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Abstract
Tuning metal–support interactions (MSIs) is an important strategy in heterogeneous catalysis to realize the desirable metal 
dispersion and redox ability of metal catalysts. Herein, we use pre-reduced  Co3O4 nanowires (Co-NWs) in situ grown on 
monolithic Ni foam substrates to support Ag catalysts (Ag/Co-NW-R) for soot combustion. The macroporous structure 
of Ni foam with crossed  Co3O4 nanowires remarkably increases the soot–catalyst contact efficiency. Our characterization 
results demonstrate that Ag species exist as  Ag0 because of the equation  Ag+  +  Co2+  =  Ag0 +  Co3+, and the pre-reduction 
treatment enhances interactions between Ag and  Co3O4. The number of active oxygen species on the Ag-loaded catalysts is 
approximately twice that on the supports, demonstrating the significant role of Ag sites in generating active oxygen species. 
Additionally, the strengthened MSI on Ag/Co-NW-R further improves this number by increasing metal dispersion and the 
intrinsic activity determined by the turnover frequency of these oxygen species for soot oxidation compared with the catalyst 
without pre-reduction of Co-NW (Ag/Co-NW). In addition to high activity, Ag/Co-NW-R exhibits high catalytic stability 
and water resistance. The strategy used in this work might be applicable in related catalytic systems.
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Introduction

Presently, diesel engines are widely used in heavy-duty vehi-
cles because of their low operating costs, excellent durabil-
ity, superior fuel efficiency, and reliability under lean condi-
tions [1–3]. However, soot particulates emitted from diesel 
engines have caused severe damage to human health and 
the environment [4]. Catalytic combustion technology using 

oxidation catalysts combined with a diesel particulate filter 
is a promising after-treatment strategy to trap and eliminate 
soot particulates in the range of 200–500 °C [5, 6].

Numerous catalysts for soot combustion have been 
reported using noble metals [7–9], perovskites [10, 11], 
spinel-type oxides [12, 13], hydrotalcites [14, 15], alka-
line metal oxides [16, 17], transition metal oxides [18], 
and rare earth metal oxides [19]. Ag-based catalysts are 
promising candidates for catalytic soot oxidation reactions 
because of their low price among noble metals, and particu-
larly the  Ag0 species has a high ability to activate oxygen 
[20–22]. Interestingly, the  Ag0 species can be automatically 
obtained by directly supporting Ag salt on reducible metal 
oxides  (Co3O4,  CeO2,  MnO2, etc.) because of the reaction 
between silver and variable valence cations (for example, 
 Ag+  +  Co2+  =  Ag0 +  Co3+) [7]. However, because of the 
increased cation valence on supports (such as  Co2+  →  Co3+), 
the number of oxygen vacancies on the surface of reducible 
supports will inevitably be reduced. Nevertheless, oxygen 
vacancies play important roles in anchoring metal sites, 
increasing metal dispersion, and tuning the metal–support 
interaction, which significantly influence the activity and sta-
bility of catalysts; moreover, they are beneficial to promoting 
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oxidation reactions [23–26]. Thus, before loading metals, a 
possible way to solve the problem is by pre-reducing reduc-
ible supports to construct more available oxygen vacancies. 
To date, few reports have used this strategy to develop effi-
cient catalysts for soot combustion [27].

Some reducible, noble metal-free metal oxides, such as 
 CeO2 and  MnO2 and particularly  Co3O4, are active in soot 
oxidation [27]. Moreover,  Co3O4 exhibits a high ability for 
NO oxidation to  NO2 [22, 28], which is a more effective 
oxidant than  O2 for soot oxidation. Thus,  Co3O4 becomes a 
good candidate for supporting noble metal catalysts in this 
reaction.

In addition, soot is a type of particulate with a diameter 
of 25–100 nm, which makes touching the inner surface of 
mesopores and micropores in traditional powder catalysts 
difficult during a reaction, resulting in low soot–catalyst con-
tact efficiency and unsatisfactory catalytic performance [29]. 
To solve this problem, Zhao’s research group [12, 30, 31] 
developed a series of three-dimensional ordered macropo-
rous catalysts using the colloidal crystal template method 
for catalytic soot elimination, which can greatly improve 
the contact efficiency and catalytic soot oxidation perfor-
mance. Zhang’s group [32, 33] focused on multiple strate-
gies to decrease the ignition temperature of soot combustion. 
In addition, our group [1, 5, 34] has developed a series of 
three-dimensional monolithic catalysts by in situ growth of 
nanostructured active components on monolithic substrates, 
which can provide a sufficient open macroporous structure to 
increase soot–catalyst contact opportunities and remarkably 
lower soot elimination temperatures.

