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Abstract
In the present note we provide combinatorial constraints on certain conic arrangements in 
the plane admitting A

5
 and A

7
 singularities. As a corollary, we provide upper bounds on the 

number of A
5
 and A

7
 singularities for such arrangements.
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1  Introduction

The main aim of the present note is to provide some explicit constraints on weak combina-
torics for a certain class of conic arrangements in the complex projective plane. This topic 
has recently been revived and has attracted the attention of researchers, both combinato-
rialists and algebraic geometers, see for example [1, 2, 9, 10]. As we know, in the case of 
line arrangements in the plane, the most important results devoted to weak combinatorics 
are Hirzebruch-type inequalities, which encode information about the set of singular points 
of a given topological type. Our main goal is to investigate natural combinatorial constants 
on the weak combinatorics of arrangements consisting of smooth conics with prescribed 
topological type of singularities. Our note is mostly inspired by a recent paper by Dimca, 
Janasz and Pokora [1], where the authors study arrangements of conics with only nodes 
and tacnodes as singularities. One of their main results tells us that if C ⊂ ℙ2

ℂ
 is an arrange-

ment of k ≥ 6 conics with nodes and tacnodes, then

and, as it turns out, this result provides sharper upper bound on the number of tacnodes 
compared with the classical result due to Miyaoka [7] provided that k ≥ 16.

Our aim here is to follow this path by exploring possible tight upper bounds on certain 
quasi-homogeneous singularities of complex plane conic arrangements. Here is our set-up.
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Let C = {C1,… ,Ck} ⊂ ℙ2
ℂ
 be an arrangement of k ≥ 2 smooth conics. Assume that 

our arrangements C have only n2 nodes, t2 tacnodes, n3 ordinary triple points, t5 singular 
points of type A5 , and t7 singular points of type A7—it means that a given C has only ADE 
singularities.

Now we can define the weak combinatorics for a given C , i.e., this is a vector of the 
form

As we can see, this vector only informs us about the numerics associated with C , so it pro-
vides weaker information than the intersection poset of C . For our purposes, however, it 
is sufficient to provide combinatorial constraints on C . We start with the following count, 
which comes from Bézout.

Proof  The left-hand side follows from the fact that we have 
(

k

2

)

 pairs of conics that inter-

sect. The right hand side is based on the count of the intersection indices. Indeed, each 
node has the intersection index equal to 1, each tacnode has the intersection index equal to 
2, and for ordinary triple we have the intersection index equal to 3, and finally for A5 and A7 
singular points we have 3 and 4, respectively, which completes our justification. 	�  ◻

In principle, the above combinatorial count gives a rough estimate of the weak combi-
natorics of conic arrangements, and it is a rather weak tool. Our main aim is to provide a 
more precise result, inspired by the results presented in [1, 9].

Here is the main result of our note.

Theorem 1.1  Let C be an arrangement of k ≥ 3 smooth conics admitting nodes, tacnodes, 
ordinary triple, A5 and A7 singular points. Then the following inequality holds

Based on the above count, we are able to provide upper bounds on the number of A5 and 
A7 singularities for such conic arrangements, and this path was recently indicated by con-
siderations in [4]. This result is inspired by similar work devoted to bounds on the number 
of tacnodes t2 , and to the best of our knowledge the bounds on A5 and A7 are the first of 
their kind explicitly presented in the literature.

Corollary 1.2  Let C be an arrangement of k ≥ 3 smooth conics in the plane admitting A5 
and A7 singularities. Then we have the following bounds:

Here is the structure of our paper. In Sect. 2 we present tools that allow us to prove The-
orem 1.1, namely the orbifold Bogomolov-Miyaoka-Yau inequality for pairs, which comes 

(k;n2, t2, n3, t5, t7) ∈ ℤ
6
≥0
.

(1)4 ⋅

(

k

2

)

= n2 + 2t2 + 3n3 + 3t5 + 4t7.

(2)560k + 100n2 + 75n3 ≥ 608t7 + 404t5 + 184t2.

t5 ≤
25

88
k2 +

45

88
k,

t7 ≤
25

126
k2 +

5

14
k.
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from [6]. In Sect. 3 we give our proof of Theorem 1.1 and explain how to obtain upper 
bounds on t5 and t7.

