Skip to main content

Advertisement

Log in

In Situ Formation of LiF-Rich Carbon Interphase on Silicon Particles for Cycle-Stable Battery Anodes

  • Research Article
  • Published:
Transactions of Tianjin University Aims and scope Submit manuscript

Abstract

Silicon (Si) is a potential high-capacity anode material for the next-generation lithium-ion battery with high energy density. However, Si anodes suffer from severe interfacial chemistry issues, such as side reactions at the electrode/electrolyte interface, leading to poor electrochemical cycling stability. Herein, we demonstrate the fabrication of a conformal fluorine-containing carbon (FC) layer on Si particles (Si-FC) and its in situ electrochemical conversion into a LiF-rich carbon layer above 1.5 V (vs. Li+/Li). The as-formed LiF-rich carbon layer not only isolates the active Si and electrolytes, leading to the suppression of side reactions, but also induces the formation of a robust solid–electrolyte interface (SEI), leading to the stable interfacial chemistry of as-designed Si-FC particles. The Si-FC electrode has a high initial Coulombic efficiency (CE) of 84.8% and a high reversible capacity of 1450 mAh/g at 0.4 C (1000 mA/g) for 300 cycles. In addition, a hybrid electrode consisting of 85 wt% graphite and 15 wt% Si-FC, and mass 2.3 mg/cm2 loading delivers a high areal capacity of 2.0 mAh/cm2 and a high-capacity retention of 93.2% after 100 cycles, showing the prospects for practical use.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  Google Scholar 

  2. Crabtree G (2019) The coming electric vehicle transformation. Science 366(6464):422–424

    Article  Google Scholar 

  3. Nitta N, Wu FX, Lee JT et al (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  Google Scholar 

  4. Li M, Lu J, Chen ZW et al (2018) 30 years of lithium-ion batteries. Adv Mater 30(33):1800561. https://doi.org/10.1002/adma.201800561

    Article  Google Scholar 

  5. Lu J, Chen ZW, Pan F et al (2018) High-performance anode materials for rechargeable lithium-ion batteries. Electrochem Energ Rev 1(1):35–53. https://doi.org/10.1007/s41918-018-0001-4

    Article  Google Scholar 

  6. Tu SB, Su H, Sui D et al (2021) Mesoporous carbon nanomaterials with tunable geometries and porous structures fabricated by a surface-induced assembly strategy. Energy Storage Mater 35:602–609. https://doi.org/10.1016/j.ensm.2020.11.042

    Article  Google Scholar 

  7. Sung J, Kim N, Ma J et al (2021) Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nat Energy 6(12):1164–1175

    Article  Google Scholar 

  8. Tu SB, Ai X, Wang XC et al (2021) Circumventing chemo-mechanical failure of Sn foil battery anode by grain refinement and elaborate porosity design. J Energy Chem 62(11):477–484

    Article  Google Scholar 

  9. Sun YM, Wang L, Li YB et al (2019) Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 3(4):1080–1093. https://doi.org/10.1016/j.joule.2019.01.017

    Article  Google Scholar 

  10. Tan DHS, Chen YT, Yang HD et al (2021) Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 373(6562):1494–1499

    Article  Google Scholar 

  11. Prado AYR, Rodrigues MTF, Trask SE et al (2020) Electrochemical dilatometry of Si-bearing electrodes: dimensional changes and experiment design. J Electrochem Soc 167(16):160551. https://doi.org/10.1149/1945-7111/abd465

    Article  Google Scholar 

  12. McDowell MT, Lee SW, Nix WD et al (2013) 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater 25(36):4966–4985. https://doi.org/10.1002/adma.201301795

    Article  Google Scholar 

  13. Stetson C, Yin YL, Jiang CS et al (2019) Temperature-dependent solubility of solid electrolyte interphase on silicon electrodes. ACS Energy Lett 4(12):2770–2775. https://doi.org/10.1021/acsenergylett.9b02082

    Article  Google Scholar 

  14. Sina M, Alvarado J, Shobukawa H et al (2016) Direct visualization of the solid electrolyte interphase and its effects on silicon electrochemical performance. Adv Mater Interfaces 3(20):1600438. https://doi.org/10.1002/admi.201600438

    Article  Google Scholar 

  15. He Y, Jiang L, Chen TW et al (2021) Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nat Nanotechnol 16(10):1113–1120

    Article  Google Scholar 

  16. Chan CK, Peng HL, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    Article  Google Scholar 

  17. Yao Y, McDowell MT, Ryu I et al (2011) Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett 11(7):2949–2954. https://doi.org/10.1021/nl201470j

