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Abstract
The longtime behaviour of the FitzHugh–Rinzel (FHR)  neurons and the transition to instability of the FHR steady states, 
are investigated. Criteria guaranteeing solutions boundedness, absorbing sets, in the energy phase space, existence and steady 
states instability via oscillatory bifurcations, are obtained. Denoting by �3 +

∑3

k=1
Ak(R)�

3−k = 0 , with R bifurcation param-
eter, the spectrum equation of a steady state m

0
 , linearly asymptotically stable at certain value of R, the frequency f of an 

oscillatory destabilizing bifurcation (neuron bursting frequency), is shown to be f =
√

A
2
(R

H
)

2�
 with R

H
 location of R at 

which the bifurcation occurs. The instability coefficient power (ICP) (Rionero in Rend Fis Acc Lincei 31:985–997, 2020; 
Fluids 6(2):57, 2021) for the onset of oscillatory bifurcations, is introduced, proved and applied, in a new version.
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1 Introduction

The brain contains many millions of neurons which tras-
mit the electrochemicals signals via the following mecha-
nism. Any neuron has a central region (soma), the dendrites 
three and the axon. The dendrites are thin fibers around the 
soma while the axon is a long cylinder—starting from soma 
and ending in contact with other neurons (via the struc-
tures called synapses)—is constituted by long fibers. Each 
neuron performs a relative simple activity: the dendrites 
receive input from other neurons or external sources and 
elaborate an output signal which is propagated along the 
axon branchies, to thousands of other neurons (the branchies 
terminate on the dendrites or cell bodies of other neurons). 
Along the years, starting from about the second half of the 
past century Gerstener et al. (2014), various mathematical 
models have been introduced for modeling the bio-physical 
activity of neurons (Hodgin 1948; Hodgin and Huxley 1952; 

Izhikevich 2007; Ermentrant and Temam 2010; Gerstener 
et al. 2014). The FitzHugh–Rinzel model is given by Rinzel 
(1981, 1987), Rinzel and Ermentrout (1989), Izhikevich 
(2004), FitzHugh (1955, 1961)

with I, �, a, b,�, c, d real constants and

In the absence of third equation and y = 0 , (1) reduces to 
the FitzHugh–Nagumo binary model which contains—as 
special case for � = 1, a = b = 0—the celebrated Van der 
Pol oscillator (Van der Pol 1926; Hale and Kocak 1991). 
The variable y, introduced by Rinzel, represents the bursting 

(1)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dv

dt
= v −

v3

3
− w + y + I,

dw

dt
= �(a + v − bw),

dy

dt
= �(c − v − dy)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v = difference of potential between the dentritic

spine head and the surrounding medium ,

y = slowly moving current in the dentrite ,

w = recovery variable , I = applied external current ,

� = small parameter determining the pace of the slow .
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behaviour of neurons: alternance between brief bursts of 
oscillator activity and quiescent period. In the present paper, 
we investigate the longtime behaviour of (1) solutions, the 
instability of steady states and the oscillatory bifurcations 
onset via the Instability Coefficients Power (ICP) approach 
(Rionero 2020, 2021a, b). Because of the neurons oscillatory 
activity, the onset of oscillatory bifurcation has attracted the 
attention of many scientists {see Wojcik and Shilnikov 2011; 
Yadav et al. 2016; Alidousti and Khoshsiar Ghaziani 2017; 
Xie et al. 2018; Temam 1988 and the references therein} , but 
the results obtained—although of sure interest—with respect 
to the rich dynamics of (1) generated by the seven param-
eters (I, �, a, b,�, c, d)—appear to be longely partial. Our 
aim is to obtain—via the instability coefficient power (ICP) 
approach (Rionero 2020, 2021a, b)—general criteria guaran-
teeing the existence of oscillatory Hopf bifurcations and an 
estimate of their locations (in order to obtain—via a simple 
closed form—the neurons activity frequency). The plane of 
the paper is as follows. Section 2 is devoted to boundedness 
and longtime behaviour of (1) solutions. In particular, the 
existence of absorbing sets is put in evidence. The critical 
points are investigated in Sect. 3 while their linear stability/
instability conditions are considered in Sect. 4. The subse-
quent Sect. 5 is dedicated to the bifurcation power of the 
spectrum equation coefficients. Successively, in Sects. 6–8 
the transition to instability via Hopf bifurcations driven by 
the growing of the bifurcating paramters v̄, �̄�, 𝛽  , respectively, 
is analyzed. In Sect. 9, the case {𝛼2

<
𝜇+𝛿

3
, �̄� > 0} is inves-

tigated while the operativity of conditions (3) is checked in 
Sect. 10. The paper ends with: discussion, final remarks and 
perspectives (Sect. 11).

2  Boundedness and longtime dynamics

Setting

in view of (1)2-(1)3 one immediately realizes that 𝛼 > 0 and 
𝛽 > 0 play the role of “viscosity coefficients”. The following 
properties hold.

