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Abstract This paper considers climate prediction from

the perspective of the experimental, physical sciences, and

discusses three ways in which the two differ. First, the

construction of long-term climate series requires bench-

mark measurements, i.e., measurements calibrated in situ

against international standards. An instrument capable of

accurate, benchmark measurements of thermal, spectral

radiances from space is available but has yet to be

used. Second, objective criteria are needed to evaluate

measurements for the purpose of improving climate pre-

dictions. Techniques based on Bayesian inference are now

available. Third is the question of how to use suitable data

to improve a climate prediction, when they are available. A

method based on the Bayesian Evidence Function is, in

principle, available, but has yet to be exploited. None of

these three aspects are considered in current operational

climate forecasting. All three are potentially capable of

improving forecasts, and all are subjects of current research

programs, with the likelihood of their eventual adoption.
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1 Introduction

The physical sciences fall into two broad categories:

experimental sciences (physics, chemistry) which rely on

the simplest class of evidence, the controlled experiment;

and observational sciences (earth, atmospheric, ocean sci-

ences and astronomy), evidence for which consists of

observations of vast, complex, and uncontrollable systems.

Both take an approach to the natural world that depends

upon evidence to eliminate unsatisfactory hypotheses.1

Nevertheless, the approach of an individual investigator

differs greatly whether confronted with a controlled

experiment or a huge, uncontrollable system.

Climate forecasting is a part of the atmospheric and

oceanic sciences but with an added complication due to the

use of large digital computers for environmental model-

ing.2 An environmental model attempts to couple together

all relevant physical and chemical components of a natural

system in the context of a fluid flow model. The model is

subject to changing external conditions (forcings) and

projects to future states in many small time steps. Envi-

ronmental models can be of daunting complexity, and they

can give predictions of great detail. According to Beven

(2009), they engender a point of view previously unknown

to science, to which he gives the name Pragmatic Realism.

Pragmatic Realism sees the output of an environmental

model as a form of reality that can be brought closer to an

ultimate reality by improving the model components. It

rests on a disputable view of reality (see Beven 2009,

Chapter 2) and is a further departure from the experimental

model of physical science.
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Climate predictions are performed by environmental

models known as Global Climate Models or GCMs, and

they involve large uncertainties. These uncertainties have

been fastened upon by critics of global climate change, and

action on climate change has significantly slowed in recent

years, partly for this reason. It is by no means clear that the

political opposition to climate change would disappear if

the uncertainties in climate prediction were substantially

reduced. Nevertheless, that should be the aspiration of the

climate community and, for the most part, it is.

In recent decades, the experimental sciences have had

extraordinary successes, from controlling nuclear energy

to reading the genetic code, and their findings command

great respect in virtually all quarters. Because of their

simpler systems, experimental scientists can limit uncer-

tainties in their evidence. They aim for measurement

accuracy that can distinguish between alternate hypo-

theses, and they vary parameters to produce a body of

evidence. The purpose of this paper is to ask whether

there may be lessons from experimental science that

might help improve the quality of climate predictions.

Uncertainties in climate predictions will not be eliminated

in this way, but we do believe that it could be a step in

the right direction. The common link is the best use of

evidence, and the difference in this respect is that for the

experimental scientist evidence dominates all other con-

siderations, but for climate predictions the emphasis is on

Pragmatic Realism.

2 Climate predictions and their uncertainties

The subject of climate change and climate prediction is

now defined by the encyclopedic publications of the U.N.

Intergovernmental Panel on Climate Change. The latest

edition was issued in 2007 (IPCC AR4 2007) and a new

edition is expected soon. The relevant volume is that by

Working Group I. This volume has 152 lead authors from

30 countries with 650 correspondents and represents sub-

stantial ranges of opinions of almost all of the climate

community.

For this paper, the most important results of IPCC AR4

are the 100-year predictions of global surface temperature

(Fig. 1). There are 24 independent predictions by different

national groups, all using the same, plausible forcing by

increasing concentrations of greenhouse gases. The spread

of the IPCC climate temperature trends is 2.2–3.5 K per

century, a range sufficiently large to influence the climate

change debate. This spread is largely caused by differences

between models. Another source of uncertainty is the year-

to-year fluctuations on the records in Fig. 1. This is caused

by non-linear, fluid instabilities in the models (natural

variability). Natural variability also occurs in the real

climate in the form of weather which, on time scales up to

several years, can have a very large amplitude.

