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Abstract
Biomass is a green and producible source of energy and chemicals. Hence, developing high-efficiency catalysts for biomass 
utilization and transformation is urgently demanded. Metal–organic framework (MOF)-based solid acid materials have been 
considered as promising catalysts in biomass transformation. In this review, we first introduce the genre of Lewis acid and 
Brønsted acid sites commonly generated in MOFs or MOF-based composites. Then, the methods for the generation and 
adjustment of corresponding acid sites are overviewed. Next, the catalytic applications of MOF-based solid acid materials 
in various biomass transformation reactions are summarized and discussed. Furthermore, based on our personal insights, the 
challenges and outlook on the future development of MOF-based solid acid catalysts are provided. We hope that this review 
will provide an instructive roadmap for future research on MOFs and MOF-based composites for biomass transformation.
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Introduction

Since the Industrial Revolution, consumption by humans of 
fossil fuels, e.g., coal and petroleum, has increased rapidly. 
However, due to their nonrenewable nature as well as the 
massive emission of greenhouse gasses (e.g.,  CO2,  CH4, 
and  NOx) and other atmospheric pollutants (e.g.,  SO2, CO, 
and inhalable particles) after combustion, exploitation and 
utilization of novel sustainable and green alternatives are 
urgently demanded [1–3]. Biomass, including cellulose, 
starch, monosaccharides, and terpenoids, is reproducible 
in organisms via photosynthesis and thus recognized as a 
carbon–neutral alternative. In the past two decades, the uti-
lization and transformation of biomass to value-added fine 
chemicals and fuels have drawn global attention in both sci-
ence and industry [1, 4].

The transformation of biomass is associated with a series 
of chemical processes, of which the acid catalyst has been 
proven to be workable in hydrolysis, dehydration, reduction, 
and isomerization [5–7]. For instance, 5-hydroxymethylfur-
fural (5-HMF), a key product in saccharide upgrade, can be 
obtained from cellulose via three sequential sub-reactions, 
i.e., Brønsted acid-catalyzed cellulose hydrolysis, Lewis 
acid-catalyzed glucose isomerization, and Brønsted acid-
catalyzed fructose dehydration. Moreover, 5-HMF can be 
further converted to other high value-added products, e.g., 
levulinic acid (via a Brønsted acid-catalyzed hydration pro-
cess). Preferably, a catalyst containing both Brønsted and 
Lewis acidic sites is expected to convert cellulose to 5-HMF 
or even levulinic acid in a one-pot synthesis [8]. In industry, 
solid acid catalysts are more desired in biomass upgrade pro-
cesses given their convenient product separation and catalyst 
recyclability [9, 10]. Despite a few successes made by con-
ventional solid catalysts, including zeolites, metal oxides, 
and acidic resins, their further advancing in biomass upgrade 
has been subjected to bottlenecks of relatively low surface 
area, ambiguous locations of active sites, and limited struc-
tural diversity [11].

Metal–organic frameworks (MOFs) are an emerg-
ing class of porous materials consisting of metal ions (or 
clusters) and organic polydentate ligands. Compared with 
other heterogeneous catalysts (e.g., porous silica, zeolites, 
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metal oxides, carbon materials, and resins), MOFs typi-
cally have larger surface areas. In addition, in contrast to 
these conventional solid materials, MOFs possess tunable 
pore structures. Moreover, the inorganic–organic hybrid 
nature endows MOFs with facile modification strategies 
[12, 13]. In terms of using MOF materials in heterogene-
ous catalysis, the larger surface area allows accommodating 
more active species per unit weight [14]; the appropriate 
pore dimension enables good molecule sieving function 
toward both substrates and catalytic products [15–17]; the 
versatile modification can further incorporate desired active 
moieties into MOF materials for performance improvement 
[18, 19]. Therefore, MOFs or MOF-based composites are 
considered feasible candidates for heterogeneous catalysis, 
particularly acting as novel solid acid catalysts for biomass 
upgrade [20–23]. In this review, the design and preparation 
of MOF-based solid acids will be introduced first, and their 
catalytic application in biomass utilization will be summa-
rized hereinafter. Also, an outlook based on our personal 
insights is provided for further advancing this field.

Catalytic Sites of MOF‑Based Solid Acid 
Catalysts

In general, three types of acid sites in MOFs that can be 
utilized for catalytic conversion of biomass: (1) metal nodes, 
whose coordinatively unsaturated metal sites and weakly 
coordinated moieties (e.g., hydroxyl, water) could function 
as Lewis acid and Brønsted acid sites, respectively [24]; (2) 
acidic functional groups grafted on organic linkers [25]; (3) 
acidic guest species (e.g., polyoxometalate (POM) and metal 
oxide) accommodated inside the MOF materials [9].

Metal Nodes as Acid Sites

As the structural node of MOF materials, the metal ion or 
cluster, in some cases, is terminated by weakly coordinated 
moieties (e.g., water, N,N-dimethylformamide (DMF) or 
other solvents), which are readily removed via thermal acti-
vation. The resultant coordinatively unsaturated metal sites 
can exhibit Lewis acid activity [26]. On the other hand, the 
species bonded to metal atoms (e.g., the hydroxy bridge 
in metal clusters) can exhibit certain Brønsted acidity via 
dissociation of corresponding protons [27]. In the follow-
ing content, the acidic nature of some typical MOF materi-
als, e.g., Cu-BTC [28], MIL-100/101 [29], MOF-74 [30], 
UiO-66/67 [31], NU-1000 [32], and MOF-808 [33], will be 
described in detail.

