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Abstract
Ekedahl showed that the genus of a curve in characteristic p > 0 with zero Cartier operator
is bounded by p(p−1)/2. We show the bound p+ p(p−1)/2 in case the rank of the Cartier
operator is 1, improving a result of Re.
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1 Introduction

In [1] Ekedahl gave a bound for the genus g of an irreducible smooth complete curve over an
algebraically closed field of characteristic p > 0 with zero Cartier operator: g ≤ p(p−1)/2.
This bound is sharp and was generalized by Re to curves with Cartier operator of given
rank [2]. He showed for hyperelliptic curves whose Cartier operator has rank m the bound
g < mp + (p + 1)/2, and for non-hyperelliptic curves

g ≤ mp + (m + 1)p(p − 1)/2. (1)

He also showed that if the Cartier operator C is nilpotent and Cr = 0, then

g ≤ pr (pr − 1)/2.

In this paper we give a strengthening of the result (1) of Re. One can find other related results
in [3,4] and [5].

Theorem 1.1 Let X be an irreducible smooth complete curve of genus g over an algebraically
closed field of characteristic p > 0. If the rank of the Cartier operator of X equals 1, we
have g ≤ p(p + 1)/2.
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This is sharp for example for p = 2, see [6, Lemma 4.8]. In the case of higher rank we have
the following result.

Theorem 1.2 Let X be an irreducible smooth complete curve of genus g over an algebraically
closed field of characteristic p > 0. If the rank of the Cartier operator of X equals 2, and if
X possesses a point R such that linear system |pR| is base point free, then g ≤ p(p + 3)/2,
while if X does not have such a point, one has the bound g ≤ p(4p + 1)/3.

2 The Cartier operator and linear systems

Fromnowon, by a curvewemean an irreducible smooth complete curve over an algebraically
closed field k of characteristic p > 0. For a curve X with function field k(X), Cartier [7]
defined an operator on rational differential forms with the following properties:

(1) C(ω1 + ω2) = C(ω1) + C(ω2),

(2) C( f pω) = f C(ω),

(3) C(d f ) = 0,
(4) C(d f / f ) = d f / f ,

where f ∈ k(X) is non-zero. Moreover, recall that if x is a separating variable of k(X), any
f ∈ k(X) can be written as

f = f p0 + · · · + f pp−1x
p−1, with fi ∈ k(X). (2)

For a rational differential form ω = f dx with f as in (2), we have C(ω) = f p−1 dx .
In particular Cn( f i d f ) = f (i+1)/pn−1 d f if pn |i + 1, and Cn( f i d f ) = 0 otherwise.
Furthermore, for distinct points Q1, Q2 on X , if there is a rational differential form ω that
ordQ1(ω) ≥ p and ordQ2(ω) = p − 1, then by property 2) above we have ordQ1(C(ω)) ≥ 1
and ordQ2(C(ω)) = 0.

This operator C induces a map C : H0(X ,Ω1
X ) → H0(X ,Ω1

X ) which is σ−1-linear, that
is, it satisfies properties (1) and (2) above, with σ denoting the Frobenius automorphism
of k. We are interested in the relation between the rank of the Cartier operator, defined as
dimk C(H0(X ,Ω1

X )), and the genus g.
Re showed that there is a relation between the rank of Cartier operator and the geometry

of linear systems on a curve. We will list some results that we will use and refer for the proof
to Re’s paper [2]. In the following, X denotes a non-hyperelliptic curve and for D a divisor
on X , we will denote by Hi (D) the vector space Hi (X ,OX (D)).

We will say that a statement holds for a general effective divisor of degree n on X if the
statement is true for divisors in a nonempty open set of effective divisors of degree n on X .
By a general point we mean a general effective divisor of degree 1.We start with a few results
of Re.

Proposition 2.1 [2, Prop. 2.2.2] Let X be a non-hyperelliptic curve with rank(C) = m. Then
for a general effective divisor D = Q1 + · · · + Qm+1 on X with deg D = m + 1, one has

h0(pD) = 1 + h0(pD − Qm+1).

This implies for a general divisor D with deg D > rank(C), that the linear system |pD| is
base point free. As a corollary, we have the following.

Corollary 2.2 [2, Prop. 2.2.3] If X is a non-hyperelliptic curve with zero Cartier operator,
then h0(p Q) ≥ 2 for any point Q on X.
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The following lemma gives a way of estimating dimensions of linear systems.

