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Abstract
In this paper, we introduce a new iterative process for approximating common fixed points
of two non-self mappings in the setting of CAT(0) spaces. Then we establish �-convergence
and strong convergence results for two nonexpansive non-self mappings under appropriate
conditions. Moreover, we establish strong convergence theorems for approximating common
fixed points of two Lipschitz quasi-nonexpansive non-self mappings under some additional
conditions. Our results improve, complement and unify most of the results in the literature.
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1 Introduction

Let X be a CAT(0) space and K be a nonempty subset of X . A point x in K is called a fixed
point of the mapping T if x = T x . The set of all fixed points of the mapping T is denoted
by F(T ), i.e F(T ) = {x ∈ K : x = T x}. A mapping T : K → X is said to be

(a) L-Lipschitz if there exists L > 0 such that

d(T x, T y) ≤ Ld(x, y), for all x, y ∈ K .

(b) nonexpansive mapping if d(T x, T y) ≤ d(x, y), for all x, y ∈ K .

(c) quasi-nonexpansive mapping if F(T ) �= ∅ and such that

d(T x, T p) ≤ d(x, p),∀x ∈ K ,∀p ∈ F(T ).

We observe that the class of Lipschitz mappings includes the class of nonexpansive map-
pings. In fact, a nonexpansive mapping is 1-Lipschiz mapping. One can also easily observe
that a nonexpansive mapping with nonempty fixed point set is quasi-nonexpansive mapping.
However, a quasi-nonexpansive mapping need not be nonexpansive (see, e.g., [24]).

Interests to study fixed points of nonlinear operators stems mainly from its application
in diverse fields of sciences such as differential equations, optimization, control theory,
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economics, graph theory, biology and computer sciences among others. Consequently, the
existence of fixed points and their approximations for nonexpansive mappings and their gen-
eralizations have been studied by several authors (see, e.g. [1, 8, 11, 13, 17, 19–23, 30, 36]
and the references therein).

Most of the iterative processes in the literature are well defined only for self mappings.
For approximating fixed points of non-self mappings, researchers have been using metric
projection or sunny nonexpansive retraction mappings (see [23, 25]). However, the process
of calculating the projection or sunny nonexpansive mapping can be a resource consuming
task and may require an approximating iterative scheme by itself. In the attempt to get rid
of these difficulties, Colao and Marino [5] have successfully introduced and studied the
following iterative process for non-self mapping without the use of any auxiliary operator.

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ C,

α0 = max{ 12 , h(x0)},
xn+1 = αnxn + (1 − αn)T xn,
αn+1 = max{αn, h(xn+1)}, n ≥ 0,

(1)

where h(x) := inf{λ ≥ 0 : λx + (1−λ)T x ∈ C},∀x ∈ C ⊆ H . They established weak and
strong convergence results of the algorithm for approximating fixed points of nonexpansive
non-self mappings.

This method of Colao and Marino [5] have been used by many authors to construct and
study iterative processes for approximating fixed points of non-self mappings (see, e.g., [6,
7, 12, 29, 32–34]). In particular, Tufa and Zegeye [33] introduced an iterative scheme for
approximating fixed points of nonexpansive non-self mappings in the setting of CAT(0)
spaces (see Corollary 3.5 of [33]). They established strong and �-convergence results of the
scheme.

On the other hand, iterative schemes for approximating common fixed points of two self
mappings have been extensively studied (see, e.g., [14–16, 27, 28, 37]) as approximating
common fixed points of two mappings is applicable in minimization problems (see, for
instance, [26]. In [37], Yao and Chen introduced and studied the following iteration process
for common fixed points of two self mappings:

x1 ∈ C, xn+1 = αnxn + βnT xn + γn Sxn, n ∈ N,

where {αn}, {βn} and {γn} are in [0, 1] and αn +βn +γn = 1. They obtained weak and strong
convergence results of the proposed algorithm to a common fixed point of two asymptotically
nonexpansive mappings in a uniformly convex Banach space. Many authors have been using
nonexpansive retraction mappings to construct iterative methods for approximating common
fixed points of two non-self mappings (see, for instance, [35, 38]). Recently, Tufa [31]
obtained some weak and strong convergence results for two quasi-non-expansive non-self
mappings using a new iterative scheme which does not involve any auxiliary operators such
as projection and nonexpansive retraction mappings at the expense of lowering the space to
a real Hilbert space.