In this work, we designed and synthesized Ag catalysts 
supported on pre-reduced  Co3O4 nanowires (Co-NW) using 
Ni foams as the monolithic substrate for soot oxidation. The 
structure–activity relationship was revealed through vari-
ous characterization techniques, such as scanning electron 
microscopy (SEM), high-resolution transmission electron 
microscopy (HRTEM), X-ray diffraction (XRD), X-ray pho-
toelectron spectroscopy (XPS), temperature-programmed 
reduction by soot (soot-TPR), temperature-programmed oxi-
dation by NO (NO-TPO), and CO temperature-programmed 
desorption (CO-TPD) measurements. The pre-reduction of 
the Co-NW support enhances metal–support interactions on 
Ag/Co-NW-R and then increases the metal dispersion and 
the number of oxygen vacancies and improves the turno-
ver frequency (TOF) and catalytic performance for soot 
oxidation.

Experimental

Catalyst Preparation

Ag/Co3O4 nanowires on Ni foam were synthesized via a 
simple hydrothermal and incipient wetness impregnation 
method [1], as illustrated in Scheme 1.

The Ni foam (thickness: ca. 1.5 mm, porosity: ≥ 98%, and 
mechanical strength: ≥ 1 MPa) was purchased from LANKE 
battery materials Co. Ltd. The Ni foam was immersed in 
2 mol/L HCl in an ultrasound bath for 5 min to remove the 
surface oxide layers and then rinsed with deionized water 

Scheme 1  Schematic diagram of the synthesis of the as-prepared catalysts on monolithic Ni foam
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and absolute ethanol for 5 min, respectively. In a typical 
synthesis, 1 mmol of Co(NO3)2·6H2O, 2 mmol of  NH4F, 
and 5 mmol of CO(NH2)2 were dissolved in 50 mL of water. 
After intense stirring for 30 min, the solution was transferred 
into a 100-mL Teflon-lined stainless steel autoclave. Subse-
quently, a piece of the clean Ni foam was immersed in the 
reaction solution. The autoclave was sealed and maintained 
at 120 °C for 5 h and cooled naturally to room temperature. 
The as-synthesized precursor was ultrasonically cleaned 
with water for 5 min and rinsed with absolute ethanol three 
times. After drying at 60 °C, the precursor was calcined at 
500 °C in air for 2 h and denoted as Co-NW. The clean Ni 
foam substrate was also calcined for 2 h at 500 °C for com-
parison and denoted as Ni foam.

Ag/Co-NW was prepared using the impregnation method. 
The Co-NW precursor was impregnated with an aqueous 
solution of silver nitrate, followed by drying at 60 °C, and 
then annealed at 500 °C in air for 2 h. This catalyst was 
designated as Ag/Co-NW. For comparison, Co-NW was 
pre-reduced at 200 °C in 8%  H2/N2 flow, and then Ag was 
impregnated on Co-NW-R with the same procedure of Ag/
Co-NW, and the obtained catalyst was denoted as Ag/Co-
NW-R. The pre-reduced Co-NW was also calcined for 2 h in 
500 °C for comparison and denoted as Co-NW-R. According 
to the inductively coupled plasma (ICP) method (Vista MPX 
instrument), the loading of silver in the prepared catalysts 
amounted to 5 wt% (the mass fraction of Ag in the catalyst 
without the Ni foam substrate).

Catalyst Characterizations

The samples were characterized by XRD on a Rigaku D/
MAX-2500 diffractometer (Cu Kα radiation), XPS on an 
ESCALAB instrument, SEM on a Hitachi S-4800 scanning 
electron microscope, and transmission electron microscopy 
(TEM) and EDS mapping on a JEOL-JEM-2100F electron 
microscope.