Property 1 Let

Then the solutions of (1) are bounded.

Proof In view of (2), (1) can be written

(2)� = b�, � = �d,

(3)|b| >
|1 − 𝛿|

2|𝛿|
> 0, |d| >

|1 − 𝜇|

2|𝜇|
> 0.

Introducing the “energy”

one has

In view of

one has

But

with � positive constant, implies

(4)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dv

dt
= −(� + �)v + y − w + I +

�

(� + � + 1) −
v2

3

�

v,

dw

dt
= −�w + �(a + v),

dy

dt
= −�y + �(c − v).

(5)E =
1

2

(

v2 + w2 + y2
)

,

(6)

dE

dt
= −

[

(� + �)v2 + �w2 + �y2
]

+ v(y − w + I)

+

[

(� + � + 1) −
v2

3

]

v2

+ �w(a + v) + �y(c − v).

(7)
(� + � + 1)v2 = (� + � + 1)

√

3

2

√

2

3
v2

≤
3

4
(� + � + 1)2 +

v4

3
,

(8)

dE

dt
≤ −

[

(� + �)v2 + �w2 + �y2
]

+ (� − 1)wv + (1 − �)yv

+ (�cy + �aw + Iv) +
3

4
(� + � + 1)2.

(9)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(� − 1)wv ≤
�� − 1�

2

�

w2 + v2
�

, �aw ≤
(�a)2

2�
+

�

2
w2,

(1 − �)yv ≤
�� − 1�

2

�

y2 + v2
�

, �cy ≤
(�c)2

2�
+

�y2

2
,

Iv ≤
I2

2�
+

�v2

2



859Rendiconti Lincei. Scienze Fisiche e Naturali (2021) 32:857–867 

1 3

and choosing the constant � such that

then (10) implies

with

In view of (12), one easily obtains

and hence

  ◻

Remark 1 We remark that, case by case, according to the val-
ues of the parameters contained in (1), the existence of the 
positive constants appearing in (11), has to be verified. Only 
then properties 1–2 hold. We underline that (11) equivalently 
can be written

for at least a positive � , i.e. equivalently

(10)

dE

dt
≤ −

{[

(� + �) −
1

2
(|1 − �| + |1 − �| + �)

]

v2

+

[

� −
1

2
(|1 − �| + �)

]

w2 +

[

� −
1

2
(|1 − �| + �)

]

y2
}

+

{

3

4
(� + � + 1)2 +

1

2�

[

I2 + (�a)2 + (�c)2
]

}

(11)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̄� =
1

2
[2𝛼 − (�1 − 𝛿� + 𝜀)] > 0,

𝛽 =
1

2
[2𝛽 − (�1 − 𝜇� + 𝜀)]

(12)
ddE

dt
≤ −hE + h1

(13)

⎧

⎪

⎨

⎪

⎩

h = min(�̄�, 𝛽),

h1 =
3

4
(𝛼 + 𝛽 + 1)2 +

1

2�

�

I2 + (𝛿a)2 + (𝜇c)2
�

.

(14)E ≤ E0e
−ht +

h1

h
(1 − e−ht)

(15)E ≤ E0 +
h1

h
.

(16)
{

2𝛼 > |1 − 𝛿| + 𝜀,

2𝛽 > |1 − 𝜇| + 𝜀

(17)
{

2𝛼 > |1 − 𝛿|,

2𝛽 > |1 − 𝜇|.

In fact, (16) is implied by (17) and

is not allowed by (13)1.

Property 2 Let (3) holds. Then, in the phase space {v,w, y} , 
any sphere S centered at the origin of radius r bigger than 
(

2h1

h

)
1

2

 , is an absorbing set.

Proof Let r̄ >
(

2h1

h

)1∕2

 and let E0 <
h1

h
 . Then (12) implies

i.e. S(r̄) is invariant. Further if

with I  bounded region of the phase space, all the solutions 
with the initial data in I  , at the time t̄ given by

i.e. at

are in S(r̄) . Therefore S(r̄) is an absorbing set and the long-
time dynamics happens in S(r̄) .   ◻

3  Critical points

In view of (1), one has

and the critical points are the roots of

(18)
{

2� = |1 − �|,

2� = |1 − �|

(19)
(

dE

dt

)

(t=0)
< 0,

Ē0 = max
I

E0

h1

h
+
|

|

|

|

Ē0 −
h1

h

|

|

|

|

e−ht̄ = r̄2

t̄ =
1

h
ln

|

|

|

|

Ē0 −
h1

h

|

|

|

|

|

|

|

|

r̄2 −
h1

h

|

|

|

|

> 0

(20)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dv

dt
= v − w + y −

v3

3
+ I,

dw

dt
= −�w + �v + a�,

dy

dt
= −�y − �v + �c
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One has

and hence it follows

Setting

one has

Remark 2 We remark that 

1. The DS (1)—depending on seven real parameters—has 
a very rich dynamics;

2. A, B—being real constants—(25)1 admits at least one 
real root for any value of the parameters—given by the 
celebrated Cardano formula—and therefore at least ∞7 
critical points are admissible;