Motivated by the above results, our purpose in this paper is to construct and study new
iterative methods for approximating common fixed points of two non-self mappings in a
complete CAT(0) space. We obtain �-convergence and strong convergence results of the
proposed method for nonexpansive non-self mappings under appropriate conditions. More-
over, we establish strong convergence results for approximating common fixed points of two
L-Lipschitz quasi-nonexpansive non-self mappings under some additional conditions. Our
results extend and generalize many of the results in the literature.
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2 Preliminaries

Let (X , d) be a metric space and x, y ∈ X . A geodesic path joining x to y is a map r :
[0, l] ⊂ R → X such that r(0) = x, r(l) = y and d(r(t), r(t0)) = |t − t0| for all t, t0 ∈
[0, l]. The image of r is called a geodesic segment joining x and y. When it is unique this
geodesic segment is denoted by [x, y]. This means that z ∈ [x, y] if and only if there exists
t ∈ [0, 1] such that d(x, z) = (1 − t)d(x, y) and d(y, z) = td(x, y). In this case, we write
z = t x ⊕ (1 − t)y.

The metric space (X , d) is said to be a geodesic space if every two points of X are joined
by a geodesic and it is said to be uniquely geodesic if there is exactly one geodesic joining
x and y for each x, y ∈ X . A uniquely geodesic space (X , d) is said to be an R-tree, if
x, y, z ∈ X with [x, y] ∩ [y, z] = {y} implies [x, z] = [x, y] ∪ [y, z]. Hereafter, we denote
a geodesic space (X , d) simply by X .

A geodesic triangle �(x1, x2, x3) in a geodesic space X consists of three points x1, x2, x3
of X and three geodesic segments joining each pair of vertices. A comparison triangle of a
geodesic triangle�(x1, x2, x3) is the triangle �̄(x1, x2, x3) := �(x̄1, x̄2, x̄3) in the Euclidean
space R2 such that d(xi , x j ) = dR2(x̄i , x̄ j ) for all i, j = 1, 2, 3.

A geodesic space X is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom:

d(x, y) ≤ dR2(x̄, ȳ), ∀x, y ∈ �, x̄, ȳ ∈ �̄, (2)

where � is a geodesic triangle in X and �̄ is its comparison triangle in R2. It is well known
that a CAT(0) space X is uniquely geodesic. Pre-Hilbert spaces, R−trees and Euclidean
buildings are examples of CAT (0) spaces. For details we refer the readers to standard texts
such as [2, 3].

Let {xn} be a bounded sequence in a CAT(0) space X . For x ∈ X , we set r(x, {xn}) =
lim sup
n→∞

d(x, xn). The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is known [9] that in a CAT(0) space X , A({xn}) consists of exactly one point. A sequence

{xn} ⊆ X is said to be �-convergent to x ∈ X if A({xnk }) = {x} for every subsequence
{xnk } of {xn}. From the uniqueness of asymptotic center, it follows that the CAT(0) space X
satisfies Opial’s property, i.e., for a sequence {xn} in X such that xn �-converges to x and
given y ∈ X with y �= x, one has

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

A subset K of a CAT(0) space X is said to be convex if K includes every geodesic segment
joining any two of its points. A convex set K is said to be strictly convex if for x, y ∈ ∂K
and t ∈ (0, 1), we have t x ⊕ (1− t)y ∈ K̊ , where ∂K and K̊ denotes boundary and interior
of K respectively.

A mapping T : K → X is said to be inward on K if T x ∈ IK (x), where IK (x) := {w ∈
X : w = x or y = (1 − 1

λ
)x ⊕ 1

λ
w, for some y ∈ K , λ ≥ 1} for all x ∈ K . If for a

sequence {xn} in K such that xn �-converges to p and d(xn, T xn) → 0 implies p = T p,
then the mapping I − T is called demiclosed at zero.