Cu-BTC (or  Cu3(BTC)2, HKUST-1) is composed of a tri-
mesate (BTC) linker and binuclear  Cu2(COO)4(H2O)2 node, 
with the copper atom adopting a 6-coordinated model and 
forming an octahedron: four equator vertices are occupied 

with oxygen atoms from four separate trimesate linkers, 
one longitudinal position is occupied by the neighboring 
copper atom, and another one is terminated by a weakly 
coordinated water molecule. By thermal activation (e.g., at 
100 °C), the  Cu2(COO)4(H2O)2 node can be easily dehy-
drated and form the coordinatively unsaturated  Cu2(COO)4 
site with Lewis acidity (Fig. 1a) [26, 34]. MIL-100/101 (i.e., 
 M3O(H2O)2X(BTC)2/M3O(H2O)2X(BDC)3; BDC = tere-
phthalate) consists of  M3(μ3–O)(COO)6(H2O)2X clusters 
(M =  Cr3+,  Fe3+; X =  OH−,  F−) and trimesate/terephthalate 
linkers. Among each 6-coordinated metal atom, one coordi-
nation site is occupied by μ3-O, four are connected by car-
boxylate linkers, and the remaining one is taken by water 
or anion from the solvent/additive for MOF synthesis [35, 
36]. Owing to the strong charge polarization of  M3+, the 
O–H bond in the coordinated water molecule was activated 
compared with that in free water, leading to certain Brønsted 
acidity. In addition, the liable water molecule could depart 
under thermal treatment and vacuum to generate coordina-
tively unsaturated metal sites with Lewis acidity (Fig. 1b) 
[26, 29]. MOF-74, also known as CPO-27, is a framework 
constructed with 6-coordinated  M2+ ions (M = Mg, Mn, Fe, 
Co, Ni, Cu, Zn) and 2,5-dihydroxyterephthalate (DHTP) 
linkers [37]. Each  M2+ ion is bound with three carboxyl-
oxygen from three separate DHTP linkers and two aryloxy-
oxygen from two DHTP linkers. The sixth coordinative site, 
typically occupied by a solvent molecule, e.g., DMF or  H2O, 

Fig. 1  Metal nodes of a Cu-BTC, b MIL-100/101, and c MOF-74 
before and after dehydration. Moieties in the dashed circles may be 
removed after dehydration. Sphere model: gray C; red O; purple Cu; 
green Cr or Fe; blue Mg, Mn, Fe, Co, Ni, Cu, or Zn
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can be exposed after thermal activation, thereby exhibiting 
Lewis acidity (Fig. 1c) [38, 39].

The  Zr6(μ3–O)4(μ3–OH)4 octahedron cluster is a sec-
ondary building unit in zirconium-based MOFs. There-
into, six zirconium atoms constitute vertices of the octa-
hedron, while four μ3–O atoms and four μ3-OH groups 
bulge from eight faces of the octahedron [40]. The num-
ber of organic linkers connected to each  Zr6 cluster may 
vary from 12, 8 to 6 (Fig.  2a). For example, in a per-
fect UiO-66/UiO-67 (i.e.,  Zr6(μ3–O)4(μ3–OH)4(BDC)6/
Zr6(μ3–O)4(μ3–OH)4(BPDC)6; BPDC = biphenyl-4,4′-
dicarboxylate) crystal, 12 coordinative sites of the  Zr6 node 
are fully coordinated with BDC/BPDC linkers [40, 41]. By 
contrast, in NU-1000 (i.e.,  Zr6(μ3–O)4(μ3–OH)4(H2O)4(OH
)4(TBAPy)2; TBAPy = 1,3,6,8-tetrakis(p-benzoate)pyrene), 
TBAPy linkers merely occupy eight coordination sites of 
the  Zr6-octahedron, while the remaining four are terminated 
by four benzoate modulators exchangeable with water mol-
ecules or/and hydroxyl groups (i.e., terminal Zr–H2O and 
Zr–OH) [41, 42]. The connection number of the  Zr6 node 
of MOF-808 (i.e.,  Zr6(μ3–O)4(μ3–OH)4(BTC)2(HCOO)6) is 
even as low as six, where each  Zr6 node is only connected by 
six trimesate linkers and remains the other six coordination 
sites occupied with weakly bonding species like formate [43, 

44]. Similarly, these formate species could be substituted 
with a terminal –OH group or  H2O [41, 45]. Consequently, 
the Brønsted acidities of the aforementioned Zr-based MOFs 
could be endowed via dissociation of protons of μ3–OH, 
terminal Zr–H2O, and Zr–OH groups [46]. In addition, the 
coordinatively unsaturated Zr site featuring Lewis acidity 
[47] could also be produced via thermal removal of a water 
molecule in the terminal Zr–H2O group or dehydration of 
two adjacent μ3–OH groups among  Zr6(μ3–O)4(μ3–OH)4 [31, 
48, 49].

Alternatively, the acidity of MOFs is influenced by 
metal node modification of various ligands. For example, 
the weakly coordinated formate among MOF-808 is likely 
to be substituted by other ligands, e.g., triflate and sulfate, 
thereby enabling further acidity modification [48, 50]. Lin 
et al. [51] developed a triflate modification strategy for the 
acidity improvement of MOF-808. Typically, the pristine 
MOF-808 was first washed with hot HCl solution to substi-
tute the formate group with the hydroxyl group or water mol-
ecule. The resulting intermediate was further treated with 
trimethylsilyl triflate  (Me3SiOTf) in benzene to substitute 
the hydroxyl and water species with μ2-OTf (Fig. 2b). Since 
the  OTf− group is poorly nucleophilic and coordinated, it 
is likely to depart so that the modified  Zr6 node is more 

