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Abstract
Micro-and nanorobots have the potential to perform non-invasive drug delivery, sensing, and surgery in living organisms, 
with the aid of diverse medical imaging techniques. To perform such actions, microrobots require high spatiotemporal 
resolution tracking with real-time closed-loop feedback. To that end,  photoacoustic imaging has appeared as a promising 
technique for imaging microrobots in deep tissue with higher molecular specificity and contrast. Here, we present different 
strategies to track magnetically-driven micromotors with improved contrast and specificity using dedicated contrast agents 
(Au nanorods and nanostars). Furthermore, we discuss the possibility of improving the light absorption properties of the 
employed nanomaterials considering possible light scattering and coupling to the underlying metal-oxide layers on the micro-
motor’s surface. For that, 2D COMSOL simulation and experimental results were correlated, confirming that an increased 
spacing between the Au-nanostructures and the increase of thickness of the underlying oxide layer lead to enhanced light 
absorption and preservation of the characteristic absorption peak. These characteristics are important when visualizing the 
micromotors in a complex in vivo environment, to distinguish them from the light absorption properties of the surrounding 
natural chromophores.
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1 Introduction

Micromotors can maneuver through the body to perform 
assigned medical tasks as they possess the capacity of 
reaching hard-to-access locations [1–3]. Micromotor-
assisted targeted drug delivery [4–7], biopsy [8], blood 
clot removal [9], or cell transport [10] have shown prom-
ising results. However, there are still significant limi-
tations when steering micromotors in living organisms 
[2, 11], in particular when the intended application and 
micromotor type require high spatiotemporal resolution 
with precise anatomical positioning. Medical imaging or 
tracking of such robots in vivo is crucial for achieving 
effective control in a complex environment. Research-
ers have implemented numerous imaging techniques for 
microrobot monitoring, such as ultrasound (US), magnetic 
resonance imaging (MRI), positron emission tomogra-
phy-computed tomography (PET-CT), and single-photon 
emission computed tomography (SPECT) [12–16]. US 
offers high penetration depth but low signal-to-noise ratio 
and spatial resolution. US Doppler and phase analysis 
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techniques can further improve the contrast and spatial 
resolution in an echogenic and dynamic environment [17]. 
MRI has better imaging contrast for soft tissues than other 
conventional techniques, but its spatiotemporal resolu-
tion is insufficient to visualize small robots. CT provides 
deep tissue penetration but poor temporal resolution and 
long-term exposure might harm living tissue. PET and 
SPECT provide high sensitivity and molecular informa-
tion, but the radiation dose remains the foremost concern. 
Optical methods including fluorescence [18], reflection-
based IR imaging [19], or optical coherence tomography 
(OCT) [20], have been used to track microrobots below 
scattering tissues with good spatiotemporal resolution but 
with limited penetration depth [21, 22]. Spatial resolution 
degrades significantly with depth for optical methods due 
to pronounced light scattering by tissue.

Photoacoustic imaging (PAI) combines the high spatial 
resolution of optics and the imaging depth of US in tissue. 
The use of PAI to track micromotors was first suggested by 
a part of us in 2017 [2]. At that time, we visualized in real-
time single magnetically-driven micromotors (up to 100 µm 
long) in 3D, below 1 cm thick chicken tissue [23–25]. 
Later, PAI has been employed for guiding capsules con-
taining catalytic micromotors in mice intestines [26], for 
monitoring swarms of magnetic spiral-like micromotors 
to treat induced subcutaneous bacterial infection [27], and 
multifunctional urease-based therapeutic nanorobots inside 
the bladder of the mouse [28]. The tracking of cell-sized 
magnetic microparticles circulating in the mouse brain 
towards intravascular applications has also been reported 
[29]. Different from tissue and body fluids, microrobots 
are often covered with absorbing metal layers, which pro-
duce an enhanced PA signal for tracking. A suitable con-
trast agent can thus further enhance the PA signal for the 
intended application in deep tissue where the PA signal 
degrades with depth. Actuation and closed-loop control are 
other prerequisites to maneuver the microrobot in deep tis-
sue with the required precision to target the disease region.

