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Abstract
The dehydrogenation of cyclohexanol to cyclohexanone is a crucial industrial process in the production of caprolactam 
and adipic acid, both of which serve as important precursors in nylon textiles. This endothermic reaction is constrained by 
thermodynamic equilibrium and involves a complex reaction network, leading to a heightened focus on catalysts and process 
design. Copper-based catalysts have been extensively studied and exhibit exceptional low-temperature catalytic performance 
in cyclohexanol dehydrogenation, with some being commercially used in the industry. This paper specifically concentrates 
on research advancement concerning active species, reaction mechanisms, factors influencing product selectivity, and the 
deactivation behaviors of copper-based catalysts. Moreover, a brief introduction to the new processes that break thermody-
namic equilibrium via reaction coupling and their corresponding catalysts is summarized here as well. These reviews may 
offer guidance and potential avenues for further investigations into catalysts and processes for cyclohexanol dehydrogenation.
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Introduction

Cyclohexanone is a vital intermediate in the production of 
ε-caprolactam and adipic acid, which serve as the main raw 
materials for nylon 6 (PA6) and nylon 66 (PA66), respec-
tively. Besides polyamide fibers, cyclohexanone is utilized 
in the manufacturing of pharmaceuticals and fine chemi-
cals [1–3], as shown in Fig. 1a. Currently, the global nylon 
market predominantly comprises PA6 and PA66, account-
ing for about 86% of total consumption [4]. The produc-
tion of ε-caprolactam and adipic acid constitutes 80% of 

the total consumption of cyclohexanone [5]. In 2022, the 
worldwide cyclohexanone market was valued at US$8.34 
billion. By 2023, it is projected to rise to US$8.72 billion, 
with an expected compound annual growth rate of 4.5% [6], 
as illustrated in Fig. 1b. Efficient production of high-purity 
cyclohexanone is paramount to meet the demands of the 
rapidly expanding industry.

Cyclohexanol dehydrogenation is a crucial industrial 
process in the production of cyclohexanone. However, 
its reaction network is complex, as illustrated in Fig. 2; 
the entire network encompasses several steps, includ-
ing aromatization of cyclohexanol to phenol, dehydra-
tion of cyclohexanol to cyclohexene, and condensation of 
cyclohexanone to cyclohexylidencyclohexanone, in addi-
tion to dehydrogenation of cyclohexanol to cyclohexanone 
[7]. The heterogeneous catalytic gas-phase cyclohexanol 
dehydrogenation at atmospheric pressure is an endothermic 
reaction (ΔH = 65 kJ/mol) and is limited by thermodynamic 
equilibrium [8]. The equilibrium conversion of cyclohex-
anol dehydrogenation at various temperatures is listed in 
Table 1 [9]. Increasing the reaction temperature serves to 
promote forward reaction and can enhance the conversion 
of cyclohexanol. However, simultaneously, it will intensify 
the side reactions of dehydration and aromatization, result-
ing in a higher demand for the design of suitable catalysts 
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and processes to achieve both high activity and selectivity 
for cyclohexanol dehydrogenation.

Previous works primarily utilized the ZnO/CaO catalyst 
for cyclohexanol dehydrogenation [10, 11]. The conversion 

of cyclohexanol via a ZnO/CaO catalyst was high (approxi-
mately 70%–80%), and the selectivity of cyclohexanone 
was < 98% at reaction temperatures ranging from 350 °C to 
400 °C. However, the active component ZnO grains tended 
to grow at high temperatures, leading to a decrease in cata-
lytic performance and a consequent reduction in the lifespan 
of the ZnO/CaO catalyst. Recently, copper-based catalysts 
have gained widespread attention due to their excellent low-
temperature catalytic performance in the dehydrogenation 
of cyclohexanol to cyclohexanone [12–15]. The conversion 
of cyclohexanol could approach equilibrium values, with 
the selectivity of cyclohexanone usually exceeding 99% 
at reaction temperatures between 200 °C and 300 °C. In 
comparison with the ZnO/CaO catalyst, copper-based cata-
lysts exhibit a higher reaction rate and require less catalyst 

Fig. 1   a Main applications of 
the cyclohexanone. b Global 
cyclohexanone market. The data 
are from Ref. [6]

Fig. 2   Reaction network of the 
cyclohexanol dehydrogenation. 
Reproduced with permission 
from Ref. [7]. Copyright 2000, 
Elsevier

Table 1   Equilibrium 
conversion of the cyclohexanol 
dehydrogenation at different 
temperatures [9]

Reaction tem-
perature (°C)

Equilibrium 
conversion 
(%)

220 48
250 68
280 76
300 89
350 95



198	 J. Gong et al.

1 3

loading when processing the same amount of cyclohexanol, 
resulting in correspondingly smaller equipment size. Moreo-
ver, copper sources are cheap and readily available, and the 
lower reaction temperatures conserve energy in terms of a 
reduced heating load, making copper-based catalysts a popu-
lar choice in the industry.