On the basis of the diameter (d) of Ag on catalysts deter-
mined by TEM, the dispersity (DAg) of Ag crystallites was 
calculated from the expression DAg (%) = 1.34/d, assuming 
that they had a spherical morphology [35].

Soot temperature-programmed reduction (soot-TPR) tests 
were performed in a fixed-bed reactor at a heating rate of 
5 °C/min in  N2 (100 mL/min) on a CO–CO2 IR analyzer. 
NO temperature-programmed oxidation (NO-TPO) experi-
ments were measured on the same reactor with 250 mg 
of catalyst in 600-ppm NO/10%  O2/N2 (100 mL/min) at 
a rate of 5 °C/min and recorded using a chemilumines-
cence NO −  NO2 −  NOx analyzer (Model 42i-HL, Thermo 
Scientific).

H2 temperature-programmed reduction  (H2-TPR) tests 
were performed on a TP-5080 instrument (50-mg sam-
ple, 8%  H2/N2, 10 °C /min). CO temperature-programmed 

desorption (CO-TPD) experiments were performed on 
the same instrument equipped with a mass spectrometer 
(Hiden). Before CO-TPD, the catalysts were pretreated at 
100 °C in He flow and then adsorbed 7% CO/N2 for 1 h. 
After cooling to room temperature, the system was switched 
to He flow and heated to 900 °C at a rate of 10 °C/min.

Catalytic Activity Measurement

The catalytic activities for soot oxidation were evaluated by 
soot temperature-programmed oxidation (soot-TPO) using 
Printex-U soot (Degussa) as a model in a fixed-bed flow 
reactor. To achieve the loose contact condition between 
catalysts and soot particulates, 15 mg of soot was dispersed 
in 25 mL of ethanol by ultrasound to obtain a suspended 
soot-ethanol solution, which was gradually dropped on the 
monolithic catalyst via a precisely controlled pipette gun, 
and then the mixture was dried at 60 °C for 2 h. The mass 
ratio of soot/catalyst (excluding the weight of the Ni foam 
substrate) was approximately 1:10. For each reaction, the 
monolithic catalyst was heated from 200 to 650 °C at a heat-
ing rate of 2 °C/min in the reactant gas flow (100 mL/min) 
of 0- or 600-ppm NO and 10%  O2 balanced with  N2. The 
products of  CO2 and CO were online analyzed by an IR 
analyzer. The catalytic activities were evaluated using the 
temperatures at 10% (T10) and 50% (T50) soot conversion 
during the soot-TPO reaction. The  CO2 selectivity ( S

CO
2
 ) 

was defined as S
CO

2
 = C

CO
2
/(CCO + C

CO
2
 ), where CCO and C

CO
2
 

were the concentrations of CO and  CO2, respectively.

Isothermal Kinetic Measurements

The isothermal kinetic experiments (isothermal reactions 
and isothermal anaerobic titrations) were performed to 
calculate reaction rates, active oxygen amounts, and TOF 
values of the monolithic catalysts [36]. To ensure that all 
reactions occurred in the dynamic region with a low soot 
conversion (< 10%), the isothermal oxidation tests were 
conducted in a 10%  O2/N2 flow at 280 °C (150 mL/min). 
When the  CO2 concentration became steady, the 10%  O2/
N2 flow was switched to a pure  N2 flow at the same volume 
flow rate, and the isothermal anaerobic titration began. The 
outlet gas was monitored online by an infrared gas analyzer. 
The reaction rate (ν) was calculated according to the fol-
lowing equation:

where Q is the molar gas flow rate (mol/s); c is the molar 
fraction of  CO2 estimated by isothermal reactions; and m is 
the mass of the catalyst (g); n is the amount of substance of 
 CO2 (mol).

(1)� = −dn∕(mdt) = Q × c∕m
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The number of active oxygen species  (O∗) was quantified 
by integrating the diminishing rate of  CO2 concentration 
with time. The TOF was obtained as follows:

where P0 represents the atmospheric pressure (Pa);V repre-
sents the volumetric flow rate  (m3/s);A represents the inte-
gral of the  CO2 concentration curves as a function of time 
during the isothermal anaerobic titration (s); R represents the 
ideal gas constant; T represents the room temperature (K).