Lemma 2.3 [2, Lemma 2.3.1] Assume that Q1 and Q2 are general points on a non-
hyperelliptic curve X and that D is a divisor. Then we have

h0(pD + p Q1 + p Q2) − h0(pD + p Q1) ≥ h0(pD + p Q1) − h0(pD).

We now give a generalization of a result of Re.

Proposition 2.4 Let D,E,F be effective divisors on a non-hyperelliptic curve X such that

(1) |F | is base point free;
(2) D > 0 and Supp(D) ∩ Supp(E) = ∅;
(3) There are points Q1, . . . , Qm+1 ∈ Supp(D) and a divisor F1 ∈ |F | such that

ordQi (F1) = 1 for 1 ≤ i ≤ m + 1 and Supp(D) ∩ Supp(F1) = {Q1, . . . , Qm+1};
(4) For these points Qi one has h0(E + ∑m+1

i=1 Qi ) = h0(E);
(5) Qi is not a base point of |D+E+F | for i = 1, . . . ,m+1 and there exist s1, . . . , sm+1 ∈

H0(D + E + F) such that

ordQi (si ) = 0, ordQi (s j ) ≥ p, i �= j, i, j = 1, . . . ,m + 1.

Then we have

h0(D + E + F) − h0(E + F) ≥ h0(D + E) − h0(E) + m + 1.

Proof Let sF1 ∈ H0(F) with divisor F1 and sD ∈ H0(D) with divisor D. We have a
commutative diagram with exact rows:

0 H0(E) H0(D + E) H0(OD)

0 H0(E + F) H0(D + E + F) H0(OD).

·sF1

·sD

·sF1 ·sF1 |D
·sD

Claim 2.5 Multiplication by sF1 induces an injective map

H0(D + E)/sD · H0(E) H0(D + E + F)/sD · H0(E + F).
sF1

This Claim follows if

sF1 · H0(D + E) ∩ sD · H0(E + F) = sF1 · sD · H0(E).

Because of assumptions (2) and (3), the left hand side of this equation is equal to sD ·
s′
F1

· H0(E + ∑m+1
i=1 Qi ), where s′

F1
= sF1/s0 for a section s0 ∈ H0(

∑m+1
i=1 Qi ) with

div(s0) = ∑m+1
i=1 Qi . Then (4) implies H0(E + ∑m+1

i=1 Qi ) = s0 · H0(E). The Claim
follows.

By (5), there exist s1, . . . , sm+1 such that for all i, j with i �= j we have ordQi (si ) = 0 and
ordQi (s j ) ≥ p. Nowwewill show that s1, . . . , sm+1 generate anm+1-dimensional subspace
of H0(D+ E + F)/sD · H0(E + F) with zero intersection with Im(sF1). First we will prove
the zero intersection part. Assume there exist c1, . . . , cm+1 ∈ k such that ξ = ∑m+1

i=1 ci si lies
in Im(sF1). That means ξ = sF1 · r + sD · t with some r ∈ H0(D + E) and t ∈ H0(E + F).
If c1 �= 0 then we obtain ordQ1(ξ) = 0. However, because ordQ1(F1) = ordQ1(sF1) = 1
and ordQ1(sD) = ordQ1(D) ≥ 1, we have 0 = ordQ1(ξ) = ordQ1(sF1 · r + sD · t) ≥ 1, a
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contradiction if c1 �= 0. Similarly, we can show c2 = · · · = cm+1 = 0. Then for any non-zero
element ξ in < s1, . . . , sm+1 > one has ξ /∈ Im(sF1).

Now for the linear independence of s1, . . . , sm+1, if ξ = ∑m+1
i=1 ci si lies in sD ·H0(E+F),

then ξ = sD · t with t ∈ H0(E + F) and we can apply the same argument on the orders of ξ

at Qi as above with r = 0. Then we find ci = 0 for i = 1, . . . ,m + 1. So s1, . . . , sm+1 are
linearly independent in H0(D + E + F)/sD · H0(E + F).

By the injectivity Claim 2.5 above we then have

h0(D + E + F) − h0(D + E) ≥ h0(E + F) − h0(E) + m + 1.


�

3 Proofs of the Theorems 1.1 and 1.2

Before giving the proofs of theorems, we need several lemmas on the relation between the
rank of the Cartier operator and geometrical properties of linear systems on a curve.

