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Abstract

In this work we construct a variety of new complex-valued proper biharmonic maps and
(2, 1)-harmonic morphisms on Riemannian manifolds with non-trivial geometry. These are
solutions to a non-linear system of partial differential equations depending on the geometric
data of the manifolds involved.
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1 Introduction

The concept of a harmonic morphism¢ : (M, g) — (N, h), between Riemannian manifolds,
was introduced by Fuglede and Ishihara in the late 1970 s independently, see [2, 6]. These are
maps pulling back local real-valued harmonic functions on N to harmonic functions on M.
These objects have an interesting connection with the geometry of the manifolds involved
and have lead to vibrant research activities, as can be traced in the excellent work [1], by
Baird and Wood, and the regularly updated online bibliography [5], maintained by the second
author.

Recently, the notion was generalised to (p, q)-harmonic morphisms, pulling back real-
valued g-harmonic functions on N to p-harmonic functions on M, see [3]. The case of (2, 1)
had earlier been studied in [4] under the name generalised harmonic morphisms. In [3], the
authors characterise complex-valued (p, ¢)-harmonic morphisms ¢ : (M, g) — C in terms
of a heavily non-linear system of partial differential equations. They also provide methods
for producing explicit solutions in the case when the domain (M, g) is the m-dimensional
Euclidean space.
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The principal aim of this work is to extend the study to complex-valued (2, 1)-harmonic
morphisms from Riemannian manifolds (M, g). We model our manifolds M as open subsets
of R™, equipped with a Riemannian metric g of a particular form, see Sect.3. We then
investigate when the natural projection ® : (M, g) — C onto the first two coordinates is
horizontally conformal, harmonic and even biharmonic. This leads to a non-linear system
of partial differential equations involving the geometric data on (M, g). We then find several
explicit solutions and thereby construct metrics g turning the projection @ into a proper
biharmonic map and even a proper (2, 1)-harmonic morphism. By this we construct the first
known complex-valued (2, 1)-harmonic morphisms from Riemannian manifolds with non-
trivial geometry. Since the problem is invariant under conformal changes of the metric on
(N, h) this provides local solutions to any Riemann surface, see Proposition7.2.

2 Preliminaries

Let (M, g) be an m-dimensional Riemannian manifold and TCM be the complexification of
the tangent bundle 7'M of M. We extend the metric g to a complex-bilinear form on TCM.
Then the gradient V¢ of a complex-valued function ¢ : (M, g) — Cis a section of T M. In
this situation, the well-known complex linear Laplace-Beltrami operator (alt. tension field)
T on (M, g) acts locally on ¢ as follows

. 20109 y BY)
= d V = E —_— o/ .
@) Ve = Vgl dx; (g 8] 8xi)

For two complex-valued functions ¢, ¥ : (M, g) — C we have the following well-known
relation

(- Y)=1() ¥ +2-k@. V) +¢-T(¥), 2.1

where the complex bilinear conformality operator k is given by « (¢, ¥) = g(Veo, V).
Locally this satisfies

K Y=Y g

ij=1

90 W

ax,- 0x j '
We are now ready to define the complex-valued proper p-harmonic functions.
Definition 2.1 For a positive integer p, the iterated Laplace-Beltrami operator t? is given
by
(@) = ¢ and 77(9) = 1"V (9)).
We say that a complex-valued function ¢ : (M, g) — Cis

(a) p-harmonic if t”(¢) = 0, and
(b) proper p-harmonic if T (¢) = 0 and (= (¢) does not vanish identically.

‘We now introduce the natural notion of a (p, g)-harmonic morphism. For (p, g) = (1, 1)
this is the classical case of harmonic morphisms introduced by Fuglede and Ishihara, in [2]
and [6], independently.

Definition 2.2 A map ¢ : (M, g) — (N, h) between Riemannian manifolds is said to be a
(p, q)-harmonic morphism if, for any g-harmonic function f : U C N — R, defined on an
open subset U such that ¢~ (U) is not empty, the composition fo¢ : ¢~ (U) C M - R
is p-harmonic.
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Proper biharmonic maps and (2,1)-harmonic morphisms 4103

As an immediate consequence of Definition 2.2 we have the following natural composition
law.

Lemma2.3 Let ¢ : gM_, g) — (N, h) be a (p, r)-harmonic morphism between Riemannian
manifolds. If ¥ : (N, h) — (N, h) is an (r, g)-harmonic morphism then the composition
Yop:(M,g) — (N,h)isa (p,q)-harmonic morphism.

