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Abstract
The use of carbonized wood in various functional devices is attracting considerable attention due to its low cost, vertical 
channels, and high electrical conduction. However, the conventional carbonization method requires a long processing time 
and an inert atmosphere. Here, a microwave-assisted ultrafast carbonization technique was developed that carbonizes natural 
wood in seconds without the need for an inert atmosphere, and the obtained aligned-porous carbonized wood provided an 
excellent electrochemical performance as an anode material for lithium-ion batteries. This ultrafast carbonization technique 
simultaneously produced ZnO nanoparticles during the carbonization process that were uniformly distributed on the aligned-
porous carbon. The hierarchical structure of carbonized wood functionalized with ZnO nanoparticles was used as a host for 
achieving high-performance lithium–sulfur batteries: the highly conductive carbonized wood framework with vertical chan-
nels provided good electron transport pathways, and the homogeneously dispersed ZnO nanoparticles effectively adsorbed 
lithium polysulfide and catalyzed its conversion reactions. In summary, a new method was developed to realize the ultrafast 
carbonization of biomass materials with decorated metal oxide nanoparticles.
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Introduction

Wood is an abundant, sustainable, and biodegradable mate-
rial with a natural hierarchical structure comprising well-
oriented cellulose fibers and stomas that enable water, ion, 
and oxygen transportation. In recent years, there has been 
considerable interest in wood-derived materials and their 
use in a diverse range of applications, including bioengi-
neering, flexible electronics, and clean energy [1–4], owing 
to their unique structural advantages, excellent mechani-
cal performance, and versatile physicochemical properties. 

Carbonized wood (CW) is derived from natural wood at a 
low cost, and it retains the vertical channels and hierarchi-
cal porous structure while providing excellent electronic 
conduction; it is thus widely used as a catalyst carrier [5], 
gas adsorbent [6], and within various energy storage devices 
(supercapacitors and batteries) [7–11]. For example, Luo 
et al. [12] reported that mangrove-charcoal-derived carbon 
has a high discharge capacity of 335 mAh/g when used as an 
anodic material for lithium-ion batteries (LIBs).

Lithium–sulfur (Li–S) batteries are next-generation 
energy storage systems because they can be produced at a 
low cost, are environmentally friendly, and the S cathode 
has a high theoretical capacity (1675 mAh/g) [13–21]. How-
ever, the lithium polysulfide (LiPS) shuttle effect remains a 
critical obstacle to the practical application of Li–S batter-
ies. In the charge and discharge process, soluble LiPS tends 
to shuttle between the cathode and anode, and it directly 
reacts with metallic Li in the anode, which results in a fast 
capacity decay, low Coulombic efficiency, and poor cycle 
life [22–24].

Numerous polar inorganic compounds (such as metal 
oxides [25–28], nitride [29, 30], carbide [31], and sulfide 
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[26, 32, 33],) have been used in Li–S batteries due to their 
high adsorption abilities and good catalytic conversion kinet-
ics toward LiPS. In addition, various carbon materials are 
known to be good host materials for the S cathode, including 
carbon nanowires [34], carbon nanotubes [35], graphene [36, 
37], and carbon frameworks [38]. Therefore, CW obtained 
from natural wood is a good potential host material for S. 
However, pyrolysis is a common carbonization method used 
to prepare CW [39–42], and a long processing time (> 6 h) 
and an inert atmosphere (N2 or Ar) are required for pyroly-
sis, which makes this application problematic (Fig. 1a).

Herein, a microwave-assisted ultrafast carbonization tech-
nique (MAUCT) was developed to quickly carbonize wood 
in ~ 15 s (Fig. 1b). In this process, the wood is in direct con-
tact with microwave-heated carbon, and no additional inert 
atmosphere is required. The obtained aligned-porous carbon 
provides a good electrochemical performance as an anode 
material for LIBs. Furthermore, due to the unique cellulose 
molecular chain structure, which is rich in oxygen-contained 
polar functional groups (for example, hydroxyl), zinc ions 
(Zn2+) can effectively be coordinated [43]. The MAUCT 
simultaneously transforms Zn(NO3)2 into ZnO during the 
carbonization process, and a hierarchical carbonized wood 
structure decorated with ZnO nanoparticles (CW–ZnO) is 
obtained in one step. The highly conductive CW with verti-
cal channels is an ideal free-standing and low-tortuosity host 
material for the S cathode, and the homogeneously dispersed 

ZnO nanoparticles effectively adsorb LiPS and catalyze 
its conversion reactions. As a result, Li–S cells using the 
CW–ZnO host provide good electrochemical performance.