Results and Discussion

Catalyst Characterizations

Structural Properties

XRD patterns of the monolithic catalysts are shown in Fig. 1. 
For all as-prepared catalysts, three strong diffraction peaks 
are observed at 2θ = 44.5°, 51.8°, and 76.2°, which belong to 
metallic Ni (JPCDS 04–0850) [34]. Meanwhile, three weak 
peaks associated with the NiO (JPCDS 47–1049) phase are 
observed at 37.2°, 43.2°, and 62.6°. As for Co-NW and Ag/
Co-NW, the four peaks located at 31.1°, 36.8°, 59.2°, and 
65.1° can be ascribed to the (220), (311), (511), and (400) 
lattice planes of  Co3O4 (JPCDS 43–1003) [7], respectively. 
Figure 1b shows a zoom-in of Fig. 1a, and no diffraction 
peak related to Ag is observed, which may result from the 
low loading amount and small crystallite size of Ag on the 
catalysts.

In Fig. 2, the structure of the as-prepared catalysts, the 
average diameter of silver on the Co-NW surface, and the 
features of Ag-Co3O4 composites are investigated using 
SEM and TEM. Figure S1 displays the SEM images of the 
Ni foam, which possesses a 3D-macroporous structure with 

(2)
O ∗ amount(mol∕g) = 2P0 × V × A × 10−6∕(R × T × m)

(3)TOF
(

s−1
)

= �∕O ∗

diameters ranging from 200 to 500 µm. In Fig. 2a, d and 
g, the monolithic catalysts exhibit nanowire morphology, 
which is well-distributed on the skeleton of the Ni foam 
substrate. The nanowires are self-assembled into grass-like 
clusters, which can provide enough macroporous space for 
soot deposition [5]. The HRTEM images in Fig. 2c, f and i 
demonstrate that these nanowires are composites of  Co3O4 
[21].

After loading Ag, the crossed nanowire morphology of 
Ag/Co-NW and Ag/Co-NW-R remain unchanged, except 
that the surface of the nanowire becomes slightly rough in 
Fig. 2 a, d and g. The lattice spacing of 0.236 nm belonging 
to Ag (111) in Fig. 2f, i confirms the presence of metal-
lic Ag on the catalysts [21]. In Fig. S2, Ag nanoparticles 
(NPs) are homogeneously dispersed on  Co3O4 nanowires 
with a low content from TEM-EDS mapping. Moreover, as 
shown in Fig. S3j, k, the average size of Ag NPs is approxi-
mately 5.8 nm and 4.4 nm for Ag/Co-NW and Ag/Co-NW-
R, respectively. We calculated the dispersion of Ag based 
on the above results and found that it was approximately 
1.5-fold larger on Ag/Co-NW-R compared to Ag/Co-NW, 
as shown in Table S1.

Redox Properties

The soot-TPR and CO-TPD experiments were performed 
to investigate the active oxygen species of the catalysts. As 
shown in Fig. 3, the soot-TPR curves of the catalysts consist 
of three temperature ranges, representing three types of oxy-
gen species. The low-temperature soot-TPR reduction peak 
at 200–400 ºC can be assigned to interfacial active oxygen 
species in the case of Ag–O–Co, which is probably caused 
by the strong interaction between Ag and  Co3O4. These 
oxygen species can be assigned to surface-adsorbed oxygen 
species. In addition, the peaks at 400–650 °C originate from 
surface lattice oxygen  (O2−), and the peaks above 650 °C are 
ascribed to the bulk lattice oxygen  (O2−) of the catalysts, 
which has little impact on the catalytic activity [5]. Com-
pared with soot, CO is more easily oxidized, so CO-TPD 

Fig. 1  XRD patterns of the 
as-prepared catalysts: Ni foam, 
Co-NW, Ag/Co-NW, and Ag/
Co-NW-R. a Full patterns and 
b zoom-in
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can be a better technology than soot-TPR for revealing the 
activity of oxygen species on the catalyst [37]. Generally, the 
adsorbed CO reacts with the reactive oxygen species on the 
catalyst and then is oxidized to  CO2 during the temperature-
programmed process [37, 38]. Figure 4 shows the CO-TPD 
profiles of the samples. The desorption peaks below 200 °C 
are attributed to the desorption of  CO2 produced directly by 
the reaction of adsorbed CO with surface-adsorbed oxygen 
species. The broad peaks between 200 and 350 °C for all 
three catalysts belong to the desorption of  CO2 oxidized by 
surface lattice oxygen species. No obvious difference in the 
shape of the peaks is apparent for all catalysts below 350 °C. 
The peaks above 350 ºC can be ascribed to the desorption 
of  CO2 oxidized by bulk lattice oxygen species. According 
to the temperature range (200–600 °C) for soot oxidation, 
surface-adsorbed oxygen species and surface lattice oxygen 
species are the main active oxygen species over these cata-
lysts [1]. For soot-TPR and CO-TPD, the peaks of surface-
adsorbed oxygen species and bulk lattice oxygen species 

