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Abstract
Over the past few decades, photocatalysis technology has received extensive attention because of its potential to mitigate 
or solve energy and environmental pollution problems.Designing novel materials with outstanding photocatalytic activities 
has become a research hotspot in this field. In this study, we prepared a series of photocatalysts in which BiOCl nanosheets 
were modified with carbon quantum dots (CQDs) to form CQDs/BiOCl composites by using a simple solvothermal method. 
The photocatalytic performance of the resulting CQDs/BiOCl composite photocatalysts was assessed by rhodamine B and 
tetracycline degradation under visible-light irradiation. Compared with bare BiOCl, the photocatalytic activity of the CQDs/
BiOCl composites was significantly enhanced, and the 5 wt% CQDs/BiOCl composite exhibited the highest photocatalytic 
activity with a degradation efficiency of 94.5% after 30 min of irradiation. Moreover, photocatalytic  N2 reduction performance 
was significantly improved after introducing CQDs. The 5 wt% CQDs/BiOCl composite displayed the highest photocata-
lytic  N2 reduction performance to yield  NH3 (346.25 μmol/(g h)), which is significantly higher than those of 3 wt% CQDs/
BiOCl (256.04 μmol/(g h)), 7 wt% CQDs/BiOCl (254.07 μmol/(g h)), and bare BiOCl (240.19 μmol/(g h)). Our systematic 
characterizations revealed that the key role of CQDs in improving photocatalytic performance is due to their increased light 
harvesting capacity, remarkable electron transfer ability, and higher photocatalytic activity sites.

Graphical Abstract
This work reports a novel CQDs/BiOCl composite photocatalyst for efficiently removing contaminants from water.
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Introduction

In recent years, ultrathin two-dimensional (2D) materi-
als have garnered immense attention due to their excellent 
chemical and physical properties [1–6] and have been widely 
used in the fields of sensing, biological medicine, catalysis, 
Li-ion batteries, and supercapacitors [7–11]. For photocat-
alytic applications, inorganic ultrathin 2D semiconductor 
materials with appropriate band gaps are ideal candidates 
because of their superior photocatalytic performance. Tra-
ditionally, the generated charge carriers inside the material 
will take longer to reach the surface than surface-generated 
carriers [10, 12, 13]. When the same semiconductors are 
reduced to ultralow thickness, photogenerated carriers can 
be quickly transferred from the inside to the surface, thus 
resulting in faster charge carrier transfer. Moreover, ultrathin 
structure materials expose more catalytically active sites, 
which facilitate surface reactions [12]. Thus, constructing 
ultrathin 2D materials with suitable band gaps is a desirable 
approach for designing efficient photocatalysts.

Bismuth oxychloride (BiOCl), as a layered material with 
good prospects for photocatalytic energy conversion and 
environmental remediation, has attracted extensive atten-
tion in recent years [14–20]. BiOCl has a unique layered 
structure by interlacing a  [Bi2O2] slab with a double chlorine 
slab, which can produce a self-built internal static field and 
promote the separation of charge carriers [21]. So far, sev-
eral strategies have been employed to prepare highly active 
BiOCl materials, including crystal facet exposure [22], mor-
phology control [5, 23, 24], surface modification [19, 25, 
26], and heterostructured composite construction [13, 27, 
28]. Among them, the synthesis of ultrathin nanosheets is 
an effective approach. According to the formula t = d2/k2D 
(where d, k, and D are the particle size, constant, and diffu-
sion coefficient, respectively) [29], the ultrathin thickness 
of BiOCl allows a reduced d value, whereas self-built inter-
nal electric fields lead to an increased D value [30]. Thus, 
ultrathin BiOCl exhibits high separation efficiency of the 
charge carrier. Nevertheless, the photocatalytic activity of 
BiOCl material remains deficient. To unlock its potential for 
industrial applications, certain adaptations to this promising 
material are necessary. When selecting a material to form 
composites with BiOCl, the ability to develop a high-quality 
interface with the BiOCl matrix is a key factor to consider 
because interfacial defects may function as recombination 
centers for electron–hole pairs, resulting in adverse impacts 
on photocatalytic efficiency. Thus, we rationally propose car-
bon quantum dots (CQDs) as highly suitable candidates for 
reducing the formation of interfacial defects and enhancing 
the separation efficiency of charge carriers.

