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Abstract
We consider a nonlinear Robin problem driven by the p-Laplacian and a parametric concave-
convex reaction with the parameter multiplying the convex (superlinear) term. We prove a
multiplicity result for positive solutions which is global in the parameter λ > 0 (bifurcation-
type theorem). We also show the existence of a minimal positive solution u∗

λ and determine
the monotonicity and continuity properties of the map λ �−→ u∗

λ
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. We study the following para-

metric Robin problem{
−�pu(z) + ξ(z)u(z)p−1 = g(z, u(z)) + λ f (z, u(z)) in �,
∂u
∂n p

+ β(z)u p−1 = 0 on ∂�, u ≥ 0, λ > 0. (Pλ)
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By �p we denote the p-Laplacian differential operator defined by

�pu = div (|Du|p−2Du) ∀u ∈ W 1,p(�).

There is also a potential term ξ(z)u p−1 with ξ ∈ L∞(�), ξ(z) ≥ 0 for almost all z ∈ �. In
the reaction we have the combined effects of two nonlinearities g(z, x) and λ f (z, x) with
λ > 0 being a parameter. Both functions are Carathéodory. We assume that g(z, ·) is strictly
(p − 1)-sublinear as x → +∞, while f (z, ·) is (p − 1)-superlinear as x → +∞, but need
not satisfy the usual in such cases Ambrosetti-Rabinowitz condition. So, in the reaction we
have the combined effect of concave and convex terms. However, in our case this parameter
multiplies the convex (superlinear) term, while in the classical “concave-convex problem”,
the parameter multiplies the concave (sublinear) term. This changes the structure of the
equation and consequently the approach is different.

In the Robin boundary condition ∂u
∂n p

denotes the conormal derivative of u corresponding

to the p-Laplacian and if u ∈ C1(�), then

∂u

∂n p
= |Du|p−1(Du, n)RN = |Du|p−2 ∂u

∂n
,

with n being the outward unit normal on ∂�. For general u, the boundary condition is
understood using the nonlinear Green’s identity (see Papageorgiou-Rădulescu-Repovš [19,
p. 35]). The boundary coefficient β is nonnegative.

Our aim is to prove a multiplicity theorem for the positive solutions of (Pλ) which is
global with respect to the parameter λ > 0, that is, our result gives a precise description of
the changes in the set of positive solutions as the parameter λ varies in (0,+∞) (bifurcation-
type theorem). So, our main result in the paper (Theorem 3.8) establishes the existence of a
critical parameter value λ∗ > 0 such that
• for all λ ∈ (0, λ∗) problem (Pλ) has at least two distinct positive solutions;
• for λ = λ∗ problem (Pλ) has at least one positive solutions;
• for λ > λ∗ problem (Pλ) has no positive solutions.

This global multiplicity result reveals an interesting discontinuity property for the “spec-
trum” of (Pλ). This is better illustrated when we consider the standard “concave-convex”
reaction

x �−→ xq−1 + λxr−1,

with 1 < q < p < r < p∗, where

p∗ =
{

N p
N−p if p < N ,

+∞ if N ≤ p.

According to our global multiplicity result described above, for all λ > 0 small problem (Pλ)

has at least two positive solutions. On the other hand in the limit case λ = 0, the problem
becomes {

−�pu(z) + ξ(z)u(z)p−1 = uq−1 in �,
∂u
∂n p

+ β(z)u p−1 = 0 on ∂�, u ≥ 0, λ > 0.

This problem has a unique positive solution (see Proposition 2.6 in Sect. 2). For the other case
where the parameter λ > 0 multiplies the concave term, the limit problem (that is for λ = 0)
always has a positive solution which is not unique (see Papageorgiou-Rădulescu [14]). This
illustrates the different structure of the two concave-convex problems. We mention also the
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recent works of Papageorgiou-Rădulescu-Repovš [16] and Papageorgiou-Vetro-Vetro [20],
where the reader can find instances of such discontinuities in the “spectrum” of parametric
problems.

In the past most the works on concave-convex problems, focused on Dirichlet prob-
lems with the parameter multiplying the concave (sublinear) term. Everything started with
the paper of Ambrosetti-Brézis-Cerami [2], which deals with semilinear equations driven
by the Laplacian. Their work was extended to nonlinear Dirichlet problems driven by the
p-Laplacian byGarcíaAzorero-Manfredi-Peral Alonso [5] andGuo-Zhang [9]. All the afore-
mentioned works deal with problems having the classical concave-convex reaction

u �−→ λuq−1 + ur−1,

with 1 < q < p < r < p∗. More general differential operators and/or reactions can
be found in the works of Papageorgiou-Rădulescu-Repovš [15], Rădulescu-Repovš [23]
(semilinear equations) andElManouni-Papageorgiou-Winkert [3], Papageorgiou-Rădulescu-
Repovš [18], Papageorgiou-Vetro-Vetro [21], Winkert [24] (nonlinear equations). We also
mention the recent work of Papageorgiou-Zhang [22], where the “concave” contribution
comes from the boundary condition. The only “concave-convex” work with the parameter
multiplying the convex (superlinear) term, is that of Marano-Marino-Papageorgiou [12].
There the problem is a Dirichlet (p, q)-equation, with the concave contribution being of the
power form (g(z, u) = uq−1) and the condition on f (z, ·) aremore restrictive (see hypotheses
(h1)–(h4) in [12]).

2 Mathematical background: hypotheses

The main spaces in the study of (Pλ) are the Sobolev space W 1,p(�), the Banach space
C1(�) and the “boundary” Lebesgue space Ls(∂�) (1 ≤ s < +∞).

By ‖ · ‖ we denote the norm of W 1,p(�) defined by

‖u‖ = (‖u‖p
p + ‖Du‖p

p
) 1

p ∀u ∈ W 1,p(�).

The Banach space C1(�) is ordered with positive (order) cone

C+ = {u ∈ C1(�) : u(z) ≥ 0 for all z ∈ �}.
This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ �}.
We will also use another open cone in C1(�) which is defined by

D+ =
{

u ∈ C1(�) : u(z) > 0 for all z ∈ �,
∂u

∂n
|∂�∩u−1(0) < 0

}
.

On ∂� we consider the (N − 1)-dimensional Hausdorff (surface) measure σ . Using this
measurewe candefine in the usualway the boundaryLebesgue space Ls(∂�) (1 ≤ s ≤ +∞).
From the theory of Sobolev spaces, we know that there exists a unique continuous linear
operator γ̂0 : W 1,p(�) −→ L p(∂�) known as the “trace operator” such that

γ̂0(u) = u|∂� ∀u ∈ W 1,p(�) ∩ C(�).

So, the trace operator extends the notion of “boundary values” to all Sobolev functions.
In the sequel for the sake of notational simplicity, we drop the use of the trace operator
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432 L. Gasiński et al.

γ̂0. All restrictions of Sobolev functions on ∂� are understood in the sense of traces. We
mention that using the trace operator, we have that W 1,p(�) ⊆ Ls(∂�) continuously for all
1 ≤ s ≤ (N−1)p

N−p if p < N and for all 1 ≤ s < +∞ if N ≤ p. Also W 1,p(�) ⊆ Ls(∂�)

compactly for all 1 ≤ s <
(N−1)p

N−p if p < N and for all 1 ≤ s < +∞ if N ≤ p.
If u : � −→ R is a measurable function, we define

u±(z) = max{±u(z), 0} ∀z ∈ �.