Here, we present the functionalization of Janus mag-
netic micromotors with gold nanorods (AuNRs) and gold 
nanostars (AuNSs) to enhance the PA contrast. Such Au 
nanoparticles have a better capacity to absorb light and 
provide thermoelastic expansion which features a superior 
PA response as compared to other nanomaterials. We also 
present the motion characteristics of micromotors in a para-
metric study using optical feedback control. Additionally, 
we show that by preventing plasmon coupling between Au-
nanoparticles and the underlying metal layer by increasing 
the thickness of the oxide layer in between them, the char-
acteristic absorption peak of the employed Au nanomateri-
als was preserved and the contrast was further enhanced, 
which was also validated by 2D COMSOL simulations. 

2  Experimental results

2.1  Fabrication of micromotors 
and characterization of the motion behavior

The micromotors were fabricated using drop-casting fol-
lowed by thin metal layer deposition. First, glass slides 
(15 × 15  mm2) were sonicated in acetone and isopropanol 
for 3 min each and subsequently dried with an  N2 gun. The 
substrates were further plasma-treated to remove impuri-
ties and contaminants and to obtain clean and hydrophilic 
glass surfaces. A monolayer of silicon dioxide  (SiO2) par-
ticles (⌀ = 100 µm) was then assembled. Briefly,  SiO2 par-
ticles were washed threefold with methanol, centrifuged 
for 1 min to remove the supernatant, and suspended again 
before usage. Silica particles were mixed thoroughly in 
methanol and ~ 15 µL of the particle-solvent dispersion 
was drop-casted on the edge of the cleaned glass slide 
in a tilted angle, to achieve a homogeneous layer. Micro-
arrays were randomly formed in the direction of sol-
vent evaporation. The resulting monolayer was dried in 
the air at room temperature. Finally, the samples were 
half-coated with Ti (10 nm), Fe (50 nm), and Ti (10 nm) 
by using electron beam physical vapor deposition, at a 
deposition rate between 0.5–1.0 Å/s. Scanning electron 
microscopy (SEM) was performed after coating the sample 
with ~ 10 nm Pt to make the specimen conductive and to 
avoid charging effects during imaging. Figure 1a shows 
an SEM image of a metal-coated Janus particle before the 
deposition of Au nanoparticles. Afterward, the microstruc-
tures were coated with  SiO2 to facilitate surface function-
alization with Au-nanoparticles.

The motion behavior of the micromotors was character-
ized through a parametric study using closed-loop control 
with optical feedback and real-time magnetic actuation 
(Fig. 1b). The micromotors were immersed in DI water 
inside an enclosed channel and then actuated and steered 
by an external rotating magnetic field. The interaction 
of the Fe layer with the magnetic field results in torque 
and a respective change of orientation of the micromo-
tor. Upon application of a rotating magnetic field, it will 
rotate and translate in the direction perpendicular to the 
rotational axis through a rolling-like interaction with the 
surface [30]. The steering of micromotors is realized based 
on real-time imaging feedback: An inverted microscope 
(Eclipse Ti2-E, Nikon Corp., Japan) with a digital cam-
era (a2A2590-60ucPRO, Basler AG, Germany) captures 
monochromatic bright-field image frames (2592 × 1944 
pixels, 8 bit per pixel) at 20 Hz. Real-time image pro-
cessing for binarization with a configurable threshold 
and calculation of the centroid was implemented based 
on CuPy [31] and performed on a GPU (GeForce RTX 
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3090, Nvidia, USA). The localized micromotors are linked 
between consecutive frames using TrackPy [32] running 
on CPUs (2 × Intel Xeon Gold 5217, Intel, USA). The dif-
ference vector to the target location was fed to the position 
controller, which calculates the magnetic field vector to 
achieve a rolling motion in that direction as shown in the 
time-lapse (20 × speed) of closed-loop control of a micro-
motor (Video S1). The magnetic field of 2 mT and vary-
ing rotational frequency was generated with a commercial 
8-coil setup (MFG-100-i, Magnebotix AG, Switzerland). 
The motion planning determines the target location to fol-
low a figure-of-8 shape (Fig. 1c).