Fig. 2  Electron microscope characterization of the catalysts a1–a3 Co-NW, b1–b3 Ag/Co-NW, and c1–c3 Ag/Co-NW-R; a1–c1 SEM images, 
a2–c2 TEM and SEM images, a3–c3 HRTEM images

Fig. 3  Soot-TPR profiles of the catalysts
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for the Ag-loaded catalysts shift to lower temperatures, par-
ticularly for Ag/Co-NW-R, which illustrates that Ag-Co3O4 
interactions can activate surface oxygen species and pro-
mote bulk lattice oxygen mobility. In Figs. 3, 4, the peak 
areas of the catalysts follow the order of Ag/Co-NW-R > Ag/
Co-NW > Co-NW, which illustrates that Ag/Co-NW-R pos-
sesses more active oxygen species than other catalysts.

Surface Chemical States

Figure 5 and Table 1 display the XPS results of the samples. 
In Fig. 5a, Ag species display Ag  3d5/2 and Ag  3d3/2 peaks 
at binding energies of 368.0, 368.3, 374.0, and 374.3 eV, 
respectively, with a splitting value of 6.0 eV, which dem-
onstrates that Ag species exist in the metallic state on the 
catalysts [25, 39]. Notably, the peaks of Ag/Co-NW-R shift 
to higher binding energy (BE) compared with Ag/Co-NW, 
demonstrating the enhanced metal–support interaction on 
Ag/Co-NW-R, which is also suggested by the decreased size 
of Ag NPs [27] in Fig. 2.

In Fig. 5b, the Co 2p XPS spectra of the catalysts show 
spin–orbit splitting into Co  2p1/2 and Co  2p3/2, which can 
be deconvoluted into  Co3+,  Co2+, and two weak satellite 
peaks at relatively high binding energies (800–810 and 
786–791 eV, respectively) [1]. As listed in Table 1, Co 
species exist as  Co3+ (779.5, 794.3 eV) and  Co2+ (781.4, 
795.6 eV) [40]. Additionally, the spin–orbit splitting energy 
between the two peaks is 15.2 eV, which indicates that the 
surface cobalt species exist as  Co3O4 [41]. The values of 
surface  Co2+/(Co2+ +  Co3+) for all samples were calculated 
according to the corresponding peak areas in the XPS spec-
tra. Notably, Co-NW-R possesses a higher  Co2+ concentra-
tion than Co-NW, indicating that the reduction pretreat-
ment indeed created many  Co2+ species on Co-NW-R, as 
we proposed. Loading Ag on the supports consumed  Co2+ 
cations according to  Ag+  +  Co2+  =  Ag0 +  Co3+. However, 

Fig. 4  CO-TPD profiles of the catalysts

Fig. 5  XPS spectra of the catalysts: a Ag 3d, b Co 2p, and c O 1 s



180 X. Yi et al.

1 3

we interestingly observed an increased value of  Co2+/
(Co2+ +  Co3+) on Ag/Co-NW and particularly on Ag/Co-
NW-R. This result indicates that the enhanced Ag–Co3O4 
interaction can generate more  Co2+ species on the catalyst 
surface, which commonly accompanies the generation of 
oxygen vacancies to generate active oxygen species [7].

