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Abstract
We consider a right nearring N and a module over N (known as, N -group). For an arbitrary
ideal (or N -subgroup) Ω of an N -group G, we define the notions Ω-superfluous, strictly
Ω-superfluous, g-superfluous ideals of G. We give suitable examples to distinguish between
these classes and the existing classes studied in Bhavanari (Proc Japan Acad 61-A:23–25,
1985; Indian J Pure Appl Math 22:633–636, 1991; J Austral Math Soc 57:170–178, 1994),
and prove some properties. For a zero-symmetric nearring with 1, we consider a module over
a matrix nearring and obtain one-one correspondence between the superfluous ideals of an
N -group (over itself) and those of Mn(N )-group Nn , where Mn(N ) is the matrix nearring
over N . Furthermore, we define a graph of superfluous ideals of a nearring and prove some
properties with necessary examples.

Keywords N -groups · Superfluous ideal · Supplement · Matrix nearring

Mathematics Subject Classification 16Y30

1 Introduction and Preliminaries

The notion of finite Goldie dimension (denoted by FGD) of a module was defined by Goldie
[14] wherein, the key notions for the study of FGD are essential submodules, uniform sub-
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modules and complement of a submodule (see, [4, 5]). The dualization of this concept namely,
finite spanning dimension (denoted by FSD) in modules over rings was defined by Fleury
[13] with the notions such as superfluous submodules, hollow submodules and supplements.
Later, these concepts were studied in [1, 2, 7, 18]. The idea of FSD was generalized to
module over nearrings (known as N -groups) in [6, 11, 16, 20]. They introduced the notions
such as superfluous ideal, hollow ideal and FSD in N -groups and proved the corresponding
structure theorems. The motivation of this paper arises from a natural question that what
if one substitutes an arbitrary ideal Ω in place of an N -group G, so that it generalises the
existing study of these notions. The classes of N -groups with these new notions are different
from the classes of N -groups studied in [6, 8, 11, 19, 20]. Eventually, in this paper we define
Ω-superfluous ideal of an N -groupG, whereΩ is an ideal ofG and obtain some connections
to matrix nearrings, and some combinatorial aspects. In section 2, we define g-superfluous
and g-supplement ideals of N -groups as a generalization of respective notions defined by
[20]. We have constructed examples where G is non-abelian.
In Sect. 3, we introduce superfluous ideals of N -groups and prove some important properties
and provide necessary examples. In Sect. 4, we consider the notion strictly superfluous in
terms of N -subgroups and gave examples which indicate that the classes of N -groups with
superfluous and strictly superfluous are different. Matrix nearrings over arbitrary nearrings
were defined in [15] and studied in [23]. In Sect. 5, we introduce the superfluous and g-
superfluous ideals in Mn(N )-group Nn , and establish a one-one correspondence between
superfluous and g-superfluous ideals of N (over itself) and those of Mn(N )-group Nn . In
Sect. 6, we introduce superfluous ideal graphs of nearrings and prove some properties with
examples.

A (right) nearring is a set N together with two binary operations “+′′ and “·′′ such that
(N ,+) is a group, (N , ·) is a semigroup and right distributive law holds. In general, for some
n ∈ N , n · 0 �= 0, and so we call N is zero-symmetric if n · 0 = 0 for all n ∈ N . A normal
subgroup I of a nearring N is called an ideal of N (denoted by I � N ) if I N ⊆ I and
a(b+ i)−ab ∈ I for all a, b ∈ N and i ∈ I . An additive group G is said to be an N -group if
there exists a map N × G → G defined by (n, g) �−→ ng satisfying (n + n1)g = ng + n1g
and (n · n1)g = n(n1g) for all n, n1 ∈ N and g ∈ G. Throughout, we use G for an N -group.
A subgroup H ofG is said to be an N -subgroup (denoted as, H ≤N G) ofG if NH ⊆ H ; and
a normal subgroup I of G is called an ideal (denoted as, I �N G) of G if n(g+ i)− ng ∈ I ,
for all n ∈ N , g ∈ G and i ∈ I . An ideal S of G is said to be superfluous in G if S + K = G
and K is an ideal of G, imply K = G, and G is called hollow if every proper ideal of G is
superfluous in G. For any two N -subgroups H and K of G, K is said to be a supplement for
H if H + K = G and H + K

′ �= G for any proper ideal K
′
of K . For any ideals I , J , K

of N (or of G), if K ⊆ I , then I ∩ (J + K ) = (I ∩ J ) + K . We use I ⊕ J to denote the
direct sum of ideals I and J of G. We refer to Pilz [17] and Bhavanari and Kuncham [10]
for fundamental literature in nearrings.

We consider simple and finite graphs, whose vertex set is V and edge set is E . A vertex v of
a graph is called a universal vertex if degree of v= |V |−1. If there exists a path between every
two vertices of a graph, then the graph is connected otherwise the graph is disconnected. A
graph whose vertex set is empty is called a null graph and a graph having atleast one vertex
and empty edge set is called an empty graph.
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Table 1 Multiplication � on N
� 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 2 2

3 0 0 0 0 0 0 2 2

4 0 0 0 0 0 0 4 4

5 0 0 0 0 0 0 4 4

6 0 0 0 0 0 0 6 6

7 0 0 0 0 0 0 6 6

2 Generalized supplements

The notion of superfluous submodule of module over a ring was studied by [3, 7]. We define
generalized superfluous (briefly, g-superfluous) ideal of an N -group G as follows.

Definition 2.1 An ideal K of G is called g-superfluous if G = K + T and T ≤e G, then
T = G. We denote this by K �gs G.

Remark 2.2 Every superfluous ideal of G is g-superfluous.

Example 2.3 Consider the nearring N = (Z2 × Z2 × Z2,+, ·) with the notation given in
page no. 420, (N) of [17]. That is, (0, 0, 0) = 0, (0, 0, 1) = 1 (0, 1, 0) = 2 (0, 1, 1) = 3,
(1, 0, 0) = 4, (1, 0, 1) = 5, (1, 1, 0) = 6, and (1, 1, 1) = 7. The multiplication table is given
below. Let G = N (Table 1).
The proper ideals of G are I1 = {0, 2, 4, 6} and I2 = {0, 1}. It can be seen that I1 and I2 are
g-superfluous but not superfluous in G as I1 + I2 = G

Proposition 2.4 Let K , J be ideals of G such that K ⊆ J . If K �gs J , then K �gs L for
any ideal L of G with J ⊆ L.

Proof Let T ≤e L such that K+T = L .We prove T = L . Clearly T ⊆ L . Since K+T = L ,
we have (K + T ) ∩ J = L ∩ J . Since K ⊆ J and modular law, we have K + (T ∩ J ) = J .
Since T ∩ J ≤e J and K �gs J , we have (T ∩ J ) = J and so T ⊆ J . Since K ⊆ J ⊆ T ,
we get L = K + T ⊆ J + T = T . Therefore L = T and hence K �gs L . �
Proposition 2.5 Let K1, K2, G1, G2 be ideals of G such that K1 ⊆ G1 and K2 ⊆ G2. If
K1 �gs G1 and K2 �gs G2, then K1 + K2 �gs G1 + G2.