Researchers have made continuous efforts to synthesize 
high-performance copper-based catalysts for the dehydro-
genation of cyclohexanol to cyclohexanone and to investi-
gate their structure–performance relationship. In this paper, 
we summarized the discussions on active species, factors 
influencing product selectivity, and the strategy for improv-
ing catalyst stability. Additionally, we propose novel pro-
cesses that couple with the dehydrogenation of cyclohex-
anol to break the thermodynamic equilibrium conversion 
of cyclohexanol and utilize the generated hydrogen, along 
with investigations on corresponding catalysts. The study 
concludes with a brief discussion regarding the challenges 
associated with cyclohexanol dehydrogenation.

Copper‑Based Catalysts for the Cyclohexanol 
Dehydrogenation

Discussion on the Active Species

The catalytic performance of Cu-based catalysts in cyclohex-
anol dehydrogenation is summarized in Table 2. As demon-
strated, persistent research efforts have led to an excellent 
catalytic performance in copper-based catalysts. Although 
much debate surrounds the identification of active species 
for cyclohexanol dehydrogenation over copper-based cata-
lysts, the topic remains controversial.

Some researchers believe that Cu+ species act as active 
sites for the aromatization of cyclohexanol to phenol, 
whereas Cu0 sites serve as active sites for the dehydrogena-
tion of cyclohexanol to cyclohexanone [12, 16–19]. The cat-
alyst activity increased linearly with an increasing amount 
of reversibly adsorbed CO in the Cu–ZnO–Al2O3 catalyst, 
leading to the conclusion that metallic copper species served 
as the primary active sites for cyclohexanol dehydrogena-
tion [12]. Ji et al. [20] compared Cu/SiO2 and Cu–ZnO/SiO2 
catalysts, suggesting that following reduction, the former 
contained only Cu0 species, whereas both Cu0 and Cu+ spe-
cies were present on the surface of the reduced Cu–ZnO/
SiO2 catalyst. They demonstrated that the conversion of 
cyclohexanol was 83% using the Cu/SiO2 catalyst at 300 °C, 
with selectivities of 93.4% for cyclohexanone and 0.6% for 
phenol. In contrast, the conversion was 92.0% over Cu–ZnO/
SiO2, with selectivities of 78.6% for cyclohexanone and 
14.2% for phenol. This suggests that Cu+ species facilitated 
the phenol generation, whereas Cu0 was the primary active 
site for the cyclohexanol dehydrogenation to cyclohexanone.

The promoted Cu–MgO catalysts also provided evidence 
for the role of Cu0 species. With the introduction of Cr2O3, 
the proportion of Cu0 increased, and the catalytic perfor-
mance was considerably enhanced [18]. The conversion of 
cyclohexanol over the Cu–MgO–Cr2O3 catalyst reached 
64.3%, and the selectivity of cyclohexanone exceeded 99% 
at 250 °C. However, another type of active site was pro-
posed in Cu–MgO catalysts. It has been demonstrated that 
the basic sites of MgO in close proximity to Cu0 sites played 
a critical role in facilitating the dehydrogenation of alcohols 
[17, 18]. The basic sites could act as nucleophiles to abstract 
the proton from the O–H group of cyclohexanol, forming a 

Table 2   Catalytic 
performance of cyclohexanol 
dehydrogenation over Cu-based 
catalysts

a  liquid hourly space velocity
n/a: not available

Catalyst Cu loading (%) T (°C) LHSVa (h–1) Conversion (%) Selectivity (%) Refs.