We may use the following lemmas in the sequel.
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Lemma 1 [36] Let X be a complete CAT(0) space and {x, x1, x2, . . . , xn} ⊆ X . If
{λ1, λ2, · · · , λn} ⊆ [0, 1] with ∑n

i=1 λi = 1, then for each i, j ∈ {1, 2, . . . , n}, we have

d2
(

n⊕
i=1

λi xi , x

)

≤λ1d
2(x1, x)+λ2d

2(x2, x)+· · ·+λnd
2(xn, x)−λiλ j d(xi , x j )d

2(xi , x j ).

Lemma 2 [18] Every bounded sequence in a complete CAT(0) space always has a
�−convergent subsequence.

Lemma 3 [4] Let X be a CAT(0) space. Then for each x, y, z ∈ X and λ ∈ [0, 1], one has
d(λx ⊕ (1 − λ)y, μx ⊕ (1 − μ)y) ≤ |λ − μ|d(x, y).

Lemma 4 [10] Let X be a CAT(0) space. Then the following inequalities hold true for all
x, y, z ∈ X and λ ∈ [0, 1].

d(λx ⊕ (1 − λ)y, z) ≤ λd(x, z) + (1 − λ)d(y, z).

The following lemmas are consequences of Lemmas 3.1, 3.2 and 3.3 of Tufa and
Zegeye [33], respectively.

Lemma 5 [33] Let K be a nonempty subset of a CAT(0) space X . If a mapping T : K → X
is L−Lipschitz quasi-nonexpansive, then F(T ) is closed and convex.

Lemma 6 [33] Let K be a nonempty, closed and convex subset of a complete CAT(0) space
X . If a mapping T : K → X is nonexpansive, then I − T is demiclosed at zero.

Lemma 7 [33] Let K be a nonempty, closed and convex subset of a CAT(0) space X and
T : K → X be a mapping. Define h : K → R by

h(x) = inf{λ ≥ 0 : (1 − λ)x ⊕ λT x ∈ K }.
Then for any x ∈ K the following hold:

(1) h(x) ∈ [0, 1] and h(x) = 0 if and only if T x ∈ K .

(2) If β ∈ [0, h(x)], then (1 − β)x ⊕ βT x ∈ K .

(3) If T is inward mapping, then h(x) < 1.
(4) If T x /∈ K , then (1 − h(x))x ⊕ h(x)T x ∈ ∂K .

3 Results and discussions

In this section, we construct an algorithm which involves two non-self mappings in the
framework of CAT(0) spaces. Then we establish convergence results to a common fixed
point of the mappings. We start with the following lemma.

Lemma 8 Let K be a nonempty, closed and convex subset of a CAT(0) space X and T , S :
K → X be two non-self mappings. Given θ ∈ [0, 1], define fθ : K → [0,∞] by

fθ (x) = inf{α ≥ 0 : α
[
θx ⊕ (1 − θ)T x

] ⊕ (1 − α)Sx ∈ K }.
Then for any x ∈ K the following hold:

(1) If θx ⊕ (1 − θ)T x ∈ K , then fθ (x) ∈ [0, 1] and fθ (x) = 0 iff Sx ∈ K .

(2) If θx⊕(1−θ)T x ∈ K , then β(θx+(1−θ)T x
)⊕(1−β)Sx ∈ K for any β ∈ [ fθ (x), 1].
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(3) If T and S are inward mappings, then fθ (x) < 1.
(4) If θx ⊕ (1 − θ)T x ∈ K and Sx /∈ K , then

fθ (x)
[
θx ⊕ (1 − θ)T x

] ⊕ (
1 − fθ (x)

)
Sx ∈ ∂K .

Proof The proofs of (1) and (2) are obvious. Thus, we need to prove only (3) and (4).
(3) Let T and S be inward mappings and x ∈ K . Then for some c1, c2 ≥ 1, we have

u1 := 1

c1
T x ⊕

(

1 − 1

c1

)

x ∈ K and u2 := 1

c2
Sx ⊕

(

1 − 1

c2

)

x ∈ K .