Fig. 2  a  Zr6(μ3–O)4(μ3–OH)4 
nodes in UiO-66/67, NU-1000, 
and MOF-808. Sphere model: 
green, Zr; red, O; white, H. 
Reproduced with permission 
from Ref. [41]. Copyright 2016, 
the Royal Society of Chemis-
try. b Triflate modification of 
MOF-808. Sphere model: blue, 
Zr; red, O; gray, C; white, H; 
yellow, S; cyan, F. Reproduced 
with permission from Ref. [51]. 
Copyright 2019, American 
Chemical Society. c Sulfate-
modification of MOF-808. 
Atom color: blue octahedron, 
Zr; red, O; gray, C; yellow, S. 
Reproduced with permission 
from Ref. [50]. Copyright 2014, 
American Chemical Society
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Lewis acidic [51]. Also, the modification of metal nodes 
may be used for the enhancement of Brønsted acidity of 
MOFs. For instance, an MOF-based superacid (MOF-808-
2.5SO4) (i.e., acidity stronger than 100% sulfuric acid) was 
prepared by immersing MOF-808 powder in aqueous  H2SO4 
solution, resulting in a material with a chemical composi-
tion of  Zr6O5(OH)3(BTC)2(SO4)2.5(H2O)2.5, in which the for-
mate anions of pristine MOF-808 were completely replaced 
by sulfate anions (Fig. 2c). Because of the hydrogen bond 
between the sulfate and adsorbed water molecule, MOF-808-
2.5SO4 has a Hammett acidity function  (H0) ≤  − 14.5, indi-
cating a higher acidity than pure  H2SO4  (H0 =  − 12) [50, 52].

MOF acidity may also be influenced by the presence of 
defects. Modulator-assisted synthesis is a practical strat-
egy to introduce and adjust the defects in MOFs [53, 54]. 
As a typical example, trifluoroacetate is able to coordinate 
to the  Zr6 octahedral cluster in place of the terephthalate 
linker, thus resulting in linker vacancies in the obtained 
UiO-66 materials. Subsequent thermal treatment not only 
dehydrated the  Zr6 nodes by substituting two neighboring 
 OH− ions with one  O2− bridge, but also removed the coor-
dinated trifluoroacetate anions (Fig. 3a), namely the forma-
tion of coordinatively unsaturated sites. Furthermore, the 
number of unsaturated Zr sites could be obviously increased 
by the extra addition of hydrochloric acid during synthesis. 
On the one hand, as a strong Brønsted acid, HCl efficiently 
suppressed the deprotonation of terephthalic acid; on the 
other hand, the dissociated  Cl− competed in bonding with Zr 
atoms with terephthalate. Jointly, more linker vacancies were 
produced, which could be thermally activated for exhibiting 
Lewis acidity in the resulting material [55].

Hemilabile linkers may be utilized to efficiently generate 
defects in MOFs as well. In a recent study, Voort et al. [49] 
added a hemilabile ligand, i.e., potassium 4-sulfobenzoic 
acid (PSBA), into a precursor solution of solvothermal syn-
thesis of UiO-66. In comparison with conventionally pre-
pared UiO-66, there are more defect sites produced in the 
hemilabile ligand-containing MOF (Hl-UiO-66) (Fig. 3b). 
Moreover, sulfuric acid treatment could further increase the 
number of defective sites to six per  Zr6 cluster in the Hl-
UiO-66-SO4, which is considered as the maximum allowed 
in a stable UiO-66 skeleton. After further thermal treatment, 
an extensively increasing number of Lewis acid sites could 
be acquired in Hl-UiO-66 and Hl-UiO-66-SO4 compared to 
normal UiO-66.

The sacrificial linker is another effective tool to produce 
defective sites in MOFs. For instance, ozone can selec-
tively break the C=C bond of ozone-active ligands (e.g., 
4,4′-stilbene-dicarboxylic acid  (H2STI) or 1,4-phenylen-
ediacrylic acid  (H2PDAC)) among MOFs, resulting in the 
formation of linker-cleaved defects [56]. As an example, 
 H2STI and 4,4′-azobenzene-dicarboxylic acid  (H2AZO, an 
inert ligand toward ozone) were adopted as mixed linkers 

to build a multivariate MOF featured with the classical 
 Zr6 cluster. After treatment with ozone, the C=C bond in 
the STI linker was cleaved to generate corresponding dan-
gling terephthalic acid and 4-formylbenzoic acid, which 
were then readily removed by washing with acetic acid 
(Fig. 3c) [57].

Substituents on the organic linkers also have an impact on 
the acidic strength of connected metal nodes via an induc-
tive effect. For instance, Lin et al. [58] reported two UiO-66 
analogs,  Zr6-fBDC and  Zr6-BDC-NO2, with 2,3,5,6-tetra-
fluoroterephthalate and 2-nitroterephthalate as the typical 
terephthalate linkers, respectively. The electron paramag-
netic resonance spectra of MOF-bound superoxide showed 
that the Lewis acidity of corresponding MOFs increases in 
the following order:  Zr6-fBDC >  Zr6-BDC-NO2 > UiO-66, 
in line with the electron-withdrawing ability of substituents: 
–F > –NO2 > H [59, 60].

Fig. 3  a Trifluoroacetic acid modulated synthesis of UiO-66. Purple 
polyhedrons indicate defective Zr sites. Reproduced with permis-
sion from Ref. [55]. Copyright 2013, American Chemical Society. b 
Hemilabile linker assisted synthesis of UiO-66. Reproduced with per-
mission from Ref. [49]. Copyright 2020, American Chemical Society. 
c Ozonolysis of the sacrificial linker in Zr-based MOFs. Reproduced 
with permission from Ref. [57]. Copyright 2018, American Chemical 
Society
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Functional Linkers as Acid Sites

The organic linkers of MOFs are of great variety due to the 
multifarious and tunable shapes, dimensions, substituents, 
and coordination modes, thus allowing incorporation of mul-
tiple catalytic sites thereinto [61]. In particular, Brønsted 
acidity can be introduced into MOF materials accompanied 
with various acid functional groups, e.g., carboxylic acid 
and sulfonic acid. Generally, two common strategies, i.e., 
bottom-up synthesis and postsynthetic modification (PSM), 
have been developed to realize this target.