In Fig. 5c, the O 1 s XPS spectra are deconvoluted into 
three peaks. The peak at approximately 529.4 eV corre-
sponds to surface lattice oxygen  (Olat), and the peaks at 
approximately 531.0 and 532.8 eV agree with oxygen spe-
cies such as  O2

− and  O2
2− adsorbed on oxygen vacancies 

 (Oads) [42]. In Table 1, compared with Co-NW, Co-NW-R 
exhibits a higher ratio of  Oads/(Oads +  Olat), demonstrating 
that more oxygen vacancies were constructed on the surface 
of Co-NW-R by  H2 reduction. Notably, loading Ag greatly 
increases the ratio of  Oads/(Oads +  Olat) on the catalyst sur-
face, as shown in Table 1, particularly for Ag/Co-NW-R. 
Additionally, the O 1 s peaks of the Ag-loaded catalysts shift 
to higher BEs, i.e., in the direction of the  Oads peaks. All of 
these results demonstrate that the enhanced metal–support 
interaction benefits the creation of surface-adsorbed oxygen 
species. It also coincides with the results of Co 2p XPS, 
soot-TPR, and CO-TPD.

Catalytic Soot Combustion Performance

Figure 6 and Table 2 display the soot-TPO activities and the 
corresponding  CO2 concentration profiles of the as-prepared 
monolithic catalysts in the absence or presence of 600-ppm 
NO. The blank experiment without any catalysts shows that 
T10, T50, and the  CO2 selectivity are 490 °C, 565 °C, and 
55%, respectively. For all other samples, the only product 
of soot oxidation is  CO2, as listed in Table 2. Compared 
with the blank experiment, Ni foam can decrease the ignition 
temperature by 62 °C. Because of the excellent redox abil-
ity of  Co3O4, Co-NW and Co-NW-R exhibit much higher 
catalytic soot oxidation activity than Ni foam alone. Evi-
dently, after loading Ag NPs on them, T50 decreases remark-
ably, which indicates that Ag loading greatly promotes soot 
oxidation. The activities of the catalysts follow the order 
of Ag/Co-NW-R > Ag/Co-NW > Co-NW-R > Co-NW > Ni 
foam > Blank with and without NO. Introducing 600-ppm 
NO significantly lowers T10 and T50 for all as-prepared 

catalysts but particularly for Ag/Co-NW-R. Notably, Co-
NW-R exhibits only slightly higher catalytic activity than 
Co-NW, but the activity of Ag/Co-NW-R is much higher 
than that of Ag/Co-NW with and without NO. This result 
can be attributed to the enhanced metal–support interaction, 
high dispersion of Ag, and presence of more active oxygen 
species on Ag/Co-NW-R.

As a more effective oxidant than  O2,  NO2 can remark-
ably lower the oxidation temperature of soot particulates 
and plays a crucial role in the soot combustion process [43]. 
Thus, the ability to oxidize NO to  NO2 is a key factor influ-
encing soot oxidation. Figure 7 shows the NO-TPO profiles 
of the catalysts. Apparently, loading Ag significantly lowers 
the NO oxidation temperatures and produces more  NO2 than 
the support alone, particularly for Ag/Co-NW-R.

Kinetic Study

To further understand the intrinsic activity of the catalysts, 
the isothermal anaerobic titration processes were carried out 
at 280 °C. Figure 8 shows the  CO2 concentration as a func-
tion of time before and after removing  O2 from the reactant 
flow. Table 3 and Fig. 8 display the corresponding kinetic 
results for the reaction rate, amount of O*, and TOF. Obvi-
ously, these values follow the order of Ag/Co-NW-R > Ag/
Co-NW > Co-NW-R > Co-NW, which is consistent with the 
catalytic performance. Meanwhile, the parameters of Co-
NW-R are only slightly larger than those of Co-NW, sug-
gesting that the positive effect of the pre-reduced treatment 
of Co-NW on soot oxidation is limited. According to the 
Ag wt% measured by ICP, the reaction rate per gram of Ag 
on Ag/Co-NW-R is nearly 1.4-fold that on Ag/Co-NW, as 
shown in Table 3, demonstrating the higher utilization effi-
ciency of Ag on Ag/Co-NW-R. Additionally, as shown in 
Table 3, compared with the supports, the Ag-loaded cat-
alysts not only generate more active O* species but also 
achieve higher intrinsic activity (TOF), demonstrating the 
important effect of Ag-Co3O4 interactions on soot oxidation. 
Here compared with Ag/Co-NW, Ag/Co-NW-R has an only 
slightly higher TOF but an approximately 1.4-fold higher 
reaction rate. This result indicates that the primary function 
of the Ag-Co3O4 interaction is to improve the dispersion of 
Ag sites to increase the catalyst’s apparent activity.

