Skip to main content
Log in

True and false chirality and absolute enantioselection

  • Chirality in Chemistry and Biophysics
  • Published:
Rendiconti Lincei Aims and scope Submit manuscript

Abstract

The discrete symmetries of parity P, time reversal T, and charge conjugation C are used to characterize the properties of chiral systems. The concepts of true chirality (time-invariant enantiomorphism) and false chirality (time-noninvariant enantiomorphism) that emerge provide an extension of Lord Kelvin’s original definition of chirality to situations where motion is an essential ingredient thereby clarifying, inter alia, the nature of physical influences able to induce absolute enantioselection. Only a truly chiral influence lifts the degeneracy of chiral enantiomers and so may induce absolute enantioselection in all circumstances. Chiral enantiomers remain strictly degenerate under a falsely chiral influence, which may therefore not induce absolute enantioselection in a process that has reached thermodynamic equilibrium, but may do so in far-from-equilibrium processes via a breakdown in microscopic reversibility analogous to that observed in elementary particle processes under the influence of CP violation. Parity violation and CP violation are suggested to be manifestations of true and false cosmic chirality, respectively, and their possible roles in abiotic enantioselection discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aharony A (1973) Microscopic irreversibility, unitarity and the H-theorem. In: Gal-Or B (ed) Modern developments in thermodynamics. Wiley, New York, pp 95–114

  • Amole C et al (ALPHA Collaboration) (2012) Resonant quantum transitions in trapped antihydrogen atoms. Nature 483:439–443

    Google Scholar 

  • Andresen GB et al (ALPHA Collaboration) (2011) Confinement of antihydrogen for 1000 seconds. Nat Phys 7:558–564

    Google Scholar 

  • Angelopoulos et al (CPLEAR Collaboration) (1998) First direct observation of time-reversal non-invariance in the neutral-kaon system. Phys Lett B 444:43–51

    Google Scholar 

  • Asztalos SJ, Rosenberg LJ, van Bibber K, Sikivie P, Zioutas K (2006) Searches for astrophysical and cosmological axions. Annu Rev Nucl Part Sci 56:293–326

    Article  CAS  Google Scholar 

  • Avalos M, Babiano R, Cintas P, Jiménez JL, Palacios JC, Barron LD (1998) Absolute asymmetric synthesis under physical fields: facts and fictions. Chem Rev 98:2391–2404

    Article  CAS  Google Scholar 

  • Barron LD (1981a) Fundamental symmetry aspects of optical activity. Chem Phys Lett 79:392–394

    Article  CAS  Google Scholar 

  • Barron LD (1981b) Optical activity and time reversal. Mol Phys 43:1395–1406

    Article  CAS  Google Scholar 

  • Barron LD (1986a) True and false chirality and absolute asymmetric synthesis. J Am Chem Soc 108:5539–5542

    Article  CAS  Google Scholar 

  • Barron LD (1986b) Symmetry and molecular chirality. Chem Soc Rev 15:189–223

    Article  CAS  Google Scholar 

  • Barron LD (1986c) True and false chirality and parity violation. Chem Phys Lett 123:423–427

    Article  CAS  Google Scholar 

  • Barron LD (1987) Reactions of chiral molecules in the presence of a time-non-invariant enantiomorphous influence: a new kinetic principle based on the breakdown of microscopic reversibility. Chem Phys Lett 135:1–8

    Article  CAS  Google Scholar 

  • Barron LD (1991) Fundamental symmetry aspects of molecular chirality. In: Mezey PG (ed) New developments in molecular chirality. Kluwer Academic Publishers, Dordrecht, pp 1–55

    Chapter  Google Scholar 

  • Barron LD (1994a) CP violation and molecular physics. Chem Phys Lett 221:311–316

    Article  CAS  Google Scholar 

  • Barron LD (1994b) Can a magnetic field induce absolute asymmetric synthesis? Science 266:1491–1492

    Article  CAS  Google Scholar 

  • Barron LD (2000) Chirality, magnetism and light. Nature 405:895–896

    Article  CAS  Google Scholar 

  • Barron LD (2002) Chirality at the sub-molecular level: true and false chirality. In: Lough WJ, Wainer IW (eds) Chirality in Natural and Applied Science. Blackwell Publishing, Oxford, pp 53–86

    Google Scholar 

  • Barron LD (2004) Molecular light scattering and optical activity, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Barron LD (2008) Chirality and life. Space Sci Rev 135:187–201