In a typical bottom-up scheme, ligands bearing desired 
functionalities are directly employed as building blocks for 
the hydro-/solvothermal preparation of MOFs, enabling 
quantitative and uniform incorporation of desired acid func-
tional groups. MOF materials armed with dangling –CO2H 
groups could be directly prepared by using ligands contain-
ing additional carboxylic acid groups (Scheme 1a) [62–64]. 
For example, UiO-66(Zr)-CO2H could be prepared via 
the one-pot solvothermal treatment of zirconyl nitrate and 
1,2,4-tricarboxybenzene [65]. Compared with carboxylic 
acid, sulfonic acid is generally stronger in acidity, which is 
more catalytically active in reaction systems demanding high 
acidity. However, only MOFs with a robust skeleton against 
the strong sulfonic acid environment are feasibly constructed 
by directly using monosodium 2-sulfoterephthalic acid as the 
ligand precursor (Scheme 1b), such as UiO-66(Zr)-SO3H 
[66], NUS-6(Zr, Hf) [67], and MIL-101(Cr)-SO3H [68].

The misconnection usually occurred in the bottom-up 
synthesis due to the potential coordination between metal 

nodes and additional acid substituent groups dangling on the 
ligands, causing low crystallinity of desired MOF products 
or forming side products of unknown structure. In sharp con-
trast, the PSM strategy can overcome such drawbacks effec-
tively [69]. In a prototype, highly crystalline parent MOFs 
are first prepared using raw ligands with the potential for 
chemical modification. Then, desired functional groups are 
incorporated into the presynthesized skeletons via substitu-
tion or transformation from the precursive functional groups 
[25, 70]. For instance, incorporation of a carboxylic acid 
group into MOFs can be done either with carboxylic anhy-
dride by reaction with hydroxy/amino substituents [71, 72] 
or by oxidation of the formyl group inside the MOF pores 
(Scheme 2a) [73]. As for sulfonic acid groups, they can be 
directly attached to terephthalate-based MOFs by treating 
the bare aromatic skeleton with chlorosulfonic acid [74, 
75], be incorporated via sulfonation decoration of amino-
substituted MOFs [76], or be obtained from oxidation of 
mercaptan-substituted MOFs (Scheme 2b) [77].

Guest Species Supported by MOFs as Acid Sites

Compared with conventional catalyst supporters (e.g., poly-
mers, zeolites, carbon materials), MOFs possess extraordi-
narily large specific surface areas and high pore volumes. 
In addition, their inner pore structures and properties can 
be easily tuned by various methods [78]. Combining both 
advantages, the accommodation of acid guest species 
inside the MOF pores is anticipated to enhance the acid-
ity of pristine MOF materials and address the leaching and 

Scheme 1  Bottom-up synthesis 
of MOFs with a dangling 
carboxylic acid and b sulfonic 
acid groups
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deactivation of free guest species by the confinement effect 
[79–81].

Due to their strong Lewis/Brønsted acidic nature, POMs 
are a major type of guest species for improving the acidity 
of MOFs. As early as 2003, Naruke and co-workers [82] 
proposed a one-pot hydrothermal preparation strategy to 
incorporate phosphotungstic acid (PTA) into MOFs. Hence-
forth, a number of POM-MOF composites have sprung up 
during the nearly past two decades [83–85]. As a typical 
example, a series of Keggin-type POMs were incorporated 
into HKUST-1 by one-step synthesis using Cu(NO3)2, BTC, 
and corresponding POMs. Interestingly, the corresponding 
POMs were found to be selectively accommodated into the 

larger pore of HKUST-1, thereby leaving the smaller pore 
empty for other incoming catalysis substrates (Fig. 4) [83].

Application in Biomass Upgrade

As mentioned before, acid catalysis has been extensively 
applied in biomass utilization. For example, small hydro-
carbons, such as cellobiose, xylose, and glucose, can be 
produced from cellulose biomass by Brønsted acid-cata-
lyzed hydrolysis. With a Lewis acid, glucose can undergo 
isomerization or epimerization to yield fructose or mannose, 
respectively. Moreover, fructose can be further converted to 

Scheme 2  Postsynthetic modi-
fication routes to incorporate a 
carboxylic acid and b sulfonic 
acid groups

Fig. 4  Structural illustration 
of MOF-supported POM. 
Reproduced with permission 
from Ref. [83]. Copyright 2009, 
American Chemical Society
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5-HMF, levulinic acid, and alkyl levulinates on Brønsted 
acid sites (Scheme 3) [86, 87]. Because of the complexity 
of these reactions, in some cases, a synergistic or tandem 
catalyst involving both Lewis acid and Brønsted acid sites 
is highly needed [1, 88, 89].

Transformation of Cellulose

Cellulose, as a naturally abundant polymer consisting of 
7000–15,000 glucose units, is an ideal starting biomass for 
the synthesis of high value-added chemicals [1]. Compared 
with oligosaccharides and disaccharides (e.g., cellobiose and 
sucrose), however, it is still a huge challenge to efficiently 
hydrolyze cellulose due to its poor contact with catalyst moi-
eties arising from the much larger size of cellulose as well 
as its interlinked molecular structure [90].

The study of Brønsted acid-rich MOFs on catalyzing cel-
lulose transformation dates to 2011. Kitagawa et al. [68] 
prepared a sulfo-modified MIL-101(Cr) via a bottom-up 
synthesis method. According to the elemental analysis 
characterization result, nearly two-thirds of sulfo groups 
dangling on the resulting MOF products are in the Brøn-
sted acid form that can easily release protons for catalysis 
application, while others are in the anionic sulfonate form 
to maintain electric neutrality. In the hydrolysis of cellulose 
(Fig. 5), as-resulted sulfo-modified MOFs hydrolyzed 5.3% 
of the cellulose to saccharides, including cellobiose, xylose, 
and glucose at 120 °C after 3 h.

