
Vol:.(1234567890)

Transactions of Tianjin University (2022) 28:358–373
https://doi.org/10.1007/s12209-022-00336-9

1 3

REVIEW

Review on Metallization Approaches for High‑Efficiency Silicon 
Heterojunction Solar Cells

Yulian Zeng1 · Chen‑Wei Peng1,2 · Wei Hong3 · Shan Wang3 · Cao Yu2 · Shuai Zou1,3 · Xiaodong Su1

Received: 29 June 2022 / Revised: 10 July 2022 / Accepted: 17 August 2022 / Published online: 30 August 2022 
© The Author(s) 2022

Abstract
Crystalline silicon (c-Si) heterojunction (HJT) solar cells are one of the promising technologies for next-generation industrial 
high-efficiency silicon solar cells, and many efforts in transferring this technology to high-volume manufacturing in the 
photovoltaic (PV) industry are currently ongoing. Metallization is of vital importance to the PV performance and long-term 
reliability of HJT solar cells. In this review, we summarize the development status of metallization approaches for high-
efficiency HJT solar cells. For conventional screen printing technology, to avoid the degradation of the passivation properties 
of the amorphous silicon layer, a low-temperature-cured (< 250 ℃) paste and process are needed. This process, in turn, leads 
to high line/contact resistances and high paste costs. To improve the conductivity of electrodes and reduce the metalliza-
tion cost, multi-busbar, fine-line printing, and low-temperature-cured silver-coated copper pastes have been developed. In 
addition, several potential metallization technologies for HJT solar cells, such as the Smart Wire Contacting Technology, 
pattern transfer printing, inkjet/FlexTrailprinting, and copper electroplating, are discussed in detail. Based on the summary, 
the potential and challenges of these metallization technologies for HJT solar cells are analyzed.
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Introduction

In recent years, passivating-contact solar cells have become 
the focus of the photovoltaic (PV) industry due to their 
remarkable efficiency potential [1]. According to the pre-
diction of the latest International Technology Roadmap for 
Photovoltaic (13th edition, 2022), passivating-contact sili-
con heterojunction (HJT, sometimes referred to as SHJ) solar 
cells and other passivating-contact solar cells are rapidly 

expanding their market share, occupying more than 75% by 
2032 [2]. The tunneling-oxide passivating-contact (TOP-
Con) solar cell is a powerful competitor of the HJT solar 
cell because its fabrication process can be upgraded on the 
existing PERC production line, minimizing equipment and 
facility costs. However, new factories usually choose the 
HJT solar cell technology mainly because of the following 
reasons: (1) HJT solar cells have a high open-circuit voltage 
and conversion efficiency and excellent bifaciality factor [3]. 
(2) HJT solar cell fabrication is a simple (few process steps) 
and low-temperature process, which is very beneficial for 
large and thin silicon wafers. (3) HJT solar cells have a low-
temperature coefficient, resulting in higher energy yields 
compared to other silicon solar cells. (4) The symmetrical 
structure of HJT solar cells makes them highly adaptable to 
thin silicon wafers, which will be a potential cost advantage 
for the industrialization of HJT solar cells [3–5]. For exam-
ple, HJT solar cells with a thickness of ~ 90 μm have been 
reported by Meyer Burger and Panasonic [6, 7].

Traditionally, HJT solar cells use a-Si:H (i/p) and a-Si:H 
(i/n) stacks to passivate dangling bonds on two surfaces of a 
wafer and form a passivating-contact, which is the most suc-
cessful passivating-contact structure [8, 9]. The HJT solar 
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cell technology involves two different cell structures: front 
emitter and rear-emitter. Between the two, rear-emitter HJT 
solar cells have become the mainstream HJT technology. A 
highly transparent conductive oxide (TCO) with relatively 
low conductivity requirements can be applied on the front 
side, resulting in a high current density [3]. Different from 
c-Si homojunction solar cells, HJT solar cells require a low-
temperature process. This is because the hydrogen evolu-
tion from a-Si:H thin films will significantly occur when 
the temperature exceeds 200 ℃, which could dramatically 
deteriorate the passivation quality of dangling bonds on c-Si 
surfaces [8]. Consequently, a low-temperature metallization 
process is necessary for HJT solar cells.

As a well-established metallization technique, the screen 
printing technology is still the most commonly used metal-
lization approach for HJT solar cell fabrication. In this tech-
nique, silver (Ag) pastes play a crucial role in contact for-
mation and are also a core factor affecting the cost of HJT 
solar cells. For HJT solar cells, low-temperature-cured Ag 
pastes are necessary to form contact electrodes on the TCO 
layer, and their thermal curing temperature is usually below 
250 ℃. In general, the line resistivity of a low-temperature-
cured electrode is a factor of 2–3 higher than that of a high-
temperature-sintered electrode [9]. To reduce the line resist-
ance (Rline), the electrodes of HJT solar cells require more 
Ag content and a higher aspect ratio than those of other c-Si 
solar cells. In addition, the price of low-temperature-cured 
Ag pastes is > 10% higher than that of the traditional high-
temperature sintered Ag pastes [10]. The high metalliza-
tion cost is currently one of the most pressing challenges 
hindering the industrial scale expansion of HJT solar cells. 
In this review, we summarize the development status of the 
screenprinting technology for HJT solar cells, mainly includ-
ing screenprinting low-temperature-cured Ag paste and low-
temperature-cured Ag-coated copper (Cu) paste technolo-
gies. In addition, we review several potential metallization 
technologies, such as Smart Wire Contacting Technology 
(SWCT), pattern transfer printing (PTP), inkjet/FlexTrail 
printing, and Cu electroplating, to summarize their progress.