Then, we have

1

2
u1 ⊕ 1

2
u2 = 1

2c1
T x ⊕ 1

2

(

1 − 1

c1

)

x ⊕ 1

2c2
Sx ⊕ 1

2

(

1 − 1

c2

)

x

=
(

1 − 1

2c2

)[
c2

c1(2c2 − 1)
T x ⊕

(

1 − c2
c1(2c2 − 1)

)

x

]

⊕ 1

2c2
Sx . (3)

Then since K is convex, we can conclude that
(

1 − 1

2c2

)[
c2

c1(2c2 − 1)
T x ⊕

(

1 − c2
c1(2c2 − 1)

)

x

]

⊕ 1

2c2
Sx ∈ K .

On the other hand, one can easily verify that θ := c2
c1(2c2−1) ∈ (0, 1]. Hence,

fθ (x) ≤ 1 − 1

2c2
< 1.

(4) Assume that θx ⊕ (1 − θ)T x ∈ K and Sx /∈ K . Then fθ (x) ∈ [0, 1] by (1). Let
{wn} ⊆ (0, fθ (x)) be a real sequence such that wn → fθ (x). Then from the definition of
fθ , it follows that

zn := wn(θx ⊕ (1 − θ)T x) ⊕ (1 − wn)Sx /∈ K .

Thus, by Lemma 3, we have

d(zn, fθ (x)(θx ⊕ (1 − θ)T x) ⊕ (1 − fθ (x))Sx) ≤ |wn − fθ (x)|d(θx ⊕ (1 − θ)T x, Sx)).

Then, since wn → fθ (x), it follows that

zn → fθ (x)(θx ⊕ (1 − θ)T x) ⊕ (1 − fθ (x))Sx ∈ K

and since zn = wn
(
θx ⊕ (1 − θ)T x

) ⊕ (1 − wn)Sx /∈ K , for all n ≥ 1, we obtain that

fθ (x)
(
θx ⊕ (1 − θ)T x

) ⊕ (
1 − fθ (x)

)
Sx ∈ ∂K .

The proof is complete. ��
Note that if θ = 1 or T is an identity map, then Lemma 8 reduces to Lemma 7.
We now construct an iterative scheme which involves two non-self mappings. Let K be

a nonempty, closed and convex subset of a CAT(0) space X and S, T : K → X be two
non-self mappings. Given x1 ∈ K , let

h(x1) = inf{θ ≥ 0 : θx1 ⊕ (1 − θ)T x1 ∈ K }.
Take θ1 := max{ 12 , h(x1)}. Then θ1x1 ⊕ (1 − θ1)T x1 ∈ K .

Now, let

fθ1(x1) := inf{α ≥ 0 : α[θ1x1 ⊕ (1 − θ1)T x1] ⊕ (1 − α)Sx1 ∈ K }.
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Put α1 = max{ 12 , fθ1(x1)}. Then by Lemma 8

x2 := α1[θ1x1 ⊕ (1 − θ1)T x1] ⊕ (1 − α1)Sx1 ∈ K .

If we continue the process in this fashion, by the principle of mathematical induction, we
obtain a sequence {xn} defined recursively as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ K ,

xn+1 = αn[θnxn ⊕ (1 − θn)T xn] ⊕ (1 − αn)Sxn
θn+1 = max{θn, h(xn+1)},
αn+1 = max{αn, fθn+1(xn+1)},

(4)

where h : K → R and f : K → [0,∞] are defined, respectively, by h(x) = inf{λ ≥ 0 :
λx ⊕ (1− λ)T x ∈ K } and fθ (x) = inf{α ≥ 0 : α[θx ⊕ (1− θ)T x] ⊕ (1− α)Sx ∈ K }, for
given θ ∈ [0, 1].

Weobserve that Algorithm (4) reduces toMann iterative schemewhen T or S is an identity
map. Now, we prove the following results.

Theorem 9 Let K be a nonempty, closed and convex subset of a complete CAT(0) space X
and S, T : K → X be two nonexpansive inward mappings with F = F(T ) ∩ F(S) �= ∅.

Let {xn} be a sequence defined in (4).

(i) If there exists b ∈ (0, 1) such that θn, αn ≤ b,∀n ≥ 1, then {xn} �-converges to a point
in F .

