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Abstract
The emission of nitrogen oxides (NOx) increases year by year, causing serious problems to our livelihoods. The photocatalytic 
oxidation of NOx has attracted more attention recently because of its efficient removal of NOx, especially for low concentra-
tions of NOx. In this review, the mechanism of the photocatalytic oxidation of NOx is described. Then, the recent progress 
on the development of photocatalysts is reviewed according to the categories of inorganic semiconductors, bismuth-based 
compounds, nitrogen carbide polymer, and metal organic frameworks (MOFs). In addition, the photoelectrocatalytic oxida-
tion of NOx, a method involving the application of an external voltage on the photocatalytic system to further increase the 
removal efficiency of NOx, and its progress are summarized. Finally, we outline the remaining challenges and provide our 
perspectives on the future directions for the photocatalytic oxidation of NOx.
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Introduction

The livelihood of human beings, in terms of food, cloth-
ing, shelter, and transportation, has greatly improved since 
the beginning of the industrial revolution. However, the 
large consumption of fossil fuels, such as coal and petro-
leum, has led to the excessive emission of nitrogen oxides 
(NOx) [1]. The NOx emitted into the atmosphere not only 
causes acid rain [2, 3], photochemical smog [4, 5], PM2.5 
[6, 7], and other environmental problems but also changes 
the climate and destroys the ozone layer [8]. In addition, 
NOx severely damages the human heart and lungs and fur-
ther reduces the efficacy of the human immune system [9], 
making the human body susceptible to respiratory diseases, 

such as cough, eye inflammation, chest tightness, nausea, 
sore throat, and bronchitis [10, 11]. Therefore, eliminating 
NOx present in the atmosphere is important. Currently, the 
solutions to remove NOx mainly are the typical adsorption 
method [12], nonselective catalytic reduction (NSCR) [13], 
and selective catalytic reduction (SCR) [14–16]. Most of 
these methods involve technologies for eliminating NOx 
after its generation owing to many obstacles. The adsorp-
tion method is suitable only for the removal of a high con-
centration of NOx in the combustion exhaust gas, has a high 
purification efficiency, and does not produce additional 
liquid wastes; however, it has a high operating cost [17]. 
Furthermore, NSCR or SCR technologies, in general, are 
limited to the treatment of high concentrations of NOx [12, 
18], and their efficiency and economic benefits reduce for 
lower NOx concentration. Therefore, the low concentration 
of NOx, especially in relatively closed places (such as urban 
streets, tunnels, underground parking lots, and various pub-
lic indoors), cannot be effectively removed by these tradi-
tional methods [19]. The photocatalytic oxidation of NOx is 
a green, low-cost method to eliminate NOx (especially for 
low-concentration NOx in the air at room temperature) that 
has attracted much attention recently [20, 21]. Generally, 
the photocatalysts in this system absorb light energy and 
generate separated electrons and holes that further drive the 
oxidation of NOx and play the most important role in the 
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removal of NOx. Extensive efforts focused on developing 
highly active photocatalysts have resulted in a great amount 
of progress on photocatalysts for oxidation of NOx in recent 
years. In this review, the mechanism of the photocatalytic 
oxidation of NOx and the design principle of photocatalysts 
are described. The recent progress on the development of 
photocatalysts is then reviewed according to the categories 
of TiO2-based inorganic semiconductors, bismuth (Bi)-based 
inorganic semiconductors, graphite-phase carbon nitride and 
its complexes, and metal organic frameworks (MOFs). In 
addition, the progress on the development of photoelectro-
catalytic oxidation of NOx is also summarized. We outline 
the remaining challenges and provide perspectives on future 
directions for developing photocatalytic oxidation of NOx.

Mechanism of Photocatalytic Oxidation 
of NOx

Under light irradiation, a photocatalyst absorbs a photon 
(packet of light energy), and its valence band electron is 
promoted to the conduction band with the hole remaining in 
the valence band, creating an electron–hole pair. The holes 
on the valence band (h+) can oxidize the adsorbed water into 
OH, and the electrons on the conduction (e−) band possess 
the ability to reduce the adsorbed oxygen into superoxide 
radicals (·O2

−) [22]; these active oxygen species participate 
in the oxidation of NOx to produce NO3

−, NO2
−, and a small 

amount of NO2. The mechanism of photocatalytic oxidation 

of NOx is depicted in Fig. 1, and its specific reaction pathway 
is described as follows as Eqs. (1–6):

