On plane conic arrangements with A_{5} and A_{7} singularities

Marcin Zieliński ${ }^{1}{ }^{\text {(}}$

Received: 8 December 2022 / Accepted: 28 March 2023 / Published online: 17 May 2023
© The Author(s) 2023

Abstract

In the present note we provide combinatorial constraints on certain conic arrangements in the plane admitting A_{5} and A_{7} singularities. As a corollary, we provide upper bounds on the number of A_{5} and A_{7} singularities for such arrangements.

Keywords Conic arrangements • Singularities • Weak combinatorics
Mathematics Subject Classification $14 \mathrm{~N} 20 \cdot 14 \mathrm{C} 20 \cdot 32 \mathrm{~S} 22$

1 Introduction

The main aim of the present note is to provide some explicit constraints on weak combinatorics for a certain class of conic arrangements in the complex projective plane. This topic has recently been revived and has attracted the attention of researchers, both combinatorialists and algebraic geometers, see for example [1, 2, 9, 10]. As we know, in the case of line arrangements in the plane, the most important results devoted to weak combinatorics are Hirzebruch-type inequalities, which encode information about the set of singular points of a given topological type. Our main goal is to investigate natural combinatorial constants on the weak combinatorics of arrangements consisting of smooth conics with prescribed topological type of singularities. Our note is mostly inspired by a recent paper by Dimca, Janasz and Pokora [1], where the authors study arrangements of conics with only nodes and tacnodes as singularities. One of their main results tells us that if $\mathcal{C} \subset \mathbb{P}_{\mathbb{C}}^{2}$ is an arrangement of $k \geq 6$ conics with nodes and tacnodes, then

$$
\# \text { tacnodes } \leq \frac{1}{3} k^{2}+3 k
$$

and, as it turns out, this result provides sharper upper bound on the number of tacnodes compared with the classical result due to Miyaoka [7] provided that $k \geq 16$.

Our aim here is to follow this path by exploring possible tight upper bounds on certain quasi-homogeneous singularities of complex plane conic arrangements. Here is our set-up.

[^0]Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ be an arrangement of $k \geq 2$ smooth conics. Assume that our arrangements \mathcal{C} have only n_{2} nodes, t_{2} tacnodes, n_{3} ordinary triple points, t_{5} singular points of type A_{5}, and t_{7} singular points of type A_{T}-it means that a given \mathcal{C} has only ADE singularities.

Now we can define the weak combinatorics for a given \mathcal{C}, i.e., this is a vector of the form

$$
\left(k ; n_{2}, t_{2}, n_{3}, t_{5}, t_{7}\right) \in \mathbb{Z}_{\geq 0}^{6} .
$$

As we can see, this vector only informs us about the numerics associated with \mathcal{C}, so it provides weaker information than the intersection poset of \mathcal{C}. For our purposes, however, it is sufficient to provide combinatorial constraints on \mathcal{C}. We start with the following count, which comes from Bézout.

$$
\begin{equation*}
4 \cdot\binom{k}{2}=n_{2}+2 t_{2}+3 n_{3}+3 t_{5}+4 t_{7} . \tag{1}
\end{equation*}
$$

Proof The left-hand side follows from the fact that we have $\binom{k}{2}$ pairs of conics that intersect. The right hand side is based on the count of the intersection indices. Indeed, each node has the intersection index equal to 1 , each tacnode has the intersection index equal to 2 , and for ordinary triple we have the intersection index equal to 3 , and finally for A_{5} and A_{7} singular points we have 3 and 4 , respectively, which completes our justification.

In principle, the above combinatorial count gives a rough estimate of the weak combinatorics of conic arrangements, and it is a rather weak tool. Our main aim is to provide a more precise result, inspired by the results presented in [1, 9].

Here is the main result of our note.
Theorem 1.1 Let \mathcal{C} be an arrangement of $k \geq 3$ smooth conics admitting nodes, tacnodes, ordinary triple, A_{5} and A_{7} singular points. Then the following inequality holds

$$
\begin{equation*}
560 k+100 n_{2}+75 n_{3} \geq 608 t_{7}+404 t_{5}+184 t_{2} \tag{2}
\end{equation*}
$$

Based on the above count, we are able to provide upper bounds on the number of A_{5} and A_{7} singularities for such conic arrangements, and this path was recently indicated by considerations in [4]. This result is inspired by similar work devoted to bounds on the number of tacnodes t_{2}, and to the best of our knowledge the bounds on A_{5} and A_{7} are the first of their kind explicitly presented in the literature.