(ii) If K is strictly convex,
∑∞

n=1(1− θn) < ∞ and
∑∞

n=1(1− αn) < ∞, then {xn} strongly
converges to a point in F .

Proof Let p ∈ F . Since T and S are nonexpansive, by Lemma 4, we have

d(xn+1, p) = d(αn[θnxn ⊕ (1 − θn)T xn] ⊕ (1 − αn)Sxn, p)

≤ αnd(θnxn ⊕ (1 − θn)T xn, p) + (1 − αn)d(Sxn, p)

≤ αnθnd(xn, p) + αn(1 − θn))d(T xn, p) + (1 − αn)d(Sxn, p)

≤ αnθnd(xn, p) + αn(1 − θn)d(xn, p) + (1 − αn)d(xn, p)

= d(xn, p). (5)

Then the sequensce {d(xn, p)} is decreasing which implies that

lim
n→∞ d(xn, p) exists.

This in turn implies that {xn} is bounded.
(i) Suppose there exists b ∈ (0, 1) such that θn, αn ≤ b,∀n ≥ 1. Then by Lemma 1, we

have

d2(xn+1, p) = d2(αnθnxn ⊕ αn(1 − θn)T xn ⊕ (1 − αn)Sxn, p)

≤ αnθnd
2(xn, p) + αn(1 − θn)d

2(T xn, p) + (1 − αn)d
2(Sxn, p)

−α2
nθn(1 − θn)d

2(T xn, xn)

≤ αnθnd
2(xn, p) + αn(1 − θn)d

2(xn, p) + (1 − αn)d
2(xn, p)

−α2
nθn(1 − θn)d

2(T xn, xn)

= d2(xn, p) − α2
nθn(1 − θn)d

2(T xn, xn).

123



A new iterative method for approximating common fixed points of… 4059

This yields

α2
nθn(1 − θn)d

2(T xn, xn) ≤ d2(xn, p) − d2(xn+1, p).

Then since 1
2 ≤ θn, αn ≤ b, it follows that

∞∑

n=1

1

8
(1 − b)d2(T xn, xn) ≤

∞∑

n=1

α2
nθn(1 − θn)d

2(T xn, xn) < ∞.

This implies that

lim
n→∞ d(xn, T xn) = 0.

Similarly, one can easily show that

lim
n→∞ d(xn, Sxn) = 0.

On the other hand, since {xn} is bounded, Lemma 2 implies that the set of all �-cluster
points of {xn} is nonempty, that is

w(xn) := {x ∈ X : xni �-converges to x for some subsequence {xni }of {xn}} �= ∅.

Thus, if x ∈ w(xn), then there exists a subsequence {xni } of {xn} such that xni �-
converges to x as n → ∞. Then since I − T and I − S are demiclosed at zero (see
Lemma 6), we have

x ∈ F = F(T ) ∩ F(S).

Hence, w(xn) ⊆ F . To show uniqueness, suppose x, y ∈ w(xn) such that x �= y. Then
there exist subsequences {xni } and {xn j } of the sequence {xn} such that xni �-converges
to x and xn j �-converges to y as i, j → ∞. Then since limn→∞ d(xn, x) exists for all
x ∈ F and CAT(0) space satisfies the Opial’s property, we have

lim
n→∞ d(xn, x) = lim

i→∞ d(xni , x) < lim
i→∞ d(xni , y)

= lim
n→∞ d(xn, y) = lim

j→∞ d(xn j , y)

< lim
j→∞ d(xn j , y) = lim

n→∞ d(xn, x).

But this is a contradiction andhence x = y.Thus, every subsequence of {xn} �-converges
to x and hence {xn} �-converges to x ∈ F .

(ii) Suppose that K is strictly convex,
∑∞

n=1(1 − θn) < ∞ and
∑∞

n=1(1 − αn) < ∞.

Then
∞∑

n=0

θn(1 − αn) < ∞.

Moreover, from (4) and Lemma 4, we have

d(xn, xn+1) ≤ αn(1 − θn)d(xn, T xn) + (1 − αnd(xn, Sxn).