Moreover, MOF-based composites can even promote the 
tandem transformation of cellulose to more valuable chemi-
cals. For instance,  Ga2O3-modified UiO-66 was applied as 
the catalyst for the transformation of cellulose to levulinic 

Scheme 3  Acid catalyzed trans-
formation from glucose and its 
derivatives

Fig. 5  Cellulose hydrolysis on 
solid acid materials. Repro-
duced with permission of Ref. 
[68]. Copyright 2011, Wiley–
VCH
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acid. The tandem process contains a series of steps, i.e., 
cellulose hydrolysis, glucose isomerization, fructose dehy-
dration, and 5-HMF dehydration. The highly robust UiO-66 
skeleton ensured the endurance of the composite catalyst 
at ultra-high operation temperature (240 °C). Meanwhile, 
as-incorporated  Ga2O3 offered extra moderate acidity. In 
combination, the  Ga2O3-UiO-66 composite exhibited sig-
nificantly enhanced catalytic performance (32% yield) in 
comparison with pristine UiO-66 (12% yield) [91].

Transformation of Monosaccharides

Glucose to Fructose/Mannose

As the basic constitutional unit of cellulose and starch, glu-
cose is the most widespread monosaccharide in organisms 
and, hence, is commonly used for manufacturing other sug-
ars and fine chemicals. It has been well accepted that the 
isomerization of glucose to fructose can be efficiently pro-
moted by Lewis acid catalysts (Scheme 3). Therefore, the 
open metal sites existing in MOFs can serve as active cent-
ers. Matsuda et al. [92] investigated the catalytic effect of 
two Cr(III)-based MOFs, MIL-100 and MIL-101, in aqueous 
media at 100 °C. Although both MOFs contained the same 
 Cr3O cluster as Lewis acid sites, the fructose yield obtained 
by MIL-101 (12.6%) was much higher than that by MIL-100 
(3.8%) because of the larger pore window of MIL-101. Fur-
thermore, the nitro-substituted MIL-101 showed a further 
enhanced yield for fructose (18.4%) under other identical 
conditions by taking advantage of the strong electron-with-
drawing –NO2 group close to the active Lewis  Cr3O site.

Interestingly, the fructose to mannose product ratio 
could be even adjusted by using a Zr-based solid catalyst 
but of a different structure. For example, in aqueous solu-
tion and at 100 °C, UiO-66(Zr) gave the formation prod-
ucts of fructose and mannose in yields of 5% and 6.3% via 
the isomerization and epimerization pathways, respectively 
[93]. Similarly, MOF-808(Zr) produced a mixture of fruc-
tose and mannose as well, but the selectivity of mannose 
was lower than that of UiO-66(Zr). At 90 °C, the fructose/
mannose ratios offered by MOF-808(Zr) and UiO-66(Zr) 
were about 1.5 and 0.6, respectively. In contrast, Zr-β zeolite 
yielded fructose as a preferable product (fructose/mannose 
ratio = 5). As 13C nuclear magnetic resonance spectroscopy 
revealed, glucose transformation may proceed through two 
separate routes over Lewis acid catalysts: a 1,2-intramolecu-
lar hydride shift to produce fructose and 1,2-intramolecular 
carbon shift to produce mannose. Density functional theory 
(DFT) calculations suggested that the activation energy of 
the 1,2-intramolecular hydride shift is similar among the 
three Zr-based materials. However, as for the 1,2-intra-
molecular carbon shift, the order of activation energy is 

UiO-66(Zr) < MOF-808(Zr) <  < Zr-β zeolite, consistent with 
the corresponding selectivity order toward glucose [94].

Furthermore, the influence of crystalline defects on cata-
lytic performance was explored. Two UiO-66-type materials, 
UiO-66-D(1d) and UiO-66-D(3d), were prepared by chang-
ing the crystallization duration (1 day and 3 days, respec-
tively) of solvothermal synthesis. UiO-66-D(1d) possesses 
approximately equal amounts of linker-missing and clus-
ter-missing defects, while UiO-66-D(3d) has more linker-
missing defects but fewer cluster-missing defects. Under the 
same catalytic conditions, a higher percentage of glucose 
was produced over UiO-66-D(1d) (47%) than that of UiO-
66-D(3d) (34%), indicating that the cluster-missing defect is 
more favorable for the formation of the glucose product [95].

Fructose to 5‑HMF

As a key intermediate in the transformation of sugar to 
value-added fine chemicals, 5-HMF can be obtained via 
Brønsted acid-catalyzed fructose dehydration (Scheme 3) 
[96, 97]. Despite the challenge that the coordination bond 
between the metal node and organic linker is vulnerable 
under strong acidity, a number of MOFs bearing Brønsted 
acid sites have been developed and applied in sugar trans-
formation. For example, a PTA/MIL-101 composite formed 
via encapsulating PTA into MIL-101(Cr) was tested as a 
catalyst for fructose dehydration in the solvent of 1-ethyl-
3-methylimidazolium chloride ([EMIM]Cl) at 80 °C. After 
optimizing the loading amount of PTA, a maximal 5-HMF 
yield of up to 63% was obtained. Although the 5-HMF selec-
tivity over PTA/MIL-101 (74%) was slightly lower than that 
over free PTA (92%), it could be easily separated and recy-
cled from the reaction mixture [98].