3 Some rather wild geometries

The aim of this section is to describe a particular collection of Riemannian manifolds (M, g)
investigated in this work. As far as we know they have not been studied before in the geometric
literature. We present formulae for their sectional curvatures to show that the geometry is
here far from being trivial. We then give two concrete examples that turn out to be useful
later on.

For an open subset M of R™, let A, A1,..., Ay : M — R be C3-functions such that
A = A1 = Ay and equip the manifold M with the Riemannian metric g of the special form

g=e P@x +dyH) + e Mdxi 4 e Pmdx2,

For our purposes it is practical to introduce the function f : M — R with

f =) ).
k=3

For the tangent bundle T M of (M, g) we have the following global orthonormal frame

0 0
X1=e)“~—,..., m=e}""-—
0xq 0X
When appropriate, we shall by x = (x, y, x3, ..., x,) denote the canonical coordinates

(X1,...,xm)on R™ and set X = Xy, Y = X,. The Lie brackets for T M satisfy
[X;, Xi] = €™ Ou)x, Xk — € (0 j)x X,

where the subscript x ; means the partial derivative with respect to the j-th coordinate function.
A standard computation shows that for the sectional curvature K (X; A Xj) of the 2-plane
Xj A Xi we have

K(Xj A X©) = €105, )y + Odxjny = 3]
+ ) Oy + A, — )3

— Y ) (),
ré{j.k}

In particular, for the horizonal section X A Y we have

m
KX AY) = e O +Ayy) — Y €27,
k=3

Let @ : (R™, g) — C be the horizontally conformal submersion

x> (x+iy)E(x-e+y-e)
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4104 E. Ghandour, S. Gudmundsson

with dilation ¢* : R” — R, For the tangent bundle 7 M we have the following orthogonal
decomposition 7'M = H@V intoits horizontal and vertical subbundles H and V, respectively,
where

‘H =span{X, Y} and V = span{X3, ..., X;n}.

Definition 3.1 For an open subset M of R™ we denote by €2(M) the set of C3-functions
® : M — R which are independent of the first coordinates (x, y) of X = (x, y, X3, ..., X;)
ie.

QM) = {w € C*(M,R)| 0y = wy = 0}.

‘We now present two Riemannian manifolds (M, g) with non-trivial geometry. Later in this
work, we then show that the complex-valued function ® : (M, g) — C is proper biharmonic
in these and other similar cases.

Example 3.2 For an open subset M of R3, constants A, B,6 € R and o € Q(M) let the
functions A, f : M — R be defined by

Mx,y.2) =), fy,2) =log(l +tan(©)?),
where
®Ox,y) =A-(cosb -x +sinb - y) + B.
Then equip M with the Riemannian metric g given by
g = e P (dx® +dy*) + e d.

Then the sectional curvature function K of the manifold (M 3, g) satisfies

)\2
Z
KXANY)=— ,
cos*(®)
K(X A Z) = Mz =2 $24%% cos’ (@) - 2cosH(®) — cos*(€))
cos*(®)
K az)="5" 12+ 247 sin’ (6) - (2.cos*(®) — cos’(®))
cos*(®)

If we assume that A, B,0 € Q(M), rather than A, B,0 € R, then the geometry of
(M, g) runs rather wild. The formulae for the sectional curvature K become far too extensive
to be included in this work. For explicit proper biharmonic maps in that general case, see
Example 5.2.

Example 3.3 For an open subset M of R*, constants A, B,V € Rand o € Q (M), let the
functions A, f : M — R be defined by

AX) = a(z, w),
f(x) = A3(x) + A4(x) = —21og(A - (cos(t) - x +sin(?) - y) + B),

where

A3(x) = —log(A - (cos(t) - x +sin(t) - y) + B) + ¥,
Aa(x) = —log(A - (cos(t) - x +sin(t) - y) + B) — V.
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Then equip M with the Riemannian metric g satifying
g= 672)‘(07)62 + dyz) +e M2 4 e Mg,
Then a standard computation shows that the sectional curvatures of (M, g) fulfill

62‘11 . )\’2 + 6—2\1’ . )\2
4 w
(A - (cos(t) - x +sin(t) - y) + B)?’
eV (Azz — )\%)
(A - (cos(t) - x +sin(t) - y) + B)?’
eV Aww — )\5;)
(A - (cos(t) - x +sin(r) - y) + B)?’
62)\. . A2
" (A (cos(t) - x +sin(t) - y) + B)2’