Then since {xn}, {T xn} and {Sxn} are bounded, we obtain that

∞∑

n=0

d(xn, xn+1) < ∞.
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Thus, {xn} is strongly Cauchy sequence and hence xn → x∗ ∈ K as n → ∞.

On the other hand, since limn→∞ θn = 1 and θn = max{θn−1, h(xn)}, we can choose a
subsequence {xni } such that {h(xni )} is non-decreasing and limi→∞ h(xni ) = 1. In particular,
for any γ < 1,

tni := γ xni ⊕ (1 − γ )T xni /∈ K , eventually holds.

Now, choose γ1, γ2 ∈ (h(x∗), 1) such that γ1 �= γ2 and let

v1 = γ1x
∗ ⊕ (1 − γ1)T x

∗ and v2 = γ2x
∗ ⊕ (1 − γ2)T x

∗.

Then for all γ ∈ [γ1, γ2], we have
v := γ x∗ ⊕ (1 − γ )T x∗ ∈ K .

Since xni → x∗ and T xni → T x∗ as i → ∞, it follows that tni → v as i → ∞ and hence
v ∈ ∂K . Furthermore, since γ is arbitrary, it follows that [v1, v2] ⊆ ∂K . Then by strict
convexity of K , we obtain that v1 = v2. Then d(v1, T x∗) = d(v2, T x∗) which implies that

γ1d(x∗, T x∗) = γ2d(x∗, T x∗).

Then since γ1 �= γ2, it follows that x∗ = T x∗ and hence, x∗ ∈ F(T ). It remains to show
that x∗ ∈ F(S). To this end, we observe that yn := θnxn ⊕ (1 − θn)T xn → x∗. Then,
since limn→∞ αn = 1 and αn = max{αn−1, fθn (xn)}, repeating the above arguments we
obtain the required result. Indeed, we can choose a subsequence {xn j } such that { fθn j (xn j )}
is non-decreasing and lim j→∞ fθn j (xn j ) = 1. In particular, for any μ < 1,

sn j := μyn j ⊕ (1 − μ)Sxn j /∈ K , eventually holds.

Now, choose μ1, μ2 ∈ ( fθn j (x
∗), 1) such that μ1 �= μ2 and let

u1 = μ1x
∗ ⊕ (1 − μ1)Sx

∗ and u2 = μ2x
∗ ⊕ (1 − μ2)Sx

∗.

Thus, for any μ ∈ [μ1, μ2], we have
u := μx∗ ⊕ (1 − μ)Sx∗ ∈ K .

Since yn j → x∗ and Sxn j → Sx∗ as j → ∞, it follows that Sn j → u as j → ∞ and
hence u ∈ ∂K . Furthermore, since μ is arbitrary, it follows that [u1, u2] ⊆ ∂K . Then by
strict convexity of K , it follows that u1 = u2 and d(u1, Sx∗) = d(u2, Sx∗) which implies
thatμ1d(x∗, Sx∗) = μ2d(x∗, Sx∗). Then sinceμ1 �= μ2,we have that x∗ = Sx∗ and hence
x∗ ∈ F(S). Therefore, {xn} strongly converges to x∗ ∈ F . ��

Next, we prove strong convergence results using the condition (I). For this, we first give
the definition of condition (I) for a pair of mappings. Recall that a mapping T : K → X is
said to satisfy condition (I) if there exists a nondecreasing function f : [0,∞) → [0,∞)

with f (0) = 0 and f (r) > 0, for all r ∈ (0,∞) such that d(x, T x) ≥ f (d(x, F(T ))), for
all x ∈ K , where d(x, F(T )) = inf{d(x, p) : p ∈ F(T )}. Analogous definition for a pair
of mappings is given below.