    Article  CAS  Google Scholar 

  • Barron LD (2012a) Spin and gravity give a helping hand. Nat Chem 4:150–152

    Article  CAS  Google Scholar 

  • Barron LD (2012b) Cosmic chirality both true and false. Chirality 24:957–958

    Article  CAS  Google Scholar 

  • Barron LD, Buckingham AD (2001) Time reversal and molecular properties. Accs Chem Res 34:781–789

    Article  CAS  Google Scholar 

  • Barron LD, Vrbancich J (1984) Magneto-chiral birefringence and dichroism. Mol Phys 51:715–730

    Article  CAS  Google Scholar 

  • Bast R, Koers A, Gomes ASP, Iliaš M, Visscher L, Schwerdtfeger P, Saue T (2011) Analysis of parity violation in chiral molecules. Phys Chem Chem Phys 13:864–876

    Article  CAS  Google Scholar 

  • Berestetskii VB, Lifshitz EM, Pitaevskii LP (1982) Quantum electrodynamics, 2nd edn. Pergamon Press, Oxford

    Google Scholar 

  • Bonner WA (1988) Origin of chiral homogeneity in nature. Topics Stereochem 18:1–96

    Article  CAS  Google Scholar 

  • Bouchiat MA, Bouchiat C (1997) Parity violation in atoms. Rep Prog Phys 60:1351–1396

    Article  CAS  Google Scholar 

  • Branco GC, Lavoura L, Silva JP (1999) CP violation. Clarendon Press, Oxford

    Google Scholar 

  • Cintas P, Viedma C (2012) On the physical basis of asymmetry and homochirality. Chirality 24:894–908

    Article  CAS  Google Scholar 

  • Compton RN, Pagni RM (2002) The chirality of biomolecules. Adv At Mol Opt Phys 48:219–261

    Article  CAS  Google Scholar 

  • Curie MP (1894) Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J Phys (Paris) (3) 3:393–415

    Google Scholar 

  • Darquié B, Stoeffler C, Shelkovnikov A, Daussy C, Amy-Klein A, Chardonnet C, Zrig S, Guy L, Crassous J, Soulard P, Asselin P, Huet TR, Schwerdtfeger P, Bast R, Saue T (2010) Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22:870–884

    Article  Google Scholar 

  • Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew Chem Int Ed 38:3418–3438

    Article  Google Scholar 

  • Ghosh A, Sheridon NK, Fischer P (2008) Voltage-controllable magnetic composite based on multifunctional polyethylene microparticles. Small 4:1956–1958

    Article  CAS  Google Scholar 

  • Goldhaber AS, Goldhaber M (2011) The neutrino’s elusive helicity reversal. Phys Today 2011:40–43

  • Gottfried K, Weisskopf VF (1984) Concepts of particle physics, vol 1. Clarendon Press, Oxford

    Google Scholar 

  • Haldane JBS (1960) Pasteur and cosmic asymmetry. Nature 185:87

    Article  Google Scholar 

  • Hegstrom RA, Rein DW, Sandars PGH (1980) Calculation of the parity nonconserving energy difference between mirror-image molecules. J Chem Phys 73:2329–2341

    Article  CAS  Google Scholar 

  • Hoedl SA, Fleischer F, Adelberger EG, Heckel BR (2011) Improved constraints on an axion-mediated force. Phys Rev Lett 106:041801

    Article  CAS  Google Scholar 

  • Hu YH, Liu ZZ, Xu Q, Luo J (2008) Chirality-dependent macroscopic force between chiral molecules and achiral matter. Phys Lett A 373:9–12

    Article  CAS  Google Scholar 

  • Hu YH, Qing X, Liu ZZ (2009) Chirality-asymmetry force between α-quartz and copper block. Chin Phys B 18:1367–1372

    Article  CAS  Google Scholar 

  • Jaeger FM (1930) Optical activity and high-temperature measurements. McGraw-Hill, New York

    Google Scholar 

  • Kondepudi DK, Nelson GW (1985) Weak neutral currents and the origin of biomolecular chirality. Nature 314:438–441

    Article  CAS  Google Scholar 

  • Lahav M, Weissbuch I, Shavit E, Reiner C, Nicholson GJ, Schurig V (2006) Parity violating energetic difference and enantiomorphous crystal-caveats; reinvestigation of tyrosine crystallization. Orig Life Evol Biosphere 36:151–170

    Google Scholar 

  • Lees JP et al (BABAR Collaboration) (2012) Observation of time-reversal violation in the B0 meson system. Phys Rev Lett 109:211801

