Erratum to: A note on deformations of regular embeddings

C. Ciliberto ${ }^{1}$ • F. Flamini ${ }^{1}$ (D) C. Galati ${ }^{2}$ (D) A. L. Knutsen ${ }^{3}$

Erratum to: Rend. Circ. Mat. Palermo, II. Ser DOI 10.1007/s12215-016-0276-4

The main result of the paper Proposition 1.3 is wrongly stated. Nevertheless, the proof of Proposition 1.3 and Proposition 1.5 provides a complete description of $\operatorname{Def}_{v}(\mathbf{k}[\epsilon])$ and the paper needs only the corrections below.

Corrections

- The statement of Proposition 1.3 has to be replaced by the following, which is exactly what is proved.

Proposition 1.3 Letv $: X \hookrightarrow Y$ be a regular closed embedding of reduced algebraic schemes and let $\operatorname{Def}_{X / v / Y}$ be the deformation functor of v preserving X and Y (cf. [3, §3.4.1]). Then,

The online version of the original article can be found under doi:10.1007/s12215-016-0276-4.

[^0]there exists a surjective morphism Φ from $\operatorname{Def}_{v}(\mathbf{k}[\epsilon])$ to the fiber product

whose kernel is the image of the natural map $\Delta: \operatorname{Def}_{X / v / Y}(\mathbf{k}[\epsilon]) \longrightarrow \operatorname{Def}_{v}(\mathbf{k}[\epsilon])$.
Recalling that
$$
\operatorname{Def}_{X / v / Y}(\mathbf{k}[\epsilon]) \simeq \operatorname{Hom}_{\mathcal{O}_{X}}\left(v^{*} \Omega_{Y}^{1}, \mathcal{O}_{X}\right)=\operatorname{Hom}_{\mathcal{O}_{X}}\left(\left.\Omega_{Y}^{1}\right|_{X}, \mathcal{O}_{X}\right),
$$
by Proposition 1.5, we obtain the following result describing $\operatorname{Def}_{v}(\mathbf{k}[\epsilon])$, which is now to be considered the main result of the paper. (In the statement, the map $\beta:\left.\Omega_{Y}^{1}\right|_{X} \longrightarrow \Omega_{X}^{1}$ is the one in the conormal sequence.)

Theorem Let v:X $\hookrightarrow Y$ be a regular closed embedding of reduced algebraic schemes. Then, there exists a long exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{\mathcal{O}_{X}}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right) \times_{\operatorname{Hom}_{\mathcal{O}_{X}}\left(\left.\Omega_{Y}^{1}\right|_{X}, \mathcal{O}_{X}\right)} \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\Omega_{Y}^{1}, \mathcal{O}_{Y}\right) \longrightarrow \operatorname{Hom}_{\mathcal{O}_{X}}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right) \times \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\Omega_{Y}^{1}, \mathcal{O}_{Y}\right)-\operatorname{Hom}_{\mathcal{O}_{X}}\left(\left.\Omega_{Y}^{1}\right|_{X}, \mathcal{O}_{X}\right) \xrightarrow{\Delta} \operatorname{Def}_{v}(\mathbf{k}[\epsilon]) \xrightarrow{\Phi} \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right) \times_{\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{Y}^{1} \mid X, \mathcal{O}_{X}\right)} \operatorname{Ext}_{\mathcal{O}_{Y}}^{1}\left(\Omega_{Y}^{1}, \mathcal{O}_{Y}\right) \longrightarrow 0
\end{aligned}
$$

where the map Θ is given by $\Theta(\xi, \eta)=\xi \circ \beta-\left.\eta\right|_{X}$.
Proof The second row of the above exact sequence follows from (the above version of) Proposition 1.3 and (\dagger).

By the definition of $\operatorname{Hom}_{\mathcal{O}_{X}}\left(v^{*} \Omega_{Y}^{1}, \mathcal{O}_{X}\right)$ and $\operatorname{Def}_{v}(\mathbf{k}[\epsilon])$ (cf. [3, p. 158 and p. 177]), an element mapped to zero by Δ corresponds to a first order deformation

$$
\tilde{v}: X \times \operatorname{Spec}(\mathbf{k}[\epsilon]) \rightarrow Y \times \operatorname{Spec}(\mathbf{k}[\epsilon])
$$

of v that is trivializable. More precisely, denoting by $H_{X} \subset \operatorname{Aut}(X \times \operatorname{Spec}(\mathbf{k}[\epsilon]))$ the space of automorphisms restricting to the identity on the closed fiber and similarly for $H_{Y} \subset$ $\operatorname{Aut}(Y \times \operatorname{Spec}(\mathbf{k}[\epsilon]))$, there exist $\alpha \in H_{X}$ and $\beta \in H_{Y}$, such that

$$
\alpha \circ\left(v \times \operatorname{Id}_{\operatorname{Spec}(\mathbf{k}[\epsilon])}\right) \circ \beta=\tilde{v} .
$$

Then, one obtains a natural map $H_{X} \times H_{Y} \rightarrow \operatorname{Def}_{X / v / Y}(\mathbf{k}[\epsilon])$ whose image is the kernel of Δ. By (\dagger) and the well-known isomorphisms $H_{X} \simeq \operatorname{Hom}_{\mathcal{O}_{X}}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right)$ and $H_{Y} \simeq \operatorname{Hom}_{\mathcal{O}_{Y}}\left(\Omega_{Y}^{1}, \mathcal{O}_{Y}\right)$ (cf. [3, Lemma 1.2.6]), this map may be identified with Θ. The kernel of Θ is by definition as in the statement.

- In the first column of diagram (11), the vector space $\operatorname{Def}_{v}(\mathbf{k}[\epsilon])$ must be replaced by the quotient $\operatorname{Def}_{v}(\mathbf{k}[\epsilon]) / \operatorname{Im}(\Delta)$.
- The paragraph "We remark that $\operatorname{Ext}^{1}\left(\delta_{1}, \delta_{0}\right) \ldots$ not isomorphic to it." in $\S 1.4$ has to be replaced by the following:
"We remark that $\operatorname{Ext}^{1}\left(\delta_{1}, \delta_{0}\right)$ coincides with $\operatorname{Def}_{v}(\mathbf{k}[\epsilon])$ in the case when $f: X \rightarrow Y$ is a regular embedding. $\operatorname{By}(11)$, with $\operatorname{Def}_{v}(\mathbf{k}[\epsilon])$ replaced by $\operatorname{Def}_{v}(\mathbf{k}[\epsilon]) / \operatorname{Im}(\Delta)$, one has $\varphi_{1}=\lambda-\mu$. Therefore,

$$
\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right) \times_{\operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{Y}^{1} \mid X, \mathcal{O}_{X}\right)} \operatorname{Ext}_{\mathcal{O}_{Y}}^{1}\left(\Omega_{Y}^{1}, \mathcal{O}_{Y}\right) \simeq \operatorname{Ker}\left(\varphi_{1}\right),
$$

Δ coincides with ∂ and Θ with φ_{0}. Example 1.7 below gives an instance where $\partial=\Delta$ is nonzero."

- In the proof of Lemma 2.1, the exact sequence (13) is not exact on the left, but this does not affect the proof.
- Replace the statement of Corollary 2.2 by the following:

Corollary 2.2 There is a natural surjective map

$$
\tau: \mathrm{T}_{(S, C)} \mathcal{V}_{m, \delta} \longrightarrow \operatorname{Def}_{\phi}(\mathbf{k}[\epsilon]) \simeq \operatorname{Def}_{v}(\mathbf{k}[\epsilon]) .
$$

Moreover, if X is stable, then the differential of the moduli map of $\psi_{m, \delta}$ at (S, C) factors as

$$
\begin{aligned}
& d_{(S, C)} \psi_{m, \delta}: \mathrm{T}_{(S, C)} \mathcal{V}_{m, \delta} \xrightarrow{\tau} \operatorname{Def}_{v}(\mathbf{k}[\epsilon]) \\
& \quad \longrightarrow \operatorname{Def}_{v}(\mathbf{k}[\epsilon]) / \operatorname{Im}(\Delta) \xrightarrow{p_{X}} \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{X}, \mathcal{O}_{X}\right) \simeq T_{[X]} \overline{\mathcal{M}}_{g},
\end{aligned}
$$

where p_{X} is the map appearing in the correct version of (11).
In particular, if $\operatorname{Ext}_{\mathcal{O}_{Y}}^{2}\left(\Omega_{Y}^{1}(X), \mathcal{O}_{Y}\right)=0$, then $d_{(S, C)} \psi_{m, \delta}$ is surjective; if

$$
\operatorname{Ext}_{\mathcal{O}_{Y}}^{1}\left(\Omega_{Y}^{1}(X), \mathcal{O}_{Y}\right)=\operatorname{Hom}_{\mathcal{O}_{X}}\left(\left.\Omega_{Y}^{1}\right|_{X}, \mathcal{O}_{X}\right)=\operatorname{Hom}_{\mathcal{O}_{Y}}\left(\Omega_{Y}^{1}, \mathcal{O}_{Y}\right)=0
$$

then $d_{(S, C)} \psi_{m, \delta}$ is injective.

- At the end of Remark 2.3, add "In this case, using the above notation, one has $\operatorname{Hom}_{\mathcal{O}_{Y}}\left(\Omega_{Y}^{1}, \mathcal{O}_{Y}\right)=H^{0}\left(Y, T_{Y}\right)=0$, and moreover, by [2, (4) in proof of Prop. 1.2], $\operatorname{Hom}_{\mathcal{O}_{X}}\left(\left.\Omega_{Y}^{1}\right|_{X}, \mathcal{O}_{X}\right)=H^{0}\left(X, T_{\left.Y\right|_{X}}\right)=0 . "$

Acknowledgements We wish to thank Marco Manetti for having kindly pointed out to us that the statement of Proposition 1.3 in [1] was wrong and provided precious informations on related topics.

References

1. Ciliberto, C., Flamini, F., Galati, C., Knutsen, A.L.: A note on deformations of regular embeddings. Rend. Circ. Mat. Palermo, II. Ser (2016). doi:10.1007/s12215-016-0276-4
2. Ciliberto, C., Knutsen, A.L.: On k-gonal loci in Severi varieties on general $K 3$ surfaces and rational curves on hyperkähler manifolds. J. Math. Pures Appl. 101, 473-494 (2014)
3. Sernesi, E.: Deformations of Algebraic Schemes, Grundlehren der mathematischen Wissenschaften, vol. 334. Springer, Berlin (2006)

[^0]: C. Galati
 galati@mat.unical.it
 C. Ciliberto
 cilibert@mat.uniroma2.it
 F. Flamini
 flamini@mat.uniroma2.it
 A. L. Knutsen
 andreas.knutsen@math.uib.no
 1 Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00173 Rome, Italy
 2 Dipartimento di Matematica, Università della Calabria, via P. Bucci, cubo 31B, 87036 Arcavacata di Rende, CS, Italy
 3 Department of Mathematics, University of Bergen, Postboks 7800, 5020 Bergen, Norway