If u ∈ W 1,p(�), then u± ∈ W 1,p(�) and we have u = u+ −u−, |u| = u+ +u−. Also, given
two measurable functions u, v : � −→ R such that u(z) ≤ v(z) for all z ∈ �, we define

[u, v] = {h ∈ W 1,p(�) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ �},
[u) = {h ∈ W 1,p(�) : u(z) ≤ h(z) for a.a. z ∈ �}.

We introduce the hypotheses on the potential function ξ and on the boundary coefficient β.
H0 : ξ ∈ L∞(�), ξ(z) ≥ 0 for almost z ∈ �, β ∈ C0,α(∂�) with 0 < α < 1, β(z) ≥ 0

for all z ∈ ∂� and ξ 
≡ 0 or β 
≡ 0.

Remark 2.1 With this hypotheses, we cover also the case of Neumann problem, which cor-
responds to the case β ≡ 0.

Let γp : W 1,p(�) −→ R be defined by

γp(u) = ‖Du‖p
p +

∫
�

ξ(z)|u|p dz +
∫

∂�

β(z)|u|p dσ ∀u ∈ W 1,p(�).

Hypotheses H0 together with Lemma 4.11 of Mugnai-Papageorgiou [13] and Proposition
2.4 of Gasiński-Papageorgiou [8], imply that there exists c0 > 0 such that

c0‖u‖p ≤ γp(u) ∀u ∈ W 1,p(�) (2.1)

(that is, γp(·) is equivalent norm on W 1,p(�)).
Let λ̂1 be the first eigenvalue of{

−�pu + ξ(u)|u|p−2u = λ̂|u|p−2u in �,
∂u
∂n p

+ β(z)|u|p−2u = 0.

On account of (2.1), we have λ̂1 > 0. We know that

λ̂1 = inf
u∈W 1,p(�)\{0}

γp(u)

‖u‖p
p

.

This infimum is realized on the corresponding eigenspace, the elements of which have fixed
sign. Let û1 be the positive, L p-normalized (that is, ‖û1‖p = 1) eigenfunction for λ̂1. We
know that û1 ∈ intC+. Note that λ̂1 is the only eigenvalue with eigenfunctions of constant
sign (see Fragnelli-Mugnai-Papageorgiou [4]).

Let A : W 1,p(�) −→ W 1,p(�)∗ be defined by

〈A(u), h〉 =
∫

�

|Du|p−2(Du, Dh)RN dz ∀u, h ∈ W 1,p(�).

From Gasiński-Papageorgiou [7, p. 279], we have the following property.
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Proposition 2.2 If hypotheses H0 hold, then A is continuous, monotone (thus maximal mono-
tone too) and of type (S)+, that is “if un

w−→ u in W 1,p(�) and

lim sup
n→+∞

〈A(un), un − u〉 ≤ 0,

then un −→ u in W 1,p(�).”

Next we introduce the hypotheses on the two functions involved in the reaction (right hand
side of (Pλ)).
H1 : g : � ×R −→ R is a Carathéodory function such that g(z, 0) = 0 for almost all z ∈ �

and

(i) for every � > 0, there exists a� ∈ L∞(�) such that

|g(z, x)| ≤ a�(z) for a.a. z ∈ �, all 0 ≤ x ≤ �;

(ii) lim
x→+∞

g(z, x)

x p−1 = 0 uniformly for almost all z ∈ �;

(iii) there exist q ∈ (1, p) and δ > 0, ĉ > 0 such that

ĉxq−1 ≤ g(z, x) for a.a. z ∈ �, all 0 ≤ x ≤ δ.

Remark 2.3 Since we are interested on positive solutions and the above hypotheses concern
the positive semiaxis R+ = [0,+∞), without any loss of generality we may assume that
g(z, x) = 0 for almost all z ∈ �, all x ≤ 0. Hypothesis H1(i i) implies that g(z, ·) is strictly
(p − 1)-sublinear as x → +∞ (“concave” nonlinearity). Hypothesis H1(i i i) implies that
g(z, ·) is (p − 1)-sublinear as x → 0+. We point out that we do not assume that g ≥ 0. It
can change sign. The following functions satisfy hypotheses H1 (for the sake of simplicity
we drop the z-dependence):

g1(x) = (x+)q−1,

g2(x) = (x+)q−1 − 2(x+)τ−1,

with 1 < q < τ < p. Note that g2 is sign changing.

H2: f : � ×R −→ R is a Carathéodory function such that f (z, 0) = 0 for almost all z ∈ �

and

(i) f (z, x) ≤ a(z)(1+xr−1) for almost all z ∈ �, all x ≥ 0, with a ∈ L∞(�), p < r < p∗;
(ii) if F(z, x) = ∫ x

0 f (z, s) ds, then lim
x→+∞

F(z,x)
x p = +∞ uniformly for almost all z ∈ �;

(iii) if G(z, x) = ∫ x
0 g(z, s) ds and

eλ(z, x) = (
g(z, x) + λ f (z, x)

) − p
(
G(z, x) + λF(z, x)

)
, λ > 0,

then there exists ϑ̃λ ∈ L !(�) such that

eλ(z, x) ≤ eλ(z, y) + ϑ̃λ(z) for a.a. z ∈ �, all 0 ≤ x ≤ y;

(iv) lim
x→0+

f (z, x)

x p−1 = 0 uniformly for almost all z ∈ � and for every s > 0, there exists

ηs > 0 such that ηs ≤ f (z, x) for almost all z ∈ �, all x ≥ s.
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Remark 2.4 Again we assume that f (z, x) = 0 for almost all z ∈ �, all x ≤ 0. Evidently in
hypothesis H2(i i i) we can assume that λ → ‖ϑ̃λ‖1 is increasing. Also, if in H2(i i i) we let
x = 0 and use hypotheses H1(i i) and H2(i i), we see that

lim
x→+∞

f (z, x)

x p−1 = +∞ uniformly for a.a. z ∈ �.

Therefore f (z, ·) is (p − 1)-superlinear (“convex” nonlinearity). Usually problems with
superlinear reaction are treated using the so-called Ambrosetti-Rabinowith condition. We
recall that this condition (unilateral version since g(z, x) = f (z, x) = 0 for almost all
z ∈ �, all x ≤ 0), says that there exist η > p and M > 0 such that{

0 < ηF(z, x) ≤ f (z, x)x for a.a. z ∈ �, all x ≥ M,

0 < ess inf
�

F(·, M).

Integrating, we obtain the weaker requirement that

c1xη ≤ F(z, x) for a.a. z ∈ �, all x ≥ M,

for some c1 > 0, thus

c2xη−1 ≤ f (z, x) for a.a. z ∈ �, all x ≥ M,

for some c2 > 0. So, we see that the Ambrosetti-Rabinowitz condition imposes at least
(η − 1)-polynomial growth on f (z, ·). This way we exclude superlinear functions with
slower growth as x → +∞. Consider the functions (as before we drop the z-dependence):

f1(x) = (x+)η−1,

f2(x) = (x+)p−1 ln(1 + x+),

with 1 < p < η < p∗. Then these two functions combined with any of g1 or g2 satisfy
hypothesis H2(i i i). Note that f2 does not satisfy the Ambrosetti-Rabinowitz condition.

H3: For every � > 0 and every J ⊆ (0,+∞) finite, there exists ξ̂ J
� > 0 such that for almost

all z ∈ �, all λ ∈ J , the function

x �−→ g(z, x) + λ f (z, x) + ξ̂ J
� x p−1

is nondecreasing on [0, �].
Remark 2.5 Any pair of functions g, f formed by the collections {g1, g2} and { f1, f2} satis-
fies H3. In general, if g(z, ·) and f (z, ·) are differentiable and for every J ⊆ (0,+∞) finite,
we have (

g′
x (z, x) + λ f ′

x (z, x)
)
x ≥ −ξ̂ J

� x p−1

for almost all z ∈ �, all 0 ≤ x ≤ �, all λ ∈ J , with ξ̂ J
� > 0, then hypothesis H3 is satisfied.