HJT Solar Cells

As one of the most promising passivating-contact tech-
nologies, silicon HJT solar cells have attracted significant 
attention due to their high conversion efficiency and lean 
process sequence. Recently, averaged HJT solar cell effi-
ciencies of more than 25% have been reported by many 
research institutions and companies [4, 11, 12]. A mile-
stone with a certified efficiency of 26.5% based on a full 
M6 area (274.3  cm2) n-type wafer has been reported by 
LONGi [13]. HJT solar cells have an excellent open-circuit 
voltage (Voc) of up to 750 mV and a very high fill factor 

(FF) of more than 85%, which is due to the superior inter-
face passivation and perfect passivating-contact architec-
ture. However, the short-circuit current density (Jsc) of 
HJT solar cells is lower than that of other silicon solar 
cells and even that of conventional aluminum back surface 
field (Al-BSF) solar cells. This is not only because of the 
wide bandgap of the amorphous-silicon/monocrystalline-
silicon HJT structure but also due to the parasitic opti-
cal absorption losses in intrinsic and doped a-Si:H layers, 
especially in the uppermost front-surface field layer. To 
mitigate the effects of low Jsc, the HJ-IBC (HJT interdigi-
tated back contact) architecture has long been known and 
developed [14–17] and has attracted significant attention 
due to the record-high efficiency of 26.7% achieved by 
Kaneka [18].

Figure 1a shows the typical process steps of rear-emitter 
HJT solar cells and structural sketches of monofacial HJT, 
bifacial HJT, and HJ-IBC solar cells [3]. N-type c-Si sub-
strates are usually used as absorbers for HJT solar cells 
due to their higher carrier life time and lower sensitivity 
toward light-induced degradation compared to p-type c-Si 
substrates [19]. A 5–10 nm intrinsic amorphous silicon 
(i-a-Si:H) layer was deposited on both sides of a textured 
and cleaned c-Si substrate as a transition layer to passivate 
dangling bonds on the c-Si surface [5, 20]. Then, 5–10 nm 
p-doped and 8–15 nm n-doped a-Si:H layers were depos-
ited on the front and rear sides, respectively, to provide 
carrier selectivity. Afterward, TCOs were deposited on 
both sides for the lateral charge transport to electrodes. A 
band diagram of the standard HJT solar cell is sketched in 
Fig. 1b [21].The i-a-Si:H film, as a buffer layer, enables 
a low c-Si surface recombination via excellent chemical 
passivation [22–24]. The n- and p-type-doped a-Si:H films 
were deposited on top of the buffer layers to form elec-
tron and hole selective contact with the c-Si absorber and 
TCOs, which is due to the proper work function difference 
between the doped a-Si:H and c-Si absorbers [25, 26]. 
Recently, to reduce parasitic absorption, doped microcrys-
talline/nanocrystalline silicon (μ/nc-Si:H) has been proven 
to be a promising alternative to the commonly used doped 
a-Si:H in the PV industry [27, 28]. Compared to a-Si:H, 
μ/nc-Si:H has a higher doping efficiency and optical band 
gap, which is beneficial for improving the FF and Jsc of 
HJT solar cells [28, 29]. In addition, μ/nc-Si:H can sup-
press the Schottky-barrier effect between p-doped a-Si:H 
and TCO(n) via the percolation path (Fig. 1c) [27, 30]. A 
schematic diagram of a recent state-of-the-art rear-emitter 
HJT solar cell featuring μ/ncc-Si:H layers as carrier-selec-
tive contacts is shown in Fig. 1d [30].

As the last step in the manufacturing process, electrode 
metallization has been a major efficiency-limiting and cost-
determining step of HJT solar cells. The power conversion 
efficiency (η) of solar cells is calculated according to Eq. 1:
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Fig. 1  a Typical process steps of rear-emitter HJT solar cells and 
structural sketches of monofacial HJT, bifacial HJT, and HJ-IBC 
solar cells. Reproduced with permission from Ref. [3].  Copyright© 
2019 Springer Nature. b Band diagram of the standard HJT solar 
cell. Reproduced with permission from Ref. [21].  Copyright© AIP 

Publishing. c Schematic of the carrier transport mechanism in μ/nc-
Si:H films. Reproduced with permission from Ref. [30]. Copyright 
© 2021 The Author(s). d Schematic diagram of a recent state-of-the-
art rear-emitter HJT solar cell featuring μ/ncc-Si:H layers as carrier-
selective contacts
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where Pmax is the maximum power output, Pin is the incident 
light power density. Hence, η is mainly determined by three 
factors: FF, Jsc and Voc.