A pair of mappings S and T denoted by {S, T } is said to satisfy condition (I) if there
exists a nondecreasing function f : [0,∞) → [0,∞) with f (0) = 0 and f (r) > 0, for all
r ∈ (0,∞) such that

d(x, T x) ≥ f (d(x,F)) or d(x, Sx) ≥ f (d(x,F)),∀x ∈ K ,

where d(x,F) = inf{d(x, p) : p ∈ F = F(T ) ∩ F(S)}.
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Now, we consider the following Algorithm:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ K ,

θ1 = max

{
1
2 , h(x1)

}

,

α1 = max{θ1, fθ1(x1)},
xn+1 = αn[θnxn ⊕ (1 − θn)T xn] ⊕ (1 − αn)Sxn,
θn+1 ∈ [

max{θn, h(xn+1)}, 1
)
,

αn+1 ∈ [
max{αn, θn, fθn+1(xn+1)}, 1

)
,

(6)

where h : K → R and f : K → [0,∞] are defined, respectively, by h(x) = inf{λ ≥ 0 :
λx ⊕ (1 − λ)T x ∈ K } and fθ (x) = inf{α ≥ 0 : α[θx ⊕ (1 − θ)T x] ⊕ (1 − α)Sxn ∈ K },
for a given θ ∈ [0, 1].
Theorem 10 Let K be a nonempty, closed convex subset of a complete CAT(0) space X and
S, T : K → X be two L-Lipschitz quasi-nonexpansive inward mappings. Let {xn} be a
sequence as defined in (6) such that

∑∞
n=1(1 − αn) = ∞. If the pair {S, T } satisfies the

condition(I) and F = F(T ) ∩ F(S) �= ∅, then {xn} converges strongly to a point in F .

Proof From the method of the proof of Theorem 9, it is easy to see that limn→∞ d(xn, p)
exists for each p ∈ F . In addition, by Lemma 1, we have

d2(xn+1, p) = d2(αnθnxn ⊕ αn(1 − θn)T xn ⊕ (1 − αn)Sxn, p)

≤ αnθnd
2(xn, p) + αn(1 − θn)d

2(T xn, p) + (1 − αn)d
2(Sxn, p)

−α2
nθn(1 − θn)d

2(T xn, xn)

≤ αnθnd
2(xn, p) + αn(1 − θn)d

2(xn, p) + (1 − αnd
2(xn, p)

−α2
nθn(1 − θn)d

2(T xn, xn)

= d2(xn, p) − α2
nθn(1 − θn)d

2(T xn, xn).

This implies that

α2
nθn(1 − θn)d

2(xn, T xn) ≤ d2(xn, p) − d2(xn+1, p),

which in turn implies that

∞∑

n=1

α2
nθn(1 − θn)d

2(T xn, xn) < ∞. (7)

Also, from Lemma 1, we have:

d2(xn+1, p) = d2(αnθnxn ⊕ αn(1 − θn)T xn ⊕ (1 − αn)Sxn, p)

≤ αnθnd
2(xn, p) + αn(1 − θn)d

2(T xn, p) + (1 − αn)d
2(Sxn, p)

−αnθn(1 − αn)d
2(Sxn, xn)

≤ αnθnd
2(xn, p) + αn(1 − θn)d

2(xn, p) + (1 − αn)d
2(xn, p)

−αnθn(1 − αn)d
2(Sxn, xn)

= d2(xn, p) − αnθn(1 − αn)d
2(Sxn, xn).

Hence, we obtain

∞∑

n=1

αnθn(1 − αn)d
2(Sxn, xn) < ∞. (8)
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Furthermore, since
∑∞

n=1(1 − αn) = ∞ and αn ≥ θn ≥ 1
2 for each n, it follows that

∞∑

n=1

α2
nθn(1 − θn) = ∞ =

∞∑

n=1

αnθn(1 − αn).

Thus, from (7) and (8), we get

lim inf
n→∞ d(xn, T xn) = 0 = lim inf

n→∞ d(xn, Sxn).

Then, since {S, T } satisfies the Condition (I), we have lim infn→∞ f (d(xn,F)) = 0 for some
increasing function f : [0,∞) → [0,∞) with f (0) = 0, f (r) > 0 for r ∈ (0,∞). This
gives lim infn→∞ d(xn,F) = 0. Moreover, since d(xn+1, p) ≤ d(xn, p), taking infimum
over all p ∈ F, we have

d(xn+1,F) ≤ d(xn,F).

Then, the sequence {d(xn,F)} is decreasing and hence limn→∞ d(xn,F) = 0.
Now, for arbitrary p ∈ F and any n,m ≥ 1, we have

d(xn+m, xn) ≤ d(xn+m, p) + d(xn, p) ≤ 2d(xn, p),

which implies that

d(xn+m, xn) ≤ 2d(xn,F).