There are additional uncertainties, for example, the

forcing is controlled by unpredictable political and eco-

nomic factors. Other uncertainties are related to the

assumptions made by the different models. And we must

assume that the mechanisms of climate will be the same in

100 years time as they are now, which we cannot know

with certainty. We have no data on the future climate that

might allow us to identify and modify sources of error, and

these projections have the status of hypotheses, rather than

confirmed scientific conclusions.

Part of the uncertainty in a projection is due to uncer-

tainty in the environmental model, the GCM. Unlike the

quality of the projection, the quality of the model can be

objectively assessed by performing predictions from the

past to the present, and comparing the result to present

data. Within the limits imposed by natural variability and

the accuracy of the data, it is possible, in principle, to

develop models which account completely for all evidence

available at the time the prediction is made. Other things

being equal we may reasonably expect that the better the

model, the better the prediction. This is the point at which a

greater emphasis on data could prove to be valuable.

Chapter 8 of IPCC AR4 (2007), Climate models and

their evaluation, describes many efforts to evaluate climate

models. For the most part, these investigations are for

special purposes and not directed towards the systematic

evaluation of model quality. This question is, however,

contained within a discussion of metrics. On page 591, we

read ‘‘The possibility that metrics based on observations

might be used to constrain model projections of climate

change has been explored for the first time, through the

analysis of ensembles of model simulations. Nevertheless a

proven set of metrics that might be used to narrow the
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Fig. 1 The IPCC AR4, ensemble of climate predictions. Climate

predictions of globally averaged surface temperature by 24 indepen-

dent GCMs as reported in IPCC AR4, with some additions. The

climate trends (slopes) cover the range 2.2–3.5 K
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range of plausible climate projections has yet to be

developed’’. This is the part of current climate research that

deserves more emphasis. It is expected that there will be

many competing ensembles of climate predictions in the

future. A metric could enable the best to be selected.

We shall examine some of the issues involved in

developing a useful metric of model performance, and the

best data for this purpose. All atmospheric variables are

potentially useful, and there are also combinations of

variables which might be more valuable than the individual

variables alone. Consequently, there are a very large

number of observations available for use in a metric, most

of which have not yet been used for this purpose. We

notice that model intercomparison projects (AMIP, CMIP)

have found large difference between models and data.

3 The quality of climate data

As shown in Fig. 1, the predicted change of surface tem-

perature is approximately 3 k in a century. In order to make

discriminating tests between theories, measurements

should, preferably, be made with an accuracy of about

0.1 K, and this accuracy must be sustainable over centu-

ries. Weather data are not of this quality, even when re-

analyzed, a process by which all available data types are

made internally consistent in the context of a weather

prediction model. The only way to achieve such accuracy

is by means of regular instrument calibrations, while in use,

against international standards, benchmark measurements.

It is very difficult to make benchmark measurements with

instruments carried on meteorological radiosondes, but it is

possible to do so in the more benign conditions that exist in

space. Space observations have the additional advantage

that the entire surface of the earth can be measured with the

same instrument, which is evidently important for a global

phenomenon.

There are currently three satellite benchmark measure-

ments. One measures the total solar radiation in terms of

electrical standards using an active cavity radiometer

(Willson and Helizon 1999). A second measures air density

in terms of international standards of time, by means of

occultations of the radio signals from Global Positioning

System satellites (Kursinski et al. 1997). We shall briefly

describe the third instrument, which has not yet flown, a

radiometer calibrated in terms of international temperature

standards (Anderson et al. 2004).

Figure 2 shows the spectrum of radiation leaving the

Earth to space. This is important to climate studies for two

reasons. First, the total outgoing radiation is the response of

the planet to the incident solar radiation. This is one of the

most fundamental relationships governing climate change.

Second, the complex features shown in Fig. 2 are caused by

molecular absorptions, and they can be unraveled to yield

information on surface and air temperatures, clouds, and

gaseous concentrations although with coarse resolution.