The FF is influenced by series resistance (Rs) and shunt 
resistance (Rsh), described by Eq. 2 [31]:

where  FF0 is the ideal FF without parasitic resistances, 
which is free from losses owing to the series resistance and 
recombination in the space charge region [32]. Rs consists 
of gridline, contact, emitter, and base resistances and has a 
significant impact on the FF [32]. Such an FF value of HJT 
solar cells is mainly limited by the low conductivity of sil-
ver grids produced by screen printing of pastes necessarily 
designed to cure at low temperatures [33].

The characteristic between the current density and 
voltage is expressed as Eq. 3 [34]:

where J01 is the saturation current density caused by the 
recombination of electron‐hole pairs in the emitter and base 
regions; J02 is the recombination current density in the space 
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charge region, n is the ideality factor of the solar cell; JL is 
the photocurrent, and q is the elemental charge. Considering 
the superior passivation performance of the HJT architec-
ture, the saturation current density due to the recombination 
is much lower than that of other homojunction solar cells. 
Therefore, in the metallization step, the shading area of elec-
trode grids, which is determined by the linewidth and aspect 
ratio, is an important factor affecting the Jsc of HJT solar 
cells. Voc is mainly affected by the temperature and damage 
to the TCO layer during the metallization process [8, 35].

In addition, approximately 20% of the manufacturing 
costs of HJT solar cells currently originate from metal-
lization, including the Ag paste and screen [36]. To 
improve photoelectric performance and reduce the man-
ufacturing cost, various metallization technologies have 
been developed in the PV industry. Table 1 summarizes 
the key parameters of published representative HJT solar 
cells using various metallization technologies. In the next 
section, we will review the development status of several 
major metallization approaches for HJT solar cells.

Metallization Approaches

Screen Printing Technology

Screen printing is the most widely used contact formation 
technique for industrial c-Si solar cells due to its high pro-
ductivity, high reliability, easy handling, and cost efficiency. 
The evolution of the linewidth (finger width, Wf) over the 

Table 1  Summary of the key parameters of published representative HJT solar cells using various metallization technologies

a The data are extracted from a box diagram of electrical parameters
b BL baseline

Metallization Area
(cm2)

Voc
(mV)

Jsc
(mA/cm2)

FF
(%)

η
(%)

Affiliation

Low-temperature-cured Ag paste 101.8 750 39.5 83.2 24.7 Panasonic [9]
244.45 747 39.55 84.98 25.11 Hanergy [11]
154.83 710 35.81 71.91 18.26 CAS [41]
245.7  ~ 734.8  ~ 37.31  ~ 78.8  ~ 21.7 Fraunhofera [59]

Low-temperature-cured Ag-coated Cu paste 245.7  ~ 733.5  ~ 36.9  ~ 79.2  ~ 21.6 Fraunhofera [59]
/ BL + 0.1 BL-0.03 BL-0.2 BL + 0.02 iSilverMaterialsb[60]

SmartWirecontacting technology 242.32 739 39.45 82.7 24.02 Meyer Burger [66]
Inkjet printing 245.7 733.8 38.7 81.6 23.1 Fraunhofer [59]
FlexTrail printing 245.7 737.4 39.2 82.1 23.7 Fraunhofer [59]
Cu electroplating 159 738 40.8 83.5 25.1 Kaneka [24]

274.5 746 40.23 85.08 25.54 Maxwell/SunDrive [12]
4 728 39.15 78.6 22.4 CSEM [73]
243.36 717 35.4 74 18.8 UNSW [74]
161.29 728.1 38.82 77.82 22.0 SIMIT [76]
6.25 718 36.1 78.0 20.2 Fraunhofer [78]



362 Y. Zeng et al.

1 3

last 15 years obtained with screen printing in the PV indus-
try is shown in Fig. 2a [37]. As can be seen, the speed of the 
line width improvement has been spectacular. At present, the 
average finger width Wf has been constantly reduced down 
to approximately 25 μm in industrial production lines and 
below 20 μm in R&D laboratories. In screen printing, pres-
sure is applied with a squeegee to transfer metal-based pastes 
through a screen with a pattern to the solar cell surface to 
form a patterned contact electrode, as shown in Fig. 2b [38]. 
However, a further reduction in the screenprinting linewidth 
to approximately or less than 20 μm poses new challenges 
with respect to the screen, paste, and printing processes and 
quality assurance [37]. The most common case for screen-
printing ultra narrow fingers leads to disruptions in the finger 
geometry (Fig. 2c, d) [37], finger interruptions, and align-
ment deviations. In the development of screen technology, 
the knotless screen technology has recently attracted atten-
tion due to its ability to effectively reduce mesh marks and 

increase the paste transfer capability, resulting in a lower 
mean lateral finger resistance than conventional fine-line 
mesh screens (Fig. 2e) and enabling an ultrafine contact 
[37]. As shown in Fig. 2f, a knotless screen has a mesh angle 
of 0° with respect to grid fingers [37]. Metal-based pastes 
are another important aspect that enables a high-precision 
printing of fine-line grids and are also an important factor 
that affects the electrical performance and reliability of c-Si 
solar cells. The following section focuses on low-tempera-
ture-cured Ag pastes and Ag-coated Cu pastes for HJT solar 
cells.