CQDs are a new type of carbon nanomaterial with a 
diameter of less than 10 nm and primarily contain three 

elements, namely, C, H, and O [31]. The surface of CQDs 
contains many hydroxyl, carboxyl, amino, ether, aldehyde, 
and other chemical functional groups. They have excellent 
aqueous solubility, low biotoxicity, and good biocompat-
ibility and are widely employed in the fields of energy, 
biomedicine, and electrocatalysis [32]. Recently, CQDs 
have been introduced into photocatalytic applications due 
to their abundant surface functional groups and remarkable 
charge transfer ability. Several composite photocatalysts 
with high photocatalytic activity based on CQDs have 
been examined, such as CQDs/TiO2 [33], CQDs/Cu2O 
[34], CQDs/Ag3PO4 [35], and CQDs/Sb2WO6 [36]. How-
ever, the relationship between the structure and activity of 
CQDs in improving photocatalytic performance remains 
under debate. Because of the small size of CQDs, the 
interface mismatch between BiOCl nanosheets and CQDs 
can be significantly decreased, and CQDs/BiOCl compos-
ites with nanoscale heterojunctions can be constructed. 
Such a distinctive nanostructure presents several advan-
tages. First, it amplifies the accessible area of the CQDs 
and BiOCl planar interface, which facilitates a fast and 
efficient charge transfer through the establishment of bulk-
to-surface channels for electrons. Second, the remarkable 
dispersion of CQDs reduces the obstructive effects on 
light, which allows an ample influx of light into the BiOCl 
material and consequently maximizes its light utilization 
efficiency. These outstanding characteristics synergisti-
cally improve the performance and overall efficacy of the 
system [37]. Some systems have exhibited that nanoscale 
heterojunctions can significantly improve the separation of 
charge carriers [38–40]. Therefore, constructing a struc-
ture by modifying the BiOCl ultrathin nanosheets with 
CQDs for efficient photocatalysis is urgently needed.

In this work, novel CQDs/BiOCl composite photocata-
lysts are synthesized by a facile hydrothermal method. The 
structure, morphology, and photocatalytic performance are 
analyzed. Based on our assessment of the photocatalytic 
degradation of rhodamine B (RhB) and tetracycline (TC), 
we verify that the introduction of CQDs can significantly 
improve photocatalytic activity. The structure–activity rela-
tionship is systemically explored, which determines the 
active species that influence the photocatalytic activity, and 
the photocatalytic mechanism is proposed.

Results and Discussion

Figure 1a displays the X-ray diffraction (XRD) patterns for 
the as-prepared samples with different CQD contents. The 
diffraction peaks of samples at 12.0°, 25.9°, 32.6°, 33.6°, 
41.0°, 46.8°, 49.9°, 54.2°, 58.8°, 68.3°, and 77.7° can be 
attributed to the (001), (101), (110), (102), (112), (200), 
(113), (121), (122), (220), and (130) planes of tetragonal 
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BiOCl (JCPDS card no. 73–2060), respectively. How-
ever, because of the low CQD content in the CQDs/BiOCl 
material, no characteristic peak of CQDs was detected in 
the CQDs/BiOCl material [41]. The X-ray photoelectron 
spectra (XPS) in Fig. 1b indicate that the as-prepared sam-
ples mainly consist of Bi, Cl, O, and C. From Fig. 1c, the 
characterized peaks of Bi  4f7/2 and Bi  4f5/2 were located 
at 158.8 eV and 164.1 eV, respectively, verifying the pres-
ence of  Bi3+ in the as-prepared samples [42]. Due to the 
strong coupling between CQDs and BiOCl, the Bi 4f peaks 
in the 5 wt% CQDs/BiOCl sample were slightly shifted 
compared to those in bare BiOCl. The peak at 529.6 eV in 
O 1 s arose from the oxygen anions from BiOCl (Fig. 1d). 
Moreover, two characterized peaks were observed at 197.5 
and 199.1 eV (Fig. 1e), which are ascribed to Cl  2p3/2 and Cl 
 2p1/2, respectively [43]. In Fig. 1f, the characterized peaks at 
284.7 eV, 285.6 eV, and 287.4 eV are assigned to the C−C, 
C−O, and C−N, respectively [43]. The results showed that 
CQDs are successfully introduced into the BiOCl material. 
FT-IR and Raman spectra were collected to further confirm 
the presence of CQDs in the CQDs/BiOCl composites. Fig-
ure S1 presents the FT-IR spectra of the as-prepared samples 
with different CQD contents. From Fig. S1a, the peaks at 
1435  cm−1 and 1571  cm−1 are ascribed to the –COO– and 
C=O stretching vibrations of the CQDs, respectively. After 