    Article  Google Scholar 

  18. Lu ZD, Liu N, Lee HW et al (2015) Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 9(3):2540–2547

    Article  Google Scholar 

  19. Xu Q, Li JY, Sun JK et al (2016) Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes. Adv Energy Mater 7(3):1601481. https://doi.org/10.1002/aenm.201601481

    Article  Google Scholar 

  20. Xu ZX, Yang J, Zhang T et al (2018) Silicon microparticle anodes with self-healing multiple network binder. Joule 2(5):950–961. https://doi.org/10.1016/j.joule.2018.02.012

    Article  Google Scholar 

  21. Choi S, Kwon TW, Coskun A et al (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348):279–283

    Article  Google Scholar 

  22. Qian CX, Zhao J, Sun YM et al (2020) Electrolyte-phobic surface for the next-generation nanostructured battery electrodes. Nano Lett 20(10):7455–7462

    Article  Google Scholar 

  23. Shi WY, Wu HB, Baucom J et al (2020) Covalently bonded Si-polymer nanocomposites enabled by mechanochemical synthesis as durable anode materials. ACS Appl Mater Interfaces 12(35):39127–39134

    Article  Google Scholar 

  24. Piper DM, Yersak TA, Son SB et al (2013) Conformal coatings of cyclized-PAN for mechanically resilient Si nano-composite anodes. Adv Energy Mater 3(6):697–702. https://doi.org/10.1002/aenm.201200850

    Article  Google Scholar 

  25. Fang JB, Chang SZ, Ren Q et al (2021) Tailoring stress and ion-transport kinetics via a molecular layer deposition-induced artificial solid electrolyte interphase for durable silicon composite anodes. ACS Appl Mater Interfaces 13(27):32520–32530

    Article  Google Scholar 

  26. Ai Q, Li DP, Guo JG et al (2019) Artificial solid electrolyte interphase coating to reduce lithium trapping in silicon anode for high performance lithium-ion batteries. Adv Mater Interfaces 6(21):1901187

    Article  Google Scholar 

  27. Zhao L, Zhang DF, Huang YF et al (2021) Constructing a reinforced and gradient solid electrolyte interphase on Si nanoparticles by in-situ thiol-ene click reaction for long cycling lithium-ion batteries. Small 17(40):2102316. https://doi.org/10.1002/smll.202102316

    Article  Google Scholar 

  28. Christensen J, Newman J (2004) A mathematical model for the lithium-ion negative electrode solid electrolyte interphase. J Electrochem Soc 151(11):A1977–A1988. https://doi.org/10.1149/1.1804812

    Article  Google Scholar 

  29. Jones J, Anouti M, Caillon-Caravanier M et al (2009) Thermodynamic of LiF dissolution in alkylcarbonates and some of their mixtures with water. Fluid Phase Equilib 285(1–2):62–68. https://doi.org/10.1016/j.fluid.2009.07.020

    Article  Google Scholar 

  30. Zhu YZ, He XF, Mo YF (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7(42):23685–23693

    Article  Google Scholar 

  31. Jia HP, Zou LF, Gao PY et al (2019) High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv Energy Mater 9(31):1900784. https://doi.org/10.1002/aenm.201900784

    Article  Google Scholar 

  32. Chen J, Fan XL, Li Q et al (2020) Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy 5(5):386–397. https://doi.org/10.1038/s41560-020-0601-1

    Article  Google Scholar 

  33. Pan J, Cheng YT, Qi Y (2015) General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Phys Rev B 91(13):1773–1783. https://doi.org/10.1103/PhysRevB.91.134116

    Article  Google Scholar 

  34. Sayahpour B, Hirsh H, Bai S et al (2022) Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery. Adv Energy Mater 12(5):2103196. https://doi.org/10.1002/aenm.202103196

    Article  Google Scholar 

  35. Zhao J, Liao L, Shi FF et al (2017) Surface fluorination of reactive battery anode materials for enhanced stability. J Am Chem Soc 139(33):11550–11558

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Innovation Fund of Wuhan National Laboratory for Optoelectronics of Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Wang or Yongming Sun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3749 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Y., Tu, S., Zhan, R. et al. In Situ Formation of LiF-Rich Carbon Interphase on Silicon Particles for Cycle-Stable Battery Anodes. Trans. Tianjin Univ. 29, 101–109 (2023). https://doi.org/10.1007/s12209-022-00349-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12209-022-00349-4

Keywords

Navigation