Sulfonic acid-modified MOFs, e.g., MIL-101(Cr)-SO3H, 
UiO-66(Zr)-SO3H, and MIL-53(Al)-SO3H, were also evalu-
ated as solid acid catalysts for converting fructose to 5-HMF. 
The sulfonated materials were prepared by PSM of cor-
responding parent MOFs using  ClSO3H, and the grafting 
amount of –SO3H was adjusted by changing the dosage of 
 ClSO3H. The corresponding 5-HMF yield increased as the 
grafting amount of the sulfo group increased. Particularly, 
when the grafting ratio of the –SO3H group was relatively 
low (≤ 9.5%), the turnover frequency of glucose was linearly 
dependent on the amount of grafted –SO3H site regardless 
of the type of parent MOF [74].

NUS-6 is a Zr/Hf-based MOF adopting the same metal 
node but using 2-sulfoterephthalate instead of terephtha-
late as the organic linker compared with UiO-66 (Fig. 6). 
Acid–base titration indicated that, despite containing 
the same amount of sulfo group, NUS-6(Hf) possesses 
stronger Brønsted acidity than NUS-6(Zr), probably due 
to the stronger bonding between Hf and μ3-OH in the 
 Hf6(μ3-O)4(μ3-OH)4 cluster, which endows μ3-OH with 
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stronger proton dissociability. Both MOFs were evaluated 
in fructose dehydration in DMSO. In the presence of NUS-
6(Zr), nearly full conversion (> 99%) and 84% selectivity 
toward 5-HMF were obtained after 1 h at 100 °C. NUS-6 
(Hf) exhibited better performance (> 99% conversion and 
98% selectivity) under identical conditions. The stronger 
Brønsted acidity of NUS-6(Hf) was assigned to its supe-
rior catalytic performance to a certain extent. In addition, 
the pore size of MOF catalysts also had an impact on the 
selectivity performance. It has been well accepted that the 
production of 5-HMF relies on the furanose-type fructose 
(fructofuranose) reactant, while the by-product (e.g., humin) 
is formed from linear fructose, which is generated from the 
isomerization of fructofuranose. As the micropore size of 
NUS-6(Hf) (5.5 Å) was larger than the dimension of fructo-
furanose (~ 4 Å), fructofuranose could be confined in the 
micropores of NUS-6(Hf) so that its isomerization to the lin-
ear form (~ 4 Å) could be suppressed, leading to the higher 
selectivity toward 5-HMF. Due to the larger micropore size 
(6 Å), NUS-6(Zr) showed a relatively weak confinement 
effect and therefore inferior 5-HMF selectivity [67].

Glucose to 5‑HMF

It is more economical to produce 5-HMF from glucose 
in a cascade catalysis system due to the extensive source 
of glucose, in which acid catalyst bearing dual Lewis and 
Brønsted acid sites are required (Scheme 3). Bao et al. [99] 
applied MIL-101(Cr)-SO3H in glucose to HMF cascade 
transformation (Fig. 7). With prolonging the reaction time, 
the concentration of fructose in the system first increased 
and then decreased, demonstrating that the transformation 
indeed proceeded through the isomerization-dehydration 
pathway. Interestingly, the presence of water is a two-edged 
sword in this reaction. On the one hand, a small amount of 
water could induce the formation of Cr-OH species, which is 
conducive to 1,2-hydride transfer in the glucose isomeriza-
tion step. On the other hand, water molecules might com-
pete with glucose in coordinating with the unsaturated Cr 
sites in the glucose isomerization step, thereby obstructing 
the isomerization procedure. Hence, only a modest yield of 
5-HMF was obtained in pure water (12.3%) or polar aprotic 
solvent (26.2%, in γ-valerolactone), but a significantly 

Fig. 6  Structure and cata-
lytic application of NUS-6. 
Reproduced with permission 
from Ref. [67]. Copyright 2016, 
American Chemical Society

Fig. 7  MIL-101(Cr)-SO3H as a 
catalyst for the conversion from 
glucose to 5-HMF. Reproduced 
with permission from Ref. [99]. 
Copyright 2016, American 
Institute of Chemical Engineers
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improved yield (39.8%) was obtained in the mixture of water 
and γ-valerolactone (1:9, w/w).

Additionally, Zr-MOF-based solid acid was potentially 
active in the catalysis of glucose to 5-HMF transforma-
tion. Yabushita et al. [100] used NU-1000 as the Lewis 
acid catalyst, and 60% glucose conversion and 2.3% yield 
toward 5-HMF were obtained in water. In order to improve 
the performance, modification of NU-1000 with Brønsted 
phosphoric acid was performed. After a full phosphoric acid 
decoration of  Zr6 nodes, the resultant  PO4/NU(eq) with mere 
Brønsted acidity showed elevated 5-HMF yield (5.9%) but 
reduced glucose conversion (17%), demonstrating the neces-
sity of Lewis acidity (i.e., unsaturated metal sites) in the 
catalysis. On the other hand, moderate glucose conversion 
(50%) and the highest 5-HMF yield (15%) were achieved 
when only half of  Zr6’s unsaturated sites were modified  PO4/
NU(half).

Lanthanide-based MOFs have also been widely applied 
in catalysis due to their Lewis acidity [101]. Degirmenci 
and co-workers [102] designed an ytterbium (Yb)-based 
MOF,  Yb6(BDC)7(OH)4(H2O)4, in which Yb(III) ions 
were coordinated by terephthalates, hydroxyl bridges, and 
water molecules. Especially, the weakly coordinated water 
molecules could be removed by heating at 200 °C, and the 
resultant unsaturated sites could serve as Lewis acid centers. 
Meanwhile, the bridging hydroxyl groups possess Brønsted 
acidity. In the catalytic conversion of glucose to HMF in 
an aqueous solution, the activated Yb-based MOFs offered 
5-HMF with 65% selectivity and 28% glucose conversion. 
Moreover, the catalyst could be reused for four cycles with-
out a significant decrease in 5-HMF yield.