Proof Since Ki �gs Gi , by Proposition 2.4, we have Ki �gs G1 + G2 for i = {1, 2}. Let
T ≤e G1 + G2 be such that K1 + K2 + T = G1 + G2. Since T ≤e G1 + G2, we have
T + K2 ≤e G1 + G2. Now K1 + (K2 + T ) = G1 + G2 and K1 �gs G1 + G2, imply
that K2 + T = G1 + G2. Again, since K2 �gs G1 + G2 and T ≤e G1 + G2 implies
T = G1 + G2. �
Note 2.6 Let X, K be ideals of G such that K ⊆ X. If X

K ≤e
G
K , then X ≤e G.

Proposition 2.7 Let U, V and K be ideals of G. If U �gs V , then U+K
K �gs

V+K
K .
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Proof Let T
K ≤e

V+K
K be such that U+K

K + T
K = V+K

K . Then U + K + T = V + K . Since
K ⊆ T , we getU+T = V +K . NowU �gs V implies thatU �gs V +K , and T

K ≤e
V+K
K

implies T ≤e V + K . Since U �gs V + K , T ≤e V + K and U + T = V + K , we get
T = V + K , which implies T

K = V+K
K . Therefore, U

K �gs
V+K
K . �

Proposition 2.8 Let J , K , L be ideals of G such that K ⊆ J .

1. If J �gs G, then K �gs G and J
K �gs

G
K .

2. J + L �gs G if and only if J �gs G and L �gs G.

Proof 1. Suppose J �gs G. To prove K �gs G, let T ≤e G such that K + T = G. Since
K ⊆ J , we get J + T = G. Since J �gs G, we have T = G, shows that K �gs G.
Next we prove J

K �gs
G
K . Let X

K ≤e
G
K such that J

K + X
K = G

K . Then J+X
K = G

K , implies
that J + X = G. Since X ≤e G, we get X = G. Therefore X

K = G
K .

2. Suppose J + L �gs G. To prove J �gs G and L �gs G, let T ≤e G such that
J + T = G. Then (J + L) + T = G. Since J + L �gs G, we have T = G. In a similar
way, we get L �gs G.
Conversely, suppose that J �gs G and L �gs G. To prove J + L �gs G, let T ≤e G
such that (J + L) + T = G. This means, J + (L + T ) = G. Since L + T ≤e G and
J �gs G, it follows that L +T = G. Again since L �gs G and T ≤e G, we get T = G.
Therefore J + L �gs G.

�
Definition 2.9 Let P and Q be N -subgroups of G. Q is said to be a g-supplement of P if
G = P + Q and G = P + T with T ≤e Q implies that T = Q.
An N -group G is called g-supplemented if every ideal of G has a g-supplement.

Remark 2.10 Every supplemented N -group is g-supplemented.

Example 2.11 Consider the nearring given in (K(139), page 418 of [17]). Let N = (D8,+, �),
the dihedral group of order 8 and G = N .

The subgroups of (D8,+) are H1 = 〈e〉, H2 = 〈s〉, H3 = 〈sr2〉, H4 = 〈r2〉, H5 = 〈sr3〉,
H6 = 〈sr〉, H7 = 〈{s, r2}〉, H8 = 〈r〉 and H9 = 〈{r2, sr3}〉. The N -subgroups are H1,
H2, H3, H4, H5, H7 and H9, and ideals of D8 are H4, H7 and H9. The ideals of H9(when
it is considered as an N -group) are H4 and H5 which are not essential in H9. Observe that
H9 is not a supplement of H7 as there exists an ideal H5 of H9 such that H7 + H5 = D8.
Furthermore, all ideals of H9 are not essential, we do not have any essential ideal I of H9

such that H7 + I = D8. Therefore H9 is a g-supplement of H7 (Table 2).

Lemma 2.12 Let P, Q be ideals of G. Then Q is a g-supplement of P if and only if G = P+Q
and P ∩ Q �gs Q.

Proof Suppose Q is a g-supplement of P in G. Then P + Q = G and P + Q
′ �= G for any

essential ideal Q
′
of Q. We prove P ∩ Q �gs Q. Let T ≤e Q such that (P ∩ Q) + T = Q.

Then G = P + Q = P + (P ∩ Q)+ T = P + T , as (P ∩ Q) ⊆ P . Now G = P + T where
T ≤e Q. Since Q is a g-supplement of P , we get T = Q. Therefore P ∩ Q �gs Q.

Conversely, suppose that G = P + Q and P ∩ Q �gs Q. To show Q is a g-supplement
of P in G, let G = P + T for some essential ideal T of Q. Now, since T ⊆ Q, by modular
law we get Q = Q ∩ G = Q ∩ (P + T ) = (Q ∩ P) + T . Since (P ∩ Q) �gs Q and
T ≤e Q, we get T = Q. Therefore Q is a g-supplement of P in G. �
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Table 2 Multiplication � on N
� e r r2 r3 s sr3 sr2 sr

e e e e e e e e e

r e r r2 r3 s sr3 sr2 sr

r2 e r2 e r2 e e e e

r3 e r3 r2 r s sr3 sr2 sr

s e s r2 sr2 s e sr2 r2

sr3 e sr3 e sr3 e sr3 e sr3

sr2 e sr2 r2 s s e sr2 r2

sr e sr e sr e sr3 e sr3

Proposition 2.13 [12]

1. Let G be an N-group and let I , J be the ideals of G with G = I ⊕ J . Then a+b = b+a
for all a ∈ I and b ∈ J .

2. If N = N0, n ∈ N, a ∈ I , b ∈ J and the sum I⊕ J is direct in G, then n(a+b) = na+nb.
3. Let N = N0 and I �N G be a direct summand. Then each ideal of I is an ideal of G.

Lemma 2.14 Let A, B and C be ideals of G. Then

A ∩ (B + C) �N B ∩ (A + C) + C ∩ (A + B).

Proof We have A ∩ (B + C) �N G. Let p ∈ A ∩ (B + C). Then p ∈ A and p ∈ B + C ,
which implies p = b + c for some b ∈ B and c ∈ C . Now, b = p − c ∈ A + C and
c = −b + p ∈ B + A = A + B and hence p = b + c ∈ B ∩ (A + C) + C ∩ (A + B).
Therefore A∩ (B +C) �N G, which is contained in B ∩ (A+C)+C ∩ (A+ B) and hence
A ∩ (B + C) �N B ∩ (A + C) + C ∩ (A + B). �
Lemma 2.15 Let N be zero-symmetric and G1, U be ideals of G and G1 be g-supplemented
and a direct summand of G. If G1 +U has a g-supplement in G, then U has a g-supplement
in G.

Proof Let X be a g-supplement of G1 + U in G. Then by Lemma 2.12, G1 + U + X = G
and (G1 +U ) ∩ X �gs X . Since G1 is g-supplemented, (U + X) ∩G1 has a g-supplement
Y in G1. That is, G1 ∩ (U + X) + Y = G1 and G1 ∩ (U + X) ∩ Y �gs Y , by Lemma 2.12.
Since G1 is a direct summand, Y �N G. This yield,

G = G1 ∩ (U + X) + Y + (U + X) = U + X + Y

and

U ∩ (X + Y ) �N X ∩ (U + Y ) + Y ∩ (U + X)

�N X ∩ (G1 +U ) + Y ∩ G1 ∩ (U + X)

�gs X + Y .