Experimental Section

Preparation of Carbonized Wood (CW)

Natural wood was collected from eucalyptus trees. Wood 
was cut perpendicular to the growth direction, and small 
wood chips (10 mm × 10 mm × 1 mm) were obtained and 
dried at 200 °C for 10 h prior to carbonization. Using con-
ventional pyrolysis method, the wood chips were transferred 
to a nitrogen-filled tube furnace and then heated at 1100 
°C for 6 h. For microwave carbonization, the wood chips 
were placed in an alumina crucible, covered, buried with 
carbon black (CB, MTI corporation), and then transferred 
to a household microwave oven (Midea, M1-230E) to heat 
for 15 s.

Preparation of CW–ZnO

Natural wood was firstly cut and then immersed in 1 mol/L 
Zn(NO3)2 (Adamas-beta®) solution in vacuum for 48 h. 
After drying, the wood chips were microwave carbonized 
for 15 s to obtain the CW–ZnO product.

Fig. 1   Schematic of the two 
different carbonization methods. 
a A long processing time and an 
inert atmosphere are required 
for conventional carbonization; 
b a short processing time and 
operation in air are realized for 
microwave carbonization
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Preparation of S@CW–ZnO Composite Cathode

A S/carbon disulfide (CS2, Energy Chemical) solution was 
prepared at a concentration of 0.05 g/mL. The CW–ZnO 
chips were placed on aluminum foil, and the S/CS2 solution 
was added with a pipette. The mass loading of S was ~ 3 mg/
cm2. The S@CW–ZnO composite had an S content of ~ 50 
wt%.

Characterizations

The crystal structure was characterized by X-ray powder 
diffraction (XRD) (Bruker D8 Advance) using a Cu Kα 
radiation source. Elemental analyses were conducted using 
an elemental analyzer (PerkinElmer Clarus 580). Raman 
tests were performed on a Renishaw inVia equipped with 
a 532 nm laser. The morphology was characterized using a 
scanning electron microscope (SEM) (JEOL JSM-7800F) 
and transmission electron microscopy (TEM) (JEM 2100). 
The elemental content of the prepared CW was determined 
using a Clarus 580 elemental analyzer.

Electrochemical Measurements

To investigate the CW as an anode material for LIBs, the 
CW (~ 3.5  mg/cm2), lithium foil (Adamas-beta®), and 
1  mol/L LiPF6 in ethylene carbonate/dimethyl carbon-
ate (1:1, v/v ratio) were assembled into a coin 2032-type 
cell as the working electrode, counter electrode, and elec-
trolyte, respectively. To investigate the S@CW–ZnO as a 
composite cathode for Li–S batteries, the coin cells were 
assembled with S@CW–ZnO, lithium foil (Adamas-beta®), 
and 1 mol/L lithium bis(trifluoromethanesulfonyl)imide 
(LiTFSI) in 1,3-dioxolane /dimethoxymethane (1:1, v/v 
ratio) with 1 wt% LiNO3 as the cathode, anode, and electro-
lyte, respectively. The negative/positive electrode capacity 
ratio (N/P ratio) was ~ 18 because thick Li foil was used, 
and the electrolyte-to-S ratio (E/S ratio) was 20 µL/mg. The 
galvanostatic charge/discharge tests were measured using a 
LAND instrument and Neware battery cycler at room tem-
perature. A cyclic voltammetry (CV) test was conducted on 
an electrochemical station (Bio-logic).

DFT Calculations

The Vienna Ab initio Simulation Package (VASP) is a com-
puter program developed by Hafner’s group [44] from the 
University of Vienna that is designed to conduct an atomic 
scale simulation from first principles. Simulations in the 
VASP are based on the Kohn–Sham density functional the-
ory (KS-DFT), in which the exchange correlation potential 
can be approximated using the Perdew–Burke–Ernzerhof 
generalized gradient approximation (PBE-GGA) [45] in 

VASP. The electronic wave function was described using the 
projector augmented wave method [46]. In all the structure 
relaxations and self-consistent-field calculations, the con-
vergence criterion of norms of all forces was 0.01 eV/Å for 
ionic relaxation, and the cutoff energy for the plane-wave-
basis set was 450 eV.

TEM determined the space group of ZnO as P63mc. 
The (100) surface of ZnO had optimal stability [47]; there-
fore, the binding energy between LiPS and the (100) sur-
face of ZnO was calculated. For the ZnO (100) crystal 
plane, a vacuum layer of 15 Å was introduced. A 3 × 3 × 1 
Monkhorst–Pack k-point mesh was used for the Brillouin 
zone. The binding energy, Eb , was calculated through 
Eb=ELiPS +EZnO − ELiPS+ZnO , where ELiPS , EZnO , and 
ELi PS+ZnO represent the total energy of their respective 
systems.