Cu/Al2O3 55.7 250 5 81.5 79.6 [1]
Cu–Al2O3–ZnO 50 250 15.9 42 99 [12]
Cu/TiO2–ZrO2 10.8 250 3.8 33 77 [13]
Cu/MgO–SBA15 15 275 0.78 89 93 [14]
Cu/MgO 16 250 0.96 64 100 [16]
Cu/MgO 16 250 5 65.3 98 [17]
Cu–MgO–Cr2O3 22 270 0.8 68 99 [18]
CuO/ZnO/C 33 250 2.89 35 97 [19]
Cu–ZnO/SiO2 23 300 6.39 91 85 [20]
CuO–ZnO–MgO 34.6 260 2.34 55 99.2 [21]
Cu–Cr–Mg–Al 59.6 330 2.2 86.1 95 [22]
Cu/Al2O3–ZrO2 5 250 n/a 50 100 [23]
Cu/ZrO2 2.7 250 11.55 54 100 [24]
CuFe2O4 n/a 300 1.14 68 84 [25]
CuO–Nb2O5 10 250 7.8 22 72 [26]
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negatively charged alkoxide intermediate. Following Cα–H 
elimination, this intermediate produced cyclohexanone, 
which eventually desorbed from the catalyst surface along 
with the H2 molecule [14, 17, 27]. The reaction mechanism 
of cyclohexanol dehydrogenation over Cu–MgO catalysts is 
illustrated in Fig. 3.

However, some researchers have proposed that Cu+ spe-
cies exhibit higher activity in cyclohexanol dehydrogenation 
compared to Cu0 species [1, 7, 21, 22, 28]. Fridman et al. [7] 
investigated the influence of copper oxidation states on cata-
lytic activity. The reduced Cu–Mg catalyst contained only 
Cu0 species on the surface, while both Cu0 and Cu+ species 
coexisted on the surface of the reduced Cu–Zn–Al cata-
lyst. Cu–Zn–Al demonstrated a cyclohexanone formation 

but a much slower rate of phenol formation compared to 
the Cu–Mg catalyst, indicating that Cu0 species catalyzed 
both dehydrogenation and aromatization reactions, while 
Cu+ sites catalyzed only cyclohexanol dehydrogenation to 
cyclohexanone. The adsorption behavior of cyclohexanol on 
Cu0 and Cu+ species was also studied using in situ FTIR 
[29]. As shown in Fig. 4, it is demonstrated that cyclohex-
anol adsorbed molecularly onto Cu+ at room temperature, 
forming cyclohexanol alcoholate, which was considered the 
intermediate for cyclohexanone formation. However, for Cu0 
species, dissociative adsorption was observed only at tem-
peratures of 50 °C or higher. Cyclohexanol adsorption on 
Cu0 was accompanied by the formation of both cyclohexanol 
alcoholate and phenolate species, which explained the low 
product selectivity.

The studies involving modulated Cu+/Cu0 ratios of cata-
lysts supported the aforementioned opinions. Cyclohexanol 
conversion improved proportionally with the increasing ratio 
of Cu+/Cu0, while the selectivity of cyclohexanone remained 
relatively stable at around 80% over a series of Cu/Al2O3 
catalysts [1]. Adding certain reducible metal oxides, such as 
ZnO, Cr2O3, and La2O3, as promoters to the copper-based 
catalysts can also modulate the Cu+/Cu0 ratio and enhance 
the catalytic performance in cyclohexanol dehydrogenation 
[18, 20, 30, 31]. La2O3 species promoted the dispersion of 
copper species, increased the Cu+/Cu0 ratio, and stabilized 
the Cu+ species of Cu–ZnO–Cr2O3 catalyst during the reduc-
tion and reaction processes, resulting in 15% and 11.5% 
increase in cyclohexanol conversion and cyclohexanone 
selectivity, respectively [30].

Sancheti et al. [21] also supported the notion of Cu+ spe-
cies as active sites. They utilized an unreduced CuZnMg 

Fig. 3   Reaction mechanism of cyclohexanol dehydrogenation over 
Cu–MgO catalysts. Reproduced with permission from Ref. [17]. Cop-
yright 2023, Elsevier

Fig. 4   Schematic of cyclohexanol adsorption on the surface of a Cu0 and b Cu+. Reproduced with permission from Ref. [29]. Copyright 2004, 
Elsevier
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catalyst and achieved 55.0% cyclohexanol conversion and 
99.2% cyclohexanone selectivity at 260 °C. By examining 
the catalyst's characterizations before and after the reaction, 
it was discovered that some Cu2+ species were reduced to 
a lower valence during the reaction, forming the Cu+/Cu2+ 
redox couple [32, 33]. Figure 5 presents the plausible reac-
tion mechanism of cyclohexanol dehydrogenation over such 
a structure: (i) cyclohexanol was adsorbed on copper oxide, 
and the hydroxyl group interacted with lattice oxygen and 
Cu+; (ii) this interaction led to the dissociated chemisorp-
tion of the hydroxyl group, where the oxygen formed a bond 
with Cu+ and hydrogen was abstracted as a proton by lattice 
oxygen; (iii) α–H was transferred to Cu2+ species to produce 
cyclohexanone; (iv) Cu+–O bond was broken, cyclohex-
anone desorbed, and free hydrogen was generated [21].