For the parametric study, the average velocity over one 
revolution was determined for rotational frequencies of 
0.5 Hz to 20 Hz in 0.5 Hz steps, with 3 repetitions. The 
experiments were performed in a solution of PBS and 0.2% 
MC, which mimic the rheological properties of a variety of 
biological fluids, and under varying magnetic field strength 
(2, 3, 4 mT) (Fig. 1d and e). In all cases, a characteristic 
behavior emerges for the translational speed in relation to 
the rotational frequency. A monotonic increase was observed 
until a step-out frequency was reached, followed by a sharp 
decline in the speed. Both the step-out-frequency and the 
maximum speed were found to increase with increasing 
magnetic field strength. The micromotor’s speed reduces by 
approximately a quarter in MC, due to the higher viscosity 
and increased drag of 0.2% MC compared to PBS.

2.2  Synthesis of Au nanoparticles and deposition 
on micromotors

Gold nanostars (AuNSs) were prepared using a surfactant-
free method assisted by silver ions [33]. ~ 14 nm gold seeds 
(1.5 mL,  [Au0] = 0.5 mM) prepared by the Turkevich method 
[34] were added to an aqueous solution (200 mL) contain-
ing hydrogen tetrachloroaurate trihydrate  (HAuCl4) (1 mL, 
50 mM) and HCl (0.2 mL, 1 M), followed by a fast addition 
of silver nitrate  (AgNO3) (0.6 mL, 10 mM) and ascorbic 
acid (AA) (1 mL, 100 mM) under vigorous stirring. After 
30 s, an aqueous hexadecyltrimethylammonium bromide 
(CTAB) solution (4 mL, 100 mM) was added to the mix-
ture to increase the colloidal stability of the AuNSs. Upon 
synthesis, the solution was centrifuged (3500 rpm, 30 min) 
to remove excess reactants and dispersed in CTAB solu-
tion (1 mM). The final gold concentration was 1 mM. The 
average diameter determined by measuring the dimensions 
from the transmission electron microscopy (TEM) images 
was 80 ± 3.

Gold nanorods (AuNRs) were prepared using Ag-
assisted seeded growth [35]. Gold seeds were synthesized 
by fast reduction of  HAuCl4 with sodium borohydride 
 (NaBH4)in CTAB solution.  HAuCl4 solution (0.025 mL, 
50 mM) solution was added to a solution of CTAB (4.7 mL, 
100 mM). Afterward, a freshly prepared  NaBH4 (0.3 mL, 
10  mM) solution was rapidly injected under vigorous 

Fig. 1  Fabrication and characterization of the motion behavior; a) 
SEM image of a metal-coated Janus particle for the tracking experi-
ments. b) Block diagram showing the closed-loop control opti-
cal planning. c) A single micromotor following a figure-of-8 shape 
through closed-loop control. The arrows show the direction of 

motion. d,e) Parametric study of the translational speed to the rota-
tional frequency (from 0.5  Hz to 20  Hz in 0.5  Hz steps) and the 
strength (2, 3 and 4 mT) of the magnetic field in PBS (d) and 0.2% 
Methylcellulose (MC) (e)
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stirring. The solution color changed from yellow to brown-
ish yellow and the stirring was stopped after 2 min. The 
gold seed solution was aged at room temperature for 30 min 
before use. To prepare the growth solution, 9.0 g of CTAB 
and 1.234 g of NaOH were dissolved in 500 mL of warm 
Milli-Q water (~ 50 ºC) in a 1 L Erlenmeyer flask. Once the 
sodium oleate was completely dissolved, the mixture was 
cooled down to 30 ºC and  AgNO3 (24 mL, 4 mM) under 
stirring. The mixture was kept at 30 ºC for 15 min after 
which  HAuCl4 was added (2.5 mL, 100 mM) under vig-
orous stirring. The mixture became colorless after 20 min 
at 30 ºC and after the introduction of HCl (2.1 mL, 37%). 
After 15 min of stirring, AA (1.25 mL, 64 mM) was added, 
and the solution was vigorously stirred for 30 s. Finally, 
the seed solution (0.8 mL, 0.25 mM) was injected into the 
growth solution under vigorous stirring for 5 min, and then 
the solution was left undisturbed at 30 ºC for 12 h. The solu-
tion was centrifuged twice (8000 rpm, 30 min) to remove 
excess reactants and dispersed in an aqueous CTAB solu-
tion (1 mM). The final gold concentration was 0.5 mM. The 