2 � Technicalities

Our main technical tool is an orbifold version of the classical Bogomolov-Miyaoka-Yau 
inequality proved by Langer [6]. His result applies to complex normal surfaces X with 
boundary divisors D. Here we focus on a special case when X = ℙ2

ℂ
 and D is a ℚ-divisor 

whose support consists of smooth conics in ℙ2
ℂ
 . The following result is the technical core 

of the note that we will exploit.

Theorem  2.1  (Langer) Let C ⊂ ℙ2
ℂ
 be a reduced curve of degree d and assume that 

(ℙ2
ℂ
, �C) is a an effective log canonical pair for a suitably chosen � ∈ [0, 1] , then one has

where Sing(C) denotes the set of all singular points, �p is the Milnor number of a singular 
point p, and eorb denotes the local orbifold Euler number of p.

We refer to [6] for details, especially for the definition of local orbifold Euler numbers. 
Instead of presenting the technicalities devoted to these orbifold Euler numbers, we briefly 
present their values for the singularities we are going to study, and these numbers depend 
on a choice of a parameter � ∈ [0, 1] . For the sake of completeness, we add information 
about the Milnor numbers of the singular points of our conic arrangements.

Singularity Type �p eorb(p,ℙ
2

ℂ
, �C) �

A
1

1 (1 − �)2 0 < 𝛼 ≤ 1

A
3

3 (3−4�)2

8

1∕4 ≤ � ≤ 3∕4

D
4

4 (2−3�)2

4

0 < 𝛼 ≤ 2∕3

A
5

5 (4−6�)2

12

1∕3 ≤ � ≤ 2∕3

A
7

7 (5−8�)2

16

3∕8 ≤ � ≤ 5∕8

We will study the pair (ℙ2
ℂ
, �C) , where C is the boundary divisor C = C1 +⋯ + Ck 

associated with � = {C1,… ,Ck} being an arrangement of k smooth conics having singu-
larities prescribed as above, and � will be indicated in the next section.

3 � Results

Now we are in a position to present our proof of Theorem 1.1.

Proof  Let 𝕔 = {C1,… ,Ck} ⊂ ℙ2
ℂ
 be an arrangement admitting only singularities as in 

the assumption, and denote by C = C1 +⋯ + Ck the associated divisor. In order to apply 
Theorem 2.1, we need to have (ℙ2

ℂ
, �C) being an effective and log-canonical pair, so we 

∑

p∈Sing(C)

3

(

�(�p − 1) + 1 − eorb(p,ℙ
2
ℂ
, �C)

)

≤ (3� − �
2)d2 − 3�d,



60	 M. Zieliński 

1 3

need to find a suitable � . First constraint is that our pair is effective, which translates into 
the condition that � ≥

3

2k
 . On the other hand, based on the table above, we should have 

� ∈ [3∕8, 5∕8] . Combining that we arrive at

and this condition is non-empty provided that k ≥ 3 . From now on we pick

and we apply directly the inequality in Theorem 2.1. We start with the left-hand side, and 
we obtain:

Based on that we get the following inequality:

Since we have d = 2k , we can write:

Now we are going to apply the combinatorial count. Since

we get

After simple manipulations, we finally obtain

which completes the proof. 	� ◻

Now we can present our justification for Corollary 1.2.

Proof  We start with our upper bound on t5 . Based on the combinatiorial count (1), we have

� ∈

[

max{3∕2k, 3∕8}, 5∕8

]

,

� =
5

8
,

3n
2

(

5

8
(1 − 1) + 1 −

9

64

)

+ 3t
2

(

5

8
(3 − 1) + 1 −

1

32

)

+ 3n
3

(

5

8
(4 − 1) + 1 −

1

256

)

+ 3t
5

(

5

8
(5 − 1) + 1 −

1

192

)

+ 3t
7

(

5

8
(7 − 1) + 1 − 0

)

=
165

64
n
2
+

213

32
t
2
+

2205

256
n
3
+

671

64
t
5
+

57

4
t
7
.

165

64
n2 +

213

32
t2 +

2205

256
n3 +

671

64
t5 +

57

4
t7 ≤

(

3 ⋅
5

8
−
(

5

8

)2
)

d2 − 3 ⋅
5

8
d =

95

64
d2 −

15

8
d

165

64
n2 +

213

32
t2 +

2205

256
n3 +

671

64
t5 +

57

4
t7 ≤

95

32
(2k2) −

15

4
k

2k2 = n2 + 2t2 + 3n3 + 3t5 + 4t7 + 2k,

165

64
n2 +

213

32
t2 +

2205

256
n3 +

671

64
t5 +

57

4
t7 ≤

95

32

(

n2 + 2t2 + 3n3 + 3t5 + 4t7 + 2k

)

−
15

4
k.