introducing CQDs, because of the interaction between CQDs 
and BiOCl, the –COO– and C=O stretching vibrations of 
CQDs shift to 1454  cm−1 and 1648  cm−1 (Fig. S1b), respec-
tively [44]. The peak at 526  cm−1 is ascribed to the Bi=O 
stretching vibration. The Raman spectra in Fig. S2 further 
validate the successful introduction of CQDs into the BiOCl 
materials. The G band of the CQDs/BiOCl composites is 
stronger than the D band because the CQDs/BiOCl compos-
ite has background interference based on the strong fluores-
cence of the CQDs [45].

The morphology and microstructure of the as-prepared 
samples were further investigated by transmission electron 
microscopy (TEM) (Fig. S3, Fig. 2a and b). Figure S3 dem-
onstrates that highly monodisperse CQDs are nearly spheri-
cal nanoparticles with a relatively uniform particle size 
distribution. The nanosheet is nearly transparent under an 
electron beam and has an ultrathin structure with a thick-
ness of approximately 2 nm. Numerous nanodots can be 
observed, verifying the successful coupling of CQDs and 
BiOCl. As observed in Fig. 2c, some nanodots are uniformly 
attached to the BiOCl nanosheets, showing that the CQDs 
and BiOCl nanosheets form a good combination. However, 
it is difficult to observe the lattice fringes of CQDs because 
they have amorphous shells surrounding nanocrystalline 
cores [31]. To further characterize the microstructure of 

Fig. 1  a XRD patterns of the CQDs/BiOCl composites. XPS spectra of the CQDs/BiOCl composites: b survey of the sample; c Bi 4f; d O 1 s; e 
Cl 2p; f C 1 s
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the 5 wt% CQDs/BiOCl composites, aberration-corrected 
scanning TEM with high-angle annular dark-field imaging 
(STEM-HAADF) was applied (Fig. 2d–f). As observed, 
CQDs are uniformly loaded on BiOCl. The energy-disper-
sive X-ray spectroscopy elemental mapping demonstrated 
that the Bi, Cl, O, and C are evenly distributed in the CQDs/
BiOCl material (Fig. 2g–i).

The photocatalytic performance of the obtained samples 
was then assessed for RhB degradation under visible-light 
irradiation. Before the photocatalytic degradation, a blank 
experiment was conducted (Fig. S4). From Fig. 3a, 80.6% 
of RhB could be removed using bare BiOCl material after 
30 min of irradiation. With the introduction of CQDs to 
BiOCl, the photocatalytic performance of BiOCl was sig-
nificantly improved. The 5 wt% CQDs/BiOCl composite 
exhibited the highest photocatalytic performance with a 
degradation efficiency of 94.5% after 30 min of irradiation. 
However, a further increase in the CQD content beyond 5 

wt% resulted in a decrease in photocatalytic performance. 
Although the modification of BiOCl with CQDs can facili-
tate charge transfer, excessive CQDs covering the BiOCl 
surface may limit light absorption [46]. The photocata-
lytic degradation kinetics of RhB was then examined. The 
reaction kinetics of RhB degradation follows the pseudo-
first-order kinetics equation −ln(C/C0) = kt, where k is the 
relative rate constant (Fig. 3b). The rate constant of 5 wt% 
CQDs/BiOCl is 0.0968  min−1, which is 1.77 times higher 
than that of bare BiOCl (Table S1). To assess the stability 
of the 5 wt% CQDs/BiOCl composite photocatalyst, we 
collected the photocatalyst after the RhB photodegradation 
experiment. As shown in Fig. 3c, the photocatalytic per-
formance was well maintained after five cycles, with only 
a 16.3% decrease in degradation efficiency, demonstrating 
the high stability of the 5 wt% CQDs/BiOCl composite 
photocatalyst during the photocatalytic process.