average length and diameter (in nm) determined by measur-
ing the dimensions from the TEM images were 83 ± 5 and 
18 ± 1, respectively.

Mercapto poly (ethylene glycol) carboxylic acid 
(PEG) with a molecular weight of 10 kg/mol was used for 
ligand exchange [36]. An aqueous solution of PEG (5 mL) 
containing 50 molecules/nm2 was added dropwise to the 
solution of gold nanoparticles (50 mL, 0.5 mM) under vig-
orous stirring. The mixture was reacted for about 1 h. PEG-
modified gold nanoparticles were centrifuged twice (previ-
ous conditions) and finally dispersed in water.

TEM images of AuNRs and AuNSs were obtained with 
a JEOL JEM-1400PLUS transmission electron microscope 
operating at an acceleration voltage of 120 kV using carbon-
coated 400 square mesh copper grids as shown in Fig. 2a 
and b respectively. UV–Vis-NIR optical extinction spectra 
were recorded using a spectrophotometer in DI water as a 
medium (Fig. 2c), which featured intense localized surface 
plasmon resonance (LSPR) peaks at 840 nm for AuNSs and 
870 nm for AuNRs.

Fig. 2  Fabrication and characterization of Au nanoparticle-coated 
micromotors; a, b) Representative TEM images of AuNRs (a) and 
AuNSs (b). c) UV–Vis-NIR spectra of AuNRs and AuNSs in aque-
ous dispersion. d) Sketch of a half-metal coated Janus particle and 

SEM images showing the surface without Au-nanoparticles. e, f) 
Sketches and SEM images of Janus particle surfaces functionalized 
with AuNRs (e) and AuNSs (f)
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After synthesis, carboxyl-modified AuNRs/AuNSs were 
immobilized on  SiO2-coated micromotors using a previ-
ously described protocol based on (3-aminopropyl)trieth-
oxysilane (APTES) and carbodiimide chemistry [37–39]. 
Briefly, oxygen plasma was applied (1 min) to activate the 
surface molecules of the deposited oxide, and APTES (2 
wt%) solution was prepared with 5 wt% DI water and 93 
wt% absolute ethanol beforehand. The micromotor sample 
was immersed into the APTES solution after plasma acti-
vation and incubated for 1 h at room temperature, to obtain 
amine groups on the micromotor surface. The samples 
were rinsed with absolute ethanol and phosphate-buffered 
saline (PBS). Then, N-ethyl-N-3-dimethylaminopropyl 
carbodiimide hydrochloride (EDC) at a concentration of 
10 mM, and active ester compound N-hydroxy-succinim-
ide (NHS) at a concentration of 5 mM, were prepared and 
used for coupling the carboxyl groups from AuNRs/AuNSs 
(with a concentration of 300 µg/mL) to the amino groups 
on the micromotor surface, forming covalent bonds. The 
samples were soaked for approx. 2 h at room temperature. 
Afterward, the samples were washed with PBS and DI 
water. As observed in Fig. 2d, the control sample showed 
no sign of Au-nanomaterial, while the functionalized sam-
ples were successfully labeled with AuNRs and AuNSs 
on the micromotors’ surface, respectively (Fig. 2e and f).