Corollary 1.2 Let \mathcal{C} be an arrangement of $k \geq 3$ smooth conics in the plane admitting A_{5} and A_{7} singularities. Then we have the following bounds:

$$
\begin{aligned}
& t_{5} \leq \frac{25}{88} k^{2}+\frac{45}{88} k, \\
& t_{7} \leq \frac{25}{126} k^{2}+\frac{5}{14} k .
\end{aligned}
$$

Here is the structure of our paper. In Sect. 2 we present tools that allow us to prove Theorem 1.1, namely the orbifold Bogomolov-Miyaoka-Yau inequality for pairs, which comes
from [6]. In Sect. 3 we give our proof of Theorem 1.1 and explain how to obtain upper bounds on t_{5} and t_{7}.

2 Technicalities

Our main technical tool is an orbifold version of the classical Bogomolov-Miyaoka-Yau inequality proved by Langer [6]. His result applies to complex normal surfaces X with boundary divisors D. Here we focus on a special case when $X=\mathbb{P}_{\mathbb{C}}^{2}$ and D is a \mathbb{Q}-divisor whose support consists of smooth conics in $\mathbb{P}_{\mathbb{C}}^{2}$. The following result is the technical core of the note that we will exploit.

Theorem 2.1 (Langer) Let $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a reduced curve of degree d and assume that $\left(\mathbb{P}_{\mathbb{C}}^{2}, \alpha C\right)$ is a an effective log canonical pair for a suitably chosen $\alpha \in[0,1]$, then one has

$$
\sum_{p \in \operatorname{Sing}(C)} 3\left(\alpha\left(\mu_{p}-1\right)+1-e_{\text {orb }}\left(p, \mathbb{P}_{\mathbb{C}}^{2}, \alpha C\right)\right) \leq\left(3 \alpha-\alpha^{2}\right) d^{2}-3 \alpha d,
$$

where $\operatorname{Sing}(C)$ denotes the set of all singular points, μ_{p} is the Milnor number of a singular point p, and $e_{\text {orb }}$ denotes the local orbifold Euler number of p.

We refer to [6] for details, especially for the definition of local orbifold Euler numbers. Instead of presenting the technicalities devoted to these orbifold Euler numbers, we briefly present their values for the singularities we are going to study, and these numbers depend on a choice of a parameter $\alpha \in[0,1]$. For the sake of completeness, we add information about the Milnor numbers of the singular points of our conic arrangements.

Singularity Type	μ_{p}	$e_{\text {orb }}\left(p, \mathbb{P}_{\mathbb{C}}^{2}, \alpha C\right)$	α
A_{1}	1	$(1-\alpha)^{2}$	$0<\alpha \leq 1$
A_{3}	3	$\frac{(3-4 \alpha)^{2}}{8}$	$1 / 4 \leq \alpha \leq 3 / 4$
D_{4}	4	$\frac{(2-3 \alpha)^{2}}{4}$	$0<\alpha \leq 2 / 3$
A_{5}	5	$\frac{(4-6 \alpha)^{2}}{12}$	$1 / 3 \leq \alpha \leq 2 / 3$
A_{7}	7	$\frac{(5-8 \alpha)^{2}}{16}$	$3 / 8 \leq \alpha \leq 5 / 8$

We will study the pair $\left(\mathbb{P}_{\mathbb{C}}^{2}, \alpha C\right)$, where C is the boundary divisor $C=C_{1}+\cdots+C_{k}$ associated with $\mathbb{C}=\left\{C_{1}, \ldots, C_{k}\right\}$ being an arrangement of k smooth conics having singularities prescribed as above, and α will be indicated in the next section.

3 Results

Now we are in a position to present our proof of Theorem 1.1.
Proof Let $\mathbb{C}=\left\{C_{1}, \ldots, C_{k}\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ be an arrangement admitting only singularities as in the assumption, and denote by $C=C_{1}+\cdots+C_{k}$ the associated divisor. In order to apply Theorem 2.1, we need to have $\left(\mathbb{P}_{\mathbb{C}}^{2}, \alpha C\right)$ being an effective and log-canonical pair, so we
need to find a suitable α. First constraint is that our pair is effective, which translates into the condition that $\alpha \geq \frac{3}{2 k}$. On the other hand, based on the table above, we should have $\alpha \in[3 / 8,5 / 8]$. Combining that we arrive at

$$
\alpha \in[\max \{3 / 2 k, 3 / 8\}, 5 / 8],
$$

and this condition is non-empty provided that $k \geq 3$. From now on we pick

$$
\alpha=\frac{5}{8},
$$

and we apply directly the inequality in Theorem 2.1. We start with the left-hand side, and we obtain:

$$
\begin{aligned}
3 n_{2}\left(\frac{5}{8}(1-1)+1-\frac{9}{64}\right) & +3 t_{2}\left(\frac{5}{8}(3-1)+1-\frac{1}{32}\right)+3 n_{3}\left(\frac{5}{8}(4-1)+1-\frac{1}{256}\right) \\
& +3 t_{5}\left(\frac{5}{8}(5-1)+1-\frac{1}{192}\right)+3 t_{7}\left(\frac{5}{8}(7-1)+1-0\right) \\
& =\frac{165}{64} n_{2}+\frac{213}{32} t_{2}+\frac{2205}{256} n_{3}+\frac{671}{64} t_{5}+\frac{57}{4} t_{7} .
\end{aligned}
$$

Based on that we get the following inequality:

$$
\frac{165}{64} n_{2}+\frac{213}{32} t_{2}+\frac{2205}{256} n_{3}+\frac{671}{64} t_{5}+\frac{57}{4} t_{7} \leq\left(3 \cdot \frac{5}{8}-\left(\frac{5}{8}\right)^{2}\right) d^{2}-3 \cdot \frac{5}{8} d=\frac{95}{64} d^{2}-\frac{15}{8} d
$$

Since we have $d=2 k$, we can write:

$$
\frac{165}{64} n_{2}+\frac{213}{32} t_{2}+\frac{2205}{256} n_{3}+\frac{671}{64} t_{5}+\frac{57}{4} t_{7} \leq \frac{95}{32}\left(2 k^{2}\right)-\frac{15}{4} k
$$

Now we are going to apply the combinatorial count. Since

$$
2 k^{2}=n_{2}+2 t_{2}+3 n_{3}+3 t_{5}+4 t_{7}+2 k,
$$

we get

$$
\frac{165}{64} n_{2}+\frac{213}{32} t_{2}+\frac{2205}{256} n_{3}+\frac{671}{64} t_{5}+\frac{57}{4} t_{7} \leq \frac{95}{32}\left(n_{2}+2 t_{2}+3 n_{3}+3 t_{5}+4 t_{7}+2 k\right)-\frac{15}{4} k .
$$

After simple manipulations, we finally obtain

$$
560 k+100 n_{2}+75 n_{3} \geq 608 t_{7}+404 t_{5}+184 t_{2},
$$

which completes the proof.
Now we can present our justification for Corollary 1.2.

Proof We start with our upper bound on t_{5}. Based on the combinatiorial count (1), we have

$$
2 k^{2}-2 k \geq n_{2}+3 n_{3}+3 t_{5} \geq n_{2}+\frac{3}{4} n_{3}+3 t_{5}
$$

we obtain that

$$
560 k+100\left(2 k^{2}-2 k-3 t_{5}\right) \geq 560 k+100\left(n_{2}+\frac{3}{4} n_{3}\right) \geq 404 t_{5}
$$

so we get

$$
t_{5} \leq \frac{200}{704} k^{2}+\frac{360}{704} k=\frac{25}{88} k^{2}+\frac{45}{88} k .
$$

which completes our justification for A_{5} singularities. In a similar vein, we find an upper bound on t_{7}. Based on the combinatorial count (1), we obtain that

$$
2 k^{2}-2 k \geq n_{2}+\frac{3}{4} n_{3}+4 t_{7},
$$

so we finally get

$$
t_{7} \leq \frac{200}{1008} k^{2}+\frac{360}{1008} k=\frac{25}{126} k^{2}+\frac{5}{14} k .
$$

4 Examples

In this short section we will discuss examples of conic arrangements with A_{5} and A_{7} singularities. These examples are important in the context of the so-called freeness and the nearly-freeness of curve arrangements, but we are not going to discuss that matter here and we will come back to this problem in a forthcoming paper.

4.1 Arrangements with A_{7} singularities

Recall that by the naive combinatorial count we have the following upper bound on the number of A_{7} singularities:

$$
t_{7} \leq\binom{ k}{2}=\frac{k^{2}-k}{2} .
$$

Note that our upper bound for the number of A_{7} singularities, obtained in Corollary 1.2, is better than the naive one when $k \geq 3$, and here we present the very first example maximizing the number of A_{7} singularities for $k=3$ conics.

First of all, observe that for $k=3$ we have that $t_{7} \leq \frac{20}{7}$ which means that we want to find an arrangement with 3 conics and 2 singular points of type A_{7}.