Hence, X + Y is a g-supplement of U in G. �
Proposition 2.16 Let G be an N-group. Let K , U and V be ideals of G such that K ⊆ U.
Let V be a g-supplement of U in G. Then V+K

K is a g-supplement of U
K .

Proof Since V is a g-supplement ofU in G, we have G = U + V andU ∩ V �gs V which
implies U∩V+K

K �gs
V+K
K . Now G

K = U+V
K = U

K + V+K
K . Also U

K ∩ V+K
K = U∩(V+K )

K =
U∩V+K

K �gs
V+K
K . Therefore, V+K

K is a g-supplement of U
K . �
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3 Superfluous ideals

Definition 3.1 Let Ω �N G. An ideal (or N -subgroup) H of G is said to be Ω-superfluous
in G if Ω � H and for any ideal L of G, Ω ⊆ L + H implies Ω ⊆ L . We denote it by
H �Ω G.

Note 3.2 If Ω = G, then Ω-superfluous coincides with the notion of superfluous defined by
[20]. In this case, we denote H � G whenever an ideal H is superfluous in G. Trivially, the
ideal (0) is superfluous in G.

Example 3.3 Let N = Z, the set of integers and G = (Z24,+24). Then G is an N -group. Let
Ω = 8Z24. Then 6Z24, 3Z24, 12Z24 are Ω-superfluous, whereas 3Z24 is not superfluous in
G, since 3Z24 + 2Z24 = Z24 but 2Z24 �= Z24.

Example 3.4 Let N = Z and G = Z12. Then G is an N -group. Let Ω = 4Z12. Then 6Z12,
3Z12 are Ω-superfluous, whereas 3Z12 is not superfluous in G, since 3Z12 + 2Z12 = Z12

but 2Z12 �= Z12.

Example 3.5 Let N =
(
0 Zqm

0 0

)
and G = N . Then the ideals and N -subgroups are Hi =

{
(
0 qiZqm

0 0

)
: 0 ≤ i ≤ m}. Let Ω = Hk . Then Hj �Ω G for all j ≤ k.

Example 3.6 Consider the N -group given in the Example 2.11.

1. H7 �H9 G, H4 �H9 G, H9 �H7 G, H4 �H7 G.
2. The N -subgroups H2, H3, H4 and H7 are Ω-superfluous in G with Ω = H9.
3. The N -subgroups H4, H5, H9 are Ω-superfluous in G with Ω = H7.

Proposition 3.7 Let Ω be an ideal and X be an ideal (or N-subgroup) of G. If X is Ω-
superfluous in G, then X ∩ Y is Ω-superfluous in G for any ideal (or N-subgroup) Y of G.

Proof Suppose X is Ω-superfluous in G. Let Y �N G. Since Ω � X , we have Ω � X ∩ Y .
On a contrary, suppose X ∩ Y is not superfluous in G. Then there exists a proper ideal K of
G such that Ω � K and Ω ⊆ (X ∩ Y ) + K . Now, since X ∩ Y ⊆ X we get Ω ⊆ X + K , a
contradiction as X �Ω G. Therefore X ∩ Y �Ω G. �
Proposition 3.8 Let Ω , K be ideals of G. If K �Ω G, then K ∩ Ω � G.

Proof Let K �Ω G. To prove K ∩ Ω � G, let L �N G be such that (K ∩ Ω) + L = G.
Now Ω ⊆ (K ∩ Ω) + L ⊆ K + L . Now since K �Ω G, we have that Ω ⊆ L . Also since
K ∩ Ω ⊆ Ω ⊆ L , it follows that L = (K ∩ Ω) + L = G. Therefore, K ∩ Ω � G. �
Proposition 3.9 Let N be zero-symmetric and Ω �N G, which is a direct summand, and let
P �N G contained in Ω . Then P �Ω G if and only if P � Ω .

Proof Suppose P �Ω G. Since P �N G and P ⊆ Ω , we have P �N Ω . To prove P � Ω ,
let L �N Ω be such that P + L = Ω . Since Ω is a direct summand, by Proposition 2.13(3),
L �N G. Now Ω ⊆ P + L and P �Ω G, we get Ω ⊆ L . Since L ⊆ Ω , it follows that
L = Ω .

Conversely, suppose that P � Ω . Let L �N G be such that Ω ⊆ P + L . Now Ω =
(P+ L)∩Ω = P+ (L∩Ω), by modular law, and since P � Ω , it follows thatΩ = L∩Ω .
Hence Ω ⊆ L . �
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Proposition 3.10 Let K �N G and let P and Ω be ideals of G which are contained in K . If
P �Ω K, then P �Ω G.

Proof Suppose that P �Ω K . To prove P �Ω G, let L �N G be such that Ω ⊆ P + L .
Since Ω ⊆ K and by modular law, we have Ω ⊆ (P + L) ∩ K = P + (L ∩ K ). Since
L∩K �N K and P �Ω K , we haveΩ ⊆ (L∩K ), which impliesΩ ⊆ L . Hence P �Ω G.

�
Remark 3.11 It can be easily seen that the Propositions 3.7, 3.8, 3.9 and 3.10 hold for N -
subgroups also.

Remark 3.12 The following proposition holds for ideals of G but not for N -subgroups, as
sum of two N -subgroups need not be an N -subgroup.

Proposition 3.13 Let N1, N2, Ω be ideals of G. Then N1 �Ω G and N2 �Ω G if and only
if N1 + N2 �Ω G.

Proof Suppose that N1 �Ω G and N2 �Ω G. Let L �N G be such that Ω ⊆ (N1 + N2)+
L = N1 + (N2 + L). Since N1 �Ω G, we have Ω ⊆ N2 + L , and again since N2 �Ω G,
we get Ω ⊆ L .

Conversely, suppose N1 + N2 �Ω G. Let L �N G be such that Ω ⊆ N1 + L ⊆
(N1 + N2) + L . Now since N1 + N2 �Ω G, we get Ω ⊆ L . Similar assertion proves
N2 �Ω G. �
Note 3.14 Let N be zero-symmetric and K1 �N G1 �N G and K2 �N G2 �N G,
Ω �N G such that G1 ⊕ G2 = G. Then K1 �Ω G1 and K2 �Ω G2 if and only if
K1 + K2 �Ω G1 + G2.

Proposition 3.15 Let Ω , K , P be ideals of G such that K ⊂ Ω , K ⊆ P and Ω � P. Then
P �Ω G if and only if K �Ω G and P

K �Ω
K

G
K .

Proof Suppose P �Ω G. To prove K �Ω G, let L �N G such that Ω ⊆ K + L . Since
K ⊆ P , we get Ω ⊆ P + L . Since P �Ω G, we have Ω ⊆ L , and thus K �Ω G.
Now to prove P

K �Ω
K

G
K , let L

K �N
G
K , where K ⊆ L �N G such that, Ω

K ⊆ P
K + L

K =
(P+L)

K . Then Ω ⊆ P + L . Since P �Ω G, we get Ω ⊆ L , which implies that Ω
K ⊆ L

K .
Hence, P

K �Ω
K

G
K .