Results and Discussion

XRD was used to determine the phase structure of the 
CW samples synthesized by both conventional carboniza-
tion and microwave carbonization. As shown in Fig. 2a, 
both XRD patterns presented two broad diffraction peaks 
located at ~ 23° and ~ 44° ssigned to the (002) and (101) 
crystal planes of graphite carbon [39]. Raman spectros-
copy was conducted to further study the bonding structure 
(Fig. 2b), and the peaks at ~ 1350 and 1580 cm−1 for both 
carbonization methods corresponded to the D and G bands, 
respectively. The D-/G-band intensity (ID/IG) ratios of the 
CW samples synthesized by conventional carbonization and 
microwave carbonization were 0.96 and 0.83, respectively. 
The lower ID/IG intensity ratio indicated a higher degree of 
graphitization, suggesting that the microwave carboniza-
tion method provided a comparatively superior carboniza-
tion effect [39, 48]. The higher carbonization degree was 
also evidenced by the elemental analysis results presented in 
Table S1, in which the microwave-carbonized CW showed 
a higher carbon content (96.15%) than the conventional 
carbonized CW (94.01%). In addition, compared with the 
conventional carbonized CW, the microwave-carbonized 
CW showed lower O/C atomic ratio, indicating increased 
stability [49]. Furthermore, the yield of the CW prepared 
by MAUCT was 26.21 wt%, and the surface area of the CW 
prepared by MAUCT was 1.48 m2/g, as determined by the 
BET test, which was larger than that of the CW obtained by 
conventional pyrolysis (0.75 m2/g). The carbon-based anode 
material with a large surface area offered a greater number 
of Li-ion storage sites. These results showed that the use of 
MAUCT was more beneficial for preparing electrode materi-
als from biomass.

To fabricate the CW–ZnO composite structure, a slice 
of natural wood was immersed in Zn(NO3)2 solution for 
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two days in a vacuum. After drying, the wood was bur-
ied in carbon black powder for microwave carbonization. 
Owing to the excellent microwave-absorbing properties, 
carbon materials easily reach a high temperature above 
1000 °C in seconds after absorbing microwaves, and this is 
known as carbothermal shock [50–52]. The above mecha-
nism was adopted to swiftly carbonize natural wood and 
simultaneously transform Zn(NO3)2 into ZnO nanoparti-
cles. The XRD results for CW–ZnO are shown in Fig. S1, 
where the peaks are seen to be consistent with those of 
the standard crystal structure of ZnO, thus indicating that 
ZnO can be formed using this method. The top-view SEM 
images of the CW–ZnO sample are displayed in Fig. 2c, 
d, where a porous structure with several large channels 
(100 μm) and numerous small channels (5–8 μm) is evi-
dent. Figure  2e shows a side-view SEM image of the 
CW–ZnO sample, in which the vertically aligned chan-
nels are evident. The high-magnitude SEM image (Fig. 2f) 

shows that ZnO nanoparticles are evenly distributed on the 
surface of the CW channels.

The TEM observations were conducted to further explore 
the microstructure of the CW–ZnO sample, and a thin slice 
of CW–ZnO was used for TEM characterization. As shown 
in Fig. 3a, numerous ZnO nanoparticles were homogene-
ously distributed on the surface of CW. The high-resolution 
TEM (HRTEM) image demonstrated that the particle size 
of the ZnO nanoparticle was ~ 20 nm, and the interplanar 
spacing was ~ 0.25 nm, corresponding to the ( 1

−

1 1 ) plane of 
ZnO. Furthermore, the Fourier transform pattern also evi-
denced the existence of the ZnO crystal structure (Fig. 3c), 
and energy-dispersive X-ray spectroscopy (EDS) mapping 
further proved the microstructure (Fig. 3d–f).