3. {I =
a�� − ��c

��
, � ≠ 0} implies the existence of the 

critical point E =

(

0,
a�

�
,
�c

�

)

;

4. {�� + �� = ��, � ≠ 0} ⇒ A = 0 and (23)1 reduces to 
v̄3
e
+ B = 0 and one has the cr i t ical  points 

{v̄e = |B|
1

3 , �̄�e =
𝛿

𝛼
(|B|

1

3 − a), ȳe =
𝜇

𝛽
(c − |B|

1

3 )} fo r 

B < 0 ,  while B > 0 implies the existence of 
{v̄e = −B

1

3 , �̄�e =
𝛿

𝛼
(a − B

1

3 ), ȳe =
𝜇

𝛽
(c + B

1

3 )};

(21)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v̄ − w̄ + ȳ −
v̄3

3
+ I = 0,

w̄ =
𝛿

𝛼
(v̄ + a), ȳ =

𝜇

𝛽
(c − v̄).

(22)v̄3 − 3

[

v̄ −
𝛿

𝛼
(v̄ + a) +

𝜇

𝛽
(c − v̄) + I

]

= 0

(23)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

v̄3 − 3

�

1 −
𝛿𝛽 + 𝜇𝛼

𝛼𝛽

�

v̄ − 3
𝛼𝛽I − a𝛽𝛿 + 𝜇𝛼c

𝛼𝛽
= 0,

w̄ =
𝛿

𝛼
(v̄ + a), ȳ =

𝜇

𝛽
(c − v̄).

(24)

A =
3(�� + �� − ��)

��
, B =

3(a�� − ��c − I��)

��
,

(25)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v̄3 + Av̄ + B = 0,

w̄ =
𝛿

𝛽
(v̄ + a),

ȳ =
𝜇

𝛽
(c − v̄).

5. {I =
a𝛽𝛿 − 𝜇𝛼c

𝛼𝛽
, 𝛿𝛽 + 𝜇𝛼 < 𝛼𝛽} implies the existence 

of the real critical points v̄e = ±

(

3
𝛼𝛽 − 𝛿𝛽 − 𝜇𝛼

𝛼𝛽

)
1

2

,

�̄�e =
𝛿

𝛼

[

±

(

𝛼𝛽 − 𝛿𝛽 − 𝜇𝛼

𝛼𝛽

)
1

2

+ a

]

, 

ȳe =
𝜇

𝛽

[

c ∓

(

𝛼𝛽 − 𝛿𝛽 − 𝜇𝛼

𝛼𝛽

)
1

2

]

;

6. Real steady states, via (26), are not admissible 

4  Linear stability, spectrum equation and its 
coefficients properties

Let E = (v̄, w̄, ȳ) be an admissible critical point. Setting

it follows that

Linearizing about E one has

with

The spectrum equation is

with

and

(26)

�

v̄2
e
−

3
√

Bv̄e +
3
√

B2 = 0, for B > 0,

v̄2
e
+

3
√

�B�v̄e +
3
√

�B�2, for B < 0.

(27)V = v − v̄, W = w − w̄, Y = y − ȳ,

(28)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dV

dt
= V −

V3

3
− v̄V2 − v̄2V −W + Y ,

dW

dt
= 𝛿V − 𝛼W,

dY

dt
= −𝜇V − 𝛽Y .

(29)
d

dt

⎛

⎜

⎜

⎝

V

W

Y

⎞

⎟

⎟

⎠

= L

⎛

⎜

⎜

⎝

V

W

Y

⎞

⎟

⎟

⎠

(30)L =

⎛

⎜

⎜

⎝

1 − v̄2 − 1 1

𝛿 − 𝛼 0

−𝜇 0 − 𝛽

⎞

⎟

⎟

⎠

(31)P(�) = �
3 + A1�

2 + A2� + A3 = 0,

(32)A1 = −I1, A2 = I2, A3 = −I3,
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i.e.

Let � be the spectrum of L, i.e. the set of the roots of (31) 
and recall that 

 (i) E = (v̄, w̄, ȳ) is linearly (asymptotically) stable if and 
only if all the eigenvalues of the spectrum equation 
have negative real part (Rionero 2012);

 (ii) only if 

 all the eigenvalues can have negative real part;
 (iii) if and only if 

 all the eigenvalues have negative real part (Routh-
Hurwitz conditions) (Rionero 2019a). If the problem 
at stake depends on a positive parameter R (bifurca-
tion parameter) at the growing of R, E can become 
unstable. Then (31) becomes 

 Denoting by RS the lowest root of 

 and by RH the lowest positive root of 

 with i imaginary unit and � real number, then—
since the instability case occurs via a zero or via a 
pure imaginary eigenvalues—one has 