We introduce the following sets related to problem (Pλ):

L = {λ > 0 : problem(Pλ)has a positive solution},
Sλ = {u : uis a positive solutions of(Pλ)}.

Also we set

λ∗ = supL.
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Note that on account of hypotheses H1(i), (i i), we have

|g(z, x)| ≤ c3(1 + x p−1) for a.a. z ∈ �, all x ≥ 0, (2.2)

for some c3 > 0. Also hypothesis H1(i i i) and the fact that f ≥ 0 imply that for all λ > 0,
we have

g(z, x) + λ f (z, x) ≥ ĉxq−1 for a.a. z ∈ �, all 0 ≤ x ≤ δ. (2.3)

This unilateral growth restriction on the reaction, leads to the following auxiliary Robin
problem {

−�pu(z) + ξ(z)u(z)p−1 = ĉu(z)q−1 in �,
∂u
∂n p

+ β(z)u p−1 = 0 on ∂�, u ≥ 0. (2.4)

Proposition 2.6 If hypotheses H0 hold, then problem (2.4) admits a unique positive solution
ũ ∈ intC+.

Proof First we show the existence of a positive solution. To this end, letψ0 : W 1,p
0 (�) −→ R

be the C1-functional defined by

ψ0(u) = 1

p
γp(u) − ĉ

q
‖u+‖q

q ≥ c0
p

‖u‖p − c4‖u‖q ,

for some c4 > 0 (see (2.1) and recall that the embedding W 1,p(�) ⊆ Lq(�) is continuous).
So ψ0 is coercive (recall that q < p).

Also from the Sobolev embedding theorem and the compactness of the trace operator, we
infer that ψ0 is sequentially weakly lower semicontinuous. So, by the Weierstrass-Tonelli
theorem, we can find ũ ∈ W 1,p(�) such that

ψ0 (̃u) = inf
u∈W 1,p(�)

ψ0(u). (2.5)

Recall that û1 ∈ intC+ and let t > 0. Then

ψ0(t û1) = t p

p
λ̂1 − ĉtq

q
‖û1‖q

q .

Since 1 < q < p, choosing t ∈ (0, 1) small, we have

ψ0(t û1) < 0,

so

ψ0 (̃u) < 0 = ψ0(0)

(see (2.5)) and thus ũ 
= 0. From (2.5) we have

ψ ′
0 (̃u) = 0,

so

〈A(̃u), h〉 +
∫

�

ξ(z)|̃u|p−2ũh dz +
∫

∂�

β(z)|̃u|p−2ũh dσ

=
∫

�

ĉ(̃u)q−1h dz ∀h ∈ W 1,p(�). (2.6)
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In (2.6) we choose h = −ũ− ∈ W 1,p(�) and obtain

γ (̃u−) = 0,

so

ũ ≥ 0, ũ 
= 0 (2.7)

(see (2.1)). Then from (2.6) and (2.7) we have{
−�pũ(z) + ξ(z)̃u(z)p−1 = ĉũq−1 in �,
∂ ũ
∂n p

+ β(z)̃u p−1 = 0 on ∂�.
(2.8)

From (2.8) and Proposition 2.10 of Papageorgiou-Rădulescu [14], we have that

ũ ∈ L∞(�).

Applying Theorem 2 of Lieberman [11], we infer that

ũ ∈ C+ \ {0}.
From (2.8) we have that

�pũ ≤ ‖ξ‖∞ũ p−1 in �,

so ũ ∈ intC+ (see Gasiński-Papageorgiou [6]).
Nowwe show the uniqueness of this positive solution of (2.4). So, suppose that ṽ is another

positive solution of (2.4). Again we have ṽ ∈ intC+. Consider the function

R(̃u, ṽ) = |Dũ|p − |Dṽ|p−2
(

Dṽ, D

(
ũ p

ṽ p−1

))
RN

.

Using the nonlinear Picone’s identity of Allegretto-Huang [1], we have

0 ≤
∫

�

R(̃u, ṽ)

= ‖Dũ‖p
p −

∫
�

(−�p ṽ)
ũ p

ṽ p−1 dz +
∫

∂�

β(z)̃u p dσ

= γp (̃u) − ĉ
∫

�

ũ

ṽ p−q
dz

=
∫

�

ĉ
ũq

ṽ p−q

(̃
v p−q − ũ p−q)

dz (2.9)

(using the nonlinear Green’s identity; see Gasiński-Papageorgiou [6, p. 211]). Interchanging
the roles of ũ and ṽ in the above argument we also have

0 ≤
∫

�

ĉ
ṽq

ũ p−q

(̃
u p−q − ṽ p−q)

dz. (2.10)

Adding (2.9) and (2.10) we have

0 ≤
∫

�

ĉ

(
ṽq

ũ p−q
− ũq

ṽ p−q

)(̃
u p−q − ṽ p−q)

dz

=
∫

�

ĉ

ũ p−q ṽ p−q

(̃
v p − ũ p)(̃u p−q − ṽ p−q)

dz ≤ 0,

so ũ = ṽ (recall that 1 < q < p).
This proves the uniqueness of the positive solution ũ ∈ intC+ of problem (2.4). ��

123



Positive solutions for a class of nonlinear... 437

Since ũ ∈ intC+, we can find t ∈ (0, 1) small such that

u(z) = t ũ(z) ∈ (0, δ] ∀z ∈ �,

with δ > 0 as in the hypothesis H1(i i i). Then u ∈ intC+ and

− �pu + ξ(z)u p−1 = t p−1( − �pũ + ξ(z)̃u p−1)
= t p−1ĉũq−1 ≤ ĉuq−1 in � (2.11)

(since t ∈ (0, 1) and 1 < q < p).

3 Positive solutions

First we show the nonemptiness of L and determine the regularity of the elements of the
solution set Sλ.

Proposition 3.1 If hypotheses H0, H1, H2 and H3 hold, then L 
= ∅ and for every λ > 0 we
have Sλ ⊆ intC+.

Proof Let u ∈ intC+ be as above. For λ > 0 we consider the Carathéodory function kλ : �×
R −→ R defined by

kλ(z, x) =
{

g(z, u(z)) + λ f (z, u(z)) if x ≤ u(z),
g(z, x) + λ f (z, x) if u(z) < x .

(3.1)

We set

Kλ(z, x) =
∫ x

0
kλ(z, s) ds

and consider the C1-functional ϕ̂λ : W 1,p(�) −→ R defined by

ϕ̂λ(u) = 1

p
γp(u) −

∫
�

Kλ(z, u) dz ∀u ∈ W 1,p(�).