2.3  Dual US and PA imaging of micromotors

Dual US and PA measurements were carried out by using the 
Vevo-LAZR X (FUJIFILM VisualSonics, The Netherlands) 
system, a multimodal platform that allows the simultane-
ous imaging of high-resolution US and PA. US provides 

anatomical and functional information while PA contributes 
to the molecular details. The system was equipped with a 
linear array US transducer at a central frequency of 21 MHz 
with a depth of 25 mm and fiber optic bundles on either 
side of the transducer for illumination. The fiber bundle was 
coupled to a tunable Nd: YAG laser (680 to 970 nm) with 
a 20 Hz repetition rate and the signals were collected by 
the 256-element linear array transducer (with an in-plane 
axial resolution of 75 µm). The pulsed laser generated a 
wavelength-tunable pulsed beam which was delivered by 
a bifurcated fiber bundle integrated with the transducer. 
Both US and PA signals were collected and reconstructed 
using onboard software. For laser spectral excitation, the PA 
images were acquired at a wavelength range of 680–970 nm 
with an increment of 5 nm over the entire scan range. All the 
measurements were performed in DI water.

The imaging experiments were carried out using a dual 
US and PA setup, as schematically shown in Fig. 3a. A phan-
tom setup was prepared including a water bath and enclosed 
tubing channel. For the tubing phantom, transparent intra-
vascular polyurethane (IPU) tube (inner diameter ~ 380 µm, 
outer diameter ~ 840 µm; SAI Infusion Technologies, USA) 
was mounted in a water bath. The micromotors were inserted 
into the tube and immersed in the phantom chamber contain-
ing DI water for better acoustic coupling. The fluence was 
set below the Maximum Permissible Exposure (MPE) limit 
(20 mJ/cm2), followed by the safe exposure guidelines [40].

The measurements were performed with a position-
fixed high-frequency transducer to avoid image distortion. 
PAI relies on multiwavelength excitation and subsequent 
spectral processing to identify optical signatures of the 
specific contrast agents. First of all, the NIR spectrum of 

Fig. 3  Dual US and PA imaging; a) Schematic of PA imaging princi-
ple with a different type of micromotors. b) PA spectra of AuNSs and 
AuNRs with absorption bands at 820  nm and 875  nm, respectively. 
c) Dual US and PA imaging of bare  SiO2 particles (⌀ = 100  µm) (i), 

half-metal coated particles (Ti = 10  nm, Fe = 50  nm, Ti = 10  nm and 
 SiO2 = 30 nm) (ii), AuNRs-coated (iii), and AuNSs-coated micromotors 
(iv). d) PA spectra of bare  SiO2 particles, half-metal coated particles, 
AuNRs-coated, and AuNSs-coated micromotors
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AuNRs and AuNSs was recorded using PA imaging mode 
(Fig. 3b). Absorption bands were recorded at 820 nm for 
AuNSs and 875 nm for AuNRs, in agreement with the 
UV–Vis-NIR spectra measured by optical spectrophotom-
etry with slight differences. The PAI system was equipped 
with a NIR pulsed laser and all PA images were acquired 
over the entire scan range of 680–970 nm, with an incre-
ment of 5 nm. Altogether, four samples were prepared 
in PBS as a medium, including bare  SiO2 particles, half-
metal coated particles, AuNRs-coated, and AuNSs-coated 
micromotors (Fig. 3c, i-iv). Dual US and PA images of 
all samples were captured separately and no PA signal 
was recorded from  SiO2 particles, which exhibited US 
contrast only (Fig. 3ci). The half-metal coated particles 
(⌀ = 100 µm) provided both US and PA contrast because 
they are coated with thin absorbing adjacent metal layers 
(Ti = 10 nm, Fe = 50 nm, Ti = 10 nm, and  SiO2 = 30 nm) 
(Fig. 3cii) [41]. Yellow arrows in the image indicate the 
position of a trail of micromotors, from a single to a swarm 
of them. The Janus micromotors inside the enclosed chan-
nel can also make small clusters in the form of dimer or 
trimer, which lead to enhanced PA signal intensity due to 
the increased IR light absorption surface. To observe the 
influence of particle clustering on the PA resulting sig-
nal, an additional experiment was performed by placing a 
single, dimer, and trimer inside the phantom tubing, and 
as expected there was a good agreement between the PA 
signal increase to the number of imaged Janus micromo-
tors. (Fig. S1). The samples were further functionalized 
with AuNRs and AuNSs to enhance the PA signal con-
trast. Contrast agents with narrow absorption bands in the 
NIR are a suitable choice of exogenous contrast agents. 
AuNRs/AuNSs are known to be biocompatible and have 
successfully been implemented to improve PA contrast.