(33)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

I1 = trace of L, I3 = det of L,

I2 =
�

�

�

�

�

1 − v̄2 − 1

𝛿 − 𝛼

�

�

�

�

�

+

�

�

�

�

�

1 − v̄2 1

−𝜇 − 𝛽

�

�

�

�

�

+

�

�

�

�

�

−𝛼 0

0 − 𝛽

�

�

�

�

�

(34)

⎧

⎪

⎨

⎪

⎩

I1 = 1 − v̄2 − (𝛼 + 𝛽), I2 = 𝜇 + 𝛼𝛽 + 𝛿 − (𝛼 + 𝛽)(1 − v̄2),

I3 = 𝛽
�

𝛼(1 − v̄2) − 𝛿
�

− 𝜇𝛼.

(35)Ak > 0, ∀k ∈ (1, 2, 3),

(36)A1 > 0, A3 > 0, A1A2 − A3 > 0,

(37)
P(�,R) = �

3 + A1(R)�
2 + A2(R)� + A3(R) = 0.

(38)A3(R) = 0

(39)P(i�,R) = 0

(40)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

RS < RH ⇔ steady bifurcation ,

RS > RH ⇔ oscillatory Hopf bifurcation ,

RS = RH ⇔ coupled steady-Hopf bifurcation

5  The instability coefficient power method 
for ternary DS

We call “auxiliary coefficient” of the spectrum equation (31) 
the coefficient A0 given by

and remark that properties (ii) and (iii) of Sect. 4 give to the 
coefficients Ak, k ∈ {0, 1, 2, 3} , via their becoming zero at 
certain values of the bifurcation parameter R, the power of 
driving the location and the type of the occurring bifurca-
tion. The following property holds.

Property 3 Let a critical point m0 be linearly, asymptoti-
cally stable at certain value R̄ of the bifurcation parameter 
R and let Rck

 be the lowest root of Ak(R) = 0 , at the increas-
ing (decreasing) of R from R = R̄ . Measuring the instability 
power of  Ak via the (ICP) index given by

then the coefficient with the biggest (ICP) drives the occur-
ring of a steady bifurcation for k = 3 , while k < 3 implies 
the occurring of an Hopf bifurcation at R0 , lowest root of 
A0(R) = 0 and the estimates R0 ∈]R̄,Rck

[ at the increasing 
of R ( R0 ∈]Rck

, R̄[ at the decreasing of R) hold.

Proof Property 3 is implied by the following properties 
4–5.   ◻

Property 4 At a value R̄ of the bifurcation parameter R, an 
Hopf bifurcation occurs if and only if

Proof (43)1 is necessary. Let an oscillatory bifurcation 
arises. Then the eigenvalues of the spectrum equation are 
of type

and hence

and one has

Viceversa (43) is sufficient. In fact, (37) in view of (43)1 
becomes

and the eigenvalues

(41)A0(R) = A1(R)A2(R) − A3(R),

(42)(ICP) = (Rck
)−1, k ∈ {0, 1, 2, 3}

(43)A0(R̄) = 0, Ak(R̄) > 0, k ∈ {1, 2, 3}.

(44)�1 = �, �3,4 = ±i�, (�,� ∈ ℝ)

(45)(�2 + �
2)(� − �) = �

3 − ��
2 + �

2
� − ��

2 = 0

(46)
A1 = −�, A2 = �

2, A3 − ��
2, A0 = A3 − A1A2 = 0.

(47)(� + A1)(�
2 + A2) = 0
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are immediately obtained. Since the general integral of the 
spectrum equation implies

one has that, A1 > 0 implies the existence of a simple Hopf 
bifurcation (SHB) of frequency

coupled to a time exponentially decreasing perturbation, 
while A1 = 0 implies that the Hopf bifurcation is coupled 
to a steady one (steady-Hopf bifurcation).   ◻

Property 5 Let Ak(R), k ∈ {1, 2, 3} be smooth functions of 
the bifurcation parameter R and let a steady state m0 be 
asymptotically stable at R = R̄ . Then, at the increasing 
(decreasing) of R from R = R̄ , a SHB occurrs if and only if 
exists only one coefficient Ak, k ∈ {1, 2} , such that

Proof (51) is obviously necessary. On the other hand—by 
assumptions, one has

  ◻

and, in view of proeprty 5,

Therefore, at the increasing (decreasing) of R from R̄ to Rck
 , 

one has

which implies the existence of a R∗ ∈]R̄,Rck
[ ( R∗ ∈]Rck

, R̄[ ), 
lowest root of A0 = 0 , at which the SHB occurs.

Remark 3 The cases

and

since implies A0(Rck
) = 0, (k = 1, 2) , are governed by prop-

erty 5.