Let u ∈ intC+ and choose t ∈ (0, 1) small so that tu ≤ u (recall that u ∈ intC+). We have

ϕ̂λ(tu) ≤ t p

p
γp(u) − t

∫
�

(
g(z, u) + λ f (z, u)

)
u dz

(see (3.1)). Since t ∈ (0, 1) and p > 1, choosing t ∈ (0, 1) even smaller if necessary, we
have

ϕ̂λ(tu) < 0 ∀t ∈ (0, 1) small. (3.2)

On account of hypotheses H1, given ε > 0, we can find c5 = c5(ε) > 0 such that

g(z, x) ≤ εx p−1 + c5xq−1 for a.a. z ∈ �, all x ≥ 0,

so

G(z, x) ≤ ε

p
x p + c5

q
xq for a.a. z ∈ �, all x ≥ 0. (3.3)

Then for u ∈ W 1,p(�) we have

ϕ̂λ(u) = 1

p
γp(u) −

∫
{u≤u}

(
g(z, u) + λ f (z, u)

)
u dz
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−
∫

{u<v}
(
G(z, u) − G(z, u) + λ(F(z, u) − F(z, u))

)
dz

≥ 1

p
γp(u) −

∫
�

(
g(z, u) + λ f (z, u)

)
u+ dz

= −
∫

�

G(z, u) dz − λ

∫
{u≤u}

F(z, u) dz

≥ 1

p

(
γp(u) − ε‖u‖p) − c6

(‖u‖q + ‖u‖) − λc7
(‖u‖ + ‖u‖r )

≥ c8‖u‖p − c6
(‖u‖q + ‖u‖) − λc7

(‖u‖ + ‖u‖r ) (3.4)

for some c6, c7, c8 > 0 (see hypothesis H1(i i), (3.3), hypothesis H1(i) and recall that
u(z) ≤ δ for all z ∈ �). Choose �0 > 0 such that

ξ0 = c6�
p
0 − c6(�

q
0 + �0) > 0.

Having fixed �0 > 0 as above, choose λ0 > 0 small so that

ξ0 > λc7(�0 + �r
0) ∀λ ∈ (0, λ0).

Returning to (3.4), we have

ϕ̂λ(u) > 0 ∀‖u‖ = �0, 0 < λ < λ0. (3.5)

Let B0 = B�0 = {u ∈ W 1,p(�) : ‖u‖ ≤ �0}. The functional ϕ̂λ is sequentiallyweakly lower
semicontinuous and B0 is sequentially weakly compact (from the reflexivity of W 1,p(�) and
the Eberlein-Smulian theorem). So, we can find uλ ∈ W 1,p(�) such that

ϕ̂λ(uλ) = inf
u∈B0

ϕ̂λ(u), (3.6)

so

0 < ‖uλ‖ < �0 ∀0 < λ < λ0 (3.7)

(see (3.2) and (3.5)). From (3.6) and (3.7) it follows that

ϕ̂′
λ(uλ) = 0,

so

〈A(uλ, h) +
∫

�

ξ(z)|uλ|p−2uλh dz +
∫

∂�

β(z)|uλ|p−2uλh dσ

=
∫

�

kλ(z, uλ)h dz ∀h ∈ W 1,p(�). (3.8)

In (3.8) we choose h = (u − uλ)
+ ∈ W 1,p(�). Then

〈A(uλ), (u − uλ)
+〉 +

∫
�

ξ(z)|uλ|p−2uλ(u − uλ)
+ dz

+
∫

∂�

β(z)|uλ|p−2uλ(u − uλ)
+ dσ

=
∫

�

(
g(z, u) + λ f (z, u)

)
(u − uλ)

+ dz

≥
∫

�

g(z, u)(u − uλ)
+ dz

≥
∫

�

ĉuq−1(u − uλ)
+ dz
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≥ 〈A(u), (u − uλ)
+〉 +

∫
�

ξ(z)u p−1(u − uλ)
+ dz +

∫
∂�

β(z)u p−1(u − uλ) dσ

(see (3.1), (2.11) use hypothesis H1(i i i) and recall that f ≥ 0 and u(z) ≤ δ for all z ∈ �),
so

u ≤ uλ. (3.9)

Then on account of (3.1), (3.9) and (3.8), we obtain{−�puλ(z) + ξ(z)uλ(z)p−1 = g(z, uλ) + λ f (z, uλ) in �,
∂uλ

∂n p
+ β(z)u p−1

λ = 0 on ∂�.
(3.10)

As before the nonlinear regularity theorem (see Lieberman [11] and Papageorgiou-Rădulescu
[14]) implies thatuλ ∈ C+\{0}. Let� = ‖uλ‖∞ andwith J = {λ}, let ξ̂ J

� > 0 be as postulated
by hypothesis H3. Then from (3.10) we have

�puλ ≤ (‖ξ‖∞ + ξ̂ J
�

)
u p−1

λ in �,

so uλ ∈ intC+ (see Gasiński-Papageorgiou [6, p. 738]). Therefore we have proved that

(0, λ0) ⊆ L 
= ∅
and

Sλ ⊆ intC+ ∀λ > 0.

��
Next we show that L is an interval (connected).

Proposition 3.2 If hypotheses H0, H1, H2 and H3 hold, λ ∈ L and 0 < μ < λ, then μ ∈ L.

Proof Since λ ∈ L we can find uλ ∈ Sλ ⊆ intC+. We consider the following truncation of
the reaction for the problem (Pμ):

dμ(z, x) =
{

g(z, x+) + μ f (z, x+) if x ≤ uλ(z)
g(z, uλ(z)) + μ f (z, uλ(z)) if uλ(z) < x .

(3.11)

This is a Carathéodory function. We set

Dμ(z, x) =
∫ x

0
dμ(z, s) ds

and consider the C1-functional ψ̂μ : W 1,p(�) −→ R defined by

ψ̂μ(u) = 1

p
γp(u) −

∫
�

Dμ(z, u) dz ∀u ∈ W 1,p(�).

From (3.11) and (2.1) it is clear that ψ̂μ is coercive. Also using the Sobolev embedding
theorem and the compactness of the trace map, we see that ψ̂μ is sequentially weakly lower
semicontinuous. So, we can find uμ ∈ W 1,p(�) such that

ψ̂μ(uμ) = inf
u∈W 1,p(�)

ψ̂μ(u). (3.12)

We choose t ∈ (0, 1) small so that

t û1 ≤ uλ and t û1(z) ∈ (0, δ] ∀z ∈ �.
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Since û1, uλ ∈ intC+ such a t ∈ (0, 1) exists. We have

ψ̂μ(t û1) ≤ t̂ p

p
λ̂1 − tq ĉ

q
‖û1‖q

q

(see hypothesis H1(i i i) and recall that ‖û1‖p = 1). Since 1 < q < p, by choosing t ∈ (0, 1)
even smaller if necessary, we have that

ψ̂μ(t û1) < 0,

so

ψ̂μ(uμ) < 0 = ψ̂μ(0)

(see (3.12)) and thus uμ 
= 0.
From (3.12) we have

ψ̂ ′
μ(uμ) = 0,

so

〈A(uμ), h〉 +
∫

�

ξ(z)|uμ|p−2uμh dz +
∫

∂�

β(z)|uμ|p−2uμh dσ

=
∫

�

dμ(z, uμ)h dz ∀h ∈ W 1,p(�). (3.13)

In (3.13) we first choose h = −u−
μ ∈ W 1,p(�). Then

γp(u
−
μ) = 0

(see (3.11)), so

uμ ≥ 0, uμ 
= 0

(see (2.1)). Nest in (3.13) we choose (uμ − uλ)
+ ∈ W 1,p(�). Then, using (3.10) and since

0 < μ < λ and f ≥ 0, we have

〈A(uμ), (uμ − uλ)
+〉 +

∫
�

ξ(z)u p−1
μ (uμ − uλ)

+ dz

+
∫

∂�

β(z)u p−1
μ (uμ − uλ)

+ dσ

=
∫

�

(
g(z, uλ) + μ f (z, uλ)

)
(uμ − uλ)

+ dz

≤
∫

�

(
g(z, uλ) + λ f (z, uλ)

)
(uμ − uλ)

+ dz

= 〈A(uλ), (uμ − uλ)
+ +

∫
�

ξ(z)u p−1
λ (uμ − uλ)

+ dz

+
∫

∂�

β(z)u p−1
λ (uμ − uλ)

+ dσ,

so uμ ≤ uλ (see Proposition 2.2). So, we have proved that

uμ ∈ [0, uλ], uμ 
= 0. (3.14)

Then (3.14), (3.11) and (3.13) imply that

uμ ∈ Sμ ⊆ intC+,
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and so μ ∈ L. ��
Embedded in the above proof, is the following “monotonicity” property for Sλ as a function

of the parameter λ > 0.