Conversely, suppose that K �Ω G and P
K �Ω

K

G
K . To prove P �Ω G, let L �N G

such that Ω ⊆ P + L . Then Ω
K ⊆ (P+L)

K = P
K + L+K

K . Since P
K �Ω

K

G
K , it follows that

Ω
K ⊆ L+K

K , which implies Ω ⊆ L + K . Since K �Ω G, we get Ω ⊆ L . Hence, P �Ω G.
�

Proposition 3.16 Let {Ωi }i∈I be a family of ideals of G and K �N G. If for each i ∈ I ,
K �Ωi G, then K �∑

i∈I
Ωi G.

Proof Suppose K �Ωi G for each i ∈ I and
∑
i∈I

Ωi ⊆ K + L where L �N G. Then since

Ωi ⊆ ∑
Ωi ⊆ K + L for each i ∈ I and K �Ωi G, we have Ωi ⊆ L , which shows that∑

Ωi ⊆ L . Hence, K �∑
i∈I

Ωi G. �
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Corollary 3.17 Let K1 and K2 be ideals of G such that K1 �K2 G and K2 �K1 G. Then
K1 ∩ K2 �K1+K2 G.

Proof First we show that K1 ∩ K2 �K1 G. For this, let K1 ⊆ (K1 ∩ K2) + X , where X
is an ideal of G. Now K1 ⊆ K2 + X and since K2 �K1 G we get K1 ⊆ X . Therefore,
K1 ∩ K2 �K1 G. In a similar way, we get K1 ∩ K2 �K2 G. Hence, by Proposition 3.16, it
follows that K1 ∩ K2 �K1+K2 G. �
The converse of the Corollary 3.17 need not be true, as shown in the following example.

Example 3.18 Consider the N -group Z48 over Z. Let K1 = 8Z48 and K2 = 6Z48. Then
8Z48 ∩ 6Z48 �8Z48+6Z48 Z48, whereas 8Z48 �6Z48 Z48 and 6Z48 is not 8Z48-superfluous
in Z48.

Proposition 3.19 Let K and Ω be ideals of G such that Ω � K. Let G
′
be an N-group and

f : G → G
′
be an epimorphism with f (Ω) � f (K ). If K �Ω G, then f (K ) � f (Ω) G

′
.

The converse holds if f is injective.

Proof Suppose that K �Ω G. Since f is an epimorphism,wehave f (K ) �N G
′
byTheorem

1.30 of [17]. Let X �N G
′
be such that f (Ω) ⊆ f (K )+ X . Then Ω ⊆ K + f −1(X). Since

f −1(X) �N G and K �Ω G, it follows that Ω ⊆ f −1(X). Hence f (Ω) ⊆ X .
Conversely, suppose that f is injective and f (K ) � f (Ω) G

′
. Let X �N G be such that

Ω ⊆ K + X . Then f (Ω) ⊆ f (K + X) = f (K ) + f (X). Since f (K ) � f (Ω) G
′
,

we have f (Ω) ⊆ f (X). Therefore, f −1( f (Ω)) ⊆ f −1( f (X)). Now by 2.17 of [17],
Ω + ker f ⊆ X + ker f . As f is injective, we get Ω ⊆ X . �
Remark 3.20 Unlike in module over rings, the condition f is a homomorphism is not suf-
ficient, as a homomorphic image of an ideal need not be an ideal. So we consider f to be
an epimorphism. The following example justifies the condition f is a homomorphism is not
sufficient.

Example 3.21 Consider the nearring given in the Example 3.6 and the ideals H9 =
{e, r2, sr3, sr} and H7 = {e, r2, s, sr2} of G. Let f be an N -endomorphism of G defined
by

f (g) = g · sr for all g ∈ G.

Then f (H9) = {e, sr3} and f (H7) = {e, r2}. It can be seen that H7 �H9 G, but f (H7) is
not f (H9) superfluous in G, since f (H9) �N G.

Definition 3.22 Let Ω �N G. G is said to be Ω-hollow if every proper ideal of G which
does not contain in Ω is Ω-superfluous in G.

Remark 3.23 1. Every hollow N -group is Ω-hollow with Ω = G.
2. Ω-hollow need not be hollow and we justify this in the following example.

Example 3.24 Consider the Example 3.6 in which H4, H7 are H9-superfluous in G and
H4,H9 are H7-superfluous in G. Hence it is H7-hollow as well as H9-hollow. However, G is
not hollow, since H7 is not superfluous in G as H7 + H9 = G but H9 �= G.

Definition 3.25 Let N be zero-symmetric, and letΩ , H be ideals of G such thatΩ � H . An
N -subgroup K of G is said to be an Ω-supplement of H if Ω ⊆ H + K and Ω � H + K

′

for any ideal K
′
of K .
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Table 3 Multiplication � on N
� e r r2 r3 s sr3 sr2 sr

e e e e e e e e e

r e e e e e r2 e e

r2 e e e e e e e e

r3 e e e e e r2 e e

s e e e e e e e e

sr3 e e e e e r2 e e

sr2 e e e e e e e e

sr e e e e e r2 e e

Example 3.26 Consider the Example 2.11.
Let Ω = H7. Here H2 is an Ω-supplement of H4, but H2 is not a supplement of H4 as

H2 + H4 �= G.

Example 3.27 N = D8 with the multiplication given in the Table 3. Let G = N .
The ideals of G are I1 = G, I2 = {e, r2, r3, r}, I3 = {e, sr3, r2, sr}, I4 = {e, sr2, s, r2},
I5 = {e, r2} and I6 = {e}, and N -subgroups are I1, I2, I3, I4, I5, X1 = {e, s}, X2 = {e, sr2},
X3 = {e, sr}. Let Ω = I4. Here I3 is an Ω-supplement of I2, X1 is an Ω-supplement of I2,
I3 and I5. Further, X1 is not a supplement of I5 as I5 + X1 �= G.

Note 3.28 If Ω = G, then Ω-supplement coincides with the supplement as defined by [20].

4 Strictly superfluous ideals

In case of N -groups, we have substructures namely N -subgroups and ideals, whereas in
modules over rings, these concepts coincide. So we consider the notion strictly superflu-
ous in terms of N -subgroups. We provide explicit examples which indicate that the classes
superfluous and strictly superfluous are different.

Definition 4.1 An ideal H of G is called strictly superfluous in G (denoted by H �s G) if
K is any N -subgroup of G such that H + K = G, then K = G.

Definition 4.2 Let G be an N -group and Ω ≤N G. An ideal H of G is said to be strictly
Ω-superfluous in G if for any N -subgroup L of G, Ω ⊆ L + H implies Ω ⊆ L . We denote
this by H �s

Ω G.