K(XAY)=

K(XAZ)=K(YAZ) =

KXAW)=KYAW) =

K(ZAW) =

If we assume that A, B, ¥ € Q(M), rather than A, B, ¥ € R, then the formulae for the sec-
tional curvature K become very complicated, including partial derivatives of these functions.
For explicit proper (2, 1)-harmonic morphisms in that general case, see Example 7.1

4 The tension fields 7(®) and 72 (D)

Our first principal aim is to construct Riemannian manifolds (M, g), of the form introduced
in Sect. 3, such that the horizontally conformal submersion ® : (M, g) — C with

x> (x+iy)E(x-e1+y-e)

is a proper biharmonic map. For this purpose we now want to determine the tension field
7(®P) and the bitension field 2(d) of ®, respectively.

Lemma4.1 Let (M™, g) be a Riemannian manifold, as defined above, with the orthonormal
basis {X1, ..., Xm} for the tangent bundle T M. Then its Levi-Civita connection satisfies

m m m
DoV Xe=) ) ¢ (X
k=1

J=Lk#]

Proof The statement follows from the following computation

m m
DV Xe= Y e(Vx Xk, X)) X,
k=1 jk=1

m

= Y g(X;. Xkl X0) X

Jj.k=1
m
= Y g€ () Xk — €M () X, X0) X
jok=1
m m
= D O Xy Y O X,
Jok=1 j=1
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4106 E. Ghandour, S. Gudmundsson

= ZZ T ) X
=l kA

Lemmad4.2 Let ® : (M™, g) — C be the horizontally conformal submersion
P:xt—> (x+iy)E(x-e1+y-e)
with dilation e* : M — RT. Then we have the following relation
m
D dO(Vx Xi) =€ (e + fr) 1+ Oy + ) - €.
k=1
Proof 1t follows from Lemma4.1 and the fact that the differential d® satisfies d®(X3) =

- =d®(X,,) =0 that

m
D Ao (Vx, Xp)

k=1

ZZ M (), d (X )
J=1k#j

2 m
M (A2)x dD(X1) + € (M) d P (X2) + ZZ T (O dD(X )
j=1k=3

2
e hyer +e? e+ Y M fi dd(X)
j=1
= (e + fo e + e Oy + fy) e

[m}

With the next result we provide a formula for the tension field 7(®) of the horizontally
conformal submersion ®.

Proposition 4.3 Letr @ : (M, g) — C be the horizontally conformal submersion
D:xt—> (x+iy)E(x-e+y-e)
with dilation ¢* : M — R™T. Then the tension field T(®) of ® satisfies
T(@) =~ (fe-er+ fy-e).

Proof The two vector fields X and X, generate the horizontal distribution H so the horizontal
conformality of ® is a direct consequence of the fact that

dd(X)) =¢" e, dD(X2) =" -e3,dD(X3) =0, ...dD(X,,) = 0.

The tension field 7(®) of & is defined by the well-known formula

m

7(d) = Z {v;‘;kdq>(xk) —d®(Vx, X)) .
k=1

@ Springer
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For the first part, we have

Vi, d® (X)) + Vy,d®(X2)

m
> VR dD(Xy)
k=1

d d
= (e +et —(he)
Oy, O,

= (Ax -e1 + Ay -€).
For the second part, we now employ Lemma4.1 and yield

m
D dd(Vx Xp) =€ Ox + fo) o1+ Gy + f) €,
k=1

The statement is now an immediate consequence of the above calculations. O
Corollary 4.4 The horizontally conformal submersion ® : (M, g) — C, with

x> (x+iy) E(x-e1+y-e),
is harmonic and hence a harmonic morphism if and only if (fx, fy) = 0.

Proof This is an immediate consequence of Proposition4.3 and the characterisation of har-
monic morphisms, proven by Fuglede and Ishihara in [2] and [6], respectively. O

After determining the tension field t(®), we now turn our attention to the bitension field
2
77 (D).

Definition 4.5 For an open subset M of R™,let A, f : M — R be differentiable functions on
M with coordinates x = (x, y, X3, ..., X;;). Then we define the non-linear partial differential
operators D1, Dy by

DiOu ) = {0+ £ Qhafi + fir) + Oy + £) - Qhy fi + fuy)
(622 fr +2hxx fx + 5 A fix + frxx)
(622 fe 4+ 20y fi + Shy fuy + fiy) )

Do(h, ) ={ O+ fo) - Chc fy + i) + Oy + 1) - CAy fy + fiy)
(622 fy + 2 hex fy + 5 hx fyx + frax)
_(6)‘§fy +2hyy fy +S5hy fyy + fypy) )

With the next result we present a formula for the bitension field t2(®) of the horizontally
conformal submersion ®.