Recent experimental studies and DFT (Density Func-
tional Theory) calculations have suggested the existence 
of a synergistic effect between Cu0 and Cu+ species; this 
effect plays a crucial role in alcohol dehydrogenation [34, 
35]. It was discovered that C–O bonds in alcohols prefer-
entially adsorbed onto Cu+ sites, whereas Cu0 facilitated 
the transfer of H atoms over the CuAl-mixed metal oxide 
(CuAl–MMO) catalyst during the 2-propanol dehydroge-
nation. The corresponding reaction mechanism unfolded as 
follows: 2-propanol adsorbed on Cu+ sites; the O–H and 
C–H bonds broke, and the H atoms transferred to Cu0 sites, 
forming metal hydride; finally, the product desorbed. The 
cleavage of the O–H bond in 2-propanol was determined to 
be the rate-determining step in the dehydrogenation process.

Thus far, no consensus has been reached on the precise 
roles of Cu0 and Cu+ species in cyclohexanol dehydro-
genation. This may be attributed to the fact that most of 

the published reports date back to the beginning of the 
twentieth century when in situ or operando experiments 
on catalyst structure and reactions were not well devel-
oped. Additionally, the chemical states of copper species 
can easily change during the reaction and exposure to air. 
However, due to the importance of this reaction within the 
industry, further investigation into the behavior of active 
species and their reaction mechanisms is imperative to 
provide guidance for catalyst development. For example, 
the preparation of copper-based catalysts with varying sur-
face Cu0 and Cu+ distribution while maintaining consistent 
textural properties and particle sizes. Moreover, it has been 
reported that the composition of reducing agents during 
activation and the composition of the feed stream dur-
ing the reaction can lead to instantaneously gas-induced 
dynamic transitions over commercial Cu/ZnO catalysts. 
In  situ time-resolved XAFS (X-Ray Absorption Fine 
Structure) spectra, operando synchrotron X-ray powder 
diffraction, modulated-excitation infrared spectroscopy, 
and quasi in situ X-ray photoelectron spectra for the cata-
lyst collected at different stages with time on stream pro-
vide excellent opportunities for monitoring the dynamic 
behaviors of both geometric structure and electronic envi-
ronment of copper sites [36–40]. By examining the mor-
phology and surface chemistry via in situ or operando 
experiments and combining theoretical DFT calculations, 
it is possible to gain valuable insights into the catalytic 
behaviors of active sites and the structure–performance 
relationship of the catalysts.

Fig. 5   Plausible mechanism of 
selective dehydrogenation of 
cyclohexanol to cyclohexanone. 
Reproduced with permission 
from Ref. [21]. Copyright 2021, 
Elsevier
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Factors Influencing the Product Selectivity

The reaction network of cyclohexanol dehydrogenation 
is complex, as illustrated in Fig. 2. There are numerous 
side reactions, such as the aromatization of cyclohexanol 
to phenol, dehydration of cyclohexanol to cyclohexene, 
and condensation of cyclohexanone to cyclohexyliden-
cyclohexanone. Therefore, the factors influencing prod-
uct selectivity are among the essential aspects to be 
investigated.

The primary byproducts are cyclohexene and phenol. It 
is generally believed that the dehydration reaction is cata-
lyzed by the surface acid sites of the catalyst. Doping cop-
per-based catalysts with alkali metals, alkaline earth met-
als, or transition metals can neutralize some acidic sites, 
thereby reducing the formation of cyclohexene. It was dis-
covered that the intensity of strong acid sites decreased 
when Mn was added to the Cu–Si catalyst, resulting in a 
significant decrease in cyclohexene selectivity from 14.6% 
to 1.2% [41]. Chary et al. [42] suggested that cyclohexene 
might be generated on medium–strong acid sites. As the 
copper loading increased, the amount of medium–strong 
acid sites decreased and then increased, with the selectiv-
ity of cyclohexene changing synchronously.

It has also been reported that cyclohexanol can undergo 
dehydration reactions not only at acidic sites but also 
at basic sites [43]. The yield of cyclohexene linearly 
increased with the growing amount of both total acidity 
and total basicity, and a correlation commonly observed 
in a series of metal phosphates, metal oxides, and sulfates 
[43] as well as the Cu/Al2O3–ZrO2 catalysts [23].