Example 4.3 Let N =
( (

Z4 2Z4

0 Z4

)
, +, ·

)
where Z4 is the set of residue classes modulo

4 and G = N .
N -subgroups of G are

H1 =
(
0 0
0 0

)
, H2 =

(
2Z4 0
0 0

)
,

H3 =
(
0 0
0 2Z4

)
, H4 =

(
0 2Z4

0 0

)
, H5 =

(
0 2Z4

0 2Z4

)
, H6 =

(
0 2Z4

0 Z4

)
,
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H7 =
(
2Z4 2Z4

0 0

)
, H8 =

(
2Z4 2Z4

0 2Z4

)
, H9 =

(
2Z4 2Z4

0 Z4

)
, H10 =

(
Z4 2Z4

0 0

)
,

H11 =
(

Z4 2Z4

0 2Z4

)
, H12 =

(
2Z4 0
0 2Z4

)
, H13 =

(
Z4 0
0 0

)
, H14 =

(
Z4 2Z4

0 Z4

)
.

Ideals are H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H14. Let Ω = H3. Then
H10 �s

Ω G but not strictly superfluous in G since H10 + H11 = G and H11 �= G. H7 is not
strictly H12-superfluous in G as there exists H5 such that H12 � H5 and H12 ⊆ H7 + H5.

Example 4.4 Consider the N -group given in Example 3.6. Then H4 �s
H5

G, H7 �s
H5

G.
Here H7 is not strictly superfluous, since H7 + H5 = G but H5 �= G. Also H7 �H9 G
but H7 is not strictly H9-superfluous since there exists H5 ≤N G such that H9 � H5 but
H9 ⊆ H7 + H5.

Proposition 4.5 Let Ω ≤N G, K �N G. If K �s
Ω G, then K ∩ Ω �s G.

Proof Let K �s
Ω G. To prove K ∩ Ω �s G, let L ≤N G be such that (K ∩ Ω) + L = G.

Now Ω ⊆ (K ∩ Ω) + L ⊆ K + L . Since K �s
Ω G, we have that Ω ⊆ L . Also since

K ∩ Ω ⊆ Ω ⊆ L , it follows that L = (K ∩ Ω) + L = G. Therefore, K ∩ Ω �s G. �
Proposition 4.6 Let P �N G and K , Ω be N-subgroups of G such that P and Ω are
contained in K . Then P �s

Ω K implies P �s
Ω G.

Proof Suppose that P �s
Ω K . To prove P �s

Ω G, let L ≤N G be such that Ω ⊆ P + L .
Since Ω ⊆ K and by modular law, we get Ω ⊆ (P + L) ∩ K = P + (L ∩ K ). Since
L ∩ K ≤N K and P �s

Ω K , we conclude that Ω ⊆ L ∩ K ⊆ L . Therefore P �s
Ω G. �

The other implication follows when K = Ω .

Proposition 4.7 Let P �N G and Ω ≤N G such that P ⊂ Ω . Then P �s
Ω G if and only if

P �s Ω .

Proof Suppose P �s
Ω G. To prove P �s Ω , let L ≤N Ω such that P + L = Ω . Now

Ω ⊆ P + L and P �s
Ω G, we get Ω ⊆ L . Since L ⊆ Ω , it follows that L = Ω . �

Proposition 4.8 Let N1, N2 be ideals of G. Let Ω ≤N G such that Ω � N1, Ω � N2. Then
N1 �s

Ω G and N2 �s
Ω G if and only if N1 + N2 �s

Ω G.

Proof The proof is similar to the proof of Proposition 3.13. �
Proposition 4.9 Let N be zero-symmetric and Ω ≤N G. Let K , P be ideals of G such that
K ⊆ P, K ⊂ Ω and Ω � P. Then P �s

Ω G if and only if K �s
Ω G and P

K �s
Ω
K

G
K .

Proof The proof is similar to the proof of Proposition 3.15. �
In Proposition 4.10 and 4.11, we assume N to be zero-symmetric, so that every ideal can
also be considered as an N -group.

Proposition 4.10 Let N be zero-symmetric, Ω be an N-subgroup of G, and {� j } j∈J be a
family of ideals of G. If K �N G such that K �s

Ω G and K �s
� j

G for all j ∈ J , then

K �s
Ω+∑

j � j
G.
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Proof Let K �s
Ω G and K �s

� j
G for all i ∈ I j ∈ J . Let L ≤N G be such that

Ω + ∑
j � j ⊆ K + L . Now Ω ⊆ Ω + ∑

j � j ⊆ K + L . Since K �s
Ω G, we get

Ω ⊆ L . Now � j ⊆ Ω + ∑
j � j ⊆ K + L . Since K �s

� j
G, we get � j ⊆ L . Therefore

Ω + ∑
j � j ⊆ L . Hence K �s

Ω+∑
j � j

G. �

Proposition 4.11 Let N be zero-symmetric and K1, K2 be ideals of G. If K1 �s
K2

G and
K2 �s

K1
G, then K1 ∩ K2 �s

K1+K2
G.

Proof Suppose K1 �s
K2

G and K2 �s
K1

G. First we show that K1 ∩ K2 �s
K1

G. For this,
let K1 ⊆ (K1 ∩ K2) + X , where X ≤N G. Then K1 ⊆ K2 + X and since K2 �s

K1
G we

get K1 ⊆ X . Therefore K1 ∩ K2 �s
K1

G. In a similar way, we get K1 ∩ K2 �s
K2

G. Hence,
by Proposition 4.10, K1 ∩ K2 �s

K1+K2
G. �

Definition 4.12 Let G1 and G2 be N -groups and Ω ≤N G. An N -epimorphism f : G1 →
G2 is called strictly Ω-superfluous if ker f �s

Ω G1.

Lemma 4.13 Let K �N G and Ω ≤N G be such that Ω � K. Then K �s
Ω G if and only

if the natural map f : G → G
K is strictly Ω-superfluous.

Proof Since ker f = {g ∈ G : f (g) = 0 ∈ G
K } = K , the proof is clear. �

Lemma 4.14 Let K �N G and Ω ≤N G be such that Ω � K. Then K �s
Ω G if and only if

for every N-group G1 and N-homomorphism h : G1 → G withΩ ⊆ K + Im h,Ω ⊆ Im h.

Proof Suppose K �s
Ω G. Let G1 be an N -group and h : G1 → G be an N -homomorphism

withΩ ⊆ K + Im h. Since Im h is an N -subgroup of G and K �s
Ω G, we haveΩ ⊆ Im h.

Conversely, suppose that Ω ⊆ K + X where X ≤N G. Let i : X → G be an inclusion
map. Clearly i is an N -homomorphism, and so by hypothesis, we can conclude that Ω ⊆ X .
Therefore, K �s

Ω G. �

Lemma 4.15 Let Ω be an N-subgroup and K be an ideal of G. Let G
′
be an N-group

and f : G → G
′
be an N-epimorphism such that f (Ω) � f (K ). If K �s

Ω G, then
f (K ) �s

f (Ω) G. The converse holds if f is injective.

Proof Suppose K �s
Ω G. Since f is an epimorphism, we have f (K ) �N G

′
. Let X ≤N G

′

be such that f (Ω) ⊆ f (K ) + X . Then Ω ⊆ K + f −1(X). Since f −1(X) ≤N G and
K �s

Ω G, we have Ω ⊆ f −1(X). Hence f (Ω) ⊆ X .
Conversely, suppose that f (K ) �s

f (Ω) G
′
. Let X ≤N G be such that Ω ⊆ K + X . Then

f (Ω) ⊆ f (K + X) = f (K ) + f (X). Since f (K ) �s
f (Ω) G

′
, we have f (Ω) ⊆ f (X).