The CW material obtained by MAUCT without load-
ing ZnO was first investigated as an anode for LIBs, and 
the charge–discharge curves at various current densities 
are presented in Fig. 4a, where the CW anode is seen to 

Fig. 2   Characterization of CW 
and CW–ZnO samples. a XRD 
patterns and b Raman spectra 
of the CW samples synthesized 
by conventional carbonization 
and microwave carbonization, 
respectively. c and d SEM 
images of the CW–ZnO sample. 
Inset: photograph of the CW–
ZnO sample. e and f Cross-
sectional SEM images of the 
CW–ZnO sample
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have achieved a high specific capacity of 350 mAh/g at 
30 mA/g. As shown in Fig. 4b, even at a high current den-
sity of 300 mA/g, a satisfying capacity of ~ 210 mAh/g was 
maintained; this implied a good rate performance that was 
mainly contributed to the vertical channels and excellent 
electrical conductivity. Furthermore, when the current den-
sity reverted to 30 mA/g, the original capacity was recov-
ered. The long-term cycling performance of the CW anode 

is shown in Fig. 4c, where the CW anode is shown to have 
achieved a long cycle life of over 250 cycles at 30 mA/g. 
As shown in Fig. S2, the porous structure of the CW anode 
was maintained after long-term cycling, indicating that the 
structural stability of the CW anode was good. Furthermore, 
high Coulombic efficiencies (> 99%) were realized after the 
first cycle, indicating good reversibility of Li-ion insertion 
and extraction.

Fig. 3   TEM characterization of 
the CW–ZnO sample. a TEM 
image of the CW–ZnO sample. 
b HRTEM image and c Fourier 
transform pattern taken from the 
region within the red rectangle 
in a. d–f Corresponding EDS 
mapping images

Fig. 4   Electrochemical perfor-
mances of the CW as an anode 
material for LIBs. a Charge–dis-
charge curves of the CW anode 
under various current densities. 
b Rate capability of the CW 
anode from 30 to 300 mA/g. c 
Long-term cycling performance 
and corresponding Coulombic 
efficiency
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The CW–ZnO hierarchical structure was used as a host 
material for S, and the electrochemical performances of 
the S@CW–ZnO cathode were studied. The results of the 
CV test at a scan rate of 0.1 mV/s are shown in Fig. 5a, 
where the reduction peaks at 2.3 V and 2.0 V correspond 
to the stepwise reduction of S to soluble LiPS and final 
insoluble Li2S, respectively [28, 38], and the oxidation 
peaks at 2.4 V are associated with the reverse reaction. The 

charge–discharge curves at different cycles are shown in 
Fig. 5b. The S@CW–ZnO cathode achieved a high initial 
specific capacity of 1273 mAh/g at a C-rate of 0.1, but it 
also maintained a capacity of 480 mAh/g at a high C-rate 
of 2 C, suggesting that it provided a good rate performance 
(Fig. 5c). The S@CW–ZnO cathode also showed good 
long-term cycling stability, realizing a long cycle life of 
over 250 cycles (Fig. 5d). It also showed a lower initial 

Fig. 5   Electrochemcial performance of the S@CW–ZnO compos-
ite cathode. a CV curve of the S@CW–ZnO composite cathode at 
0.1 mV/s. b Charge–discharge profiles under different cycles. c Rate 

performance from 0.1 C to 2 C. d Cycling performance at 0.1 C. e 
Optimized chemisorption configurations of ZnO for binding LiPSs 
and S8
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specific capacity of 1160 mAh/g at a C-rate of 0.1, as shown 
in Fig. S3, and the specific capacity decreased severely after 
250 cycles. The excellent electrochemical performances of 
the S@CW–ZnO cathode were mainly attributed to the hier-
archical structure of the CW–ZnO host material. The CW 
skeleton with vertical channels decreased the diffusion paths 
of electrons and ions and accommodated the volume change 
of S during charging and discharging.

The functionalized ZnO nanoparticles also effectively 
adsorbed LiPS and catalyzed its redox kinetics. DFT cal-
culations were employed to demonstrate the strong chemi-
cal interactions between ZnO and LiPS and S8 (Fig. 5e). 
In the optimized chemisorption configurations, the S atom 
in LiPS preferred to bind with the Zn atoms, while the Li 
atom tended to bind with the O atoms. Furthermore, the 
ZnO showed high adsorption energy for the LiPSs and pro-
vided strong interactions to confine the LiPSs and enhance 
the conversion electrochemistry.

Conclusion

In summary, a MAUCT was developed that realizes the 
ultrafast synthesis of CW functionalized with metal oxide 
nanoparticles. Compared with the conventional pyrolysis 
method, the processing time was considerably reduced from 
an hour-level process to one that took seconds, and the need 
for an inert atmosphere was avoided. The CW obtained from 
MAUCT achieved a high specific capacity and a good rate 
capability, indicating its promising use as an anode material 
for LIBs. In addition, after immersing in Zn(NO3)2 solu-
tion, the ultrafast synthesis of CW decorated with a ZnO 
nanoparticle (CW–ZnO) hierarchical structure was obtained 
using MAUCT, and this provided a good electrochemical 
performance as a host material for Li–S batteries.
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