The product distribution is also influenced by the differ-
ent structures of copper when combined with a secondary 
component. It has been found that when the catalyst pre-
cursor contains CuxCo3−xO4 spinel species, the copper and 
cobalt could transfer to CoCu alloy after reduction, which 
can prevent the formation of phenol. The authors attrib-
uted this to the fact that precursors containing CuxCo3−xO4 
spinel species exhibit the highest H2 chemisorption and 
inhibit the formation of multipoint adsorbed complexes 
on the surface, which serve as intermediates for phenol 
generation [44].

There is some debate regarding the pathway of phenol 
formation. Some studies suggest that phenol can be formed 
directly from cyclohexanol (direct route, Eq. 1) [7, 20], 
while others propose that phenol could be produced simulta-
neously from cyclohexanol and cyclohexanone (consecutive 
route, Eq. 2) [45]. Romero et al. [45] conducted a kinetics 
study of these two possible reaction routes for phenol gen-
eration over the copper–zinc oxide catalyst. Their finding 
demonstrated that the phenol generation rate aligned well 
with the consecutive route kinetic model, indicating that 
phenol was produced from cyclohexanone.

Stability of the Copper‑Based Catalysts

Simón et al. [19] examined the deactivation behaviors of 
commercial copper–chromite and copper–zinc oxide cata-
lysts used in cyclohexanol dehydrogenation. After a 350 h 
reaction at a high liquid hourly space velocity (LHSV) and 
250 °C, a 50% reduction in activity was observed. Based on 
their characterizations, it was suggested that coke deposits 
on copper species and copper sintering were the main causes 
of deactivation. Notably, coke deposition on the copper–zinc 
oxide was severer, resulting in the blockage of pores.

A kinetic model was further developed for the commercial 
copper–zinc oxide catalyst, taking into account deactivation 
and considering the influence of hydrogen and cyclohex-
anone in the feed stream [2]. A coke deposit of about 7 wt% 
was demonstrated, increasing with higher cyclohexanone 
content and decreasing as hydrogen concentration increased. 
It was observed that the soft coke consisted of high-molec-
ular weight aliphatic oligomers. Combined with the kinetic 
study and catalyst characterizations, it was suggested that 
H2 likely inhibited coke formation due to a reduction in the 
concentration of coke precursors.

Cr2O3 can be employed as a structural additive to the 
Cu–Mg–Al catalyst, promoting copper dispersion and 
enhancing the catalyst's stability [46]. Additionally, with the 
inclusion of a ZnO promoter, the Cu–ZnO–MgO catalyst 
displayed remarkable thermal and structural stability dur-
ing the dehydrogenation of cyclohexanol. Cyclohexanol con-
versions remained constant in the range of 51%–55%, and 
the selectivity of cyclohexanone was nearly 99% even after 
125 h at 260 °C (Fig. 6). The spent catalyst could be easily 
regenerated by calcining at 500 °C in an air flow inside the 
reactor and reused for at least four cycles, demonstrating the 
robust and stable structure of the catalyst [21].

Adjusting the preparation methods or preparation condi-
tions can also enhance the dispersion of active copper species 
and increase resistance to copper sintering. Jeon et al. [47] 
optimized the precipitation pH values during the preparation of 
Cu/SiO2 catalysts to reduce surface acid sites, effectively sup-
pressing side reactions and oligomer deposits that deactivated 
the active species. This led to superior catalytic performance 
and stability compared to commercial Cu–MgO and Cu–ZnO 
catalysts. It has also been reported that the Cu/SiO2 catalyst 
prepared by using the ammonia evaporation method exhibited 

(1)

(2)
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outstanding stability during the ethanol dehydrogenation reac-
tion. The ethanol conversion was over 90% with a selectivity 
of 99% to acetaldehyde throughout the 500 h time on stream 
at 280 °C [48]. This excellent performance can be attributed to 
the strong interaction between copper and SiO2, resulting from 
the formation of an intermediate copper phyllosilicate phase.

New Processes for the Cyclohexanol 
Dehydrogenation

The dehydrogenation of cyclohexanol faces challenges due 
to thermodynamic equilibrium limitations and the formation 
of oligomers from condensation reactions, which can cover 
active species. Furthermore, the hydrogen released during 
the reaction is not effectively utilized [8]. To tackle these 
challenges, researchers have proposed alternative processes 
for cyclohexanol dehydrogenation, such as the oxidative 
dehydrogenation process using various oxidants [49–54] and 
reaction coupling processes involving different hydrogena-
tion reactions [17, 18, 41, 55].