Lemma 3.1 Let X be a non-hyperelliptic curve with rank(C) = m ≥ 1. Then there exists
points Q1, . . . , Qm on X such that with D = ∑m

i=1 Qi we have

h0(pD) = 1 + h0(pD − Qm).

Proof Suppose that ω1, . . . , ωm are differentials that generate Im(C). Assume the lemma
is not true, that is, for any m-tuple α = (Q1, . . . , Qm), we have with D = ∑m

i=1 Qi

that h0(p D) = h0(p D − Qm). Then by Serre duality and Riemann–Roch, there exists a
ωD ∈ H0(X ,Ω1

X ) that

ordQi (ωD) ≥ p, 1 ≤ i ≤ m − 1, ordQm (ωD) = p − 1. (3)

Let η := C(ωD) = ∑m
i=1 λi ωi with λi ∈ k. Then one has

ordQi (η) ≥ 1, 1 ≤ i ≤ m − 1, ordQm (η) = 0. (4)

Suppose now thatω1, . . . , ωm have a common base point R. Then define Qm = R and choose
general points Q1, . . . , Qm−1 such that Q1, . . . , Qm−1, R formm distinct points. Then with
D = ∑m−1

i=1 Qi + R we have h0(pD) = h0(pD − R), hence there exists a ωD satisfying
(3). Then η = C(ωD) satisfies (4) and we have 0 = ordQm (η) = ordQm (

∑m
i=1 λiωi ) ≥ 1, a

contradiction.
So we may assume that ω1, . . . , ωm have no common base point. Choose a point Q1

such that ω1 does not vanish at Q1, but ω2, . . . , ωm vanish at Q1. More generally, assume
furthermore that we have Q1, . . . , Qn such that ordQi (ωi ) = 0 and ordQi (ω j ) > 0 for
i = 1, . . . , n and i < j ≤ m.

If ωn+1, . . . , ωm have a base point R different from Qi for i = 1, . . . , n, then we choose
Qn+1, . . . , Qm−1 general distinct points, Qm = R and let α = (Q1, . . . , Qm). By assump-
tion h0(p D) = h0(p D − Qm) for D = ∑m

i=1 Qi , and we find a differential form ωD

satisfying (3) and therefore a form η = C(ωD) satisfying (4), again a contradiction.
So we may assume that ωn+1, . . . , ωm do not have common base points except

Q1, . . . , Qn . Choose now a point Qn+1 different from Q1, . . . , Qn such that ωn+1 does
not vanish at Qn+1, but ωn+2, . . . , ωm all vanish at Qn+1. By induction on n, we find points
Q1, . . . , Qm−1 with ordQi (ωi ) = 0 and ordQi (ω j ) ≥ 1 for j > i and j = 2, . . . ,m.

Now if ωm has a zero distinct from Qi for i = 1, . . . ,m − 1, say Qm , we let α =
(Q1, . . . , Qm) and D = ∑m

i=1 Qi . The assumption h0(pD) = h0(pD − Qm) gives us a
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differential form ωD and η = C(ωD) = ∑m
i=1 λi ωi . By (4) we have 0 = ordQm (η) =

ordQ(λmωm) ≥ 1, a contradiction. So ωm has no zeros outside Q1, . . . , Qm−1.
Now deg(ωm) = 2g−2 ≥ m for g ≥ 2, so ωm vanishes at one Qi with multiplicity larger

than one, say Qm−1. Then with D = ∑m−2
i=1 Qi + 2Qm−1 we have h0(pD) = h0(pD −

Qm−1), giving us a differential form ωD , and η = C(ωD) = ∑m
i=1 λi ωi . Then we have

ordQi (η) ≥ 1 for i = 1, . . . ,m − 2 and ordQm−1(η) = 1. However, by the induction
assumption

ordQi (ωi ) = 0, ordQi (ω j ) ≥ 1, 1 ≤ i < j ≤ m − 1,

ordQl (ωm) ≥ 1, ordQm−1(ωm) ≥ 2, l = 1, 2, . . . ,m − 2.

So we must have λi = 0 for i = 1, . . . ,m − 1 and ordQm−1(η) ≥ 2, and we therefore find
h0(pD) = 1 + h0(pD − Qm). 
�

By putting m = 1 in the Lemma 3.1 above, we have the following.