Fig. 2  a, b TEM images of BiOCl and 5 wt% CQDs/BiOCl. c High-magnification TEM image of 5 wt% CQDs/BiOCl. d–f HAADF-STEM 
images of 5 wt% CQDs/BiOCl. g–i Elemental mapping of 5 wt% CQDs/BiOCl
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Furthermore, TC was chosen to further assess the photo-
catalytic activity of the CQDs/BiOCl composite photocata-
lyst (Fig. S5). The bare BiOCl could remove only 57.7% of 
TC for 120 min. With the introduction of CQDs, the CQDs/
BiOCl composite exhibited a high photocatalytic perfor-
mance for TC degradation, which is an improvement of 
approximately 15% compared with that of bare BiOCl (Fig. 
S5b). The reaction kinetics of TC also follows a pseudo-
first-order kinetics equation (Fig. S5c). The rate constant of 
5 wt% CQDs/BiOCl is 0.0112  min−1, which is significantly 
higher than that of bare BiOCl (0.0074  min−1) (Table S2).

In parallel, we also analyzed the  N2 photoreduction per-
formance of the as-prepared samples under light irradiation. 
Briefly, the catalyst (0.05 g) was dispersed in 100 mL of 
aqueous solution without a sacrificial agent. Under light 
irradiation for 120 min, the 5 wt%CQD/BiOCl composite 
photocatalyst exhibited the highest  N2 photoreduction per-
formance to yield  NH3 (346.25 μmol/(g h)), which is 1.3 
times (256.04 μmol/(g  h)) of 3 wt% CQDs/BiOCl, 1.4 times 
(254.07 μmol/(g h)) of 7 wt% CQDs/BiOCl, and 1.5 times 
(240.19 μmol/(g h)) of BiOCl (Fig. 3d). Figure 3e indicates 
that the 5 wt% CQDs/BiOCl composite photocatalyst can 
retain 86% photocatalytic activity even after five consecutive 
cycles. To assess the stability of the catalyst, we collected 
the photocatalysts after the reaction. The crystal structure 
of the 5 wt% CQDs/BiOCl composite photocatalyst has no 

obvious change (Fig. 3f), and the CQDs are still well dis-
tributed on the surface of BiOCl (Fig. S6). To further con-
firm the structural stability of CQDs/BiOCl, we recorded 
the FT-IR spectra of the 5 wt% CQDs/BiOCl composite 
photocatalyst after the reactions, and the findings indicate 
no significant change (Fig. S7). These results validate that 
the CQDs/BiOCl composite photocatalyst has remarkable 
photocatalytic stability.

To disclose the fundamental role of CQDs in perfor-
mance improvement, the optical absorption of the obtained 
samples was determined by UV–Vis absorption spectros-
copy. As found in Fig. 4a, the bare BiOCl material only 
has light absorption in the UV and visible-light regions, 
with an absorption edge of 550 nm. With the introduction 
of CQDs into BiOCl, the CQDs/BiOCl composite photo-
catalyst showed a wide visible-light absorption region. The 
results indicate that the introduction of CQDs into BiOCl 
can improve light absorption, thus improving the photocata-
lytic performance [47]. The O K-edge X-ray absorption near 
edge structure spectra of BiOCl and 5 wt% CQDs/BiOCl 
are shown in Fig. S8. Compared to BiOCl, 5 wt% CQDs/
BiOCl exhibits a shift toward lower energy, implying that 
the coordination environment and charge distribution of O 
have changed, which is mainly ascribed to oxygen vacan-
cies. The specific surface area (SSA) and pore size distri-
bution were determined from the  N2 adsorption/desorption 