Oxidative Dehydrogenation of Cyclohexanol

In order to utilize the hydrogen generated during the reaction, a 
gaseous oxidant was introduced into the feed stream, convert-
ing the direct dehydrogenation process into an oxidative dehy-
drogenation process [49]. This approach not only overcomes 
the thermodynamic equilibrium limitation but also offers the 
advantage of using environmentally friendly, cost-effective 
oxidants, such as oxygen, which can inhibit the formation of 
oligomer deposits and consequently improve catalyst stabil-
ity. Given these benefits, the oxidative dehydrogenation of 
cyclohexanol has garnered significant interest in recent years.

Cyclohexanol can undergo both dehydrogenation and oxi-
dative dehydrogenation reactions over CuO–ZnO catalysts 
when oxygen or air is added to the feed, as demonstrated in 
Eq. 3) [49]. The catalyst remains stable at a low mole ratio of 
oxygen to cyclohexanol at 240 °C. As the mole ratio of oxygen 
to cyclohexanol increases, the conversion of cyclohexanol also 
rises, and the selectivity of cyclohexanone consistently remains 
above 99%. Furthermore, due to the endothermic nature of 
cyclohexanol's direct dehydrogenation, the LHSV of cyclohex-
anol is typically limited to a range of 0.5–2.0 h−1 constrained 
by the low external heat supply in a practical reactor. How-
ever, for the oxidative dehydrogenation process, the thermal 
effect can be modulated by adding oxidants to the feed stream, 
benefiting from the coupling with the exothermic reaction of 
converting hydrogen to water. In this scenario, the processing 
capacity of the reactor can be improved.

In addition to copper-based catalysts, other catalyst systems 
have also been developed for the oxidative dehydrogenation 
of the cyclohexanol process. The titanosilicate molecular 
sieve with an open 12-membered-ring channel system (ETS-
10) and considerable basicity was employed for the oxidative 
dehydrogenation of cyclohexanol [56]. Utilizing O2 as the oxi-
dant, ETS-10 achieved 100% selectivity to cyclohexanone and 
75% cyclohexanol conversion at reaction temperatures below 
200 °C. However, noticeable deactivation of the catalyst could 
be observed during a period of 120 min. The deactivation 
was accelerated with increased basicity or decreased oxygen/
cyclohexanol ratio, as the formation of cyclohexanone oligom-
ers blocked partial microporous structures. This was further 
evidenced by the complete regeneration of the catalyst after 
calcination. Cobalt oxides encapsulated in SBA15 were also 
used in this process and exhibited a 42% cyclohexanol conver-
sion at room temperature, using tert-butyl hydrogen peroxide 
as the oxidant in a batch reactor [57]. Due to the confined and 
uniformly dispersed cobalt species, the catalyst was able to 
be used up to four times without any significant change in its 
catalytic activity.

Gold has been reported to exhibit a strong activation capa-
bility on the Cα–H bond of alcohols. Recently, Hensen and 

Fig. 6   a Catalyst reusability study and b stability test for the dehy-
drogenation of cyclohexanol over ZnO modified Cu–MgO catalysts. 
Reproduced with permission from Ref [21]. Copyright 2021, Elsevier
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coworkers [50] applied a series of highly dispersed gold nano-
particles supported on Cu-doped spinel oxides catalysts in the 
oxidative dehydrogenation of cyclohexanol, using O2 as the 
oxidant. The conversion of cyclohexanol and the selectivity of 
cyclohexanone were achieved at 70% and 92%, respectively, at 
260 °C using the Au/MgCuCr2O4 catalyst. The catalyst exhib-
ited excellent stability over 100 h of reaction (Fig. 7a). During 
the reaction, the 3 nm Au nanoparticles barely changed due 
to the strong metal-support interaction. The study proposed a 
synergistic catalysis of Au/MgCuCr2O4 catalyst for the oxida-
tive dehydrogenation of cyclohexanol; this involved the basic 
Mg–O sites facilitating alcohol deprotonation, the gold nano-
particles selectively cleaving the C–H bond, and the Cu–O 
sites removing H atoms in the form of water.