(48)�1,2 = ±i
√

A2, �3 = −A1,

(49)

⎛

⎜

⎜

⎝

v

�

y

⎞

⎟

⎟

⎠

= c1e
−A1t + c2 cos�t + c3 sin�t,

(cn = constant , n ∈ {1, 2, 3}),

(50)f =
1

2𝜋

√

A2(R̄)

(51)(ICP)k > (ICP)3.

(52)Ak(R̄) > 0, ∀k ∈ {0, 1, 2, 3},

(53)A0(Rc,k) = (A1A2 − A3)(R=Rck
) < 0.

(54)A0(R̄) > 0, A0(Rck
) < 0

(55)Rc2
= Rc3

,

(56)Rc1
= Rc3

,

5.1  The ICP method for a bifurcation parameter 
R ∈] −∞,∞[

Since the parameters appearing in (1) have only to be real 
numbers, it appears necessary a formulation of the ICP 
method for a bifurcation parameter � ∈] −∞,∞[.

Let at a value � ∈] −∞,∞[ of R exists a steady state m0 . 
Then the following formulation of the ICP method holds.

Property 6 If, at R = � , the steady state m0 is linearly 
asymptotically stable, then, at the increasing (decreasing) 
of R from R = � , the coefficient Ak of the spectrum equation 
of m0 , first becoming zero, drives not only the transition to 
instability but also the type and location of the occurring 
bifurcation which is a SHB if k < 3 , a steady one if k = 3 , 
and a Hopf bifurcation coupled to a steady one if Rck

= Rc3
 , 

k = 1 or k = 3.

Proof Introducing the parameters R, R̄ such that

it follows that R ≥ 0, R̄ ≥ 0 respectively and the formulation 
of the ICP method given in property 4 can be applied with 
R̄ = 0 .   ◻

6  Hopf bifurcations driven by v̄

Property 7 Let

Then only the critical points E = (v̄, �̄�, ȳ) with (v̄)2 ≤ 1 can 
bifurcate via Hopf bifurcations.

Proof In vire of (32)–(34), the coefficients of the spectrum 
equation can be written

with

and are—in view of (57)—increasing functions of � . It fol-
lows that

R = R − 𝜁 , for R ≥ 𝜁 ,

R̄ = 𝜁 − R, for R ≤ 𝜁

(57)inf(b,𝜇, 𝛿) > 0.

(58)

⎧

⎪

⎨

⎪

⎩

A1 = � + � + � ,

A2 = � + � + �� + (� + �)� ,

A3 = �� + �(� + ��),

(59)𝛾 = (v̄)2 − 1, inf(𝛼, 𝛽) > 0
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On the other hand

and the linear stability conditions (36) are verified ∀� ≥ 0, 
i.e. ∀v̄ ≥ 1 .   ◻

On setting

(58) becomes

and at the decreasing of v̄2 from v̄2 = 1 , the Ak are decreas-
ing functions of �̄�.

Denoting by �̄�ck the lowest root of Ak(�̄�) and letting (57) 
holds, one has

and it follows that

Property 8 Let (57) holds with

Then, at the growing of �̄� from �̄� = 0,

guarantees the existence of a �̄�c ∈]0, �̄�c3[ at which an oscil-
latory bifurcation occurs, while

guarantees that at �̄�c1 = �̄�c3 an oscillatory bifurcation, cou-
pled with a steady one, occurs.

(60)

𝛾 ≥ 0 ⇔

{

Ak > 0, ∀k ∈ {1, 2, 3},

(A1A2 − A3)(𝛾=0) = A2 + A1(𝛼 + 𝛽) − 𝛼𝛽 > A1(𝛼𝛽) > 0.

(61)
(A1A2 − A3)(𝛾=0) = (𝛼 + 𝛽)(𝜇 + 𝛿 + 𝛼𝛽) − (𝜇𝛼 + 𝛽𝛿) > 0

(62)�̄� = 1 − v̄2 = −𝛾

(63)

⎧

⎪

⎨

⎪

⎩

A1 = 𝛼 + 𝛽 − �̄� ,

A2 = 𝜇 + 𝛿 + 𝛼𝛽 − (𝛼 + 𝛽)�̄� ,

A3 = 𝜇𝛼 + 𝛽𝛿 − 𝛼𝛽�̄�

(64)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̄�c1 = 𝛼 + 𝛽,

�̄�c2 =
𝜇 + 𝛿 + 𝛼𝛽

𝛼 + 𝛽
,

�̄�c3 =
𝜇𝛼 + 𝛽𝛿

𝛼𝛽

(65)

⎧

⎪

⎨

⎪

⎩

�̄�c1 ≤ (≥)�̄�c2 ⇔ (𝛼 + 𝛽)2 ≤ (≥)𝜇 + 𝛿 + 𝛼𝛽,

�̄�c2 ≤ (≥)�̄�c3 ⇔ (𝛼𝛽)(𝜇 + 𝛿 + 𝛼𝛽) ≤ (≥)(𝛼 + 𝛽)(𝜇𝛼 + 𝛽𝛿),

�̄�c1 ≤ (≥)�̄�c3 ⇔ (𝛼𝛽)(𝛼 + 𝛽) ≤ (≥)𝜇𝛼 + 𝛽𝛿

(66)inf(𝛼, �̄�) > 0.