Fig. 3  a Photocatalytic RhB degradation. b Kinetic fit for the degra-
dation of RhB. c Cycling runs for the photocatalytic RhB degradation 
over 5 wt% CQDs/BiOCl. d Quantitative determination of the gen-

erated ammonia. e Photocatalytic stability of 5 wt% CQDs/BiOCl. f 
XRD patterns of the fresh and used 5 wt% CQDs/BiOCl samples
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isotherms (Fig. 4b). As shown in Fig. 4b, the SSA of 5 wt% 
CQDs/BiOCl (5.73  m2/g) was higher than that of bare BiOCl 
(0.20  m2/g). Generally, a higher SSA allows the surface of 
materials to absorb more active species, leading to a higher 
photocatalytic activity [48]. Photoluminescence (PL) spectra 
were then measured to investigate the transfer and recombi-
nation processes of the photogenerated electron–hole pairs. 
From Fig. 4c, the PL intensity of 5 wt% CQDs/BiOCl was 
substantially decreased compared with that of bare BiOCl, 
corroborating that the introduction of CQDs can effectively 
suppress charge carrier recombination [49]. Time-resolved 
transient photoluminescence spectroscopy was utilized to 
explore the dynamic processes (Fig. 4d). The lifetime of 
charge carriers for 5 wt% CQDs/BiOCl was clearly longer 
than that of bare BiOCl, further implying a lower recom-
bination rate of charge carriers. Figure S9 displays the PL 
spectrum of CQDs. Notably, when the excitation wavelength 
is 532 nm in the visible-light region, CQDs can produce 

emission at 220 nm in the UV region. The results show that 
the CQDs have remarkable upconversion PL performance. 
By integrating BiOCl with CQDs, visible light can be con-
verted into high-energy UV light, thus exciting BiOCl and 
enhancing visible-light absorption.

Electron paramagnetic resonance spectroscopy was fur-
ther employed to monitor the generation of oxygen vacan-
cies in the as-prepared samples. In Fig. S10, both BiOCl 
and 5 wt% CQDs/BiOCl have oxygen vacancy defects, and 
the signal of CQDs/BiOCl is stronger than that of BiOCl, 
demonstrating that the introduction of CQDs increases the 
oxygen vacancies. It has been verified that increasing the 
oxygen vacancies can effectively optimize the photocatalytic 
performance of CQDs/BiOCl [50]. Electrochemical imped-
ance spectroscopy (EIS) was used to examine the charge 
transfer processes. Generally, the small semicircle in the plot 
indicates low resistance [51]. Figure 4e demonstrates that 
CQDs/BiOCl has a lower resistance than bare BiOCl. This 

Fig. 4  a UV–Vis absorption spectra. b Nitrogen absorption/desorp-
tion isotherms. c Steady-state PL spectra. d Time-resolved transient 
PL decay. e EIS spectra. f Transient photocurrent response. g, h ESR 

spectra of the DMPO-·O2
− adducts and DMPO-·OH recorded. i Sin-

glet oxygen spectra by ESR
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suggests that the interfacial charge transfer is facilitated by 
the introduction of CQDs, resulting in the effective separa-
tion of charge carriers [52]. To better explain the mecha-
nism, transient photocurrent experiments were performed. 
As observed in Fig. 4f, the photocurrent of the CQDs/BiOCl 
electrode is clearly higher than that of the bare BiOCl elec-
trode. These results show that the introduction of CQDs can 
boost charge separation [53], which is consistent with the 
above PL and EIS results.

To gain information on the photocatalytic mechanism 
from the viewpoint of chemistry, we resolved the active 
species that were generated by the as-prepared samples 
during the photodegradation process by using electron spin 
resonance (ESR) with 5,5-dimethy-1-pyrroline N-oxide as a 
spin-trapping agent [54]. As shown in Fig. 4g, the superox-
ide radical (·O2

−) was observed for the as-prepared materi-
als under visible-light irradiation. The ·O2

− intensity of the 
CQDs/BiOCl composite was significantly higher than that 
of bare BiOCl (Fig. 4g). As the generation of ·O2