Glucose to Levulinic Acid

Levulinic acid and its derivatives have been employed 
as components of biofuels and additives for the 

functionalization of polymers. It has been proposed that 
glucose may sequentially undergo isomerization, dehydra-
tion, and subsequent rehydration to yield levulinic acid via a 
synergistic catalysis way via using both Lewis and Brønsted 
acids (Scheme 3).

In a recent study, PTA was incorporated into the pores 
of MIL-100(Fe), and the resultant composite  (PM2) was 
further decorated with lysine (Lys-PM2) for conversion of 
glucose to levulinic acid (Fig. 8). After systematic evalua-
tion, the conversion of glucose and selectivity of levulinic 
acid were both ranked in the order of Lys-PM2 >  PM2 > bare 
MIL-100(Fe). It has been suggested that PTA can enhance 
the Brønsted acidity of MOF materials, thus increasing the 
catalytic activity in fructose dehydration and 5-HMF rehy-
dration. In addition, the introduced amino group from lysine 
may also facilitate the isomerization of glucose to fructose. 
Furthermore, the carboxyl group of lysine can enhance the 
interaction between the substrate and catalyst via the for-
mation of hydrogen bonding, thus also leading to improved 
catalytic performance [103].

Glucose to Alkyl Lactate

Alkyl lactates are green solvents and key precursors for 
the preparation of degradable polylactide resin [5]. Acid-
catalyzed conversion of sugar to alkyl acetate was proposed 
by enjoying the low cost of sugar and its abundant source 
in nature. For example, glucose to methyl lactate trans-
formation consists of multiple reaction steps in sequence: 
isomerization of glucose, the retro-aldol reaction of fructose, 
dehydration of glyceraldehyde/dihydroxylacetone, formation 
of pyruvaldehyde methyl hemiacetal, and 1,2-hydride shift 
of hemiacetal, in which glucose isomerization, retro-aldol 
reaction, and the 1,2-hydride shift could be accelerated by 
Lewis acid catalyst (Scheme 4) [104].

Fig. 8  Lys-PM2 composite as 
a catalyst for the conversion 
from glucose to levulinic acid. 
Reproduced with permission 
from Ref. [103]. Copyright 
2019, Elsevier
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M-MOF-74 materials (M = Co, Ni, Mg, Zn) were used to 
catalyze the aforementioned tandem reactions in methanol. 
A higher yield toward methyl lactate (27%) was obtained 
over Mg-MOF-74 than others (16%–20%) under identical 
conditions, probably attributed to its relatively stronger 
Lewis acidity and larger surface area [105]. Moreover, 
comparable catalytic performances were reported over 
ZIF-8 (Zn(MeIM)2, MeIM = 2-methyl imidazolate) (19.7% 
glucose to methyl lactate yield) and partially tin-exchanged 
MIP-177-LT  (Ti12O15(mdip)3(HCOO)6, mdip = 3,3′,5,5′-tet-
racarboxyldiphenylmethane) (21.8% glucose to methyl lac-
tate yield) at 160 °C for 20 h [106, 107].

Xylose to Furfural

Similar to the glucose to HMF conversion mentioned above, 
xylose can be transformed into furfural via Lewis acid-cat-
alyzed isomerization followed by Brønsted acid-catalyzed 
dehydration (Scheme 5) [108, 109]. Since pristine MIL-
101(Cr), limited by its relatively low Brønsted acidity, only 
displayed unsatisfied catalytic performance in the applica-
tion of xylose to furfural transformation, several types of 
MIL-101(Cr)-based materials with dual-acid sites were 
developed to promote catalytic conversion. For example, 
MIL-101(Cr)-SO3H via installing strong Brønsted –SO3H 
showed a striking improvement in the yield of furfural in 

comparison to pristine MIL-101(Cr) (from 30 to 64.7%) 
[110]. Furthermore, a composite combining MIL-101(Cr) 
and tin(IV) phosphate (SnP) was also prepared for further 
enhancing the yield of furfural. By optimizing the SnP load-
ing amount, the obtained SnP-MIL-101(Cr) composite gave 
a much higher furfural yield (86.7%) than both pristine MIL-
101(Cr) (40.3%) and mesoporous SnP (48%) [111].

Transformation of Platform Molecules

Alkyl levulinates, extensively used as fragrances, plasti-
cizers, and biofuel additives, are generally synthesized by 
acid-catalyzed Fischer esterification of levulinic acid with 
alcohols. Due to the strong Lewis acidity of the Zr cluster, 
UiO-66 gave comparable or even better performance than 
several types of commonly used solid acid catalysts (e.g., 
Amberlyst-15, H-MCM-22, H-ZSM-5, sulfated titania, and 
zirconia) in the application of levulinic acid esterification 
with ethanol and butanol. Levulinates with longer alkyl 
chains (e.g., lauryl, cetyl, and stearyl) were also successfully 
obtained, but corresponding reaction rates offered by UiO-
66 obviously declined due to the severe adsorption of bulky 
reactants and products onto the external surface of UiO-66 
[112, 113]. Furthermore, UiO-66-(COOH)2 was applied in 
the esterification of levulinic acid with ethanol. The yield 
of ethyl levulinate reached 23.9% after a reaction of 8 h 

Scheme 4  Acid catalyzed con-
version from glucose to methyl 
lactate

Scheme 5  Tandem transforma-
tion from xylose to furfural 
catalyzed by acid
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(and 97.0% after 24 h), and only a slight deterioration was 
observed after five continuous catalysis cycles. Such perfor-
mance achieved by UiO-66-(COOH)2 was better than bare 
UiO-66(Zr) (4.2% yield after 8 h), terephthalic acid (2.6% 
yield after 8 h), and their physical mixture (10.8% yield after 
8 h), implying that the dangling carboxyl groups and unsatu-
rated Zr nodes among UiO-66-(COOH)2 may facilitate the 
esterification process in a synergistic manner. As DFT cal-
culations suggested, levulinic acid is first adsorbed onto the 
open Zr site of UiO-66 or UiO-66-(COOH)2 and then is sub-
jected to nucleophilic attack from an ethoxyl group bonding 
onto a neighboring Zr atom. At this stage, the free –COOH 
group among UiO-66-(COOH)2 could promote the leaving 
of carboxylic –OH of adsorbed levulinic acid, thus reducing 
the energy barrier of the esterification process (Fig. 9) [62].