Corollary 3.3 If hypotheses H0, H1, H2 and H3 hold, λ ∈ L, uλ ∈ Sλ ⊆ intC+ and 0 < μ <

λ, then μ ∈ L and we can find uμ ∈ Sμ ⊆ intC+ such that

uμ ≤ uλ.

We can improve the conclusion of this corollary.

Proposition 3.4 If hypotheses H0, H1, H2 and H3 hold, λ ∈ L, uλ ∈ Sλ ⊆ intC+ and
0 < μ < λ, then μ ∈ L and there exists uμ ∈ Sμ ⊆ C+ such that

uλ − uμ ∈ D+.

Proof FromCorollary 3.3we already know thatμ ∈ L and thatwe can find uμ ∈ Sμ ⊆ intC+
such that

0 < uμ ≤ uλ. (3.15)

Let � = ‖uλ‖∞, J = {λ,μ} and consider ξ̂ J
� > 0 as postulated by hypothesis H3, We have

−�puμ + (
ξ(z) + ξ̂ J

�

)
u p−1

μ

= g(z, uμ) + μ f (z, uμ) + ξ J
� u p−1

μ

= g(z, uμ) + λ f (z, uμ) − (λ − μ) f (z, uμ) + ξ̂ J
� u p−1

μ

≤ g(z, uλ) + λ f (z, uλ) + ξ̂ J
� u p−1

λ

= −�puλ

(
ξ(z) + ξ̂ J

�

)
u p−1

λ (3.16)

(see (3.15) and hypothesis H3), with 0 < mμ = min
�

uμ (uμ ∈ intC+) and ηmμ as in H2(iv).

From (3.16) and using Proposition 2.10 of Papageorgiou-Rădulescu-Repovš [17], we
obtain that

uλ − uμ ∈ D+.

��
Recall that λ∗ = supL. Next we show that λ∗ < +∞.

Proposition 3.5 If hypotheses H0, H1, H2 and H3 hold, then λ∗ < +∞.

Proof Let η > λ̂1. Hypotheses H1(i i i) and H2(i i), (iv) imply that we can find λ̃ > 0 big
such that

g(z, x) + λ̃ f (z, x) ≥ ηx p−1 for a.a. z ∈ �, all x ≥ 0. (3.17)

Let λ > λ̃ and suppose that λ ∈ L. We can find uλ ∈ Sλ ⊆ intC+. We introduce the
Carathéodory function ϑλ(z, x) defined by

ϑλ(z, x) =
{

η(x+)p−1 if x ≤ uλ(z),
ηuλ(z)p−1 if uλ(z) < x .

(3.18)

We set

�λ(z, x) =
∫ x

0
ϑλ(z, s) ds

123



442 L. Gasiński et al.

and consider the C1-functional τλ : W 1,p(�) −→ R defined by

τλ(u) = 1

p
γp(u) −

∫
�

�λ(z, u) dz ∀u ∈ W 1,p(�).

From (3.18) and (2.1) we see that τλ is coercive. Also it is sequentially weakly lower semi-
continuous. So, we can find û∗ ∈ W 1,p(�) such that

τλ(̂u∗) = inf
u∈W 1,p(�)

τλ(u). (3.19)

As before we choose t ∈ (0, 1) small so that

0 < t û1 ≤ uλ.

Then we have

τλ(t û1) = t p

p
(̂λ1 − η) < 0

(recall that ‖û1‖p = 1), so

τλ(̂u∗) < 0 = τλ(0)

(see (3.19)), thus

û∗ 
= 0.

From (3.19) we have

τ ′
λ(̂u∗) = 0,

so

〈A(̂u∗), h〉 +
∫

�

ξ(z)|̂u∗|p−2û∗h dz +
∫

∂�

β(z)|̂u∗|p−2û∗h dσ

=
∫

�

ϑλ(z, û∗)h dz ∀h ∈ W 1,p(�). (3.20)

In (3.20) first we choose h = −û−∗ ∈ W 1,p(�) and obtain

γp (̂u
−∗ ) = 0

(see (3.18)), so

û∗ ≥ 0, û∗ 
= 0

(see (2.1)).
Next in (3.20) we choose h = (̂u∗ − uλ)

+ ∈ W 1,p(�). Then

〈A(̂u∗), (̂u∗ − uλ)
+〉 +

∫
�

ξ(z)̂u p−1∗ (̂u∗ − uλ)
+ dz +

∫
∂�

β(z)̂u p−1∗ (̂u∗ − uλ)
+ dσ

=
∫

�

ηu p−1
λ (̂u∗ − uλ)

+ dz

≤
∫

�

(
g(z, uλ) + λ f (z, uλ)

)
(̂u∗ − uλ)

+ dz

= 〈A(uλ), (̂u∗ − uλ)
+〉 +

∫
�

ξ(z)u p−1
λ (̂u∗ − uλ)

+ dz

+
∫

∂�

β(z)u p−1
λ (̂u∗ − uλ)

+ dσ
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(see (3.18), (3.17) and recall that λ > λ̃ and uλ ∈ Sλ), so

û∗ ≤ uλ.

So, we have proved that

û∗ ∈ [0, uλ], û∗ 
= 0. (3.21)

From (3.21), (3.18) and (3.20), we infer that{
−�pû∗ + ξ(z)̂u p−1∗ = ηu p−1∗ in �,
∂ û∗
∂n p

+ β(z)̂u p−1∗ 0 on ∂�.

Since û∗ ≥ 0, û∗ 
= 0 and η > λ̂1, we have a contradiction. Therefore λ ∈ L and so
λ∗ ≤ λ̃ < +∞. ��

We show that the critical parameter λ∗ is admissible (that is, λ∗ ∈ L).

Proposition 3.6 If hypotheses H0, H1, H2 and H3 hold, then λ∗ ∈ L.

Proof In what follows for every λ > 0 by ϕλ : W 1,p(�) −→ R we denote the energy
functional for problem (Pλ) defined by

ϕλ(u) = 1

p
γp(u) −

∫
�

(
G(z, u) + λF(z, u)

)
dz ∀u ∈ W 1,p(�).

We know that ϕλ ∈ C1(W 1,p(�)).
Let {λn}n∈N ⊆ L be such that λn ↗ λ∗ and un ∈ Sλn ⊆ intC+, n ∈ N. According to

Proposition 3.2 and its proof, we can have

ϕλn (un) < 0 ∀n ∈ N,

so

γp(un) −
∫

�

p
(
G(z, un) + λn F(z, un)

)
dz < 0 ∀n ∈ N. (3.22)

Also we have

〈A(un), h〉 +
∫

�

ξ(z)u p−1
n h dz +

∫
∂�

β(z)u p−1
n h dσ

=
∫

�

(
g(z, un) + λn f (z, un)

)
h dz ∀h ∈ W 1,p(�), n ∈ N.