The spectrum in Fig. 2 is recorded by an interferometer,

the purpose of which is to compare the Earth’s radiation to

that from a calibrated cavity (a black body). A schematic

for the CLARREO instrument is shown in Fig. 3; this

instrument is a miniature standards laboratory. One

important aspect of this instrument is redundancy. There

are two independent instruments performing the same

function, and each instrument has two independent black
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Fig. 2 Spectrum of the heat radiation leaving planet earth. The many

small features are the signatures of greenhouse gases

Fig. 3 Schematic of the CLARREO interferometer. There are two

independent instruments boresighted on the same region of the

surface. There are four independent black bodies; a minimum of one

would suffice
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bodies, for a total of four, where only one is required. The

purpose of this redundancy and other features of the

instrument design is to ensure that the link between Earth

and black body remains the same, and the onus for a

benchmark result then rests squarely on the accuracy of the

black body (Fig. 4).

Good design of a black body can ensure that its accuracy

is solely determined by the accuracy with which the cavity

temperature can be determined. This temperature is mea-

sured in terms of the liquid to solid phase changes of water,

gallium, and mercury. The international standard scale of

temperature is defined in terms of phase changes, and the

CLARREO thermometers are, therefore, consistent with

that scale. The thermometers might fail, but they cannot

give an incorrect reading.

4 Selecting and using new evidence

Not all climate measurements are equally useful for

improving climate predictions, and the ability to choose

between data types on the basis of value is useful both for

allocating observing resources and for the efficient use of

computer resources.

But before discussing this topic, we need to take note of

the fact that both predictions and observations are uncertain

to some degree. When we compare them we are comparing

two uncertain quantities and our conclusions will also be

uncertain. The appropriate mathematical framework for

handling such quantities is the science of statistics, a dis-

cipline with its own assumptions and methods, and there is

increasing belief that, for assimilating climate data, the

appropriate system of statistical inference is that of Bayes

(Sivia 1996; Beven 2009). Bayesian inference treats rela-

tionships between probability density functions (pdfs),

quantities which express the probability of occurrence of a

quantity in terms of the value of that quantity (see Fig. 5

for examples of pdfs of climate trends). With only 24

results in Fig. 1, it is only possible to describe the simplest

possible pdf (a gaussian pdf) which has the same mean and

the same standard deviation (the spread of the pdf) as the

data. The most likely prediction and its uncertainty are

correctly represented by a gaussian pdf.

The pdf of the data in Fig. 1 is known as the prior, i.e., the

information that exists prior to the introduction of new evi-

dence. Now suppose that new evidence becomes available

(the horizontal arrow in Fig. 5), this adds to our knowledge

about the climate, and requires that the prior be modified to

the posterior. The maximum of the posterior must be closer to

the truth than the prior, because it is based on more evidence,

and it should be more certain (smaller spread). Bayesian

inference allows these statements to be placed on a quanti-

tative basis, see Huang et al. (2011) and Sexton et al. (2012).

Figure 6 shows the results of a 50-year prediction of

globally averaged surface temperatures after adding infor-

mation about the climate of the first 10 years, the first

Fig. 4 A CLARREO blackbody. The phase change cells of gal-

lium, water and mercury ensure the benchmark character of the

spectrometer
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Fig. 5 Bayesian inference: a schematic illustration
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Fig. 6 Evolution of a prediction. Model predictions of surface

temperature trends over 50 years are modified by data at 10, 20, 30,

40, and 50 years. Calculations for two data types are shown: surface

temperature trends (tas), and trends in all satellite radiances taken

together (radiances) (Huang et al. 2011)
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20 years, etc. The maxima of the pdfs are shown by the

points and arrowheads and the standard deviations by

the vertical lines. The mean of the prior is represented by

the empty square point; the filled square and triangle points

and lines are the posteriors. Two types of data are added:

squares are for globally averaged surface temperatures;

triangles are for certain radiances, measured from a satel-

lite. The figure demonstrates the expected improvement of

accuracy and reduction of uncertainty as new evidence is

added, and shows, surprisingly, that adding space radiances

may be slightly more useful than adding surface tempera-

ture data, even when the latter is the predicted quantity.

These calculations can be extended to include many data

types. Data types that stand out as being more useful than

others for improving predictions of surface temperatures

are to be preferred.