Theorem 4.6 Let @ : (M, g) — C be the horizontally conformal submersion
O:xt—> (x+iy) E(x-e;+y-e)
with dilation ¢* : M — R™T. Then the bitension field t>(®) of ® satisfies
(@) =" - Di(h, f)-e1 + ¢ Dok, f) -2
Proof The bitension field t2(®) of the C*-map ® is given by

(@) = Y (V§ VR, T(®) - V$kakr(q>)}.
k=1
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4108 E. Ghandour, S. Gudmundsson

First we notice that for k = 1, 2 we have
Bl

V?gkt(qﬁ) = _ek . axe

(e { fr, €1 + fu, 2})

= —63}\{(2)\ka)€1 + fxlxk)el
+ QA fro + frox) €2}

Differentiating once more gives

PIRCASAIC)

k=1

a
@(63)»(2)\%]( fxl + leXk )) €]

0 3
@(8 (2 )kafxz + fxzxk)) €

2
=-> ¢
k=1
2
~Y e
k=1

2
= —e'. 2(6 )\ik Fro + 2 A fro + 5 g frx + frxx) el
k=1

2
—et. 2(6 )‘,%kf)q + 2)\xkxk S +5 Axg fxzxk + fxzxkxk) €.
k=1
For the second part of the bitension field t2(®) of ® we now yield
m
=2 Vo x (@)

k=1

ad ad
=~ (g + fu) - prdColy e ey + fr) - 0 @

d
=e® (g + fr) - T (e {fr €1+ fr, &)
X1

d
+e®* (M, + frr) - a—(e2A A fu €1+ fr€2))
X2
=" Ouxy + fr) QA fr, + frix) €1 + Qg fro + frox) €2}
+e™ Oy + fr) A, fry + frm) €1+ @Ay, fro + fror) €2)

We now easily obtain the stated result by adding the terms. O

5 Explicit proper biharmonic submersions

In the Sect. 4 we have derived explicit formulae for the tension fields t(®) and t2(®). This
leads to a system of non-linear partial differential equations for the pair of functions (A, f).
We are now interested in constructing Riemannian metrics g, on open subsets M of R,
turning the horizontally conformal submersion ® : (M, g) — C into proper biharmonic
maps i.e. finding explicit solutions (X, f) to the system

(fX» fy) #07 Dl(}"7 f) =O and Dz()‘-v f) =0
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Proper biharmonic maps and (2,1)-harmonic morphisms 4109

Letus first consider the case when A = o € Q (M) i.e. independent of the two first coordinates
x and y. Then the differential operators D and D; simplify to

Di(a, f) = (fx - fox + fy - fry = frxx — fryy)
= 1T+ 17 = 2(fux + fry)s

Da(ar, f) = (fe fox + fy + Fry — Foxx — Foyy)
=SR2+ 17 = 2(fex + i)y

As a first example we have the following which clearly gives solutions to the system under
consideration.

Example 5.1 For an open subset M of R™ and A, B, «, B € Q2(M) let the functions A, f :
M — R be defined by

AMx)=a, fX)=A-x+B-y+8.

If A2 4+ B? # 0, then the associated map ® : (M, g) — C is horizontally conformal and
proper biharmonic i.e.

(fxv fy) 7+_Os D]((X, f) :0 and DZ((X, f) :0

It is clear that the choice of M and A, B, a, f € Q2(M) can lead to rather non-trivial geome-
tries (M, g).

If we now assume that the function f : M — R is independent of the coordinate y then
we have that

fx #Ov Dl(a’f):fx'fxx_fxxx =0 and D2(a7f):O-

The ordinary differential equation

1
D@, )= fe+ fox = forx = 5(fF = 2fu0)e =0
can easily be integrated to
A-x
fx(x) = A - tan( + B),

for some A, B € Q2(M). Integrating yet again, we finally obtain

A-x 5
f(x) =log(l +tan(T + B)") + B,

defined on the appropriate open subset M of R and with 8 € Q(M). From this we see
that under the above mentioned assumptions and modulo the functions A, B, 8 € Q (M), the
solution is uniquely determined. This leads to the following.