Then {xn} is a Cauchy sequence and hence xn → x∗ ∈ K . Thus, we have

d(x∗,F) ≤ d(xn, x
∗) + d(xn,F) → 0.

Then, it follows from Lemma 5 that x∗ ∈ F . This completes the proof. ��
If, in Theorem 10, T and S are nonexpansive and F = F(T ) ∩ F(S) �= ∅, then T and S

are 1-Lipschitz quasi-nonexpansive and so we have the following corollary.

Corollary 11 Let K be a nonempty, closed convex subset of a complete CAT(0) space X
and S, T : K → X be two nonexpansive inward mappings. Let {xn} be a sequence as
defined in (6) such that

∑∞
n=1(1−αn) = ∞. If the pair {S, T } satisfies the condition (I) and

F = F(T ) ∩ F(S) �= ∅, then {xn} converges to a common fixed point of S and T .

A mapping T : K → X is called hemicompact if, for any sequence {xn} in K such that
d(xn, T xn) → 0, there exist a subsequence {xn j } of {xn} such that xn j → p ∈ K . We note
that if K is compact, then every mapping T : K → X is hemicompact.

Now, we prove the following theorem.

Theorem 12 Let K be a nonempty, closed and convex subset of a complete CAT(0) space X
and S, T : K → X be two L-Lipschitz quasi-nonexpansive inward mappings. Let {xn} be a
sequence as defined in (6) such that

∑∞
n=1(1−αn) = ∞.Assume thatF = F(T )∩F(S) �= ∅

and T or S is hemicompact. Then {xn} converges strongly to a point in F .

Proof From the proof of Theorem 10, we have

lim inf
n→∞ d(xn, T xn) = 0 = lim inf

n→∞ d(xn, Sxn).

Then, there exists a subsequence {xm} of {xn} such that limm→∞ d(xm, T xm) = 0. Without
loss of generality, assume that T is hemicompact. Then there is a subsequence {xmk } of {xm}
such that xmk → x∗ ∈ K as k → ∞. Then the continuity of T implies

lim
k→∞ d(xmk , T xmk ) = d(x∗, T x∗) = 0. (9)
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Moreover, we have:

d(x∗, Sx∗) = lim
k→∞ d(xmk , Sx

∗)

= lim inf
k→∞ d(xmk , Sx

∗)

≤ lim inf
k→∞ [d(xmk , Sxmk ) + d(Sxmk , Sx

∗)]
≤ lim inf

k→∞ [d(xmk , Sxmk ) + Ld(xmk , x
∗)] = 0. (10)

From (9) and (10), we obtain x∗ ∈ F . By employing the method used to obtain (5), we can
see that limn→∞ d(xn, x∗) exists. Thus,

lim
n→∞ d(xn, x

∗) = lim
k→∞ d(xmk , x

∗) = 0.

Hence, {xn} converges strongly to x∗ ∈ F . ��
If, in Theorem 12, we assume that K is Compact, then T and S are hemicompact and

hence we have the following corollary.

Corollary 13 Let K be a nonempty, compact and convex subset of aCAT(0) space X and S, T :
K → X be two L-Lipschitz quasi-nonexpansive inward mappings with F(T ) ∩ F(S) �= ∅.

Let {xn} be a sequence defined in (6) such that
∑∞

n=1(1 − αn) = ∞. Then {xn} converges
strongly to a common fixed point of T and S.

Remark 1 In this paper, a new iterative method for finding a common fixed point of a pair
of non-self mappings is studied in the setting of CAT(0) spaces. strong convergence and
�-convergence results of the scheme to a common fixed point of two nonexpansive non-self
mappings are obtained undermild conditions.Moreover, strong convergence results for a pair
of quasi-nonexpansive non-self mappings are established under some additional conditions.
Our results extend and generalizemany of the results in the literature. For instance, our results
extends the results of Yao and Chem [37] in the sense that our results are valid for non-self
mappings in a CAT(0) space more general than Hilbert spaces.
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