When suitable data have been obtained, they must be

used to develop a metric suitable for routine selection

between models. Huang et al. (2011) point out that such a

metric falls out of the Bayesian analysis outlined in the

previous section. The Bayesian metric is the Evidence

Function, P(d|M), or the probability that the evidence, d, is

compatible with a model, M. Figure 7 shows an expression

for the Evidence Function. It is presented here as a com-

parison between two models. It is hard to assign a meaning

to the probability of a single model unless there is some-

thing to measure it against. d is written as a vector and can

represent all available data or any selection from it. Dif-

ferent selections may be appropriate to different users of a

climate prediction (recreational, business, military, etc.),

because not all users have the same interests, and each

model may be better in some respects than others.

It will not be straightforward or easy to develop the

Evidence Function as a metric for the quality of an

ensemble of climate models. It will require arduous

numerical research to accomplish this goal. However,

Bayesian inference establishes that such a metric exists and

that it is probably the best metric available.

5 Conclusions

In the previous sections, we have shown how some data

ideal for climate research are becoming available, and how

data in general can be used to select the best available

climate ensemble. These prior ensembles can then be

upgraded to improved posteriors, in the manner demon-

strated in Fig. 6. We have not discussed the use of data for

improving models rather than their predictions. Model

improvement involves improving individual process mod-

els that are coupled together in a GCM. Parts of the climate

system are isolated and methods used that are familiar to an

experimental scientist (see Garratt 1992, for a monograph

on the atmospheric boundary layer, and Goody (1964) on

atmospheric radiation; both topics are treated as process

models in GCMs). The use of data to study the GCM

predictions is different, and involves a significant gap

between an experimentalist and the ideas of Pragmatic

Realism. Our discussion shows how this gap can be par-

tially closed, and the Bayesian approach that we employ

may be the best that can be done.

Research described in IPCC AR4 (2007) shows that

there are climate scientists who are aware of these issues

and are working on them, but these are not the most active

areas of climate research. The reason for this can probably

be traced to the importance of ideas of Pragmatic Realism,

and to the fact that climate research has prospered under its

aegis and has risen to political prominence3 without con-

sidering additional complications. Moreover, the experi-

mental view of science which we offer is evidently not the

only road to important advances in scientific knowledge.4

Perhaps it should be asked whether experimental method is

in any way appropriate to the climate problem?

Given these considerations, how and why should the

proposals that we outline be followed? First the ‘‘why’’.

Bayesian inference indicates that an increased use of better

evidence can only increase the quality of climate predic-

tions; whether by much or by little has to be determined.

This path needs to be pursued, partly for the sake of sci-

entific integrity and partly because it could increase con-

fidence in climate predictions, a focus for concern at the

present time. The ‘‘how’’ is more difficult, because it may

involve a trade-off with established programs. Fortunately,

it appears that thinking within the climate community may

already be taking new directions. Informal sources indicate

that funding has been made available for research into

The Evidence Function

P(d | M) = P(d | x) P(x | M) dx

x = climate forecast; d = data

M1 is a more credible model than M2 if  

Evidence Function (M1)

Evidence Function (M2)
>1

Fig. 7 The Evidence Function P(d|M) is the probability that data

d would be obtained given the model M. Note that d is a vector of

data types representing anything from all available data types to a

single data type

3 The work of the IPCC was recognized with the award of the 2007

Nobel Peace prize.
4 The theory of Evolution is known as one of the most important

contributions of science to human knowledge, but was developed

without an experimental basis.
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Bayesian metrics, and that more than one research group is

working on the problem.

Climate observing systems are complex and extremely

expensive. It is unlikely that a climate network based on

benchmark measurements will ever be funded. The most

important source of operational climate data is the estab-

lished international meteorological networks, which consist

of both orbiting and in situ measurements. When natural

variability is large, these networks are probably sufficiently

accurate for climate research; but if the importance of

natural variability is decreased through the availability of

long time series, this may not continue to be the case.

Re-analysis has been seen as a solution to inadequacy of

the weather networks, but there has recently been a reali-

zation that re-analysis may not deal with small, slowly

developing errors, of the kind that can only be eliminated

with benchmark measurements. Benchmark measurements

might be used, not as a climate network in themselves, but

to calibrate the re-analyses of meteorological data. This

would be an appropriate compromise between the search

for more reliable climate predictions and budget realities.

If these advances in climate techniques take place, the

lessons on offer from experimental science will have been

assimilated.
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