(67)𝛼𝛽(𝛼 + 𝛽) < 𝜇𝛼 + 𝛽𝛿,

(68)��(� + �) = �� + �
2,

Proof In fact, (67)–(68) are—according to (65)3—respec-
tively equivalent to �̄�c1 < �̄�c3 and to �̄�c1 = �̄�c3 . Then the proof 
is implied by properties 3-4 and by

  ◻

Property 9 Let (57), (66) hold. Then at the growing of �̄� 
from �̄� = 0

guarantees the existence of a �̄�c ∈]0, �̄�c3[ at which an Hopf 
bifurcation occurs while

guarantees that at �̄�c2 = �̄�c3 , an Hopf bifurcation, coupled 
with a steady one, occurs.

Proof (69) implies �̄�c2 < �̄�c3 . Then the proof is implied by 
properties 3–4.   ◻

7  Hopf bifurcations driven by  ̨̄ = −˛ 
growing

The bifurcations criteria obtained in the previous section, all 
require � ≤ 0 . In the present section, we obtain that decreas-
ing � as bifurcating parameter and letting � ≤ 0 , the Hopf 
bifurcation can arise with � ≥ 0.

Property 10 Let

and set

Then at the growing of �̄� from �̄� = 0, one has that

guarantee respectively the existence of

�̄�c1 = �̄�c3 ⇒
[

(A1A2 − A3)
]�̄�=0

�̄�c1=�̄�c3=0
= 0.

(69)𝛼𝛽(𝜇 + 𝛿 + 𝛼𝛽) < (𝛼 + 𝛽)(𝜇𝛼 + 𝛽𝛿),

(70)��(� + � + ��) = (� + �)(�� + ��),

(71)𝛼 ≤ 0, inf(𝛽,𝜇, 𝛿, 𝛾) > 0,

(72)
�̄� = −𝛼, �̄�c1 = 𝛽 + 𝛾 , �̄�c2 =

𝜇𝛿 + 𝛽𝛾

𝛽 + 𝛾
,

�̄�c3 =
𝛽𝛿

𝜇 + 𝛽𝛾
.

(73)�̄�c1 < �̄�c3 ≤ �̄�c2,

(74)�̄�c1 = �̄�c3 < �̄�c2,

(75)�̄�c12 < �̄�c3 ≤ �̄�c1,
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 (i) an �̄� ∈]0, �̄�c1[ in which a SHB occurs;
 (ii) an Hopf bifurcation of frequency 𝜑 =

1

2𝜋

√

A2(�̄�c1) , 
coupled to a steady state, at �̄� = �̄�c2;

 (iii) an �̄� ∈]0, �̄�c2[ in which a simple Hopf bifurcation 
occurs.

Proof At �̄� = 0 , in view of (58), one has

(76)
{

A
1
= 𝛽 + 𝛾 > 0, A

2
= 𝜇 + 𝛿 + 𝛽𝛾 > 0, A

3
= 𝛽𝛿 > 0,

A
1
A
2
− A

3
= (𝛽 + 𝛾)(𝜇 + 𝛿 + 𝛽𝛾) − 𝛽𝛿 = 𝛽(𝜇 + 𝛽𝛾) + 𝛾(𝜇 + 𝛿 + 𝛽𝛾) > 0

 (ii) an Hopf bifurcation of frequency f =

√

A2(𝛽c1)

2𝜋
 , 

coupled to a steady state, at �̄� = 𝛽c2;
 (iii) an 𝛽 ∈]0, 𝛽c2[ in which a SHB occurs.

Proof In view of (58) one has

and E = (v̄, w̄, ȳ) is linearly stable at �̄� = 0 . On the other hand, 
being �̄�ck the lowest positive root of Ak(�̄�) = 0, k ∈ {1, 2, 3} , 
property 10 is implied by property 3.   ◻

Remark 4 We remark that

implies that b is a bifurcating parameter.

8   Hopf bifurcations driven by  ̄̌ = −ˇ 
growing

A criterion analogous to the which one of property 10 can 
be easily obtained.

Property 11 Let

and set

Then at the growing of 𝛽  form 𝛽 = 0 , one has that

guarantee, respectively, the existence of

 (i) an 𝛽 ∈]0, 𝛽c1[ in which a SHB occurs;

(77)𝛼 = b𝛿 ≤ 0, 𝛿 > 0,

(78)−𝛼𝛾 < 𝜇 < 0, inf(b, 𝛿, 𝛾) > 0, 𝛿 = 1

(79)
𝛽 = −𝛽, 𝛽c1 = 𝛼 + 𝛾 , 𝛽c2 =

𝜇𝛿 + 𝛼𝛾

𝛼 + 𝛾
,

𝛽c3 =
𝛼𝛿

𝜇 + 𝛼𝛾
.