Low‑Temperature‑Cured Silver Paste

The cross-sectional SEM images of electrodes fabricated 
using high-temperature sintered Ag pastes and low-temper-
ature-cured Ag pastes are shown in Fig. 3a, b, respectively 

Fig. 2  a Evolution of the linewidth obtained with screen printing over 
the last 15 years [37]. b Schematic of a typical screen printer setup 
[38]. c Top view and d side view of mesh marks along screen-printed 
fingers due to the regular wire pattern within the finger openings in 
the screen [37]. e Conventional fine-line mesh screen with a mesh 

angle of 22.5° [37]. f Knotless screen with a mesh angle of 0° [37]. a, 
c, d, e, and f were reproduced with permission from Ref. [37]. Copy-
right© 2022 Elsevier. b was reproduced with permission from Ref. 
[38].  Copyright© 2019 The Author(s)
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[39, 40]. The high-temperature sintered electrode is very 
dense and almost becomes a whole bulk. The conductive 
powders of the low-temperature-cured electrode are rela-
tively dispersed, and many voids exist in the electrode bulk. 
A low-temperature-cured Ag paste consists of metal pow-
ders, binder resins, solvents, curing agents, and other addi-
tives [41]. Metal powders are the conductive phase, account-
ing for more than 90% of the paste. The resins act as the 
binder of metal powders and provide the adhesion of the 
electrode to the TCO. The solvents usually consist of short-
chain hydrocarbons with low boiling points to adjust the 
rheological and wettability properties of pastes and are easy 
to burn off. The curing agents react with resin to prompt the 
resin polymerization [42].

Low-temperature-cured electrodes usually have a rela-
tively high bulk resistivity, so high consumption is required 
to ensure an acceptable FF, resulting in high metallization 
costs. For low-temperature-cured Ag pastes consisting of 
Ag nanoparticles with high surface energy, although they 
are conducive to achieving curing at low temperatures, Ag 
nanoparticles are usually in point-to-point contact (Fig. 3c), 

which increases the bulk resistivity of the Ag electrode 
[43, 44]. It has been proven that the combination of Ag 
micronflake powers and Ag nanoparticle powders can sig-
nificantly improve the conductivity of Ag electrodes cured 
at low temperatures [44, 45]. As shown in Fig. 3d, adding 
an appropriate proportion of Ag micronflakes into a paste 
can increase the contact area, and the rearrangement of 
nanoparticles between micronflakes increases the density 
of the Ag electrode [44, 46]. The schematic diagrams of 
contact mechanisms corresponding to the above two cases 
(Fig. 3c, d) are depicted in Fig. 3e, f. During the curing 
process of low-temperature silver pastes, low-boiling-point 
solvents gradually burn off along with the shrinkage and 
cross-linking of the resin, and the diffusion of atoms on the 
surface of Ag nanoparticles will facilitate the connection of 
Ag microparticles [42, 47]. Finally, a dense conductive mesh 
was formed by a large thermodynamic driving force pro-
vided by the resin and molten silver nanoparticles [41, 47]. 
Therefore, the effect of the organic composition in the paste 
on the conductivity of the low-temperature-cured electrode 
is also critical. To increase the conductivity of electrodes, 

Fig. 3  Cross-sectional SEM 
images of electrodes fabri-
cated using a high-temperature 
sintered Ag paste. Reproduced 
with permission from Ref. 
[39].  Copyright© 2015 AIP 
Publishing LLC., and b low-
temperature-cured Ag paste. 
Reproduced with permission 
from Ref. [40].  Copyright© 
2013 WIP • Sylvensteinstr. 
Cross-sectional SEM images of 
the low-temperature-cured elec-
trodes obtained with pastes: c 
Ag nanoparticle powers. Repro-
duced with permission from 
Ref. [43].  Copyright© 2020 
The Author(s), and d mixing 
powers of micronflakes and Ag 
nanoparticles [44]. e Schematic 
diagram of the Ag nanoparticle 
contact. f Schematic diagram 
of the Ag nanoparticle and 
micronflakes contact [44]. e, f 
was reproduced with permis-
sion from Ref. [44].  Copyright© 
2020 The Author(s)



364 Y. Zeng et al.

1 3

the amount of resin should be appropriately reduced under 
the condition of ensuring adhesion. An optimal combination 
of resins, solvents, curing agents, and other additives are 
desired [42], and organic components need to be burned off 
as low as possible below the curing temperature [41, 47]. 
According to a report from Fusion New Material [48], a bulk 
resistivity of ~ 4.5 Ω cm could be achieved in 2022.