− originates 
from  O2 reduction through one-electron transfer, the higher 
·O2

− intensity of the CQDs/BiOCl composites confirms that 
CQDs allow more photogenerated electrons to reduce  O2. In 
fact, the delocalized conjugated structure of CQDs allows 
them to transfer photogenerated electrons easily [55]. From 
Fig. 4h, the hydroxyl radical (·OH) was also detected under 
visible-light irradiation, and the generated amounts of ·OH 
were increased with increasing CQD content. Moreover, 
Fig. 4i displays the singlet oxygen spectra of the as-prepared 
samples under UV irradiation. The generated amounts of 
singlet oxygen by CQDs/BiOCl were increased with increas-
ing in CQD content, which is beneficial for the removal of 
pollutants. Catalytic measurements have revealed that the 
CQDs/BiOCl material can be utilized as an efficient photo-
catalytic degradation system. However, it is still unclear how 
the photocatalytic process works. To decode the mechanism, 
a series of control experiments were conducted to analyze 
the process (Fig. S11). Only 8.7% and 10.5% of TC degrada-
tion occurred in the absence of the catalyst and light, respec-
tively, indicating that light and catalyst are indeed required 
for the reaction. When the reaction was conducted under an 
argon atmosphere, 56.3% of TC was degraded, which should 
be driven by photogenerated holes. To determine the types 
of reactive oxygen species responsible for photocatalytic 
degradation in our system, we performed characterization 
using different scavengers, confirming that photogenerated 
holes are indispensable for the photocatalytic degradation of 
TC. The control experiment also showed that the reaction 
activity is largely suppressed using  Na2S as a hole scav-
enger. Moreover, ·O2

− was confirmed to play a significant 
role in the photocatalytic oxidation reaction by ESR analysis 
(Fig. 4g) and free radical trapping experiments (Fig. S11).

Moreover, the valence band (VB) and conduction band 
(CB) potentials were calculated using ECB = EVB − Eg, where 

 EVB is the VB edge potential, ECB is the CB edge potential, 
and Eg is the band gap energy. As observed in Fig. S12, 
the Eg value of 5 wt% CQDs/BiOCl was 2.92 eV. Figure 
S13 shows that the EVB value of 5 wt% CQDs/BiOCl was 
1.21  eV. From ECB = EVB − Eg, the ECB value of 5 wt% 
CQDs/BiOCl was calculated to be − 1.71 eV. Here, electrons 
with energy above ECB (− 1.71 eV) can reduce  O2 to gener-
ate ·O2

− because E0(O2/·O2
−) is − 0.046 eV (vs. NHE) [56, 

57]. From the above discussion and results, the mechanism 
of organic pollutant degradation was proposed, as illustrated 
in Fig. S14. CQDs with remarkable electrical conductivity 
were introduced into the BiOCl materials as charge media-
tors. Due to the bridge effect between the two substances, 
the separation efficiency of the change carriers was signifi-
cantly enhanced, which offers more electrons to generate 
the ·O2

− active species. Moreover, CQDs can also absorb 
light at longer wavelengths than BiOCl [58], extending the 
range of light absorption. Thus, the photocatalytic activity 
of CQDs/BiOCl was significantly improved after the intro-
duction of CQDs.

Conclusions

In this work, a novel CQDs/BiOCl composite photocata-
lyst was prepared by using a facile hydrothermal method. 
The CQDs were integrated on the surface of the BiOCl 
ultrathin nanosheets to form a tight junction. After introduc-
ing CQDs, the photocatalytic activity of the CQDs/BiOCl 
composites in RhB and TC degradation was significantly 
enhanced under visible-light irradiation. The 5 wt% CQDs/
BiOCl material exhibited the highest photocatalytic perfor-
mance with a degradation efficiency of 94.5% after 30 min 
of irradiation. Moreover, the  N2 photoreduction performance 
was significantly improved after introducing CQDs. The 5 
wt% CQDs/BiOCl demonstrated a nitrogen photoreduc-
tion performance to yield  NH3 of 346.25 μmol/(g h), which 
is significantly higher than those of 3 wt% CQDs/BiOCl 
(256.04 μmol/(g h)), 7 wt% CQDs/BiOCl (254.07 μmol/
(g h)), and bare BiOCl (240.19 μmol/(g h)). The key role 
of CQDs in improving photocatalytic performance was 
ascribed to their increased light harvesting capacity, out-
standing electron transfer ability, and higher photocatalytic 
active sites. From the ESR and free radical trapping analysis 
results, holes and ·O2

− were the main active species. This 
study provides insights into the design of composite pho-
tocatalysts by integrating 2D materials and quantum dots.
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