(80)

⎧

⎪

⎨

⎪

⎩

𝛽c1 < 𝛽c3 ≤ 𝛽c2
,

𝛽c1 = 𝛽c3 ≤ 𝛽c2
,

𝛽c2 < 𝛽c3 = 𝛽c1

and immediately follows that 𝛽ck is the lowest root of Ak(𝛽) . 
On the other hand at 𝛽 = 0 one has

  ◻

i.e. the linear asymptotic stability of E = (v̄, w̄, ȳ) at 𝛽 = 0 . 
Since (80) can be obtained from (79) via the substitution

one easily verifies that (73)–(75) with 𝛽ck at the place of �̄�ck 
implies (i)–(iii) of property 11.

9  A criterion of existence, location 
of bifurcations in the case 
{˛ = ˇ,ı > 0, ≥ 0}

Let

Then (63)–(65) reduce to

and setting

one has

(81)
A1 = 𝛼 − 𝛽 + 𝛾 , A2 = 𝜇 + 𝛿 − 𝛼𝛽 + (𝛼 − 𝛽)𝛾 ,

A3 = 𝜇𝛼 − 𝛽(𝛿 + 𝛼𝛾),

(82)
{

Ak > 0, k ∈ {1, 2, 3},

A1A2 − A3 = (𝛼 + 𝛾)(𝜇 + 𝛿 + 𝛼𝛾) − 𝜇𝛼 > 0

(83)
(

� � �

� � �

)

(84)�̄� = 1 − v̄2, inf(b,𝜇, 𝛿) > 0.

(85)
A1 = 2𝛼 − �̄� , A2 = 𝜇 + 𝛿 + 𝛼

2 − 2𝛼�̄� ,

A3 = 𝛼(𝜇 + 𝛿 − 𝛼�̄�),

(86)�̄�c1
= 2𝛼, �̄�c2

=
𝜇 + 𝛿 + 𝛼

2

2𝛼
, �̄�c3

=
𝜇 + 𝛿

𝛼2
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It follows that

Since

implies that at �̄� = 0 one has

i.e. the linear asymptotic stability holds.

Property 12 Let (84), (89) hold. Then

at the growing of �̄� from �̄� = 0 , implies the existence of a 
(�̄�)∗ ∈]0, �̄�c1 [ at which a SHB occurs and its frequency is 
given by

with

and (�̄�)∗ lowest root of

Proof The proof, via property 3, is easily obtained.   ◻

9.1  Steady bifurcations

In view of

it follows that

(87)Ak(�̄�ck ) = 0.

(88)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�̄�c1
≤ (≥)�̄�c3 ⇔ 𝛼

2 ≤ (≥)
𝜇 + 𝛿

2
,

�̄�c1
≤ (≥)�̄�c2 ⇔ 𝛼

2 ≤ (≥)
𝜇 + 𝛿

3
,

�̄�c2
≤ (≥)�̄�c3 ⇔ 𝛼

2 ≤ (≥)𝜇 + 𝛿,

(89)𝜇 + 𝛿 > 0

(90)

⎧

⎪

⎨

⎪

⎩

Ak > 0, ∀k ∈ {1, 2, 3},

(A1A2 − A3)(�̄�=0) = 𝛼
�

(𝜇 + 𝛿) + 2𝛼2
�

> 0

(91)𝛼
2
<

𝜇 + 𝛿

3
, �̄� > 0,

(92)f =
�

2�
,

(93)𝜑
2 = A2[(�̄�)

∗],

(94)A1A2 − A3 = (�̄� − 𝛼)[2𝛼�̄� − (2𝛼2 + 𝜇 + 𝛿)] = 0.

(95)

⎧

⎪

⎨

⎪

⎩

�̄�c3
< �̄�c1

⇔ 𝛼
2
>

𝜇 + 𝛿

3
,

�̄�c3
< �̄�c2

⇔ 𝛼
2
> 𝜇 + 𝛿

(96)𝛼
2
> 𝜇 + 𝛿

implies the onset of steady bifurcations.

9.2  Absence of SHB for ̄ ∈ [0, ̄
c2
]

In view of

the non existence of �̄� ∈ [0, �̄�c2] immediately follows.