Low‑Temperature‑Cured Silver‑Coated Copper Paste

Ag powders account for approximately 98% of the cost 
of low-temperature-cured Ag pastes, which restricts the 
decrease in the paste cost. Copper has an electrical conduc-
tivity similar to that of Ag and is much less expensive and 
more abundant than Ag, making it an ideal alternative metal 

for Ag. However, Cu is less resistant to oxidation [49, 50], 
making it difficult to maintain high electrical conductivity 
for long periods of time [51]. To overcome this problem, Ag-
coated Cu paste technology has recently attracted extensive 
attention in the field of HJT technology.

The coating quality of Ag-coated Cu powders is very 
important to the performance of Ag-coated Cu pastes. 
Electroplating [52], electroless plating [53, 54], and vac-
uum processes [55] are commonly used for powder coat-
ing processes. The electroless plating process to fabricate 
Ag-coated Cu powders is widely used due to its simplic-
ity, low cost, and high quality. Shin et al. [56] synthe-
sized thiocyanate-modified Ag-coated Cu particles with 
excellent oxidation resistance via electroless plating. As 
shown in Fig. 4a, tiny agglomerates of the β-CuSCN layer 

Fig. 4  a SEM image of thiocyanate-coated Cu@Ag particles. b 
Cross-sectional BSE image of Ag-coated Cu particles. c TGA graphs 
of the Cu particles Cu@Ag particles and thiocyanate-coated Cu@Ag 
particles under air conditions. a–c were reproduced with permission 
from Ref. [56]. Copyright © 2015 The Chemical Society of Japan. d 
Schematic diagram of the Cu@Sn@Ag sandwich structure. e Cross-

sectional SEM image of the Cu@Sn@Ag particle and f correspond-
ing EDX line-scan analysis. d–f were reproduced with permission 
from Ref. [57].  Copyright© 2019, Springer Science Business Media. 
g I–V characteristics of HJT solar cells metallized separately by Ag-
coated Cu paste and Ag paste screenprinting. Reproduced with per-
mission from Ref. [59].  Copyright© 2019The Author(s)



365Review on Metallization Approaches for High-Efficiency Silicon Heterojunction Solar Cells  

1 3

plugged the pores on the surface of Ag-coated Cu parti-
cles, and the Cu cores were uniformly wrapped by an Ag 
shell of approximately 300 nm (Fig. 4b). Compared with 
unmodified Ag-coated Cu particles, the oxidation tem-
perature of thiocyanate-modified Ag-coated Cu particles 
increased by 150 ℃ (Fig. 4c). To address the transient 
liquid phase bonding of low-temperature pastes, Liu et al. 
[57] proposed a Cu@Sn@Ag sandwich structure, whose 
schematic diagram is shown in Fig. 4d. The cross-sectional 
SEM image and EDX line-scan analysis of the Cu@Sn@
Ag particle (Fig. 4e, f) illustrate that the thicknesses of 
the Sn and Ag coatings on the Cu particles are 1.2 and 
0.4 μm, respectively. Sun et al. [58] used ethylenediamine 
as the Ag complexing agent and adjusted the pH value of 
the plating solution to prepare Ag-coated Cu micronflakes 
with smooth surfaces. The prepared Ag-coated Cu micro-
nflake powders exhibited a resistivity of 3.9 ×  10−4 Ω·cm. 
Schube et al. [59] compared the electrical characteris-
tics of HJT solar cells metallized separately using Ag-
coated Cu paste and Ag paste screenprinting. As shown 
in Fig. 4g, the Ag-coated Cu paste group shows a conver-
sion efficiency similar to that of the Ag paste group, and 
the high FF caused by a low grid resistance is the main 
advantage of the Ag-coated Cu paste with a high amount 
of Ag fill material. Hong [60] reported that approximately 
0.09% efficiency loss was obtained on SHJ cells using the 
Ag-coated Cu paste (HAC539-T3) instead of the front and 
rear finger Ag pastes of the baseline. According to the 
report from Toyo Aluminum K.K., the HJT mini-module 
using the Ag-coated Cu paste (THA-F08C4) has a power 

degradation of less than 5% after TC 200 [61]. In par-
ticular, Ag-coated Cu pastes are not suitable for silicon 
homojunction solar cells due to the dewetting behavior of 
the Ag shell at high temperatures [62].

Some problems still need to be solved or improved for 
screen printing low-temperature-cured metal paste tech-
nology. First, the electrodes of HJT solar cells fabricated 
by screen printing low-temperature-cured metal pastes 
show relatively poor adhesion on TCO films. Hence, it is 
an important optimization direction to improve the organic 
composition in the paste without increasing the contact 
resistance. Second, due to the high resin content of the low-
temperature-cured paste and the large diameter of the metal 
microflakes, slow printing and flooding velocities are essen-
tial to maintain the printing quality but affect the through-
put. In addition, a curing time of 5–8 min is essential even 
with the rapid low-temperature curing process for HJT solar 
cells, compared to traditional PERC solar cells with a high-
temperature sintering time of approximately 1 min. The long 
curing time usually leads to low throughput and high capital 
expenditures, and reliability is still a concern for rapid cur-
ing technologies.