We choose h = un ∈ W 1,p(�). Then

− γp(un) +
∫

�

(
g(z, un) + λ f (z, un)

)
un dz = 0 ∀n ∈ N. (3.23)

We add (3.22) and (3.23) and obtain∫
�

eλn (z, un) dz < 0 ∀n ∈ N. (3.24)

Claim. The sequence {un}n∈N ⊆ W 1,p(�) is bounded.
We argue by contradiction. So, suppose that at least for a subsequence, we have

‖un‖ −→ +∞ as n → +∞.
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Let yn = un‖un‖ for n ∈ N. Then ‖yn‖ = 1, yn ≥ 0 for all n ∈ N and so we may assume that

yn
w−→ y in W 1,p(�) and yn −→ y in Lr (�) and in L p(∂�), (3.25)

with y ≥ 0.
First assume that y 
= 0. Let �+ = {z ∈ � : y(z) > 0}. If by | · |N we denote the

Lebesgue measure on RN , then |�+|N > 0 (recall that y ≥ 0; see (3.25)) and we have

un(z) −→ +∞ for a.a. z ∈ �+,

so

F(z, un(z))

un(z)p
−→ +∞ for a.a. z ∈ �+

(see hypothesis H1(i i)), thus

F(z, un(z))

‖un‖p
= F(z, un(z))

un(z)p
yn(z)p −→ +∞ for a.a. z ∈ �+.

Then hypothesis H2(i i) and Fatou’s lemma imply that

1

‖un‖p

∫
�+

F(z, un) dz −→ +∞. (3.26)

Note that

1

‖un‖p

∫
�

F(z, un) dz = 1

‖un‖p

∫
�+

F(z, un) dz + 1

‖un‖p

∫
�\�+

F(z, un) dz

≥ 1

‖un‖p

∫
�+

F(z, un) dz

(since F ≥ 0), so

1

‖un‖p

∫
�

F(z, un) dz −→ +∞ (3.27)

(see (3.26)).
On the other hand from hypotheses H1(i), (i i) we see that given ε > 0, we can find

c8 = c8(ε) > 0 such that

|G(z, x)| ≤ εx p + c8 for a.a. z ∈ �, all x ≥ 0.

Therefore we have

lim
n→+∞

1

‖un‖p

∫
�

|G(z, un)| dz ≤ ε.

Since ε > 0 is arbitrary, we conclude that

1

‖un‖p

∫
�

G(z, un) dz −→ 0 as n → +∞. (3.28)

From (3.27) and (3.28), we have

1

‖un‖p

∫
�

(
G(z, un) + λn F(z, un)

)
dz −→ +∞ as n → +∞. (3.29)

Hypothesis H2(i i i) implies that for all λ > 0 we have

0 ≤ eλ(z, x) + ϑ̂λ(z) for a.a. z ∈ �, all x ≥ 0,
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so

p
(
G(z, x)+λF(z, x)

)≤(
g(z, x)+λ f (z, x)

) + ϑ̂λ(z) for a.a. z ∈ �, all x ≥ 0.

(3.30)

Therefore ∫
�

p
(
G(z, un) + λn F(z, un)

)
dz

≤
∫

�

(
g(z, un) + λn f (z, un)

)
un dz + ‖ϑλn ‖1

≤ γp(un) + ‖ϑλ∗‖1
(see (3.30), (3.23)), so

1

‖un‖p

∫
�

p
(
G(z, un) + λF(z, un)

)
dz ≤ γp(yn) + ‖ϑλ∗‖1

‖un‖p
≤ c9 ∀n ∈ N, (3.31)

for some c9 < 0. Comparing (3.29) and (3.31), we have a contradiction.
Next we assume that y ≡ 0. Let η > 0 and define

vn = (pη)
1
p yn ∈ W 1,p(�) ∀n ∈ N.

We have

vn −→ 0 in Lr (�)

(see (3.25) and recall that y = 0), so∫
�

(
G(z, un) + λn F(z, un)

)
dz −→ 0 (3.32)

(see (2.2) and hypothesis H2(i)).
Since ‖un‖ −→ +∞, we can find n0 ∈ N such that

(pη)
1
p

1

‖un‖ ≤ 1 ∀n ≥ n0. (3.33)

Let tn ∈ [0, 1] be such that
ϕλn (tnun) = max

0≤t≤1
ϕλn (tun). (3.34)

We have

ϕλn (tnun) ≥ ϕλn (vn)

= 1

p
γp(vn) −

∫
�

(
G(z, vn) + λn F(z, vn)

)
dz

≥ ηγp(yn) −
∫

�

(
G(z, vn) + λn F(z, vn)

)
dz

≥ ηĉ −
∫

�

(
G(z, vn) + λn F(z, vn)

)
dz

(see (3.33), (3.34), (2.1) and recall that ‖yn‖ = 1), so

ϕλn (un) ≥ ηĉ

2
∀n ≥ n1 ≥ n0
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(see (3.32)). Since η > 0 is arbitrary, we conclude that

ϕλn (tbun) −→ +∞ as n → +∞. (3.35)

We know that

ϕλn (0) = 0 and ϕλn (un) < 0 ∀n ∈ N. (3.36)

From (3.35) and (3.36) it follows that

tn ∈ (0, 1) ∀n ≥ n2,

so

d

dt
ϕλn (tun)

∣∣
t=tn

= 0 ∀n ≥ n2

(see (3.34)) and thus

〈ϕ′
λn

(tnun), un〉 = 0 ∀n ≥ n2

(by the chain rule). Hence for n ≥ n2 we have

γp(tnun) −
∫

�

(
g(z, tnun) + λn f (z, tnun)

)
(tnun) dz = 0,

so

γp(tnun) =
∫

�

eλn (z, tnun) dz +
∫

�

p
(
G(z, tnun) + λn F(z, tnun)

)
dz

≤
∫

�

eλn (z, un) dz + ‖ϑλ∗‖1 +
∫

�

p
(
G(z, tnun) + λn F(z, tnun)

)
dz

and thus

pϕλn (tnun) ≤ ‖ϑλ∗‖1 ∀n ≥ n2 (3.37)

(see (3.24)). Comparing (3.37) and (3.34) we have a contradiction. Therefore the sequence
{un}n∈N ⊆ W 1,p(�) is bounded. This proves the Claim.

On account of the Claim we may assume that

un
w−→ u∗ in W 1,p(�) and un −→ u∗ in Lr (�) and in L p(∂�). (3.38)

We have

〈A(un), un − u∗〉 +
∫

�

ξ(z)u p−1
n (un − u∗) dz +

∫
∂�

β(z)u p−1
n (un − u∗) dσ

=
∫

�

(
g(z, un) + λn f (z, un)

)
(un − u∗) dz ∀n ∈ N,

so

lim
n→+∞〈A(un), un − u∗〉 = 0

(see (3.38)) and thus

un −→ u∗ in W 1,p(�) (3.39)

(see Proposition 2.2), with u ≥ 0.
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Using (3.39) in the limit as n → +∞, we have

〈A(u∗), h〉 +
∫

�

ξ(z)u p−1∗ h dz +
∫

∂�

β(z)u p−1∗ h dσ

=
∫

�

(
g(z, u∗) + λ∗ f ( f , u∗)

)
h dz ∀h ∈ W 1,p(�).

If we show that u∗ 
= 0, then u∗ ∈ Sλ∗ ⊆ intC+ and so λ∗ ∈ L. Arguing by contradiction,
suppose that u∗ = 0. Then from (3.40), Proposition 2.10 of Papageorgiou-Rădulescu [14],
Theorem 2 of Lieberman [11] and exploiting the compactness of the embedding C1,ϑ (�) ⊆
C1(�) (with 0 < ϑ < 1), we have that

un −→ u∗ in C1(�),

so

un(z) ∈ (0, δ] ∀z ∈ �, n ≥ n̂

(where δ > 0 is as in hypothesis H1(i i i)), so

g(z, un(z)) + λ∗ f (z, un(z)) ≥ ĉun(z)q−1 for a.a. z ∈ �, all n ≥ n̂

(see (3.20)). Then for n ≥ n̂ we consider the Carathéodory function

ln(z, x) =
{

ĉ(x+)q−1 if x ≤ un(z),
ĉun(z)q−1 if un(z) < x .