Example 5.2 For an open subset M of R” and A, B,«, 8,0 € Q(M) let the functions
A, f : M — R be defined by

Ax) =a, f(x)=Ilog(l +tan(A - (cosf - x +sin6 - y) + B)?) + B.
If A # 0, then the associated horizontally conformal map ® : M — C is proper biharmonic.

By the seperation of variables, one easily yields the next two families of solutions.
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4110 E. Ghandour, S. Gudmundsson

Example 5.3 For an open subset M of R™ and A, B, C, D, a, B € Q(M) let the functions
A, f: M — R be defined by

AX) =@, f(x)=log((l +tan(A-x+C)?)-(I+tan(B-y+ D)D)+ B.

If A2 4+ B? # 0 then the associated horizontally conformal map ® : (M, g) — C is proper
biharmonic.

Example 5.4 For an open subset M of R™ and A, B, C, D, a, B € Q(M) let the functions
A, f: M — R be defined by

AX)=a, f(x)=-2log((A-x+C)(B-y+ D)) +p.

If A2 4+ B? # 0 then the associated horizontally conformal map & : (M, g) — C is proper
biharmonic.

We also yield the following examples without assuming the condition A € Q(M).

Example 5.5 For an open subset M of R™ and A, B, C, D, a, B € Q(M) let the functions
A, f: M — R be defined by

AMx)=A-x+B-y+a, fX)=C-x+D-y+8.

If AC+ BD = 2(A% + B?) # 0 then the associated horizontally conformal map & :
(M, g) — C is proper biharmonic.

Example 5.6 For an open subset M of R” and A, B,r,«, 8,0 € Q(M) let the functions
A, f: M — R be defined by

A(X) = —r - (cosf - x +sinb - y) + «,
f(x)=A-exp(2r-(cosf-x+sinf-y)+ B)+ .

If » # 0, then the associated horizontally conformal map ® : (M, g) — C is proper
biharmonic.

Example 5.7 For an open subset M of R™ and A, B,r,«, 8,0 € Q(M) let the functions
A, f: M — R be defined by

)\.(X) = % .log(A.exp(r-(COSg 'X+Sin9~y))+B)+a,
f(xX)=r-(cosf-x +sinb -y)+ B.

If r # 0, then the associated horizontally conformal map ® : (M, g) — C is proper
biharmonic.

Example 5.8 For an open subset M of R™ and A, «, 8,6 € Q(M) let the functions A, f :
M — R be defined by

AX) = % -log(cos® - x +sinf - y) +a,
f(x) = A -log(cosf - x +sinf - y) + B.

Then the associated horizontally conformal map & : (M, g) — C is proper biharmonic.

Example 5.9 For an open subset M of R™ and A, «, 8,6 € Q(M) let the functions A, f :
M — R be defined by

A(x) = A -log(cos6 - x +5sinf - y) + «,
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Proper biharmonic maps and (2,1)-harmonic morphisms 4111

f(x) =2(A—1)-log(cosh - x +sinf - y) + B.

Then the associated horizontally conformal map ® : (M, g) — C is proper biharmonic if
and only if A # 1.

6 The tension fields 7(®?) and 72 (P?)

Our second principal aim is to construct Riemannian manifolds (M, g), of the form introduced
in Sect. 3, such that the horizontally conformal submersion ® : (M, g) — C with

x> (x+iy)E(x-e1+y-e)

is a proper (2, 1)-harmonic morphism. For this purpose we now want to determine the tension
field 7 (®?) and the bitension field 72(®?) of &2, respectively. For this we have the following
useful result.

Theorem 6.1 [3] A complex-valued function ¢ : (M, g) — C from a Riemannian manifold
is a (2, 1)-harmonic morphism if and only if

k(p,d) =0, t2(¢) =0 and t>(¢*) = 0.

Lemma 6.2 Let ¢ : (M, g) — C be a horizontally conformal proper biharmonic function.
Then the tension field T(¢p*) and the bitension field T>(¢*) of ¢ satisfy

@ (@) =2-1(d)¢p #£0,
(b) 2(¢?) =2 (x(9)> +2- k(1 (9), $)).

Proof Since the complex-valued function ¢ is horizontally conformal and biharmonic we
know thatk (¢, ) = O and 72 (¢) = 0. Then the result follows from the following elementary
calculations.

2 (¢?) = t(r(¢?))
= 1(2($) ¢ +2k($, §) + P T(9))
=2-1(t(¢) 9)
=2-{22(@) ¢ + 2k(z(9), §) + T(9)*}.