Corollary 3.2 Let X be a non-hyperelliptic curve. If the Cartier operator has rank(C) = 1,
there exists a point R of X such that

h0(pR) = 1 + h0((p − 1)R).

Combining Lemma 3.1 above and Proposition 2.4, we have the following result. We denote
the canonical divisor (class) by KX .

Corollary 3.3 Let X be a non-hyperelliptic curve with rank(C) = 1 and let Tn be a general
effective divisor of degree n. Put E = p Tn and let R be a point of X with h0(pR) =
1 + h0((p − 1)R). Then the following holds.
(i) If h0(KX − E) ≤ 1, one has for general points Q1, Q2

h0
(

E + pR +
2∑

i=1

p Qi

)

− h0
(

E +
2∑

i=1

p Qi

)

= p.

(ii) If h0(KX − E) ≥ 2, one has for general points Q1, Q2

h0
(

E + pR +
2∑

i=1

p Qi

)

− h0
(

E +
2∑

i=1

p Qi

)

≥ 2 + h0(E + pR) − h0(E).

Proof Note that the existence of R is provided by Corollary 3.2 above.

(i) If h0(KX − E) = 0, i.e. E is non-special, Riemann–Roch implies statement i). If
h0(KX−E) = 1,we choose Q1 a non-base point of |KX−E |, then h0(KX−E−Q1) = 0,
hence h0(KX − E − p Q1) = 0. Therefore h0(KX − E −∑2

i=1 p Qi ) = h0(KX − E −
∑2

i=1 p Qi − p R) = 0 and by Riemann–Roch we have h0(E + ∑2
i=1 p Qi + p R) −

h0(E + ∑2
i=1 p Qi ) = p.

(ii) If h0(KX−E) ≥ 2,wewrite D = p Q1+ p Q2, E = p Tn and F = p R andwe proceed
to verify the conditions (1)−(5) of Proposition 2.4 in this case. Conditions (1) and (2)
are easy consequences of the generality assumptions of Q1, Q2 and R. For condition
(3), if the linear system |pR| induces a separable map to projective space, then we can
choose Q1 and Q2 to be points where the map is smooth and find an effective divisor F1
such that ordQ1(F1) = ordQ2(F1) = 1. If, on the contrary, the map induced by |pR| is
inseparable, then dim |R| ≥ 1, which is not true for curves of genus larger than zero.
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Condition (4) is satisfied oncewe choose Q1 to be a non-base point of |KX−E | and Q2 a non-
base point of |KX−E−Q1|, since h0(KX−E) ≥ 2. Thenwe have h0(KX−E−∑2

i=1 Qi ) =
h0(KX − E) − 2.

Condition (5) holds as |E + pR+ pQ1 + pQ2| is base point free by Proposition 2.1 if Q1

and Q2 are general. Furthermore by Proposition 2.1,we have h0(E+pQi ) = 1+h0(E+(p−
1)Qi ) for i = 1, 2. Thenwe obtain s1 and s2 in H0(E+ pR+ pQ1+ pQ2) = H0(D+E+F)

such that for all i, j we have ordQi (si ) = 0 and ordQi (s j ) ≥ p for j �= i .
Then we conclude by Proposition 2.4 above. 
�

Now we can state some numerical consequences of Corollary 3.3.

Corollary 3.4 Let X be a non-hyperelliptic curve with rank(C) = 1. Denote by Dn a general
divisor of degree n. Then for any integer n ≥ 1, one has

(i) p ≥ h0(pD2n) − h0(pD2n−1) ≥ min(2n − 1, p).
(ii) For 1 ≤ n ≤ �(p + 1)/2, one has p ≥ h0(pD2n−1) − h0(pD2n−2) ≥ 2n − 2.
(iii) pDp is non-special, i.e. h0(KX − pDp) = 0.
(iv) For 1 ≤ n ≤ [(p + 1)/2], one has h0(pD2n) − h0(pD2n−2) ≥ 4n − 3.
(v) For 1 ≤ n ≤ [(p + 1)/2], one has

h0(KX − pD2n−2) − h0(KX − pD2n) ≤ 2p − 4n + 3.

(vi) h0(KX − pDp−1) ≤ 1 for p ≥ 3.

Proof (i) For n ∈ Z>0, one can always has p ≥ h0(pD2n) − h0(pD2n−1). We will prove
the second inequality in (i) by induction on n.

In the case n = 1, by Proposition 2.1, for general points Q1, Q2 one has

h0(pQ1 + pQ2) = 1 + h0(pQ1 + (p − 1)Q2),

and thus with D2 = Q1 + Q2 and D1 = Q1, we see h0(pD2) ≥ 1 + h0(pD1). Now we do
induction and assume h0(pD2n−2) − h0(pD2n−3) ≥ 2n − 3. We apply Corollary 3.3 with
E = pD2n−3 for n ≥ 2. If h0(KX − E) ≤ 2, then we have h0(pD2n) − h0(pD2n−1) = p.
Otherwise, Corollary 3.3 implies

h0(pD2n) − h0(pD2n−1) ≥ 2 + h0(pD2n−2) − h0(pD2n−3) ≥ 2n − 1.

and we are done.
(ii) The case n = 1 is trivial. Assuming the assertion for n − 1, we will prove

h0(pD2n−1) − h0(pD2n−2) ≥ 1 + h0(pD2n−2) − h0(pD2n−3), (5)

and by (i) the right hand side is at least 2n−2, which suffices for (ii). To prove the inequality
(5), take D = p Q1, E = p D2n−3 and F = p R with the point R satisfying h0(pR) =
1 + h0((p − 1)R) (see Corollary 3.2) and Q1 a general point. We are going to verify the
conditions (1)−(5) of Proposition 2.4 in the case of m = 0. Conditions (1) and (2) are
obvious by the property of R and generality of Q1. For condition (3), the map induced by
|pR| is separable for curves of genus g > 0. We can choose Q1 to be a point where the map
is smooth.

For condition (4) we can choose Q1 to be a non-base point of |KX − E | as it is non-
empty. For condition (5), as E = pD2n−3 with n ≥ 2, we have for any point Q in Supp(E),
|pQ + pQ1| is base point free due to Proposition 2.1. Then |D + E + F | is base point free
and by Proposition 2.4 we have

h0(pD2n−1) − h0(pD2n−2) ≥ 1 + h0(pD2n−2) − h0(pD2n−3) ≥ 2n − 2.
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(iii) For p odd, we let n = (p + 1)/2 and apply (i) get h0(pDp+1) − h0(pDp) ≥ p. For
p = 2, we let n = 2 and apply (ii) we also get h0(pDp+1) − h0(pDp) ≥ p. So we have
h0(KX − pDp) = h0(KX − pDp+1). In other words, for a general point Q, we see that
p Q lies in the base locus of |KX − pDp|. This can only happen when h0(KX − pDp) = 0.
Property (iv) follows by combining (i) and (ii). Property (v) follows by (iv) and Riemann–
Roch. For property (vi), by (ii) and (iii), it is known that

h0(pDp) − h0(pDp−1) ≥ p − 1, h0(KX − pDp) = 0.

We have

h0(KX − pDp−1) = h0(pDp−1) − 1 + g − p(p − 1)

≤ h0(pDp) − 1 + g − p(p − 1) − (p − 1)

= h0(KX − pDp) + 1 = 1.


�
Using the inequalities in Corollary 3.4, we can easily prove Theorem 1.1.

Proof (Proof of Theorem 1.1) We estimate g = h0(KX ) by

h0(KX ) =
�(p−1)/2∑

n=1

(h0(KX − pD2n−2) − h0(KX − pD2n)) + h0(KX − pD2�(p−1)/2)

≤
�(p−1)/2∑

n=1

(2p − 4n + 3) + h0(KX − pD2�(p−1)/2) = p(p + 1)/2.


�
Our approach to the case rank(C) = 2 is similar, but there are differences due to the

existence of special linear systems. We now give the analogue of Corollary 3.3.

Corollary 3.5 Let X be a non-hyperelliptic curve with rank(C) = 2, and let Tn be a general
effective divisor of degree n and put E = p Tn. Let Q1, Q2, Q3 be general points of X and
put D = E + ∑3

i=1 p Qi .
(1) Assume there exists R of X such that h0(p R) = 1 + h0((p − 1) R).

(a) If h0(KX − E) ≤ 2, then one has h0(D + pR) − h0(D) = p.
(b) If h0(KX − E) ≥ 3, then one has

h0(D + pR) − h0(D) ≥ h0(E + pR) − h0(E) + 3.

(2) If there does not exist such a point R, we choose points R1,R2 satisfying h0(
∑2

i=1 p Ri ) =
1 + h0(

∑2
i=1 p Ri − R2) and let deg E ≥ 2p.

(a) If h0(KX − E) ≤ 2, then one has h0(D + ∑2
j=1 pR j ) − h0(D) = 2p.

(b) If h0(KX − E) ≥ 3, then one has

h0
(

D +
2∑

i=1

pR j

)

− h0(D) ≥ h0

⎛

⎝E +
2∑

j=1

pR j

⎞

⎠ − h0(E) + 3.

Note that in (2) we can choose such R1 and R2 by Lemma 3.1. The proof is similar to the
proof of Corollary 3.3. But we point out that in the proof of part (2), instead of using the
separable map induced by |p R| in part (ii) of the proof of Corollary 3.3, we consider the

123



576 Z. Zhou

map induced by |p R1 + p R2| with points R1 and R2. This map is separable, otherwise
dim |R1 + R2| ≥ 1, contradicting that X is non-hyperelliptic.

The following two corollaries are the analogues of Corollary 3.4.

Corollary 3.6 Let X be a non-hyperelliptic curve with rank(C) = 2. Denote by Dn a general
divisor of degree n. If there exists a point R of X that |p R| is base point free, then for any
integer n ≥ 1, one has

(i) p ≥ h0(pD3n) − h0(pD3n−1) ≥ min(3 n − 2, p).
(ii) For 1 ≤ n ≤ �(p + 2)/3, one has

2 p ≥ h0(pD3n−1) − h0(pD3n−3) ≥ max(6 n − 7, 0).

(iii) pDp+1 is non-special, i.e. h0(KX − p Dp+1) = 0.
(iv) For 1 ≤ n ≤ [(p + 2)/3], one has h0(pD3n) − h0(pD3n−3) ≥ 9 n − 9.
(v) For 1 ≤ n ≤ [(p + 2)/3], one has

h0(KX − pD3n−3) − h0(KX − pD3n) ≤ 3 p − 9 n + 9.

(vi) h0(KX − pD3�(p−1)/3) ≤ 3.

Corollary 3.7 Let X be a non-hyperelliptic curve with rank(C) = 2. Denote by Dn a general
divisor of degree n. If X does not possess a point R such that |p R| is base point free, then
for any integer n ≥ 1, one has

(i) 2 p ≥ h0(pD3n) − h0(pD3n−2) ≥ min(3 n − 2, 2p).
(ii) For 2 ≤ n ≤ �(2p + 2)/3, one has

2 p ≥ h0(pD3n−2) − h0(pD3n−3) ≥ 1.

(iii) pD2p is non-special, i.e. h0(KX − pD2p) = 0.
(iv) For 2 ≤ n ≤ [(2p + 2)/3], one has h0(pD3n) − h0(pD3n−3) ≥ 3 n − 1. For n = 1,

one has h0(pD3) − h0(pD0) ≥ 1.
(v) For 2 ≤ n ≤ [(2p + 2)/3], one has

h0(KX − pD3n−3) − h0(KX − pD3n) ≤ 3 p − 3 n + 1.

For n = 1, one has h0(KX ) − h0(KX − pD3) ≤ 3 p − 1.
(vi) h0(KX − pD3�(2p−1)/3) ≤ p − 1.

The proofs of two corollaries above are similar to the proof of Corollary 3.4 and therefore
we omit these. The corollaries above now readily imply the proof of theorem in the case of
rank(C) = 2.

Proof (Proof of Theorem 1.2) (1) If |p R| is base point free, then by Corollary 3.6 we have

h0(KX ) ≤
�(p−1)/3∑

n=1

(h0(KX − pD3n−3) − h0(KX − pD3n)) + h0(KX − pD3�(p−1)/3)

≤
�(p−1)/3∑

n=2

(3 p − 9 n + 9) + 1 + 3 = p (p + 3)/2.

(2) Otherwise, by Corollary 3.7 we have

h0(KX ) ≤
�(2p−1)/3∑

n=1

(h0(KX − pD3n−3) − h0(KX − pD3n)) + h0(KX − pD3�(2p−1)/3)
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≤
�(2p−1)/3∑

n=2

(3 p − 3 n + 1) + 3 p − 1 + p − 1 = p (4 p + 1)/3.
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