10  Applications

The boundedness and existence of absorbing sets have 
a basic importance for the longtime behaviour of any DS 
Izhikovich (2000a). Their existence for the solutions of the 
FHR model (1) appears to be—as far as we know—new in 
the existing literature, at least in the formulation given in 
Sect. 2. Therefore, a check on the operativity of properties 
1,2 could be of relevant interest. We return on the conditions 
(3) and remark that are equivalent to

and consider as prototypes of a general case, the following 
two cases

In view of remark 1, we have to check on the existence of 
a positive value of � , such that (11) holds. In both the cases 
(98), (99) one has

10.1  Check on the operativity of conditions (3) 
in the case (99)

In the case (99), one has

(97)

⎧

⎪

⎨

⎪

⎩

�̄�c2
< �̄�c3

⇔ 𝛼
2
> 𝜇 + 𝛿,

�̄�c2
< �̄�c1

⇔ 𝛼
2
> 𝜇 + 𝛿

(98)|b| >
|1 − 𝛿|

2

2|𝛿|
, |𝛿| >

|1 − 𝜇|
2

2|𝜇|
,

(99)

⎧

⎪

⎨

⎪

⎩

a = 0.2, b = 0.08, d = 1,

I = 0.3125, � = 0.8, � = 0, 5

c = bifurcation parameter

(100)

⎧

⎪

⎨

⎪

⎩

a = 0.2, b = 0.08, d = 1,

I = 0.3125, � = 0.8, c = −0, 775

� = bifurcation parameter

(101)
{

|1 − �|
2 = |1 − 0.8|2 = 0.04,

� = b� = (0.008)(0.8) = 0.064, 2� = 0.128.
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Therefore, in the case (99), one has

which implies that boundedness and existence of absorbing 
sets, according to properties 1–2, is guaranteed for 𝜀 < 0.088

.

10.2  Check on the operativity of conditions (3) 
in the case (100)

In the case (100), since (103)1 is verified for r < 0.088 , the 
boundedness and existence of absorbing sets are guaranteed 
by the values of the bifurcation parameter � such that

i.e.

and hence

The case (99), with {b = 0.8, � = 0.08,� = 0.002} has 
been investigated in Yadav et al. (2016) and the case (100), 
with the same b and � , has been investigated in Alidousti 
and Khoshsiar Ghaziani (2017). The procedures applied 
in Yadav et al. (2016), Alidousti and Khoshsiar Ghaziani 
(2017), are completely different of the which ones of the 
present paper. In particular, boundedness and existence of 
absorbing sets are not considered (Fig. 1).

(102)� = �� = (0.5)(0.8) = 0.4, 2� = 0.8.

(103)
{

𝜀 < 2𝛼 − |1 − 𝛿|
2 = 0.128 − 0.04 = 0.088,

𝜀 < 2𝛽 − |1 − 𝜇|
2 = 0.8 − 0.25 = 0.55,

(104)|1 − 𝜇|
2
< 2𝛽 − 𝜀 = 0.8 − 0.088 = 0.712,

(105)|1 − 𝜇| < 0.8438

(106)0.15 ≤ � ≤ 1.8438.

Remark 5 Let b, �,� be known and verify (98). Denoting by 
R ∉ {b, �,�} a bifurcation parameter, it follows that 

1. the properties 1–2 hold;
2. a bifurcation parameter R ∈ {I, a, c, d} has influence via 

h and h1 , given by (13), only on the radius of the attrac-
tion bacin of the energy.

11  Discussion, final remarks 
and perspectives

 (I) The paper is addressed to boundedness, longtime 
behaviour of FHR solutions and onset of Hopf 
bifurcations;

 (II) Conditions guaranteeing boundedness of FHR solu-
tions and existence of absorbing sets in the energy 
phase space, are furnished;

 (III) Criteria guaranteeing the occurring of Hopf bifur-
cations, destabilizing steady states of FHR, are 
obtained;

 (IV) The power of each coefficient of the spectrum 
equation (37) to drive instability, location of the 
bifurcating parameter and the type of the occurring 
bifurcation, via a new version of the ICP method, 
is shown;

 (V) The FHR neurons bursting frequency is shown to 
be given by 

 with A2 coefficient of �2 of (37) and Rk lowest posi-
tive zero of A0 = A1A2 − A3 , location of a bifur-
cation parameter R at which the Hopf bifurcation 
occurs;

 (VI) (107), in the existing literature—as far as we 
know—is a completely new result;

 (VII) The looking for conditions necessary and/or suf-
ficient for guaranteeing the:

1. existence of sequences of FHR steady states destabi-
lized by sequences of Hopf bifurcations with variable 
frequencies, to contribure to characterize the neuron 
recurrent passage from a steady state to a ripetitive firing 
state (Izhikovich 2000b; Wang and Wang 2001; Varin 
2011) similar and/or analogous to Feigenbaum cascades 
{see Izhikovich (2000a), p.5, Varin (2011) and the refer-
ences therein};

2. transfer to the FHR-PDEs model the criteria for the onset 
of Hopf bifurcations, the associate neuron bursting fre-
quency and the result of longtime dynamics,

(107)f =
1

2�

√

A2(Rk)

10 5 5 10

10

8

6

4

2

z

x

Fig. 1  Plot of |z| = |1−x|2

2|x|
, x ∈ ℝ . If, via (98), b and � go over of it, 

then boundedness and absorbing sets of FHR solution are guaranteed 
by properties 1–2
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is under investigation.
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