SWCT 

SWCT, as an innovative HJT solar cell interconnection pro-
cess for module manufacturing, was initially proposed by 
Day4 Energy [63] and further developed by Meyer Burger 
for automated production lines [64]. The SWCT consists of 
Cu wires coated with a thin low-melting-point alloy (InSn/

Fig. 5  a Picture of a SmartWire 
foil on a busbar-less cell. b 
Schematic diagram of auto-
mated SmartWire cell intercon-
nection. c and d Cross-sectional 
BSE images of the contact point 
between the InSn-coated Cu 
wire and Ag finger. Reproduced 
with permission from Ref. 
[64].  Copyright© 2014 WIP • 
Sylvensteinstr
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BiSn) layer and supported by a polymer foil (Fig. 5a, b) [64]. 
In Fig. 5a, the diameter and gap of the wires can be as small 
as 70 μm and 4 mm, respectively [64]. The cross-sectional 
BSE images of the contact point between the coated Cu wire 
and Ag finger are shown in Fig. 5c, d [64]. Due to the abun-
dant electrical contact points of every cell, the requirements 
for line conductance can be relaxed, and fine-line printing 
can be allowed while ensuring high module reliability. Bus-
barless technology shows prospects for ultralow Ag content 
with 30 mg laydown [64]. Narrow wires and fingers reduce 
shadow, thus improving Jsc. Moreover, the power loss is pos-
itively correlated with the line resistance of fingers, which 
increases with increasing finger length, and it is negatively 
related to the number of busbars [65]. The finger length is 
defined as half the distance from one busbar to an adjacent 
busbar in a standard H-pattern. The multiwire SWCT tech-
nology can significantly increase the module output power 
by reducing Rline and emitter resistivity (Remitter). Zhao et al. 
[66] demonstrated a champion cell with 24.02% conversion 
efficiency in a pilot production line and a 60-M2 cell SWCT 
monofacial module with 335 W.

PTP

Fine finger technology is beneficial in reducing shading, 
increase Isc and Voc, and reduce emitter resistivity. The FF 
loss caused by the increased series resistance can be com-
pensated by SWCT. As mentioned above, due to the limita-
tion of the wire size, mesh, and emulsion, it is difficult for 
screen printing to steadily print fingers with linewidths less 
than 20 μm.

PTP, a contactless printing technology commercialized 
by Utilight, has recently received much attention due to its 
potential for fine and high aspect ratio metallization fingers. 
As shown in Fig. 6a, b, fingers smaller than 20 μm can be 
deposited through PTP technology [67]. Its working princi-
ple is illustrated in Fig. 6c [67]. First, a transparent polymer 
tape with trenches is filled with the paste using blades. The 
polymer tape is then placed approximately 200 μm away 
from the wafer, and the paste is detached from the trenches 
by evaporating the solvent with an infrared laser [68]. May-
bury et al. [69] compared the electrical characteristics of 
c-Si PERC solar cells metallized via PTP and screen print-
ing. As shown in Fig. 6d, the PTP technology shows an effi-
ciency gain of 0.14%abs, which is mainly contributed by the 
Isc and Voc gains. According to a report submitted by Adrian 
et al. [68], PTP technology could reduce the paste lay down 
to approximately 30 mg. Compared with its application in 
PERC solar cells, PTP technology is more suitable for HJT 
solar cells without  SiNx, and the noncontact printing man-
ner is more conducive to the thinning wafer tendency for 
HJT solar cells. Nevertheless, some problems still need to 
be solved for the large-scale industrial application of PTP 

technology. As presented in Fig. 6e, f, a large number of fin-
ger interruptions occurred on single PTP-printed cells [67]. 
In addition, the paste tends to remain in the polymer tape, 
which means extra paste waste.

Inkjet Printing and FlexTrail Printing

Inkjet printing and FlexTrail printing are ultralow Ag con-
sumption technologies utilizing a commercially available 
Ag nanoparticle ink. In the inkjet printing process, the ink 
is ejected from a pulsed voltage-controlled nozzle without 
touching the wafer, as shown in Fig. 7a [43]. In the Flex-
Trail printing process, the ink is pressed out from the lower 
end of a hollow glass capillary with an inner diameter of 
several microns, whose end is in a flexible contact with the 
wafer (Fig. 7b) [43].

The fingers fabricated by inkjet printing and Flex-
Trail printing utilizing the same Ag nanoparticle ink are 
shown in Fig. 7c, d [43]. As can be seen, the width of the 
inkjet printed finger (75 ± 1 μm) is a factor of 4.7 higher 
than that of the FlexTrail printed finger (16 ± 1 μm) [59]. 
The laydown of the latter only consumed 0.3 ± 0.1 mg on 
a large-area HJT solar cell with 80 front fingers, but it still 
achieved a conversion efficiency of 23.7%. The two ultralow 
Ag consumption printing technologies are expected to be 
breakthrough metallization technologies for HJT solar cells, 
but their reliability still needs further research.