Therefore, f −1( f (Ω)) ⊆ f −1( f (X)) which implies Ω + ker f ⊆ X + ker f . Since f is
injective, we get Ω ⊆ X . �
Example 4.16 Consider the Example 3.21. Then it can be seen that
H9 �s

H7
G, but f (H9) is not strictly f (H7) superfluous in G, since

f (H9) is not an ideal of G.

Definition 4.17 Let N be zero-symmetric nearring. Let Ω ≤N G and H �N G be such that
Ω � H . An N -subgroup K of G is said to be a strictly Ω-supplement of H if Ω ⊆ H + K
and Ω � H + K

′
for any ideal K

′
of K .
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The following remark is a straightforward observation.

Remark 4.18 1. If N is zero-symmetric and Ω = G, then every strictly Ω-supplement is a
supplement (defined by [20]).

2. Let N be zero-symmetric. Let H �N G be such that Ω � H . Then every Ω-supplement
of H is a strictly Ω-supplement of H .

3. If N is zero-symmetric and Ω = G, then every strictly Ω-supplement is a supplement.

5 Superfluous ideals ofMn(N)-group Nn

For a zero-symmetric right nearring N with 1, let Nn be the direct sum of n copies of (N ,+).
The elements of Nn are column vectors and written as (r1, · · · , rn). The symbols i j and π j

respectively, denote the i th coordinate injective and j th coordinate projective maps.
For an element a ∈ N , ii (a) = (0, · · · , a︸︷︷︸

i th

, · · · , 0), and π j (a1, · · · , an) = a j , for any

(a1, · · · , an) ∈ Nn . The nearring of n × n matrices over N , denoted by Mn(N ), is defined
to be the subnearring of M(Nn), generated by the set of functions { f ai j : Nn → Nn | a ∈
N , 1 ≤ i, j ≤ n} where f ai j (k1, · · · , kn) := (l1, l2, · · · , ln) with li = ak j and l p = 0 if
p �= i . Clearly, f ai j = ii f aπ j , where f a(x) = ax , for all a, x ∈ N . If N happens to be a
ring, then f ai j corresponds to the n × n-matrix with a in position (i, j) and zeros elsewhere.

Notation 5.1 ([9], Notation 1.1)
For any ideal A of Mn(N )-group Nn, we write

A∗∗ = {a ∈ N : a = π j A, for some A ∈ A, 1 ≤ j ≤ n}, an ideal of N N .

We denote Mn(N ) for a matrix nearring, Nn for an Mn(N )-group Nn . We refer to Meldrum
& Van der Walt [15] for preliminary results on matrix nearrings.
From [10], for any s ∈ G, the ideal generated by s is denoted by 〈s〉 and defined as, 〈s〉 =
∞⋃
i=1

Ui+1,whereUi+1 = U∗
i ∪U 0

i ∪U+
i withU0 = {s}, andU∗

i = {g+y−g : g ∈ G, y ∈ Ui },

U 0
i = {p − q : p, q ∈ Ui } ∪ {p + q : p, q ∈ Ui }, U+

i = {n(g + a) − ng : n ∈ N , g ∈
G, a ∈ Ui }.
Theorem 5.2 (Theorem 1.4 of [9]) Suppose A ⊆ N.

1. If An is an ideal of Mn(N )Nn, then A = (An)��.
2. If A is an ideal of N N if and only if An is an ideal of Mn(N )Nn.
3. If A is an ideal of N N, then A = (An)��.

Lemma 5.3 (Lemma 1.5 of [9])

1. If I is an ideal of Mn(N )Nn, then (I��)
n = I.

2. Every ideal I of Mn(N )Nn is of the form Kn for some ideal K of N N.

Note 5.4 (Note 1.7(iii) of [9]) Let A be an ideal of N
N . Then A ≤e N N if and only if

An ≤e Mn(N )Nn.

Theorem 5.5 (Theorem 1.9 [9]) If l ∈ N, then 〈l〉n = 〈(l, 0, · · · , 0)〉.
Lemma 5.6 If I and J are ideals of N , then (I + J )n = I n + Jn.

123



Superfluous ideals of N-groups 4161

Proof Clearly, I ⊆ I + J and J ⊆ I + J which implies I n ⊆ (I + J )n and Jn ⊆ (I + J )n

and so I n + Jn ⊆ (I + J )n . To prove the other part, let (x1, x2, · · · , xn) ∈ (I + J )n . Then
xi ∈ I + J for every 1 ≤ i ≤ n which implies xi = ai + bi , where ai ∈ I and bi ∈ J .
Now,

(x1, x2, · · · , xn) = (a1 + b1, a2 + b2, · · · , an + bn)

= (a1, a2, · · · , an) + (b1, b2, · · · , bn)

∈ I n + Jn

Therefore, (I + J )n ⊆ I n + Jn . Hence, (I + J )n = I n + Jn . �
Lemma 5.7 I + J = G if and only if (I + J )n = Gn if and only if I n + Jn = Gn.

Definition 5.8 An ideal A of Mn(N )-group Nn is said to be superfluous if for any ideal K
of Nn , A + K = Nn implies K = Nn .

Lemma 5.9 Let B be an ideal of N N. If B � N N, then Bn � Mn(N )Nn.

Proof Let A � Mn(N )Nn such that Bn + A = Nn . To show A = Nn . Since A � Mn(N )Nn ,
by Lemma 5.3, we haveA = (A��)

n , which implies Bn + (A��)
n = Nn . Now using Lemma

5.6, we get (B + A��)
n = Nn . Therefore, by Lemma 5.7, B + A�� = N . Since, B � N N ,

we get A�� = N . Hence, A = (A��)
n = Nn . �

Lemma 5.10 If A � Mn(N )Nn, then A�� � N N.

Proof Let B � N N such thatA�� + B = N . By Lemma 5.7, we have (A�� + B)n = Nn . By
Lemma 5.6, we have (A��)

n +Bn = Nn which impliesA+Bn = Nn . Since Bn � Mn(N )Nn

and A � Mn(N )Nn , we have Bn = Nn . Let n ∈ N . Then (n, 0, · · · , 0) ∈ Nn = Bn .
Therefore, n ∈ (Bn)�� = B (by Theorem 5.2(3)). Therefore, B = N . �
Theorem 5.11 There is a one-one correspondence between the set of superfluous ideals of
N N and those of Mn(N )-group Nn.

Proof Let P = {A � N N : A � N N }. Q = {A � Mn(N )Nn : A � Mn(N )Nn}. Define
� : P → Q by �(A) = An . Then by Lemma 5.9, An � Mn(N )Nn . Define � : Q → P
by �(A) = A��. By Lemma 5.10, A�� � N N . Now (� ◦ �)(A) = �(�(A)) = �(An) =
(An)�� = A. Therefore, (� ◦ �) = I dP . Also, (� ◦ �)(A) = �(�(A)) = �(A��) =
(A��)

n = A, and hence (� ◦ �) = I dQ . �
Definition 5.12 An ideal K of Mn(N )-group Nn is said to be g-superfluous if for any ideal
A of Nn , K + A = Nn and A ≤e Nn implies K = Nn .