The labeled micromotors were inserted into tubing for 
imaging and the labeled micromotors exhibited a stronger 
PA signal, as compared to metal-coated micromotors 
(Fig. 3c, iii-iv). By plotting the recorded PA data we indeed 
observed an enhanced PA signal from labeled micromo-
tors (Fig. 3d), which is crucial for deep tissue tracking 
applications. Although both nanoparticle samples display 
absorption bands around 820–875 nm, it was not possible 
to observe such bands upon deposition on the half-coated 
 SiO2 particles. Both samples provided comparable PA sig-
nals over a broad spectral range, meaning that this approach 
can improve the PA signal of micromotors in hard-to-reach 
regions. All PA measurements were performed at a gain of 
40 dB. The employed micromotors and the here-evaluated 
multimodal imaging setup are appealing for the supervised 
drug cargo-delivery towards urinary tract diseases [42], 
bladder cancer or infection, or towards in vivo assisted ferti-
lization, where similar engineered parts can be used to guide 
or transport sperm [4, 10].

It is worth noting that non-functionalized micromotors 
(Janus) also absorb light but their resulting PA signals do 
not exhibit strong absorption signals. The reason is that the 
micromotors are first coated with Ti and Fe layers for fur-
ther magnetic manipulation, and such layers also possess 
plasmon resonances but with broader absorbance spectra. 
For AuNRs/AuNSs-coated micromotors, there is an increase 
in the PA signal, as expected. However, due to the small 
distance between the Au-nanomaterials and the micromo-
tor surface, plasmon coupling results in the broadening and 
damping of the absorbance band. This effect can be reduced 
by introducing a transparent layer to IR light during the syn-
thesis of Au-nanomaterials to preserve the optical properties 
of Au-nanoparticles and their PA response [43].

2.4  Effect of increased spacing between AuNRs 
and micromotor surface

To study the interaction and effect of Au-nanoparticles on 
the absorption signal, we implemented a 2D COMSOL sim-
ulation model, where the geometry in the out-of-plane can 
be regarded as uniformly distributed. We simulated AuNRs-
functionalized to metal surface with varying thicknesses of 
transparent  SiO2 layer (30 nm and 1 µm) as shown in Fig. 4a 
and b.  SiO2 is transparent in the visible and NIR, which 
maintains the optical properties of AuNRs and hence their 
PA properties. Moreover,  SiO2 coating has been reported to 
enhance the photoacoustic signal due to its higher thermal 
conductivity [44]. A plane TE-polarized electromagnetic 
wave is incident on the sample in water as a medium with 
a spacing distance of 30 nm between AuNRs and the metal 
layer. The model uses a refractive index of 1.33 for water and 
1.5 interpolated wavelength-dependent refractive index for 
the dielectric and metal layers, which involve the COMSOL 
material library. The upper boundary defines the incident 
plane wave and the lower boundary satisfies the scattering 
boundary condition which absorbs the transmitted plane 
wave. The side boundary has Floquet conditions, meaning 
that the solution on one side of the geometry equals the solu-
tion on the other side multiplied by a complex-valued phase 
factor. This effectively turns the model into a section of a 
geometry that extends indefinitely in the XY plane. Initially, 
the AuNRs were not introduced, so the background plane 
wavefield was calculated. We then removed the incident 
wave and added a perfectly matched layer (for absorbing 
the incident wave to the boundary) in the four boundaries. 
Subsequently, AuNRs were included, and the field from 
the first calculation was set as the background field. We 
calculated the relative field from the AuNR (which can be 
regarded as a perturbation). If the field distribution extends 
to the inner side of the AuNR, it will cause more absorption. 
We calculated the field from 680 to 970 nm, to derive the 
absorption spectra, this wavelength range being identical to 
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that in the PAI experiments. The resulting calculated field 
values show a strong absorption peak at 820 nm for the sam-
ple with a 1 µm spacing distance, whereas the sample with 
a smaller spacing distance showed a weak, broad absorp-
tion band (Fig. 4c). These results suggest that a sufficiently 
thick transparent layer can enhance the optical absorption 
signal. We, therefore, fabricated Janus microparticles with 
thin metal layers (Ti/Fe/Ti) and evaporated a thick layer of 
 SiO2 (1000 nm) using chemical vapor deposition (CVD) 
before labeling them with AuNRs. SEM imaging was used 
to demonstrate the labeling of AuNRs on the outer surface 
of the new Janus samples (Fig. 4d). The recorded Vis–NIR 
spectrum of AuNRs coated on a 1 µm thick  SiO2 layer shows 
strong absorption bands at 840 nm using the spectropho-
tometer (Fig. 4e). In PAI, a strong and broad absorption 
signal was recorded, peaking at 875 nm (Fig. 4f), in agree-
ment with the PA spectrum of AuNRs only (see Fig. 3b). 
The thick silica coating reduces plasmon coupling between 
AuNRs and the metal layer, thereby improving the PA signal 
strength. The plasmon resonance band shifted up to 20 nm 
for the spectrophotometer study and 55 nm for PA data, as 

