threefold X0, while the most general anticanonical section in Q is irreducible.

We briefly comment on one further family from the list above. Consider

F(0, 0, 2, 2) ∼= P
(OP1(−1) ⊕ OP1(−1) ⊕ OP1(1) ⊕ OP1(1)

)
.

The underlying vector bundle is a further degeneration ofOP1(−1)⊕OP1 ⊕OP1 ⊕OP1(1), so
this scroll is a further degeneration of F(0, 1, 1, 2). However, looking at the table, the dimen-
sion ofMX⊂F grows, proving that the anticanonical hypersurface in F(0, 1, 1, 2) undergoes
a more drastic degeneration, with a smoothing into F(0, 0, 2, 2) with more interesting van-
ishing cycles that contribute to h1,2. In our projective picture, it can be checked that the
half-anticanonical model of F(0, 0, 2, 2) is still mapping to P

19. However, the equations of
the image are more complicated. There is an explicit degeneration similar to the one given
by the matrix N above; but the flat limit gives a reducible variety, one of whose components
is the anticanonical image. For details, see [16].

3.3 Other K3 families

In the list of Iano-Fletcher–Reid, the next simplest entries are the surfaces S5 ⊂ P(13, 2),
S6 ⊂ P(13, 3) and S6 ⊂ P(12, 22). The second of these is nonsingular, and is recognisable
as the family of degree 2 surfaces obtained as double covers of P2 branched over a sextic
plane curve; the other two have one, respectively three, A1 singularities. Following the same
method as above, we can extend Mullet’s list by the following examples; for detailed proofs,
see [16].

Theorem 11 Families of anticanonical hypersurfaces X ∈ |−KF| in weighted scrolls, fibred
in quintic or sextic K3 surfaces, with the general member containing a non-empty set of
isolated canonical singularities along the base locus B = Bs (|−KF|) and quasi-smooth
outside B, are listed in Table 2. In all cases, the base locus B is a surface, and blowing up
B in X as well as resolving the remaining quotient singularities gives a smooth projective
Calabi-Yau model.

4 General considerations

When looking for examples of projective varieties, it is natural to look in easily accessible
ambient spaces. Examples of projective fibrations similarly arise in naturally fibered ambi-
ent spaces, such as scrolls or more generally projectivized bundles; from many possible
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Table 2 Weighted fourfold scrolls with general anticanonical hypersurfaces fibred in quintic or sextic K3
surfaces with at worst isolated singularities along the base locus

Weighted scroll F Description of general X ∈ |−KF|
F(0, 0, 1, 2 |13, 3) General X ∈ |−KF| has 5 isolated ODP singularities on

Bs (|−KF|) and three 1
3 (1, 1, 1) singularities

F(0, 0, 2, 1 |13, 3) General X ∈ |−KF| has 3 isolated ODP singularities on
Bs (|−KF|) and one 1

3 (1, 1, 1) singularity

F(0, 0, 1, 2 |12, 22) General X ∈ |−KF| has 4 isolated ODP singularities on
Bs (|−KF|) and a smooth curve of A1 singularities

F(0, 2, 0, 1 |12, 22) General X ∈ |−KF| has 2 isolated ODP singularities on
Bs (|−KF|) and two disjoint smooth curves of A1 singulari-
ties

F(0, 0, 1, 2 |13, 2) General X ∈ |−KF| has 4 isolated ODP singularities on
Bs (|−KF|) and one smooth curve of A1 singularities

F(0, 1, 2, 0 |13, 2) General X ∈ |−KF| has 2 isolated ODP singularities on
Bs (|−KF|) and one smooth curve of A1 singularities

F(0, 0, 2, 1 |13, 2) General X ∈ |−KF| has 3 isolated ODP singularities on
Bs (|−KF|) and one smooth curve of A1 singularities

examples, we mention [5], where examples of threefold Mori fibre spaces are constructed as
hypersurfaces in weighted scrolls. It seems worthwhile also to attempt to go the other way,
repeating the general discussion of the Introduction in a relative context.