(3.40)

We set

Ln(z, x) =
∫ x

0
l(z, s) ds

and consider the C1-functional ζn : W 1,p(�) −→ R defined by

ζn(u) = 1

p
γp(u) −

∫
�

Ln(z, u) dz ∀u ∈ W 1,p(�).

Using the direct method od the calculus of variation and the fact that q < p, we can find
ũ∗ ∈ W 1,p(�) such that

ζn (̃u∗) = inf
u∈W 1,p(�)

ζn(u) < 0 = ζn(0),

so ũ∗ 
= 0. Then using (3.40) we show that

ũ∗ ∈ [0, un], ũ∗ 
= 0,

so

ũ∗ = ũ ∈ intC+

(see Proposition 2.6), thus

ũ ≤ un ∀n ≥ n̂,

and finally

ũ ≤ u∗,

a contradiction. Therefore u∗ 
= 0 and so u∗ ∈ Sλ∗ ⊆ intC+ and so λ∗ ∈ L. ��
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So, we have proved that

L = (0, λ∗].
Finally we show that for 0 < λ < λ∗ we have multiplicity of positive solutions.

Proposition 3.7 If hypotheses H0, H1, H2 and H3 hold and 0 < λ < λ∗, then problem (Pλ)

has at least two positive solutions u0, û ∈ intC+, u0 
= û.

Proof Let 0 < μ < λ < η < λ∗. According to Corollary 3.3, we can find uη ∈ Sη ⊆ intC+,
uλ ∈ Sλ ⊆ intC+, uμ ∈ Sμ ⊆ intC+ such that

uη − uλ ∈ D+ and uλ − uμ ∈ D+,

so

uλ ∈ intC1(�)[uμ, uη] (3.41)

(by intC1(�)[uμ, uη] we denote the interior in C1(�) of [uμ, uη] ∩ C1(�)). We consider the
following truncation of the reaction in problem (Pλ)

τ̃λ(z, x) =
⎧⎨
⎩

g(z, uμ(z)) + λ f (z, uμ(z)) if x < uμ(z),
g(z, x) + λ f (z, x) if uμ(z) ≤ x ≤ uη(z),
g(z, uη(z)) + λ f (z, uη(z)) if uη(z) < x .

(3.42)

This is a Carathéodory function. We set

T̃λ(z, x) =
∫ x

0
τ̃λ(z, s) ds

and consider the C1-functional ψ̃λ : W 1,p(�) −→ R defined by

ψ̃λ(u) = 1

p
γp(u) −

∫
�

T̃λ(z, u) dz ∀u ∈ W 1,p(�)

Let

Kψ̃λ
= {u ∈ W 1,p(�) : ψ̃ ′

λ(u) = 0}
(the critical set of ψ̃λ).
Claim 1: Kψ̃λ

⊆ [uμ, uη] ∩ intC+.
Let u ∈ Kψ̃λ

. We have

ψ̃ ′
λ(u) = 0,

so

〈A(u), h〉 +
∫

�

ξ(z)|u|p−2uh dz +
∫

∂�

β(z)|u|p−2uh dσ

=
∫

�

τ̃λ(z, u)h dz ∀h ∈ W 1,p(�). (3.43)

In (3.43) first we choose h = (uμ − u)+ ∈ W 1,p(�). Then, using (3.42) and the facts that
λ > μ, f ≥ 0 and uμ ∈ Sμ, we have
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〈A(u), (uμ − u)+〉 +
∫

�

ξ(z)|u|p−2u(uμ − u)+ dz

+
∫

∂�

β(z)|u|p−2u(uμ − u)+ dσ

=
∫

�

(
g(z, uμ) + λ f (z, uμ)

)
(uμ − u)+ dz

≥
∫

�

(
g(z, uμ) + μ f (z, uμ)

)
(uμ − u)+ dz

= 〈A(uμ), (uμ − u)+〉 +
∫

�

ξ(z)|uμ|[−2uμ(uμ − u)+ dz

+
∫

∂�

β(z)|uμ|p−2uμ(uμ − u)+ dσ,

so

uμ ≤ u.

Similarly if in (3.43) we choose h = (u − uη)
+ ∈ W 1,p(�), we show that

u ≤ uη,

so

u ∈ [uμ, uη].
Moreover, the nonlinear regularity theory (see Lieberman [11]) implies that u ∈ C1(�).
Therefore

Kψ̃λ
⊆ [uμ, uη] ∩ intC+.

This proves Claim 1.
Evidently uλ ∈ Kψ̃λ

(see (3.42)). We may assume that

Kψ̃λ
= {uλ}. (3.44)

Otherwise on account of Claim 1 and (3.42), we see that we already have a second positive
solution of problem (Pλ) and so we are done.

From (2.1) and (3.42), we see that ψ̃λ is coercive. Also it is sequentially weakly lower
semicontinuous. So, we can find ũλ ∈ W 1,p(�) such that

ψ̃λ(̃uλ) = inf
u∈W 1,p(�)

ψ̃λ(u),

so

ũλ ∈ Kψ̃λ

and thus

ũλ = uλ ∈ intC1(�)[uμ, uη] (3.45)

(see (3.44) and (3.41)). We introduce the Carathéodory function k̃λ(z, x) defined by

k̃λ(z, x) =
{

g(z, uμ(z)) + λ f (z, uμ(z)) if x ≤ uμ(z),
g(z, x) + λ f (z, x) if uμ(z) < x .

(3.46)

We set

K̃λ(z, x) =
∫ x

0
k̃λ(z, s) ds
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and consider the C1-functional ϕ̃λ : W 1,p(�) −→ R defined by

ϕ̃λ(u) = 1

p
γp(u) −

∫
�

K̃λ(z, u) dz ∀u ∈ W 1,p(�).

If

Kϕ̃λ = {u ∈ W 1,p(�) : ϕ̃′
λ(u) = 0},

then using (3.46) we can check that

Kϕ̃λ ⊆ [uμ) ∩ intC+. (3.47)

Moreover, from (3.42) and (3.46) it is clear that

ϕ̃λ|[uμ,uη] = ψ̃λ|[uμ,uη]. (3.48)

From (3.45) and (3.48) it follows that

uλ is a local C1(�)-minimizer of ϕ̃λ,

so also

uλ is a local W 1,p(�)-minimizer of ϕ̃λ (3.49)

(see Papageorgiou-Rădulescu [14]).
On account of (3.47) we may assume that Kϕ̃λ is finite (otherwise we already have an

infinity of positive smooth solutions of (Pλ) and so we are done). Then (3.49) and Theorem
5.7.6 of Papageorgiou-Rădulescu-Repovš [19, p. 449], imply that we can find � ∈ (0, 1)
small such that

ϕ̃λ(uλ) < inf‖u−uλ‖=�
ϕ̃λ(u) = m̃λ. (3.50)

Also, because of hypothesis H2(i i) we have

ϕ̃λ(t û1) −→ −∞ as t → +∞. (3.51)

Claim 2. ϕ̃λ satisfies the Cerami condition (see Papageorgiou-Rădulescu-Repovš [19, p.
366]).