Copper Electroplating

Although various low-consumption Ag technologies have 
been introduced above, a certain amount of Ag consumption 
is unavoidable. Ag-free metallization has received exten-
sive attention from PV academic and industrial circles. As 
mentioned above, Cu is dozens of times cheaper than Ag, 
but they have similar conductivity. Cu electroplating, as an 
Ag-free metallization technique, plays an important role in 
the new metallization technologies of HJT solar cells [70]. 
This technology has been industrially proven for silicon 
homojunction solar cells [71]. Recently, Cu electroplating 
metallization has attracted much attention for HJT solar 
cell processing because it is expected to solve the current 
dilemma of the high cost caused by the high consumption 
and high price of low-temperature Ag pastes. In addition, the 
resistivity of the Cu-plated electrode is much lower than that 
of the screen-printed Ag electrode, and fine fingers can be 
achieved, thus further improving the conversion efficiency 
of HJT solar cells. Figure 8a shows the in-line electroplating 
equipment produced by JBAO Technology Ltd. [72]. The 
appearance of a Cu-electroplated HJT solar cell is shown in 
Fig. 8b [72]. In 2015, Kaneka announced that a 159  cm2 HJT 
solar cell with a Cu grid electrode achieved 25.1% efficiency 
[24, 65]. In 2021, Maxwell and SunDrive [12] reported an 
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M6 HJT solar cell metallized by seed-free Cu electroplating 
that achieved 25.54% conversion efficiency. The Cu electro-
plating technology can achieve such satisfactory efficiencies 
mainly due to the acquisition of a narrow linewidth and low 
series resistance. CSEM [73] reported that an HJT solar cell 
with plated fingers with a linewidth of 15 μm and an aspect 
ratio of 1:1 can obtain a gain of Jsc 1.1 mA/cm2 compared 

to a reference cell with Ag paste screenprinting. Moreover, 
the electroplated Cu electrode is close to bulk Cu [74], and 
its resistivity (2 ×  10−8 Ω m) is similar to that of pure Cu 
(1.75 ×  10−8 Ω m), which is several times lower than that of 
the screen-printed Ag electrode [73, 75], thus achieving a 
lower line resistance and contact resistance.

Fig. 6  a and b SEM images of a finger smaller than 20 μm deposited 
by PTP. c Schematic diagram of the working principle of PTP [67]. d 
Electrical performance gain of solar cells metallized with PTP com-
pared to reference cells with screen printing [69]. EL images from 

typical c-Si solar cells metalized by e screen printing and f single 
PTP printing [67]. a, b, c, e, and f were reproduced with permission 
from Ref. [67]. Copyright© 2015 Elsevier. d was reproduced with 
permission from Ref. [69].  Copyright© 2019 The Author(s)
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Although TCO films can effectively solve the carrier lat-
eral transport problem for HJT solar cells, they bring some 
difficulties to the Cu electroplating metallization technique. 
First, a patterned mask process is required to define elec-
trode openings. Due to the high cost of photoresists, various 
alternative organic and inorganic masks have been devel-
oped. Among them, dry films and resin resists exhibit a high 
resolution and low cost in organic-material masks [74, 76]. 
Yu et al. [76] reported that dry films have a good resolution 
of 30–50 μm. As shown in Fig. 8c, the opening trench of 
the dry film is nearly rectangular, and the thickness is close 
to 40 μm after development. Figure 8d, e shows that the 
cross section of the electroplated Cu finger is rectangular 
with a width of approximately 56 μm and a thickness of 
approximately 25 μm [76]. Li et al. [74] reported a resin 
solution (resist) obtained from a modified AZ nLOF 2035 
photoresist to obtain openings without lithographic devel-
opment. The development was performed in a tetramethyl 
ammonium hydroxide solution after baking at 110 ℃, and an 
approximately 20 μm line opening was obtained, as shown 
in Fig. 8f. Plated fingers with a width as narrow as approxi-
mately 20 μm and a height of approximately 10 μm were 
achieved, as shown in Fig. 8g, h. In particular, UV expo-
sure is no longer required to use this resin. However, the 
removal of the organic mask will produce a large amount of 
wastewater, and the position of Cu fingers in contact with 
the organic template cannot be easily protected by the Ag/
Sn layer to prevent Cu oxidation [77]. Some people have 
suggested that inorganic masks are highly suitable for mass 
production owing to their high throughput and low cost 
[75]. Native oxides of metals [78, 79],  SiOx [80],  Al2O3/a-Si 

stacks [81], and  SiOx/SiNx stacks [82] have been reported 
as favorable inorganic masking materials. For example, 
Hatt et al. [78] deposited Cu/Al stacks onto a TCO film 
via physical vapor deposition (PVD), and pattern openings 
were formed via etching in a sodium hydroxide solution, as 
shown in Fig. 8i. The finger electrodes plated by a forward/
reverse pulsed current are presented in Fig. 8j, k. Second, 
the adhesion of an electroplated Cu electrode on TCO should 
be considered, which will affect the long-term reliability 
of the corresponding modules [78]. Li et al. [83] used an 
electrochemical method to reduce indium particles from 
tungsten-doped indium oxide films as a seed layer, and the 
maximum peel force of the electroplated Cu busbar reached 
4.23 N [83]. Although this method provides a method to 
solve the low peel force of electroplated Cu electrodes, it is 
not economical. The research on improving the peel force of 
electroplated Cu electrodes is still in progress. In addition, 
the cumbersome process steps bring additional costs, and the 
long-term reliability still needs to be explored [12].