Let f : X → B be a fibration of normal projective varieties, with f∗OX ∼= OB . Let D an
ample Q-Cartier Weil divisor on the base X , and H an ample Q-Cartier Weil divisor on the
total space X . Then we get a bigraded algebra

RX =
⊕

m,n∈Z
H0(X ,OX (m f ∗ H + nD)),

containing the graded subalgebra

RB =
∞⊕

m≥0

H0(B,OB(m H)).

The discussion of the Introduction applies to the base B: choosing generators r1, . . . , rk of
positive weights ci of RB , we get a surjection

SB = C[t1, . . . , tk] � RB

of graded algebras from a free graded algebra, and thus a closed inclusion

(B, D) ↪→
(
P

k−1[c1, . . . , ck],O(1)
)

.

Suppose that RX is a finitely generated algebra over its subalgebra RB , a kind of “Mori dream
space” assumption. Choosing a set r1, . . . , rn of generators of RX of bidegree (−a j , b j ) over
RB , we then get a diagram

SX RX

SB RB
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of compatible surjections of bigraded algebras, where

SX = C[t1, . . . , tk, x1, . . . , xn]
is a free bigraded algebra with generators of bidegrees (ci , 0), respectively (−a j , b j ).

On the geometric side, the integers n, k > 1, and sets of positive integer twists andweights
(a1, . . . , an), (b1, . . . , bn) and (c1, . . . , ck) define an action of (C∗)2 on affine spaceCk ×C

n

by

(λ, μ) : (t1, . . . , tk; x1, . . . , xn) �→ (λc1 t1, . . . , λ
ck tk; λ−a1μb1x1, . . . , λ

−an μbn xn)

We get a weighted scroll F(c1, . . . ck ||a1, . . . , an | b1, . . . , bn) = U/(C∗)2 with a map

π : F(c1, . . . ck ||a1, . . . , an | b1, . . . , bn) → P
k−1[c1, . . . , ck],

whose fibres are weighted projective spaces Pn−1[b1, . . . .bn].
With this in mind, the algebraic diagram above gives the diagram of projective varieties

X F

B P
k−1[ci ],

f π

embedding our original fibration f : X → B into a general weighted scroll

π : F = F(c1, . . . ck || a1, . . . , an | b1, . . . , bn) → P
k−1[ci ].

Note that this in particular embeds all fibres Xb = f −1(b) into the weighted projective
fibres Pn−1[b j ] of π . One could then start a programme of classifying and studying cases by
increasing codimension, as in the absolute case.

The situation however is not so simple: the requirements of finite generation of the alge-
bra RX , and a surjective map SX → RX from a free bigraded algebra, are too strong. Even
in our basic hypersurface examples X ⊂ F, the natural restriction map

⊕

m,n∈Z
H0(F,OF(mL + nM)) →

⊕

m,n∈Z
H0(X ,OX (mL|X + nM |X ))

may fail to be surjective. In fact by [2, Thm.3.1], this map is definitely not surjective for
families 1–2 of Table 1, and we do not know whether the algebra

RX =
⊕

m,n∈Z
H0(X ,OX (mL|X + nM |X ))

is finitely generated in these examples. (Note that, curiously, this map is surjective for at least
onemember of family 10 by [2, Rem.2.5].)What appears to be needed in general then is away
to capture enough of the bigraded algebra RX via a free bigraded algebra to be able to describe
the fibration f : X → B, at least in favourable cases, as embedded in a weighted scroll. An
alternative, explored in the recent preprint [7] by Coughlan and Pignatelli in particular, is
to study conditions under which X embeds into a relative weighted projective bundle over
the base B using pushforwards of OX (nD) to the base, following on from the local (on the
base) analysis of Reid [19]. Finding general conditions under which we get embeddings of
low codimension appears to us to be a question worthy of further study.
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