560k + 100n2 + 75n3 ≥ 608t7 + 404t5 + 184t2,

2k2 − 2k ≥ n2 + 3n3 + 3t5 ≥ n2 +
3

4
n3 + 3t5,
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we obtain that

so we get

which completes our justification for A5 singularities. In a similar vein, we find an upper 
bound on t7 . Based on the combinatorial count (1), we obtain that

so we finally get

	�  ◻

4 � Examples

In this short section we will discuss examples of conic arrangements with A5 and A7 sin-
gularities. These examples are important in the context of the so-called freeness and the 
nearly-freeness of curve arrangements, but we are not going to discuss that matter here and 
we will come back to this problem in a forthcoming paper.

4.1 � Arrangements with A
7
 singularities

Recall that by the naive combinatorial count we have the following upper bound on the 
number of A7 singularities:

Note that our upper bound for the number of A7 singularities, obtained in Corollary 1.2, is 
better than the naive one when k ≥ 3 , and here we present the very first example maximiz-
ing the number of A7 singularities for k = 3 conics.

First of all, observe that for k = 3 we have that t7 ≤
20

7
 which means that we want to find 

an arrangement with 3 conics and 2 singular points of type A7.
Consider the following arrangement of conics 𝕔 = {C1,C2,C3} ⊂ ℙ2

ℂ
 with the defining 

equation

This arrangement is well-known in the literature and it is called Persson’s triconical 
arrangement [8]. Due to the visible symmetries, it has the following weak combinatorics:

560k + 100(2k2 − 2k − 3t5) ≥ 560k + 100

(

n2 +
3

4
n3

)

≥ 404t5,

t5 ≤
200

704
k2 +

360

704
k =

25

88
k2 +

45

88
k.

2k2 − 2k ≥ n2 +
3

4
n3 + 4t7,

t7 ≤
200

1008
k2 +

360

1008
k =

25

126
k2 +

5

14
k.

t7 ≤

(

k

2

)

=
k2 − k

2
.

Q(x, y, z) = (x2 + y2 − z2)(2x2 + y2 + 2xz)(2x2 + y2 − 2xz) = 0.
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Based on the above discussion, Persson’s example maximizes the number of A7 singulari-
ties when k = 3 . It would be very interesting to construct new examples of arrangements 
with k = 4, 5 conics that are maximizing the number of A7 singularities—we are not aware 
of such examples.

4.2 � Arrangements with A
5
 singularities

Recall that by the naive combinatorial count we have the following upper bound on the 
number of A5-singularties:

Similar to the case with A7-singularities, the above naive bound is weak compared to the 
one given in Corollary 1.2 when k ≥ 4 and for k = 3 gives the same bound as the naive one. 
Based on our result, there is room for an arrangement of 3 conics such that t5 = 4 . Let us 
recall that by a result due to du Plessis and Wall [5], if C ⊂ ℙ2

ℂ
 is a reduced plane sextic 

with only ADE singularities, then the maximal Milnor number of a curve C, i.e,

is bounded from above by 19. This is because the total Milnor number is equal the total 
Tjurina number for curves with only ADE singularities. By [3, Proposition 2.3], we have

so for k = 3 we obtain �(C) ≤ 19. When �(C) = 19 , then such a curve is called maximiz-
ing. Details of the maximizing curves can be found, for example, in [3]. Since the Milnor 
number of the A5 singularity is 5, so for t5 = 4 and k = 3 the maximal Milnor number of a 
curve would be greater than 19. Thus there is no reduced plane sextic with ADE singulari-
ties which has exactly 4 singularities of type A5 which complete the first part of our discus-
sion. Moreover, we can find an arrangement of 3 conics with exactly 3 singularities of type 
A5 and 3 nodes, which is shown below - we avoid presenting the defining equation of the 
arrangement due to unpleasant equations (Fig. 1).

Acknowledgements  I would like to thank Halszka Tutaj-Gasińska for useful comments and discussions 
devoted to the content of the note.

t2 = 2, t3 = 1, t7 = 2.

t5 ≤
2k(k − 1)

3
.

�(C) ∶=
∑

p∈Sing(C)

�p,

�(C) ≤ 3k(k − 1) + 1,

Fig. 1   An arrangement of 3 con-
ics with 3 singularities of type A

5
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