Summary and Outlook

Herein, we review the development status of metallization 
approaches for c-Si HJT solar cells. Although much effort 
has been currently performed in transferring the HJT solar 
cell technology to high-volume manufacturing, metallization 
is still one of the major factors slowing down its industriali-
zation progress. Metallization not only affects the electrical 
performance and cost of HJT solar cells but also affects the 
long-term reliability of HJT module products.

Fig. 7  Schematic diagrams 
of the working principle of a 
inkjet printing and b FlexTrail 
printing [43]. c Cross-sectional 
SEM image of an inkjet printed 
finger. Inset: corresponding top 
view SEM image. Microscopy 
images at a magnification of 50 
of the fingers printed by d inkjet 
printing and e FlexTrailprinting 
[59]. a, and d were reproduced 
with permission from Ref. [43]. 
Copyright© 2020 The Author(s). 
c, e, and d were reproduced 
with permission from Ref. [59]. 
 Copyright© 2019 WILEY‐VCH
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Fig. 8  a Electroplating equipment and b Cu-electroplated HJT solar 
cell from JBAO Technology Ltd. [72]. Microscopic images of c a dry 
film after development and d electroplated finger. e Cross-sectional 
SEM image of the electroplated Cu finger [76]. Microscopic images 
of f a resin obtained by modifying a photoresist after development 
and g electroplated finger, h FIB cross-sectional image of the elec-
troplated Cu finger [74]. Microscopic images of i a finger opening on 
the Cu/Al stacks by inkjetprinting NaOH solution, j electroplated Cu 

finger with Ag capping, and k the finger after etching-back PVD lay-
ers [78]. a, and b were reproduced with permission from Ref. [72]. 
Copyright© JBAO Technology Ltd. c, d, and e were reproduced with 
permission from Ref. [76].  Copyright© 2017 Elsevier. f, g, and h 
were reproduced with permission from Ref. [74].  Copyright© 2015 
Elsevier. i, j, and k were reproduced with permission from Ref. [78]. 
 Copyright© 2019 WILEY–VCH
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Among the many metallization technologies, screen print-
ing is the most widely used in HJT solar cell manufacturing. 
Screens and pastes are two key materials in screen printing 
and have played very important roles in the impressive pro-
gress of c-Si solar cells in the past two decades. With the 
development of screen technology, screen-printed fingers 
with a width of 20–25 μm have been achieved. In addition, 
knotless screens have good development prospects because 
they support effective paste usage and fine metallization fin-
gers. Low-temperature-cured Ag pastes have become one 
of the major factors restricting the cost reduction of HJT 
solar cells due to their high usage and price. Recently, a 
low-temperature-cured Ag-coated Cu paste was developed 
to reduce the material cost of low-temperature-cured pastes. 
Essentially, screenprinting technology based on low-tem-
perature-cured pastes still needs improvement in terms of 
printing speed, curing time, and electrode adhesion.

To further reduce metallization costs, the industry also 
focuses on new metallization technologies, such as SWCT, 
PTP, inkjet/FlexTrailprinting, and Cu electroplating. The 
SWCT is an innovative interconnection technology for HJT 
solar cells and modules and has attracted attention for its 
ability to significantly reduce Ag consumption. The novel 
PTP technique is capable of depositing very fine metalliza-
tion fingers (≤ 20 µm) with a high aspect ratio, thus signifi-
cantly improving the efficiency of HJT solar cells. Nonethe-
less, some problems still need to be solved before large-scale 
applications, such as finger interruptions and extra paste 
waste. Inkjet printing and FlexTrail printing offer signifi-
cant Ag reduction potential. Compared to the inkjet printing 
process, the FlexTrail printing process can achieve a finer 
finger width and consume less Ag ink, showing a great cost-
saving potential. As an Ag-free metallization technique, Cu 
electroplating technology has been proven feasible in the 
industry. However, additional masking steps and subsequent 
mask-removal steps increase the manufacturing costs and 
complexity of HJT solar cells. Simple and low-cost mask 
technology has recently become a topic of increasing interest 
for the Cu electroplating process, which is also the key to 
its large-scale application in HJT solar cell manufacturing.

Although many constraints and challenges still need to 
be addressed, new metallization technologies should also be 
highlighted to disburden the current limitations of screen-
printing metallization and pave the way for further efficiency 
increases and cost reductions in HJT solar cells and mod-
ules. Finally, the large-scale application of new metallization 
technologies needs to consider the long-term reliability of 
corresponding module products and patent risks.
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