    Google Scholar 

  • Lindell IV, Sihvola AH, Tretyakov SA, Viitanen AJ (1994) Electromagnetic waves in chiral and bi-isotropic media. Artech House, Boston

    Google Scholar 

  • Lord Kelvin (1904) Baltimore lectures on molecular dynamics and the wave theory of light. CJ Clay & Sons, London. Reprinted by Cambridge University Press, 2010

  • Lucas PW, Hough JH, Bailey J, Chrysostomou A, Gledhill TM, McCall A (2005) UV circular polarization in star formation regions: the origin of homochirality? Orig Life Evol Biosphere 35:29–60

    Article  CAS  Google Scholar 

  • MacDermott AJ (2002) The origin of biomolecular chirality. In: Lough WJ, Wainer IW (eds) Chirality in natural and applied science. Blackwell Publishing, Oxford, pp 23–52

    Google Scholar 

  • MacDermott AJ, Fu T, Hyde GO, Nakatsuka R, Coleman AP (2009) Electroweak parity-violating energy shifts of amino acids: the “conformation problem”. Orig Life Evol Biosphere 39:407–437

    Article  CAS  Google Scholar 

  • Mason SF (1982) Molecular optical activity and the chiral discriminations. Cambridge University Press, Cambridge

    Google Scholar 

  • Mason SF (1988) Biomolecular homochirality. Chem Soc Rev 17:347–359

    Article  CAS  Google Scholar 

  • Micali N, Engelkamp H, van Rhee PG, Christianen PCM, Monsù Scolaro L, Maan JC (2012) Selection of supramolecular chirality by application of rotational and magnetic forces. Nat Chem 4:201–207

    Article  CAS  Google Scholar 

  • Mislow K (1999) Molecular chirality. Topics Stereochem 22:1–82

    Google Scholar 

  • Moody JE, Wilczek F (1984) New macroscopic forces? Phys Rev D 30:130–138

    Article  CAS  Google Scholar 

  • Morrison JD, Mosher HS (1976) Asymmetric organic reactions. American Chemical Society, Washington

    Google Scholar 

  • Okun LB (1985) Particle physics—the quest for the substance of substance. Harwood Academic Publishers, Chur

    Google Scholar 

  • Plasson R, Kondepudi DK, Bersini H, Commeyras A, Asakura K (2007) Emergence of homochirality in far-from-equilibrium systems: mechanisms and role in prebiotic chemistry. Chirality 19:589–600

    Article  CAS  Google Scholar 

  • Quack M (2002) How important is parity violation for molecular and biomolecular chirality? Ang Chem Int Ed 41:4618–4630

    Article  CAS  Google Scholar 

  • Quack M (2011) Frontiers in spectroscopy. Faraday Discuss 150:533–565

    Article  CAS  Google Scholar 

  • Rikken GLJA, Raupach E (1997) Observation of magneto-chiral dichroism. Nature 390:493–494

    Article  CAS  Google Scholar 

  • Rikken GLJA, Raupach E (2000) Enantioselective magnetochiral photochemistry. Nature 405:932–935

    Article  CAS  Google Scholar 

  • Salam A (1990) Unification of fundamental forces-the first of the 1998 Dirac memorial lectures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tellegen BDH (1948) The gyrator, a new electric network element. Philips Res Rep 3:81–101

    Google Scholar 

  • Thomson W (1856) Dynamical illustrations of the magnetic and the helicoidal rotatory effects of transparent bodies on polarized light. Proc Roy Soc 8:150–158; Phil Mag 1857;13:198–204. Reprinted in Lord Kelvin (1904), pp 569–577

  • Wagnière GH (2007) On chirality and the universal asymmetry. Verlag Helvetica Chimica Acta, Zürich; Wiley-VCH, Weinheim

  • Wagnière GH, Meir A (1982) The influence of a static magnetic field on the absorption coefficient of a chiral molecule. Chem Phys Lett 93:78–81

    Article  Google Scholar 

  • Weinberg S (1995) The quantum theory of fields, vol I. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Weinberg S (1996) The quantum theory of fields, vol II. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence David Barron.

Additional information

This contribution is the written, peer-reviewed version of a paper presented at the conference “Molecules at the Mirror—Chirality in Chemistry and Biophysics”, held at Accademia Nazionale dei Lincei in Rome on October 29–30, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barron, L.D. True and false chirality and absolute enantioselection. Rend. Fis. Acc. Lincei 24, 179–189 (2013). https://doi.org/10.1007/s12210-013-0224-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12210-013-0224-6

Keywords

Navigation