Hensen [51] further investigated the active sites of the Au/
MgCuCr2O4 catalysts and revealed their reaction mechanism 
by modulating the Cu contents. A conversion of 99.1% and a 
cyclohexanone selectivity of 90.2% were achieved over the 
stable Au/Mg0.25Cu0.75Cr2O4 catalyst at 300 °C. During the 
reaction, it was demonstrated that the surface Cu2+ species 
were reduced and migrated to the metallic gold nanoparticles, 
forming Au–Cu alloy species. This migration of Cu resulted 
in the creation of defects (oxygen vacancies) on the support. 
Based on these findings, a possible reaction mechanism is 
shown in Fig. 8. Oxygen vacancies could activate molecular 
O2 to form active oxygen species, although it cannot be ruled 
out that the Cu species in the Au–Cu alloy may also promote 
oxygen activation. These active oxygen species were involved 
in the activation of O–H bonds in cyclohexanol, while gold 
played a role in activating Cα–H bond.

ZnCr2O4 was also used as a support to disperse and sta-
bilize gold due to its strong interaction. In conjunction with 
various characterizations, it was demonstrated that gold sup-
ported on a high-temperature (≥ 700 °C) calcined ZnCr2O4 
support exhibited superior selectivity, with a cyclohexanone 
yield of 91% at 300 °C, and remained stable during a 90 h 
reaction (Fig. 7b) [58]. The near-complete removal of Lewis 
acid sites via high-temperature calcination reduced side 
reactions and inhibited the deposition of cyclohexene oli-
gomers that deactivated the active species surface.

Ordered mesoporous silica with extra-large spherical cages 
(EP-FDU-12) was also used to obtain highly stable and dis-
persed gold species, achieving exceptional performance and 
superior stability (> 550 h) in the oxidative dehydrogenation 
of cyclohexanol (Fig. 7c) [59]. Following the reaction, no con-
siderable growth of Au particles was observed, and the for-
mation of carbon deposits on the AuNPs/EP-FDU-12 catalyst 
was minimal. This suggests that the large and opened three-
dimensional mesoporous networks facilitated the diffusion of 
products, thus suppressing coke formation.

However, in certain oxidative dehydrogenation processes, 
the usage of O2 (strong oxidant) resulted in the production 
of numerous unwanted byproducts [60, 61]. Over the past 
two decades, CO and CO2 have garnered considerable inter-
est as soft oxidants in oxidative dehydrogenation, facilitating 
the suppression of total oxidation [60, 62, 63]. Kumar et al. 
[30] conducted the cyclohexanol dehydrogenation reaction in 
the presence of CO and revealed that methanol was produced 
along with cyclohexanone, as demonstrated in Eqs. 4 and 5. 
A 90% conversion and 67.8% selectivity of cyclohexanone 

Fig. 7   a Stability test of Au/
MgCuCr2O4 in the gas-phase 
oxidative dehydrogenation 
of cyclohexanol. Reproduced 
with permission from Ref. 
[50]. Copyright 2018, Else-
vier. b Catalytic stability of 
Au/ZnCr2O4 in the gas-phase 
cyclohexanol oxidation. 
Reproduced with permission 
from Ref. [58]. Copyright 2019, 
American Chemical Society. c 
Time-on-stream activity plot 
for the cyclohexanol oxidation 
on AuNPs/EP-FDU-12 catalyst. 
Reproduced with permission 
from Ref. [59]. Copyright 2017, 
Elsevier
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were achieved at 250 °C using the Cu–ZnO catalyst. The equa-
tions for oxidative dehydrogenation processes using different 
oxidants are shown below, and the catalytic performance is 
summarized in Table 3.

(3)

(4)

(5)

Reaction Coupling Processes with Hydrogenation 
Reactions

To optimize the utilization of hydrogen generated during 
cyclohexanol dehydrogenation, certain reaction coupling 
processes have been developed. These processes involve 
using unsaturated organic compounds alongside cyclohex-
anol as reactants in the feed. The heat released by the hydro-
genation reaction can then be harnessed for cyclohexanol 
dehydrogenation. This approach facilitates easy temperature 
control and optimal hydrogen mass balance, eliminating the 
need for an external supply of H2 and ultimately leading to 
reduced operational costs and energy savings [41, 65, 66].

The coupling of furfural hydrogenation and cyclohexanol 
dehydrogenation in vapor-phase conditions over Cu–MgO 
catalysts is a highly efficient and environmentally friendly 
process for synthesizing furfuryl alcohol and cyclohexanone, 

Fig. 8   Reaction mechanism 
of the oxidative dehydrogena-
tion of cyclohexanol over the 
Au/Mg1−xCuxCr2O4 catalysts. 
Reproduced with permission 
from Ref [51]. Copyright 2020, 
Elsevier

Table 3   Catalytic performance 
of oxidative dehydrogenation of 
cyclohexanol to cyclohexanone 
over different catalyst systems

Catalyst T (°C) Conversion (%) Selectivity (%) Oxidant A molar ratio of 
oxidant to cyclohex-
anol

Refs.