Table 1  BE of Co 2p and O 
1 s core levels and the ratio of 
 Co2+/(Co2+ +  Co3+) and  Oads/
(Oads +  Oads) for the as-prepared 
catalysts

Catalysts Co 2p O 1 s

Co3+ (eV) Co2+ (eV) Co2+/
(Co3+  +  Co2+)

Oads (eV) Olat (eV) Oads/(Oads +  Olat)

Co-NW 779.5, 794.3 781.4, 795.6 0.47 531.0, 532.2 529.2 0.38
Co-NW-R 779.5, 794.4 781.4, 795.7 0.49 531.1, 532.3 529.3 0.40
Ag/Co-NW 779.6, 794.4 781.5, 795.7 0.52 530.8, 532.8 529.4 0.44
Ag/Co-NW-R 779.6, 794.6 781.5, 796.1 0.56 531.1, 532.8 529.6 0.47
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Catalytic Stability and Water Resistance

The catalytic stability and  H2O resistance of catalysts are 
crucial factors for soot combustion under practical condi-
tions. Figure 9a displays five consecutive cycles of soot-TPO 
tests in NO/O2/N2 over Ag/Co-NW-R under loose contact 

conditions. During the reaction, the catalyst and the soot 
were mixed in the same proportion to ensure as far as pos-
sible the same conditions for each test. T50 of Ag/Co-NW-R 
is very similar in each cycle, illustrating the high stability 
of this catalyst for soot oxidation. The soot-TPO experiment 
was performed over Ag/Co-NW-R in 10%  H2O/NO/O2/N2 

Fig. 6  a, c  CO2 concentration profiles and b, d soot conversion of the as-prepared catalysts during the soot-TPO reaction in a, b 10%  O2 bal-
anced by  N2 and c, d 600-ppm NO and 10%  O2 balanced by  N2 under the loose contact condition

Table 2  Activities of the 
as-prepared catalysts in the 
presence or absence of 600-ppm 
NO for soot combustion

Catalysts T10 (°C) T50 (°C) SCO2 (%)

0 ppm 600 ppm 0 ppm 600 ppm 0 ppm 600 ppm

Blank 490 480 565 550 55 60
Ni-foam 428 396 517 475 100 100
Co-NW
Co-NW-R

392
390

334
329

468
465

383
380

100
100

100
100

Ag/Co-NW 355 293 431 353 100 100
Ag/Co-NW-R 315 282 405 338 100 100
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to further investigate the impact of water vapor on soot 
combustion under the loose contact conditions. In Fig. 9b, 
introducing water vapor in the reactant flow improves the 
catalytic performance of Ag/Co-NW-R, which agrees with 
some previous reports [44, 45].

Discussion

Soot combustion is a redox reaction in nature. The active 
oxygen species play an important role in catalytic soot oxi-
dation. In our work, the XPS results demonstrate that Ag 
species exist on the catalyst surface as  Ag0. For the catalytic 
soot oxidation in a  N2 atmosphere, as considered in Fig. 3, 
soot can only be oxidized by active oxygen species on the 
catalysts. In the range of 200–300 °C, little  CO2 is produced 
by oxidizing soot closely contacted with active sites. Com-
pared with Co-NW, the  CO2 peak of the Ag-loaded catalysts 

Fig. 7  Profiles of NO oxidation to  NO2 over the catalysts in a NO/O2/
N2 atmosphere

Fig. 8  Curves of  CO2 concentration as a function of time during isothermal soot oxidation at 280 °C under the loose contact conditions over the 
as-prepared catalysts a Co-NW, b Co-NW-R, c Ag/Co-NW, d Ag/Co-NW-R before and after  O2 is removed from the reactant flow
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shifts to lower temperatures, indicating that the oxidation 
ability of Ag sites is higher than that of Co-NW at low tem-
peratures, particularly for Ag/Co-NW-R. With increasing 
temperature (400–600 °C), a large amount of soot is oxidized 
to  CO2 by surface lattice oxygen species, and the difference 
among the as-prepared catalysts is insignificant. However, 
when the temperature increases to 600 °C, soot is oxidized to 

 CO2 by bulk lattice oxygen species of as-prepared catalysts. 
The Ag-loaded catalysts exhibit a larger  CO2 peak area due 
to the higher mobility of bulk lattice oxygen promoted by the 
Ag–Co3O4 interaction compared with their supports.