We consider a sequence {un}n∈N ⊆ W 1,p(�) such that

|ϕ̃λ(un)| ≤ c9 ∀n ∈ N, (3.52)

for some c9 > 0, and

(1 + ‖un‖)ϕ̃′
λ(un) −→ 0 in W 1,p(�)∗ as n → +∞. (3.53)

From (3.53) we have ∣∣∣∣〈A(un), h〉 +
∫

�

ξ(z)|un |p−2unh dz∫
∂�

β(z)|un |p−2unh dσ −
∫

�

k̃λ(z, un)h dz

∣∣∣∣
≤ εn‖h‖

1 + ‖un‖ ∀h ∈ W 1,p(�), (3.54)

with εn → 0+. In (3.54) we choose h = −u−
n ∈ W 1,p(�). Then

γp(u
−
n ) ≤ c10 ∀n ∈ N,
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for some c10 > 0 (see (3.46)), so

{u−
n }n∈N ⊆ W 1,p(�) is bounded (3.55)

(see (2.1)). From (3.52) and (3.55) we have

|ϕ̃λ(u
+
n )| ≤ c11 ∀n ∈ N, (3.56)

for some c11 > 0, so

γp(u
+
n ) −

∫
�

p
(
G(z, u+

n ) + λF(z, u+
n )

)
dz ≤ c12 ∀n ∈ N, (3.57)

for some c12 > 0 (see (3.46)). In (3.54), we choose h = u+
n ∈ W 1,p(�) and obtain

− γp(u
+
n ) +

∫
�

(
g(z, u+

n ) + λ f (z, u+
n )u+

n dz ≤ c13 ∀n ∈ N, (3.58)

for some c13 > 0 (see (3.46)).
Adding (3.57) and (3.58) we obtain∫

�

eλ(z, u+
n ) dz ≤ c14 ∀n ∈ N, (3.59)

for some c14 > 0. Using (3.59) and arguing as in the Claim of the proof of Proposition 3.6,
we show that the sequence {u+

n }n∈N ⊆ W 1,p(�) is bounded and so

{un}n∈N ⊆ W 1,p(�) is bounded (3.60)

(see (3.55)). Then from (3.60) as in the proof of Proposition 3.6, using the (S)+-property of
A (see Proposition 2.2), we show that at least for a subsequence, we have

un −→ u in W 1,p(�),

so ϕ̃λ satisfied the Cerami condition. This proves Claim 2.
Then (3.50), (3.51) and Claim 2 permit the use of the mountain pass theorem. So, we can

find ûλ ⊆ W 1,p(�) such that

ûλ ⊆ Kϕ̃λ ⊆ [uλ) ∩ intC+

(see (3.47)), so

ϕ̃λ(uλ) < m̃λ ≤ ϕ̃λ(̂uλ)

(see (3.50)). We conclude that

ûλ 
= uλ and ûλ ⊆ Sλ ⊆ intC+

(see (3.46)). ��
So, summarizing we can have the following multiplicity theorem for problem (Pλ) which

is global with respect to the parameter λ > 0 (bifurcation-type theorem).

Theorem 3.8 If hypotheses H0, H1, H2, H3 hold, then there exists λ∗ > 0 such that
(a) for all λ ∈ (0, λ∗) problem (Pλ) has at least two positive solutions uλ, ûλ ⊆ intC+,
uλ 
= ûλ;
(b) for λ = λ∗ problem (Pλ) has at least one positive solution u∗ ∈ intC+;
(c) for all λ > λ∗ problem (Pλ) has no positive solutions.
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4 Minimal positive solution

In this section we show that for every admissible parameter λ ∈ L = (0, λ∗], problem (Pλ)

has a smallest positive solution u∗
λ ∈ intC+ (that is, u∗

λ ≤ u for all u ∈ Sλ) and study the
monotonicity and continuity properties of the map λ �−→ u∗

λ.
From Papageorgiou-Rădulescu-Repovš [15] (see the proof of Proposition 3.5), we know

that the set Sλ is downward directed (that is, if u1, u2 ∈ Sλ, then we can find u ∈ Sλ such
that u ≤ u1, u ≤ u2).

Proposition 4.1 If hypotheses H0, H1, H2 and H3 hold and λ ∈ L = (0, λ∗], then problem
(Pλ) has a smallest positive solution u∗

λ ∈ intC+.

Proof Since Sλ is downward directed, using Lemma 3.10 of [10, p. 178], we can find a
decreasing sequence {un}n∈N ⊆ Sλ such that

inf
n∈N un = inf Sλ.

We have

〈A(un), h〉 +
∫

�

ξ(z)u p−1
n h dz +

∫
∂�

β(z)u p−1
n h dσ

=
∫

�

(
g(z, un) + λ f (z, un)

)
h, dz ∀h ∈ W 1,p(�). (4.1)

Since 0 ≤ un ≤ u1 for all n ∈ N, choosing h = un ∈ W 1,p(�) and using hypotheses H1(i)
and H2(i i), we obtain that

γp(un) ≤ c15 ∀n ∈ N,

for some c15 > 0, so

{un}n∈N ⊆ W 1,p(�) is bounded (4.2)

(see (2.1)). From (4.1), we have{
−�pun(z) + ξ(z)u(z)p−1

n = g(z, un) + λ f (z, un) in �,
∂un
∂n p

+ β(z)u p−1
n = 0 on ∂�.

(4.3)

Then from (4.2), (4.3) and Proposition 2.10 of [14], we can find c16 > 0 such that

‖un‖∞ ≤ c16 ∀n ∈ N.

Invoking Theorem 2 of Lieberman [11], we can find α ∈ (0, 1) and c17 > 0 such that

un ∈ C1,α(�) and ‖un‖C1,α(�) ≤ c17 ∀n ∈ N. (4.4)

Exploiting the compactness of the embedding C1,α(�) ⊆ C1(�), we see that at least for a
subsequence, we have

un −→ u∗
λ in C1(�). (4.5)

As in the proof of Proposition 3.6, using hypothesis H1(i i i) and Proposition 2.6, we show
that u∗

λ 
= 0.
Passing to the limit as n → +∞ in (4.1) and using (4.5), we conclude that

u∗
λ ∈ Sλ ⊆ intC+ and u∗

λ = inf Sλ.

��
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We consider the minimal solution map m̂ : L = (0, λ∗] −→ Sλ ⊆ intC+ defined by

m̂(λ) = u∗
λ.

We say that m̂ is “strictly increasing”, if

0 < μ < λ ≤ λ∗ �⇒ m̂(λ) − m̂(μ) ∈ D+.

Proposition 4.2 If hypotheses H0, H1, H2 and H3 hold, then
(a) m̂ is strictly increasing;
(b) m̂ is right continuous.

Proof (a) Let 0 < μ < λ ≤ λ∗. According to Corollary 3.3, we can find uμ ∈ Sμ ⊆ intC+,
such that

u∗
λ − uμ ∈ D+,

so

u∗
λ − u∗

μ ∈ D+

(since u∗
μ ≤ uμ) and thus m̂ is strictly increasing.

(b) Let {λn}n∈N ⊆ L and suppose that λn ↗ λ (λ ∈ L). As before (see the proof of
Proposition 4.1), from the nonlinear regularity theory (see Lieberman [11]), we know that
we can find λ ∈ (0, 1) and c18 > 0 such that

u∗
λn

∈ C1,α(�) and ‖u∗
λn

‖C1,α(�) ≤ c18 ∀n ∈ N.

The compactness of the embedding C1,α(�) ⊆ C1(�) and part (a) imply that

u∗
λn

−→ ũ∗ in C1(�). (4.6)

We claim that ũ∗ = u∗
λ. If this is not true, then we can find z0 ∈ � such that

u∗
λ(z0) < ũ∗(z0),

so

u∗
λ(z0) < u∗

λn
(z0) ∀n ≥ n0

(see (4.6)), which contradicts (a) (recall λn < λ for all n ∈ N). Therefore m̂ is right contin-
uous. ��
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