[m}

Definition 6.3 Let A, f : M — R be differentiable functions on an open subset M of R
with coordinates x = (x, y, x3, ..., X;;). Then we define the non-linear partial differential
operators D3, D4 by

D3k, ) =2 (fF = f) =8+ Oux fe = 2y ) =4+ (fux — fin),
Dy(h, f) =4~ fofy =8 (e fy + Ay f) =8+ fuy.

Proposition 6.4 Let @ : (R, g) — C be the horizontally conformal submersion
Q:x—> (x+iy)=(x-e+y-e)

with dilation ¢ : R™ — R¥. If ® is proper biharmonic then ©(®%) # 0 and the bitension
field T2 (®?%) of B satisfies

2(@%) = ™ - D3(A, f) -e1 + € - Dy(h, ) - er.
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Proof Tt follows from Lemma 6.2 that t(®2) # 0 and
2(d%) = 21(®)? + 4k (1(D), D).
Then the following computations provide the result.

(@)% = " {(fe)* = (fu)D el +2 fu fro €2).

k(T (@), @) = Y Xi((P)) - Xp(P)
k=1

2
==Y X {foe1+ fre)) et e
k=1
2
—e" 1D @y fo + fax) el e

k=1

2

+) Qhy fo + fon) e ek}

k=1

= — e QA o F fuxs = 22 foo — fox) el
— e 2hyy o + Frixs + 200 fro + frox) €2

7 Explicit (2, 1)-harmonic morphisms

In Sects.4 and 6, we have defined the partial differential operators Dy, Dy, D3 and D4. We
will now use these to construct explicit proper (2, 1)-harmonic morphisms @ : (M, g) — C.
We will then show how these can be employed to produce a large variety of concrete proper
biharmonic maps.

Example 7.1 For an open subset M of R™ and A, B, «, B € Q(M) let the functions A, f :
M — R be defined by

AXx) =a, f(x)=-2log(A- (cos(t)-x +sin(t)-y)+ B) + .

If A # 0, then the associated horizontally conformal map & : M — C is a proper (2, 1)-
harmonic morphism i.e.

(f)csfy) #Oa Dl()"7 f)=0’ D2()‘-’ f)=09 D3()"af)=07 D4()"7 f)=0

The next result is a reformulation of Proposition 3.9 of [3], see also Corollary 3.1 of
[4]. Together with Example 7.1 it is a useful tool for manufacturing a large variety of proper
(2, 1)-harmonic morphisms (M, g) — N2, to Riemann surfaces on the non-trivial manifolds
constructed there.

Proposition 7.2 Let (M, g) be a Riemannian manifold, N* be a Riemann surface and ¢
M — C be a proper (2, 1)-harmonic morphism. Further, let F : U — N? be a non-
constant holomorphic function defined on an open subset of C containing ¢ (M). Then the
composition Fo¢ : (M,g) - N Zisa proper (2, 1)-harmonic morphism, in particular a
proper biharmonic map.
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Every complex-valued harmonic function, locally defined in the plane C, is the sum of a
holomorphic and an anti-holomorphic one. This leads us to the next statement.

Proposition 7.3 Let (M, g) be a Riemannian manifold and ¢ : M — C be a submersive
(2, 1)-harmonic morphism. Further, let F, G : U — C be holomorphic functions defined
on an open subset U of C containing ¢(M) and v = F + G. Then the composition y o ¢
(M, g) — C is a biharmonic map. It is proper if and only if

F.(t(¢)) + G.(t($)) # 0.

Proof The tension field 7 is linear so it follows from Proposition7.2 that the composition
Y o¢ : U — C is biharmonic. Following the well-known composition law, see Corollary
3.3.13 of [1], we have

(Y 0 ¢) =dy(1(¢)) + trace Vdyr (dp. dp).

The map ¢ : (M, g) — C is horizontally conformal with dilation of the form ¢* : M — R*.
The standard basis vectors e and e, form a global orthonormal frame on the open subset U
of C. Let X and Y be their horizontal lifts via ¢ so that the vector fields e~ X and e* X form
an orthonormal frame for the horizontal distribution 7 of the tangent bundle 7M. Then

trace Vdy (d¢, dg) = Vdyr(d (e X), dp(e " X))
+Vdy(dp(eY). dp(eY))
= e (Vdy(er. e1) + Vdi (e, €2))
=e¢ P ((F+G))
=0.

Furthermore we have

dy (t(9) = dF(1(¢)) +dG(z(¢))
= F.(1(¢)) + G:(1(9)).

The stated result now follows from these calculations. ]
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