Conversely, after introducing gaseous oxygen,  O2 can be 
continuously activated and converted into reactive oxygen 
species at active sites. Compared with the reaction in the  N2 
atmosphere, considered in Fig. 3, the soot oxidation perfor-
mance of the catalysts improves substantially, and the shape 
of the  CO2 curves sharpens over the reaction temperature 
range (200–600 °C) in Fig. 6a, indicating a faster reaction 
rate in an  O2 atmosphere. Moreover, the  CO2 concentrations 
of the supports are quite low below 350 °C, while that of 
the Ag-loaded catalysts increases remarkably, demonstrating 
that the major function of  Ag0 sites is to activate gaseous 
oxygen molecules to oxidize soot. According to the results 
of soot-TPR, CO-TPD, O 1 s XPS, and TOF, Ag/Co-NW-R 
possesses the most surface oxygen species and the highest 
TOF value due to the enhanced metal–support interaction 
and thus shows the lowest ignition temperature and the high-
est apparent activity.

After being introduced to the reactant gas, NO is readily 
oxidized to  NO2, which is a better oxidant than  O2. Addition-
ally, T10 and T50 of the as-prepared catalysts for catalytic soot 
oxidation continue to decrease in Fig. 6c, particularly for Ag/
Co-NW-R. According to the NO-TPO results in Fig. 7, Ag/
Co-NW-R shows the highest ability for oxidizing NO to  NO2 
due to the promoted generation of active oxygen species by 
an enhanced metal–support interaction.

The above results indicate that the pre-reduction treat-
ment on reducible supports effectively anchors metal sites, 
improves the metal dispersion, and enhances metal–support 
interactions, thereby increasing the number of active oxygen 
species and improving the intrinsic activity of catalysts for 
oxidation reactions.

Conclusions

In summary, in this work, we facilely synthesized Ag cata-
lysts supported on  Co3O4 nanowires in situ grown on mono-
lithic Ni foam substrates. The designed catalyst exhibits high 
activity, stability, and water resistance for soot oxidation. 
Here, the Ag catalyst exists as  Ag0 due to the automatic 
reduction of  Ag+ by  Co2+. Interactions between Ag and 
 Co3O4 improve the generation of active oxygen species to 
approximately twice that on the support alone. Through the 
reduction pretreatment of  Co3O4 to generate more oxygen 
vacancies, Ag NPs with smaller sizes were highly dispersed 
and anchored thereon. In particular, this pretreatment not 
only increases the number of active oxygen species but also 
improves the intrinsic activity for soot oxidation. In addi-
tion, the macropores of the monolithic catalysts with crossed 

Table 3  Active oxygen (O*) amounts, reaction rates (ν, νAg), and the 
TOF of the catalysts calculated from the results in Fig. 8

Catalysts ν νAg O* amount TOF
(10–7 mol/
(s·gcat))

(10–6 mol/
(s·gAg))

(10–4 mol/gcat) (10–3  s−1)

Co-NW 4.1 – 3.6 1.1
Co-NW-R 4.5 – 3.8 1.2
Ag/Co-NW 9.5 22.1 6.5 1.5
Ag/Co-NW-R 13.4 31.1 8.1 1.7

Fig. 9  a Stability of Ag/Co-NW-R in 600-ppm NO/10%  O2/N2 and b 
water resistance of Ag/Co-NW-R in 600-ppm NO/10%  O2/N2
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 Co3O4 nanowires can provide more soot–catalyst contact 
sites and increase the soot capturing efficiency. These advan-
tages make the catalyst a possible candidate for industrial 
applications.

Supporting information

SEM images of the monolithic Ni foam (Fig. S1), the TEM-
EDS mapping images of the Ag/Co-NW-R catalyst (Fig. S2), 
the corresponding size distribution of Ag NPs determined 
by HRTEM images (Fig. S3), and the average diameter (dAg) 
and dispersion (DAg) values of Ag NPs on monolithic cata-
lysts (Table S1).
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