5-HMF is an important saccharide-derived molecule 
that can be further transformed into other useful chemi-
cals, e.g., alkyl levulinates and 5-alkoxymethylfurfurals. As 
mentioned above, ethyl levulinate (EL) is widely applied in 
fine-chemical manufacturing. In addition, 5-ethoxymethyl-
furfural (EMF) is considered a candidate for biofuel due to 
its high energy density. Both EMF and EL can be obtained 
via Brønsted acid-catalyzed reaction between 5-HMF and 
ethanol. [Cu-BTC][HPM], a composite in which phospho-
molybdic acid hydrate (HPM) is anchored in the pores of 
Cu-BTC, was employed in promoting this reaction. NENU-5 
showed good catalytic performance (43.7% EMF yield, 7.6% 
EL yield), which was comparable to free HPM (44.6% EMF 
yield, 8.9% EL yield). On the other hand, compared with 
homogeneous HPM, [Cu-BTC][HPM] can be easily recycled 
and reused without significant loss of yield [114].

Furfuryl alcohol is a key intermediate for the manufacture 
of fine chemicals, including EL and γ-valerolactone [115]. 
It is commercially producible via hydrogenation of furfural 
over noble metals and their complexes [116]. Despite the 

high catalytic activity, these materials usually suffer from 
exorbitant costs, limited sources. Besides, the storage 
and operation of  H2 are dangerous, and it is inevitable to 
produce undesired by-products due to the accompanying 
hydrogenation of the C=C bond. This can be avoided by 
using an alternative method, Lewis acid-promoted trans-
fer hydrogenation using isopropanol as the reductant (i.e., 
Meerwein–Ponndorf–Verley reduction) [117]. A number of 
Zr-based MOFs (UiO-66, DUT-52, UiO-67, DUT-67, and 
MOF-808) featuring different organic ligands and connect-
ing modes were investigated as Lewis catalysts for trans-
fer hydrogenation. UiO-66, DUT-52, and UiO-67 consist 
of the 12-connected octahedral  Zr6 node, while DUT-67 
and MOF-808 are composed of the 8- and 6-connected  Zr6 
nodes, respectively. In the transfer hydrogenation, MOF-808 
showed higher furfuryl alcohol yield (66.4%) than DUT-
67 (13.5%), whose performance was higher than UiO-66, 
DUT-52, and UiO-67 (≤ 1.3%). The performance sequence 
of these MOFs followed well with their number of coordi-
natively unsaturated sites per  Zr6 node, namely for MOFs 
with a smaller coordination number, the  Zr6 node showed 
higher catalytic activity. Furthermore, activation using 
boiled methanol was performed on MOF-808 to introduce 
more unsaturated coordination sites, thus further increasing 
the number of Lewis acid sites. As expected, the catalytic 
performance (79.1% yield of furfuryl alcohol) of methanol-
activated MOF-808 was superior to that of pristine MOF-
808 [118].

Conclusion and Outlook

MOFs provide an appealing platform for constructing solid 
acid materials in the application of biomass upgrades. First, 
the inherent metal centers among MOFs can exhibit certain 

Fig. 9  a Reaction free energy profile, b proposed catalytic mechanism, and c catalytic performance of UiO-66 and UiO-66-(COOH)2 in levulinic 
acid esterification. Reproduced with permission from Ref. [62]. Copyright 2019, American Chemical Society



446 Y. Qin et al.

1 3

Lewis and Brønsted acidities, which can be further tuned by 
multiple strategies, such as adjusting the defective degree 
of the framework, altering the coordination surroundings 
of metal atoms, or modifying the adjacent organic linkers. 
Second, the organic linkers of MOFs are easily decorated 
by acidic functional groups, including sulfonic acid and car-
boxylic acid groups. Third, MOFs offer suitable rooms for 
the accommodation of other acidic moieties, for example, 
polyoxometalates and acidic metal oxides.

In comparison with conventional solid acids like zeolites 
and acidic polymers, MOF-based materials possess large 
surface areas and tunable pore structures. Therefore, they are 
expected to be excellent candidates for heterogeneous acid 
catalysts, particularly in the transformation of biomass. For 
example, in the conversion and utilization of saccharides, 
Brønsted acid can efficiently promote the hydrolysis of cellu-
lose and oligosaccharides, while Lewis acid can catalyze the 
isomerization of several monosaccharides and their deriva-
tives. As summarized in this review, MOF-based solid acids 
can be applied in these processes with good conversion rates, 
product selectivities, and recyclability.

Even if several MOF examples have exhibited huge poten-
tial in biomass conversion, further research is still needed. 
First, it is essential to have a comprehensive understanding 
of the reaction mechanism to guide rational and accurate 
development of the desired catalyst, in which in situ char-
acterization tools and theoretical calculations are helpful. 
Second, the well-defined structures of MOFs allow precise 
incorporation of multiple kinds of acid functional sites at 
the molecular level; therefore, the synergistic effect between 
distinct acid sites can be facilely steered for further promot-
ing catalytic performances. Third, the unique pore structures 
of MOFs can be subtly tuned to offer appropriate space for 
the formation of target products but not by-products, thereby 
greatly improving product selectivity. Furthermore, novel 
MOF materials of robust stability against a strong acid envi-
ronment are demanded to be substantially developed.
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