Cu/ZnO 240 73.7 99.0 O2 0.14 [8]
Cu–ZnO 250 90 67.8 CO 0.28 [30]
Au/MgCuCr2O4 300 71 98 O2 6 [50]
Au/Mg0.75Cu0.25Cr2O4 300 99.1 90.2 O2 6 [51]
ETS-10 200 42.2 100 O2 89 [56]
Au/ZnCr2O4 300 93 91 O2 6 [58]
AuNPs/EP-FDU-12 250 48 98 O2 2.51 [64]
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as demonstrated in Eq. 6 [18, 67]. Compared to independ-
ent reactions, the yield of furfuryl alcohol and cyclohex-
anone in the coupled reaction was improved by 18% and 7%, 
respectively, at 200 °C. It has also been proposed that the 
introduction of chromium could enhance Cu dispersion and 
stabilize Cu+ species during reduction, resulting in excep-
tional catalytic performance.

Utilizing Cu–Zn–Al, 2-methylfuran, instead of furfuryl 
alcohol, was obtained alongside cyclohexanone, as shown 
in Eq. 7 [65]. The catalytic performances of both reactions 
improved, and no noticeable deactivation was observed dur-
ing the 250 h reaction. The enhancement of 2-methylfuran 
selectivity in the coupling process could be attributed to 
the presence of activated hydrogen species on the catalyst 
surface resulting from dehydrogenation. Furthermore, the 
Cu–Mn–Si catalyst was introduced, exhibiting excellent 
catalytic performance in this coupling reaction [41]. The 
enhanced Cu dispersion, the presence of medium–strong 
acid sites due to manganese addition, and the interface 
between Cu and MnO contributed to the superior catalytic 
performance. The conversion of cyclohexanol and furfural 
was 66.8% and 99.1%, respectively, with selectivity for both 
cyclohexanone and 2-methylfuran exceeding 91% at 279 °C.

Direct catalytic coupling of nitrobenzene hydrogenation 
and cyclohexanol dehydrogenation (Eq. 8) was investigated 
using a Cu/MgO–SBA15 catalyst [14]. Although the catalyst 
exhibited excellent thermal stability, a rapid condensation 
reaction between cyclohexanone and aniline occurred. Com-
petitive adsorption between the two reactants was observed, 
which negatively affected the selective reaction's efficiency.

Considerable progress has been made in researching 
new processes for cyclohexanol dehydrogenation. These 
advancements offer benefits such as high cyclohexanol 
conversion, improved energy efficiency, optimal hydro-
gen utilization, and enhanced environmental sustainability. 
However, challenges still remain in these new processes. 
For instance, cyclohexanol may become over-oxidized, 

(6)

(7)

(8)

and the occurrence of various side reactions may increase, 
leading to additional energy requirements during subse-
quent separation processes, reduced product quality, and 
potential impacts on downstream polymer synthesis.

Conclusion and Outlook

Cyclohexanol dehydrogenation to cyclohexanone is a vital 
industrial process used in the production of nylon mate-
rials, which hold a substantial share in the global com-
mercial market. However, its reaction network is complex 
and limited by thermodynamic equilibrium. Considerable 
advancements have been made in copper-based catalysts 
for cyclohexanol dehydrogenation, leading to the realiza-
tion of their applications in several industrial processes. 
Nonetheless, challenges persist in identifying active sites, 
understanding reaction mechanisms, and improving prod-
uct selectivity and catalyst stability. This review provides 
a comprehensive summary of the active species, factors 
influencing product selectivity, and studies on deactiva-
tion. It suggests that more detailed and careful mechanis-
tic investigations involving in situ or operando charac-
terizations, isotopic tracer technology, and computational 
studies could provide insights and new possibilities in 
cyclohexanol dehydrogenation and guide the development 
of industrial catalysts. Furthermore, this review introduces 
new processes of oxidative dehydrogenation and reaction 
coupling processes with hydrogenation reactions. These 
novel processes offer several advantages, such as break-
ing the equilibrium conversion, ensuring high energy effi-

ciency, achieving optimal hydrogen utilization, and pro-
moting environmental sustainability. However, the cost of 
separation and the occurrence of side reactions should be 
considered, as they may pose challenges to downstream 
product utilization in industrial applications.
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