Lemma 5.13 Let I be an ideal of N N. If I �gs N N, then I n �gs Mn (N )
Nn.

Proof Let I �gs N N . To show I n �gs Mn(N )Nn , let K be an ideal of Mn(N )Nn such that
I n + K = Mn(N )Nn and K ≤e Mn(N )Nn . Since K � Mn(N )Nn , by Lemma 5.3(2), we have
K = An for some ideal A of N N . Since K = An ≤e Mn(N )Nn , by Note 5.4, we have
A ≤e N N . Now, I n + K = I n + An = (I + A)n = Nn which implies I + A = N . Since,
I �gs N N , we get A = N . Therefore, K = An = Nn . Hence, I n �gs Mn(N )Nn . �
Lemma 5.14 If A �gs Mn(N )Nn, then A�� �gs N N.
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Proof LetA �gs Mn(N )Nn . To showA�� �gs N N , let B ≤e N N such thatA�� + B = N N .
Since B ≤e N N , by Note 5.4, we have Bn ≤e Mn(N )Nn . Now, A�� + B = N implies
(A��+B)n = Nn . ByLemma5.6,we get (A��)

n+Bn = Nn . Therefore,A+Bn = Nn . Since
A �gs Nn , we get Bn = Nn . Now, by Theorem 5.2(3), we get B = (Bn)�� = (Nn)�� = N .
Therefore, mathcal A�� �gs N N . �
Theorem 5.15 There is a one-one correspondence between the set of g-superfluous ideals of
N
N and those of Mn(N )-group Nn.

Proof Let P = {A � N N : A �gs N N }. Q = {A � Mn(N )Nn : A �gs Mn(N )Nn}. Define
� : P → Q by �(A) = An . Then by Lemma 5.13, An �gs Mn(N )Nn . Define � : Q → P
by�(A) = A��. By Lemma 5.14,A�� �gs N N . Now (� ◦�)(A) = �(�(A)) = �(An) =
(An)�� = A. (�◦�)(A) = �(�(A)) = �(A��) = (A��)

n = A. Therefore, (�◦�) = I dP
and (� ◦ �) = I dQ . �
Definition 5.16 An element s ∈ G is called hollow if 〈s〉 is a hollow ideal of G. In this case
we call s as an h-element of G.

Example 5.17 1. Let N = (Z12,+Z12 , ·Z12) and G = N . Then 〈3〉 is hollow. Therefore, 3 is
a hollow element.

2. Let N = (D8,+, ·) given in Example 2.11 and G = N . Then 〈r2〉 is hollow. Therefore,
r2 is a hollow element.

Proposition 5.18 s is a hollow element of N N if and only if (s, 0, 0, · · · , 0) is a hollow
element in Mn(N )-group Nn.

Proof Suppose s is a hollow element then 〈s〉 is a hollow ideal. To show 〈(s, 0, · · · , 0)〉
is a hollow ideal of Mn(N )-group Nn , let I, J be ideals of 〈(s, 0, · · · , 0)〉 such that I +
J = 〈(s, 0, · · · , 0)〉. Then by Lemma 5.3(1), we have I = (I��)

n , J = (J��)
n , which

implies (I��)
n + (J��)

n = 〈(s, 0, · · · , 0)〉. Using Lemma 5.6 and by Theorem 5.5, we get
(I�� + J��)

n = 〈(s, 0, · · · , 0)〉 = 〈s〉n and so I�� + J�� = 〈s〉. Since, 〈s〉 is hollow, we get
either I�� = 〈s〉 or J�� = 〈s〉.
Therefore,

I = (I��)
n = 〈s〉n = 〈(s, 0, · · · , 0)〉

or

J = (J��)
n = 〈s〉n = 〈(s, 0, · · · , 0)〉.

Conversely, suppose (s, 0, · · · , 0) is hollow in Nn . Then 〈(s, 0, · · · , 0)〉 is a hollow ideal of
Nn

Mn(N ), which implies 〈s〉n is a hollow ideal of Nn

Mn(N ). To show 〈s〉 is hollow in N , let I and J
be two ideals of N contained in 〈s〉 such that I + J = 〈s〉. Now, (I + J )n = 〈s〉n . Therefore
I n + Jn = 〈s〉n . Since 〈s〉n is hollow, we have I n = 〈s〉n or Jn = 〈s〉n , and hence, I = 〈s〉
or J = 〈s〉. �
Definition 5.19 X = {x1, x2, · · · , xn} ⊆ G is said to be a spanning set forG if

∑
xi∈X 〈xi 〉 =

G. If {xi : 1 ≤ i ≤ n} is a spanning set in G, then we say the elements xi , 1 ≤ i ≤ n are
spanning elements in G.

Theorem 5.20 {xi : 1 ≤ i ≤ n} is a spanning set in N N if and only if {(xi , 0, · · · , 0) : 1 ≤
i ≤ n} is a spanning set in Mn(N )-group Nn.
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Proof Suppose {xi : 1 ≤ i ≤ n} is a spanning set in N N . Then∑
1≤i≤n

〈xi 〉 = N ⇔ 〈x1〉 + 〈x2〉 + · · · + 〈xn〉 = N

⇔ (〈x1〉 + 〈x2〉 + · · · + 〈xn〉)n = Nn

⇔ 〈x1〉n + 〈x2〉n + · · · + 〈xn〉n = Nn

⇔ 〈(x1, · · · , 0)〉 + 〈(x2, 0, · · · , 0)〉 + · · · + 〈(xn, 0, · · · , 0)〉 = Nn

⇔
∑

1≤i≤n

〈(xi , 0, · · · , 0)〉 = Nn .

Therefore {(xi , 0, · · · , 0) : 1 ≤ i ≤ n} is a spanning set in Mn(N )-group Nn . �
Definition 5.21 A subset X of G is said to be a h-spanning set if every element of X is a
h-element and X is a spanning set.

Theorem 5.22 Suppose x1, x2, · · · , xn ∈ N. Then {xi : 1 ≤ i ≤ n} is a h-spanning set in N
if and only if {(xi , 0, · · · , 0) : 1 ≤ i ≤ n} is a h-spanning set in Mn(N )-group Nn.

Proof {xi : 1 ≤ i ≤ n} is a h-spanning set.
⇔ xi , 1 ≤ i ≤ n are h-elements and

∑
1≤i≤n

〈xi 〉 = N

⇔ (xi , 0, · · · , 0), 1 ≤ i ≤ n are h-elements in Mn(N )N
n

and
∑

1≤i≤n

〈(xi , 0, · · · , 0)〉 = Nn .

Therefore {(xi , 0, · · · , 0) : 1 ≤ i ≤ n} is a h-spanning set in Mn(N )-group Nn . �

6 Superfluous ideal graph of a nearring

The authors [22] studied graphs with respect to superfluous elements in a lattice, and in [21]
the authors studied the graphs with respect to the dual aspects such as essential elements,
complements, etc. Lattice aspects of modules over rings are well-known due to [3, 7]. In this
section, we define the superfluous ideal graph of a nearring and study some of its properties.

Definition 6.1 Let N be a nearring. An ideal I of N is said to be superfluous if for any ideal
J of N , I + J = N implies J = N .