Consider the following arrangement of conics $\mathbb{C}=\left\{C_{1}, C_{2}, C_{3}\right\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ with the defining equation

$$
Q(x, y, z)=\left(x^{2}+y^{2}-z^{2}\right)\left(2 x^{2}+y^{2}+2 x z\right)\left(2 x^{2}+y^{2}-2 x z\right)=0 .
$$

This arrangement is well-known in the literature and it is called Persson's triconical arrangement [8]. Due to the visible symmetries, it has the following weak combinatorics:

Fig. 1 An arrangement of 3 conics with 3 singularities of type A_{5}

$$
t_{2}=2, \quad t_{3}=1, \quad t_{7}=2
$$

Based on the above discussion, Persson's example maximizes the number of A_{7} singularities when $k=3$. It would be very interesting to construct new examples of arrangements with $k=4,5$ conics that are maximizing the number of A_{7} singularities-we are not aware of such examples.

4.2 Arrangements with \boldsymbol{A}_{5} singularities

Recall that by the naive combinatorial count we have the following upper bound on the number of A_{5}-singularties:

$$
t_{5} \leq \frac{2 k(k-1)}{3}
$$

Similar to the case with A_{7}-singularities, the above naive bound is weak compared to the one given in Corollary 1.2 when $k \geq 4$ and for $k=3$ gives the same bound as the naive one. Based on our result, there is room for an arrangement of 3 conics such that $t_{5}=4$. Let us recall that by a result due to du Plessis and Wall [5], if $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ is a reduced plane sextic with only ADE singularities, then the maximal Milnor number of a curve C, i.e,

$$
\mu(C):=\sum_{p \in \operatorname{Sing}(C)} \mu_{p},
$$

is bounded from above by 19 . This is because the total Milnor number is equal the total Tjurina number for curves with only ADE singularities. By [3, Proposition 2.3], we have

$$
\mu(C) \leq 3 k(k-1)+1,
$$

so for $k=3$ we obtain $\mu(C) \leq 19$. When $\mu(C)=19$, then such a curve is called maximizing. Details of the maximizing curves can be found, for example, in [3]. Since the Milnor number of the A_{5} singularity is 5 , so for $t_{5}=4$ and $k=3$ the maximal Milnor number of a curve would be greater than 19 . Thus there is no reduced plane sextic with ADE singularities which has exactly 4 singularities of type A_{5} which complete the first part of our discussion. Moreover, we can find an arrangement of 3 conics with exactly 3 singularities of type A_{5} and 3 nodes, which is shown below - we avoid presenting the defining equation of the arrangement due to unpleasant equations (Fig. 1).

Acknowledgements I would like to thank Halszka Tutaj-Gasińska for useful comments and discussions devoted to the content of the note.

Declarations

Conflict of interest I declare that there is no conflict of interest regarding the publication of this paper.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Dimca, A., Janasz, M., Pokora, P.: On plane conic arrangements with nodes and tacnodes. Innov. Incid. Geom. 19(2), 47-58 (2022)
2. Dimca, A., Pokora, P.: On conic-line arrangements with nodes, tacnodes, and ordinary triple points. J. Algebraic Combin. 56(2), 403-424 (2022)
3. Dimca, A., Pokora, P.: Maximizing curves viewed as free curves. Int. Math. Res. Not. IMRN (2023). https://doi.org/10.1093/imrn/rnad042
4. Dimca, A., Ilardi, G., Sticlaru, G.: Addition-deletion results for the minimal degree of a Jacobian syzygy of a union of two curves. J. Algebra 615(1), 77-102 (2023)
5. Du Plessis, A.A., Wall, C.T.C.: Application of the theory of the discriminant to highly singular plane curves. Math. Proc. Camb. Philos. Soc. 126(2), 259-266 (1999)
6. Langer, A.: Logarithmic orbifold Euler numbers with applications. Proc. Lond. Math. Soc. 86, 358396 (2003)
7. Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann. 268, 159-171 (1984)
8. Persson, U.: Horikawa surfaces with maximal Picard numbers. Math. Ann. 259, 287-312 (1982)
9. Pokora, P.: Q-conic arrangements in the complex projective plane. Proc. Am. Math. Soc. (2023). https://doi.org/10.1090/proc/16376
10. Pokora, P., Szemberg, T.: Conic-line arrangements in the complex projective plane. Discrete Comput. Geom. (2023). https://doi.org/10.1007/s00454-022-00397-6

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Marcin Zieliński
 marcin.zielinski@up.krakow.pl
 1 Department of Mathematics, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland

