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Abstract Using a generalized spherical mean operator, we obtain an analog of Theorem 5.2
in Younis (J Math Sci 9(2),301–312 1986) for the Dunkl transform for functions satisfying
the d-Dunkl Dini Lipschitz condition in the space L2(Rd , wk(x)dx), where wk is a weight
function invariant under the action of an associated reflection group.
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1 Introduction and preliminaries

Younis Theorem 5.2 [13] characterized the set of functions in L2(R) satisfying the Cauchy
Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier
transforms, namely, we have the following

Theorem 1.1 [13] Let f ∈ L2(R). Then the following are equivalents

1. ‖ f (x + h) − f (x)‖2 = O

(
hα

(log 1
h )β

)
as h −→ 0, 0 < α < 1, β ≥ 0,

2.
∫
|x |≥r |F( f )(x)|2dx = O

(
r−2α

(log r)2β

)
as r −→ +∞,

where F stands for the Fourier transform of f .
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In this paper, we obtain an analog of Theorem 1.1 for the Dunkl transform on R
d . For

this purpose, we use a generalized spherical mean operator. We point out that similar results
have been established in the Bessel transform [4].

We consider the Dunkl operators Di ; 1 ≤ i ≤ d , on R
d , which are the differential-

difference operators introduced by Dunkl in [6]. These operators are very important in pure
mathematics and in physics. The theory of Dunkl operators provides generalizations of var-
ious multivariable analytic structures, among others we cite the exponential function, the
Fourier transform and the translation operator. For more details about these operators see
[5–7]. The Dunkl Kernel Ek has been introduced by Dunkl in [8]. This Kernel is used to
define the Dunkl transform.

Let R be a root system in R
d , W the corresponding reflection group, R+ a positive sub-

system of R (see [5,7,9–11]) and k a non-negative and W -invariant function defined on R.
The Dunkl operators is defined for f ∈ C1(Rd) by

D j f (x) = ∂ f

∂x j
(x) +

∑
α∈R+

k(α)α j
f (x) − f (σα(x))

〈α, x〉 , x ∈ R
d (1 ≤ j ≤ d)

Here 〈, 〉 is the usual euclidean scalar product on R
d with the associated norm |.| and

σα the reflection with respect to the hyperplane Hα orthogonal to α, and α j = 〈α, e j 〉,
(e1, e2, . . . , ed) being the canonical basis of R

d .
The weight function wk defined by

wk(x) =
∏

ζ∈R+
|〈ζ, x〉|2k(α), x ∈ R

d ,

where wk is W -invariant and homogeneous of degree 2γ where

γ = γ (R) =
∑

ζ∈R+
k(ζ ) ≥ 0.

The Dunkl Kernel Ek on R
d × R

d has been introduced by Dunkl in [8]. For y ∈ R
d the

function x 
→ Ek(x, y) is the unique solution on R
d of{

D j u(x, y) = y j u(x, y) for 1 ≤ j ≤ d
u(0, y) = 1 for all y ∈ R

d

Ek is called the Dunkl Kernel.

Proposition 1.2 [5] Let z, w ∈ C and λ ∈ C. Then

1. Ek(z, 0) = 1.
2. Ek(z, w) = Ek(w, z).
3. Ek(λz, w) = Ek(z, λw).
4. For all ν = (ν1, . . . , νd) ∈ N

d , x ∈ R
d , z ∈ C

d , we have

|∂ν
z Ek(x, z)| ≤ |x ||ν|exp(|x ||Re(z)|),

where

∂ν
z = ∂ |ν|

∂zν11 . . . ∂zνdd
, |ν| = ν1 + · · · + νd .

In particular

|∂ν
z Ek(i x, z)| ≤ |x |ν,

for all x, z ∈ R
d .
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The Dunkl transform is defined for f ∈ L1
k(R

d) = L1(Rd , wk(x)dx) by

f̂ (ξ) = c−1
k

∫
Rd

f (x)Ek(−iξ, x)wk(x)dx,

‘where the constant ck is given by

ck =
∫
Rd

e
−|z|2
2 wk(z)dz.

TheDunkl transform shares several properties with its counterpart in the classical case, we
mention here in particular that Parseval Theoremholds in L2

k = L2
k (R

d) = L2
k (R

d , wk(x)dx),
when both f and f̂ are in L1

k(R
d), we have the inversion formula

f (x) =
∫
Rd

f̂ (ξ)Ek(i x, ξ)wk(ξ)dξ, x ∈ R
d .

In L2
k (R

d), consider the generalized spherical mean operator defined by

Mh f (x) = 1

dk

∫

Sd−1

τx ( f )(hy)dηk(y), (x ∈ R
d , h > 0)

where τx Dunkl translation operator (see [11,12]), η is the normalized surface measure on
the unit sphere S

d−1 in R
d and set dηk(y) = wk(x)dη(y), ηk is a W -invariant measure on

Sd−1 and dk = ηk(Sd−1).
We see that Mh f ∈ L2

k (R
d) whenever f ∈ L2

k (R
d) and

‖Mh f ‖L2
k

≤ ‖ f ‖L2
k
,

for all h > 0.
For p ≥ − 1

2 , we introduce the normalized Bessel function of the first kind jp defined by

jp(z) = (p + 1)
∞∑
n=0

(−1)n( z2 )
2n

n!(n + p + 1)
, z ∈ C. (1)

Lemma 1.3 [1] The following inequalities are fulfilled

1. | jp(x)| ≤ 1,
2. 1 − jp(x) = O(1), x ≥ 1.
3. 1 − jp(x) = O(x2); 0 ≤ x ≤ 1.

From lemma 1.3, we have

|1 − jp(x)| ≤ Cpx, ∀x ∈ R
+ (2)

Lemma 1.4 The following inequality is true

|1 − jp(x)| ≥ c,

with |x | ≥ 1, where c > 0 is a certain constant which depends only on p.

Proof (Analog of lemma 2.9 in [3]) �
Moreover, from (1) we see that

lim
z→0

(
j
γ+ d

2 −1(z) − 1
)

z2
�= 0 (3)
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Proposition 1.5 Let f ∈ L2
k (R

d). Then

(̂Mh f )(ξ) = j
γ+ d

2 −1(h|ξ |) f̂ (ξ).

i.e

Mh f (x) =
∫

Rd

j
γ+ d

2 −1(h|ξ |) f̂ (ξ)Ek(i x, ξ)wk(ξ)dξ

and

f (x) =
∫

Rd

f̂ (ξ)Ek(i x, ξ)wk(ξ)dξ.

We have

Mh f (x) − f (x) =
∫

Rd

( j
γ+ d

2 −1(h|ξ |) − 1) f̂ (ξ)Ek(i x, ξ)wk(ξ)dξ. (4)

Invoking Parseval’s identity (4) gives

‖Mh f (x) − f (x)‖2
L2
k

=
∫

Rd

| j
γ+ d

2 −1(h|ξ |) − 1|2| f̂ (ξ)|2wk(ξ)dξ.

2 Dini Lipschitz condition

Definition 2.1 Let f (x) ∈ L2
k (R

d), and let

‖Mh f (x) − f (x)‖L2
k

≤ C
hα

(log 1
h )γ

, γ ≥ 0

i.e

‖Mh f (x) − f (x)‖L2
k

= O

(
hα

(log 1
h )γ

)
,

for all x in R
d and for all sufficiently small h, C being a positive constant. Then we say that

f satisfies a d-Dunkl Dini Lipschitz of order α, or f belongs to Lip(α, γ ).

Definition 2.2 If however

‖Mh f (x) − f (x)‖L2
k

hα

(log 1
h )γ

→ 0 as h → 0

i.e

‖Mh f (x) − f (x)‖L2
k

= o

(
hα

(log 1
h )γ

)
as h → 0, γ ≥ 0

then f is said to be belong to the little d-Dunkl Dini Lipschitz class li p(α, γ ).

Remark It follows immediately from these definitions that

li p(α, γ ) ⊂ Lip(α, γ ).
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Theorem 2.3 Let α > 1. If f ∈ Lip(α, γ ), then f ∈ li p(1, γ ).

Proof For x ∈ R
d and h small, f ∈ Lip(α, γ ) we have

‖Mh f (x) − f (x)‖L2
k

≤ C
hα

(log 1
h )γ

.

Then (
log

1

h

)γ

‖Mh f (x) − f (x)‖L2
k

≤ Chα

Therefore

(log 1
h )γ

h
‖Mh f (x) − f (x)‖L2

k
≤ Chα−1,

which tends to zero with h → 0. Thus

(log 1
h )γ

h
‖Mh f (x) − f (x)‖L2

k
→ 0 as h → 0

Then f ∈ li p(1, γ ). �
Theorem 2.4 If α < β, then Lip(α, 0) ⊃ Lip(β, 0) and lip(α, 0) ⊃ li p(β, 0).

Proof We have 0 ≤ h ≤ 1 and α < β, then hβ ≤ hα .
Then the proof of this theorem. �

Theorem 2.5 Let f, g ∈ L2
k (R

d) such that Mh( f g)(x) = Mh f (x)Mhg(x). If f, g ∈
Lip(α, γ ), then f g ∈ Lip(α, γ ).

Proof Since f, g ∈ Lip(α, γ ), we have for all x in R
d

‖Mh f (x) − f (x)‖L2
k

≤ C f
hα

(log 1
h )γ

and

‖Mhg(x) − g(x)‖L2
k

≤ Cg
hα

(log 1
h )γ

It is clear that

‖Mh( f g)(x) − f (x)g(x)‖L2
k

= ‖Mh( f g)(x) − f (x)Mhg(x) + f (x)Mhg(x) − f (x)g(x)‖L2
k

= ‖Mh f (x)Mhg(x) − f (x)Mhg(x) + f (x)Mhg(x) − f (x)g(x)‖L2
k

= ‖Mhg(x)(Mh f (x) − f (x)) + f (x)(Mhg(x) − g(x))‖L2
k

≤ ‖Mhg(x)‖L2
k
‖Mh f (x) − f (x)‖L2

k
+ ‖ f (x)‖L2

k
‖Mhg(x) − g(x)‖L2

k

≤ K1C f
hα

(log 1
h )γ

+ K2Cg
hα

(log 1
h )γ

≤ M
hα

(log 1
h )γ

,

where M = max(K1C f , K2Cg). Then f g ∈ Lip(α, γ ) �
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3 New results on Dini Lipschitz class

Theorem 3.1 Let α > 2. If f belong to the d-Dunkl Dini Lipschitz class, i.e

f ∈ Lip(α, γ ), α > 2, γ ≥ 0.

Then f is equal to the null function in R
d .

Proof Assume that f ∈ Lip(α, γ ). Then

‖Mh f (x) − f (x)‖L2
k

≤ C f
hα

(log 1
h )γ

.

We have to recall that the Dunkl transform of f (x) satisfies the Parseval’s identity ‖ f ‖L2
k

=
‖ f̂ ‖L2

k
.

So

‖Mh f (x) − f (x)‖L2
k

= ‖ ̂Mh f − f ‖L2
k

i.e ∥∥∥(1 − j
γ+ d

2 −1(h|ξ |)) f̂ (ξ)

∥∥∥
L2
k

≤ C f
hα

(log 1
h )γ

.

it follows that ∫
Rd

|1 − j
γ+ d

2 −1(h|ξ |)|2| f̂ (ξ)|2wk(ξ)dξ ≤ C2
f

h2α

(log 1
h )2γ

.

Then ∫
Rd |1 − j

γ+ d
2 −1(h|ξ |)|2| f̂ (ξ)|2wk(ξ)dξ

h4
≤ C2

f
h2α−4

(log 1
h )2γ

.

Since α > 2 we have

lim
h→0

h2α−4

(log 1
h )2γ

= 0

Then

lim
h→0

∫
Rd

( |1 − j
γ+ d

2 −1(h|ξ |)|
|ξ |2h2

)2

|ξ |4| f̂ (ξ)|2wk(ξ)dξ = 0.

and also from the formula (3) and Fatou’s theorem, we obtain ‖|ξ |2 f̂ (ξ)‖L2
k

= 0. Thus

|ξ |2 f̂ (ξ) = 0 for all ξ ∈ R
d , then f (x) is the null function. �

Analog of the theorem 3.1, we obtain this theorem

Theorem 3.2 Let f ∈ L2
k (R

d). If f belong to lip(2, 0), i.e

‖Mh f (x) − f (x)‖L2
k

= o(h2) as h → 0.

Then f is equal to null function in R
d .

Now, we give another the main result of this paper analog of theorem 1.1.
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Theorem 3.3 Let α ∈ (0, 1), γ ≥ 0 and f ∈ L2
k (R

d). Then the following are equivalents

1. f ∈ Lip(α, γ )

2.
∫
|ξ |≥s | f̂ (ξ)|2wk(ξ)dξ = O

(
s−2α

(log s)2γ

)
as s → +∞

Proof 1) �⇒ 2) Assume that f ∈ Lip(α, γ ). Then we have

‖Mh f (x) − f (x)‖L2
k

= O

(
hα

(log 1
h )γ

)
as h −→ 0,

Proposition 1.5 and Parseval’s identity give

‖Mh f (x) − f (x)‖2
L2
k

=
∫
Rd

|1 − j
γ+ d

2 −1(h|ξ |)|2| f̂ (ξ)|2wk(ξ)dξ.

If |ξ | ∈ [ 1h , 2
h ] then h|ξ | ≥ 1 and lemma 1.4 implies that

1 ≤ 1

c2
|1 − j

γ+ d
2 −1(h|ξ |)|2.

Then ∫
1
h ≤|ξ |≤ 2

h

| f̂ (ξ)|2wk(ξ)dξ ≤ 1

c2

∫
1
h ≤|ξ |≤ 2

h

|1 − j
γ+ d

2 −1(h|ξ |)|2| f̂ (ξ)|2wk(ξ)dξ

≤ 1

c2

∫
Rd

|1 − j
γ+ d

2 −1(h|ξ |)|2| f̂ (ξ)|2wk(ξ)dξ

= O

(
h2α

(log 1
h )2γ

)
.

We obtain ∫
s≤|ξ |≤2s

| f̂ (ξ)|2wk(ξ)dξ ≤ C
s−2α

(log s)2γ
.

where C is a positive constant.
So that∫
|ξ |≥s

| f̂ (ξ)|2wk(ξ)dξ =
(∫

s≤|ξ |≤2s
+

∫
2s≤|ξ |≤4s

+
∫
4s≤|ξ |≤8s

+ · · ·
)

| f̂ (ξ)|2wk(ξ)dξ

≤ C

(
s−2α

(log s)2γ
+ (2s)−2α

(log 2s)2γ
+ (4s)−2α

(log 4s)2γ
+ · · ·

)

≤ C
s−2α

(log s)2γ
(1 + 2−2α + (2−2α)2 + (2−2α)3 · · · )

≤ CKα

s−2α

(log s)2γ
,

where Kα = C(1 − 2−2α)−1 since 2−2α < 1.

This proves that
∫

|ξ |≥s
| f̂ (ξ)|2wk(ξ)dξ = O

(
s−2α

(log s)2γ

)
as s −→ +∞
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2) �⇒ 1) Suppose now that
∫

|ξ |≥s
| f̂ (ξ)|2wk(ξ)dξ = O

(
s−2α

(log s)2γ

)
as s −→ +∞.

We have to show that
∫ ∞

0
r2γ+d−1|1 − j

γ+ d
2 −1(hr)|2φ(r)dr = O

(
h2α

(log 1
h )2γ

)
, as h → 0

where

φ(r) =
∫
Sd−1

| f̂ (ry)|2wk(y)dy.

We write ∫ ∞

0
r2γ+d−1|1 − j

γ+ d
2 −1(hr)|2φ(r)dr = I1 + I2,

where

I1 =
∫ 1/h

0
r2γ+d−1|1 − j

γ+ d
2 −1(hr)|2φ(r)dr,

and

I2 =
∫ ∞

1/h
r2γ+d−1|1 − j

γ+ d
2 −1(hr)|2φ(r)dr.

Firstly, from (1) in lemma 1.3 we see that

I2 ≤ 4
∫ ∞

1/h
r2γ+d−1φ(r)dr = O

(
h2α

(log 1
h )2γ

)
as h −→ 0.

Set

ψ(r) =
∫ ∞

r
x2γ+d−1φ(x)dx .

From formula 2, an integration by parts yields

I1 =
∫ 1/h

0
r2γ+d−1|1 − j

γ+ d
2 −1(hr)|2φ(r)dr

≤ −Cph
2
∫ 1/h

0
r2ψ ′(r)dr

≤ −Cpψ(1/h) + 2Cph
2
∫ 1/h

0
rψ(r)dr

≤ 2Cph
2
∫ 1/h

0
r

r−2α

(log r)2γ
dr

≤ C1
h2α

(log 1
h )2γ

where C1 is a positive constant, and this ends the proof �
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