compared to the 2D simulation. This difference might be 
due to differences between simulation and experimental set-
tings and the absorption band does not come from absorp-
tion only but also scattering. In PAI, it is only possible to 
detect absorption signatures and this might be the origin of 
the spectral differences. The simulation was performed with 
a simple 2D model to generate optical absorption signal, 
whereas PA takes into account different illumination and 
US detection mechanism. As a perspective of this work, a 
3D simulation that considers different parameters such as 
AuNPs density, AuNPs shape, and the underlying surface 
geometry and composition will be realized and compared 
with the corresponding experimental data to evaluate their 
effect on the resulting PA signal strength and specificity.

3  Conclusion

This work presents the functionalization of Janus micro-
motors with plasmonic nanomaterials, in particular AuNRs 
and AuNSs, which are structures with higher photothermal 

Fig. 4  Simulation and experimental results. a) The layer stacks 
implemented were simulated using COMSOL to calculate the absorp-
tion signal for AuNRs on a metal film. b) An increase in absorption 
spectra by increasing the gap between metal and AuNRs. c) Simu-
lated spectra of AuNRs (on 30 nm and 1 µm thick  SiO2 layer) show-
ing an enhanced absorption signal at 820 nm. d) Schematic represen-

tation and SEM images showing the configuration of microspheres 
with an insulating  SiO2 layer on which AuNRs were deposited. e) 
Vis–NIR spectrum of AuNRs-coated micromotors with absorbance 
bands at 840 nm measured using a spectrophotometer. f) PA spectrum 
of AuNRs-coated micromotors with PA absorption spectra around 
875 nm
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conversion efficiency, to enhance the PA contrast. Such 
labeled micromotors can provide an improved signal in 
deep tissue due to the presence of PA agents. As expected, 
AuNRs/AuNSs-coated motors exhibited enhanced PA sig-
nals as compared to bare and thin metal-coated particles.  
Furthermore, 2D COMSOL simulation and experimental 
data show that increased spacing between the AuNPs and 
the underlying metal layer would lead to enhanced absorp-
tion spectra which is a crucial parameter while doing 
imaging of micromotors in deep tissue. We also show the 
motion behavior of the micromotors through a paramet-
ric study using closed-loop control with optical feedback. 
The average velocity over one revolution is determined 
for rotational frequencies and a characteristic behavior 
emerges for the translational speed to the rotational fre-
quency. Such feedback control algorithms can also be 
implemented using other medical imaging modalities to 
increase the future targeting efficiency of those microro-
bots when performing a medical operation in vivo.
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