Definition 6.2 The superfluous ideal graph of N , denoted by SN (G), is a graph having set of
all non-zero proper ideals of N as vertices and two vertices I and J are adjacent if I∩ J � N .

Example 6.3 1. If N is simple, then SN (G) is a null graph.
2. Suppose N is a finitely generated nearring which contains only one non-zero maximal

ideal, then every proper ideal of N is superfluous. The vertices of SN (G) are the non-zero
proper ideals of N . Since every proper ideal of N is superfluous in N , we have I ∩ J � G
for all proper ideals I , J of N . Therefore SN (G) is a complete graph.
For example, let N = (Z pn ,+pn , ·)where p is prime. Then possible ideals are of the form
〈pi 〉, i ∈ {0, 1, · · · , n−1}. If N is simple, then SN (G) is a null graph. If N is not simple,
then N has only one non-zero maximal ideal of the form 〈pk〉 for some 0 ≤ k ≤ n − 1.
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Fig. 1 SZ6 (G)

Fig. 2 SZ12 (G)

Hence, N is a local nearring. In this case we get a complete graph.
Consider R = (Z pn ,+pn , ·pn ) where addition and multiplication are modulo pn . Then
R is a ring. In this case, the superfluous ideal graph is a complete graph with (n − 1)
vertices.

Example 6.4 Let N = (Z6,+Z6 , ·Z6). Then V (SZ6(G)) = {2Z6, 3Z6}. Now 2Z6 ∩ 3Z6 =
(0) � N . The graph SZ6(G) is shown in Fig. 1.

Example 6.5 Let N = (Z12,+Z12 , ·Z12). Non-zero proper ideals of N are 2Z12, 3Z12, 4Z12,
6Z12 and 6Z12 is superfluous inZ12. Then the corresponding superfluous ideal graph is given
in Fig. 2.

Example 6.6 Let N = (Z2 × Z2,+Z2 , ·Z2) where addition and multiplication are carried
out component-wise. All non-zero proper ideals are of N are (0) × Z2 and Z2 × (0) and
((0) × Z2) ∩ (Z2 × (0)) = (0) � N . Therefore, the superfluous ideal graph is given in Fig.
3.

Example 6.7 Let N = (Z4 × Z2,+, ·) where addition and multiplication are carried
out component-wise with the first component modulo 4 and the second component
modulo 2. Then the nontrivial ideals are I1 = {(0, 0), (1, 0), (2, 0), (3, 0)}, I2 =
{(0, 0), (2, 0), (0, 1), (2, 1)}, I3 = {(0, 0), (0, 1)}, I4 = {(0, 0), (2, 0)} and I4 is a super-
fluous ideal. The corresponding superfluous ideal graph is given in Fig. 4.

Example 6.8 Consider the nearring given in the Example 2.11. The ideals of N are H4, H9,
H7 and it can be seen that H4 is superfluous in N . We have H9 ∩ H7 = H4, H9 ∩ H4 = H4

and H7 ∩ H4 = H4. Hence, we get a complete graph given in Fig. 5.

Proposition 6.9 Every non-zero superfluous ideal of N is a universal vertex in SN (G).

Proof Let X be a non-zero superfluous ideal of N . To prove XY ∈ E for every Y ∈ V . Let
Y ∈ V . By Lemma 3.7, X ∩ Y � N which implies XY ∈ E . Since Y is arbitrary, X is a
universal vertex. �
The converse of the Proposition 6.9 need not be true.We justify this in the following example.

Example 6.10 In Example 6.5, N = (Z12,+Z12 , ·Z12). Then 6Z12 is a non-zero superfluous
ideal which is a universal vertex in the corresponding superfluous ideal graph given in Fig. 2.
The vertex 3Z12 is universal but it is not superfluous, as 3Z12+2Z12 = Z12, and 2Z12 �= Z12.
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Fig. 3 SZ2×Z2 (G)

Fig. 4 SZ4×Z2 (G)

Fig. 5 Superfluous ideal graph of
the nearring in Example 2.11

Proposition 6.11 The subgraph SN [min(N )] induced by min(N ) is a clique, where min(N )

is the set of minimal ideals of N .

Proof Case 1: Suppose N has exactly one minimal ideal. Then we get a clique K1.
Case 2: Suppose N has more than one minimal ideal. Let M1, M2 be two arbitrary minimal
ideals of N . We prove that M1M2 ∈ E(SN (G)). Since, M1 and M2 both are minimal
M1 ∩ M2 = (0), which is a superfluous ideal of N , which implies M1M2 ∈ E(SN (G)).
Since M1 and M2 are arbitrary, we conclude that there exists an edge between any two
minimal ideals. Therefore SN [min(N )] is a clique (Fig. 3). �
Proposition 6.12 SN (G) is an empty graph if and only if N has exactly one non-zero proper
ideal.

Proof If N has exactly one non-zero proper ideal then SN (G) = K1. Conversely, suppose
SN (G) is an empty graph. We prove that N has exactly one non-zero proper ideal. First we
prove that N has exactly one minimal ideal. Suppose on a contrary, N has twominimal ideals
M1 and M2. Then by Proposition 6.11, M1 and M2 are adjacent in SN (G), a contradiction
since SN (G) is an empty graph. Therefore N has a unique minimal ideal say, M . So every
non-zero ideal of N different from M contains M . Therefore M is superfluous. We claim
that M is the only unique proper ideal of N . On a contrary, suppose I �= M be a non-
zero proper ideal of N . Then M ⊆ I , M ∩ I = M , which is superfluous in N , and we
get MI ∈ E(SN (G)), a contradiction, since SN (G) is an empty graph. Therefore M is the
unique non-zero proper ideal of N (Fig. 4). �
Definition 6.13 Let I be an ideal of N . The dual annihilator of I , denoted as annd(I ) is the
intersection of all ideals J of N such that I + J = N . That is, annd(I ) = ⋂

J�N N , I+J=N
J

(Fig. 5).
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Example 6.14 1. In the nearring given in Example 2.11, the ideals of N are H7, H9, H5 and
{e}. Therefore annd(H7) = ∩{H9, N } = H9.

2. In the nearring N given in Example 3.27, the ideals of N are N , I2, I3, I4, I5 and {e}. We
have I2 + I3 = N and I2 + I4 = N . Therefore annd(I2) = ⋂{I3, I4} = I5.

Proposition 1 Let I be any arbitrary ideal of N . Then I ∩ (annd(I )) � N.

Proof Let K � N such that I ∩ (annd(I )) + K = N . Since I ∩ (annd(I )) ⊆ I , we
have I + K = N , which implies annd(I ) ⊆ K and so I ∩ (annd(I )) ⊆ K . Now K =
K + I ∩ (annd(I )) = N . Therefore, I ∩ (annd(I )) � N . �

7 Conclusion

We have defined the notions superfluous, strictly superfluous (with respect to an ideal Ω),
generalised superfluous, generalised suppements in N -groups. We have proved some prop-
erties and exhibited examples which are different from the existing notions. We have defined
graph on superfluous ideals of a nearring, and gave some properties. The concepts can be
extended to study various finite spanning dimension aspects and related chain conditions in
N -groups and those of Mn(N )-group Nn .
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