Based on the above mechanism, the effectiveness of 
photocatalytic oxidation of NOx is mainly dominated by 
photocatalyst. Firstly, electron–hole pair generation in pho-
tocatalysts is the trigger for the oxidation of NOx, and this 
generation mainly depends on whether the band gap of the 
photocatalyst matches the wavelength of the absorbed light. 
For example, TiO2 with a band gap of only 3.2 eV can be 
excited to produce electron–hole pairs under the UV-light 
irradiation with a wavelength less than 380 nm. However, 
UV light only accounts for 3%–5% of sunlight, whereas the 
proportion of visible light in sunlight can reach up to 43%. 
To use visible light, new photocatalysts with a small band 

(1)Photocatalyst + h� → e− + h+

(2)e− + O2 → ⋅O−

2

(3)h+ + OH−
→ ⋅OH

(4)NO + ⋅O2 → NO−

3

(5)⋅OH + NO → HNO2

(6)HNO2 + ⋅HO → HNO3

Fig. 1   Mechanism of photo-
catalytic oxidation of NOx ( 
Reproduced with permission 
from Ref. [22]. Copyright 2016 
Elsevier)
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gap should be developed. Further, the lifetime of photogen-
erated electrons and holes also affects the efficiency of NO 
conversion. For example, the photogenerated holes only have 
a lifetime of 10−9 s; this short lifetime severely decreased 
the occurrence of reaction between these active species and 
NOx. In addition, the charge transfer rate of a photocatalyst 
is also critical. Thus, extensive research has been focused 
on developing powerful photocatalysts by decreasing their 
band gaps and slowing down their recombination rates of 
electrons and holes.

Recent Progress on Photocatalysts 
for Treating NO Gas

Since 1994, when Ibusuki and Takeuchi [23] firstly applied 
photocatalytic technology to the removal of NOx, exten-
sive attention has been devoted to this field, with several 
photocatalysts developed and evaluated toward oxidizing 
NOx. Currently, the reported photocatalysts could be clas-
sified mainly into four categories: (1) TiO2-based inorganic 
semiconductors [24–26], (2) Bi-based inorganic semicon-
ductors [27, 28], (3) graphite-phase carbon nitride and its 
complexes [29], and (4) MOFs [30] (Fig. 2); recent progress 

in the development of these photocatalysts is summarized in 
the following section (Table 1).

TiO2‑Based Semiconductors

Titanium oxide (TiO2), a white, odorless, nontoxic powder, 
is a representative candidate of an inorganic semiconduc-
tor photocatalyst; TiO2 possesses three types of crystal 
structures: anatase, rutile, and brookite [20]. TiO2 is mainly 
divided into anatase and rutile phases [24]. Anatase TiO2 has 
a wide band gap (3.2 eV), which can be excited only by UV 
light, resulting in a very low utilization of sunlight. Further-
more, the high recombination probability of photogenerated 
carriers for TiO2 is not conducive to its wide application 
in the field of photocatalysis (PC). A study has found that 
the mixed crystals of anatase and rutile presented excellent 
photocatalytic activity because of the internal electric field 
formed between the two types that facilitated the separation 
of electrons and holes [25]. Gong and Selloni [31] revealed 
that the (001) facet of anatase has much higher activity than 
the (101) facet by theoretical calculations because the defect 
caused by the unsaturated coordination of Ti atoms on the 
(001) facet can increase the energy of the crystal surface. 
Subsequently, some experimental results have verified this 

Fig. 2   Classification of photo-
catalysts toward the oxidation 
of NOx
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viewpoint [32–34]. However, the surface of the (001) facet 
requires special means to be stable because it has higher 
surface energy [35]. For instance, Yang et al. [34] found 
that the fluorine atom can significantly reduce the energy 
of the surface (001), making it even more stable than the 
surface (101). As a result, they made a breakthrough in using 
fluorine atom as the capping agent to synthesize micron-
size TiO2 single crystals with (001) facet as the main crys-
tal [36–38]. Han et al. [37] synthesized a rectangular TiO2 
nanosheet with highly reactive (001) top and bottom sur-
faces using a simple hydrothermal approach with the aid of 
hydrofluoric acid solution. Owing to the exposure of a high 
percentage of (001) facets, this TiO2 nanosheet exhibited 
excellent photocatalytic efficiency that far exceeds that of 
the commercial P25. In addition, Chen et al. [38] used a 
solvothermal method to construct a (001) facet exposed TiO2 
and porous graphene composite; this highly active (001) 
surface and excellent interface interaction in these unique 
three-dimensional (3D) structures provided a significant 
high-efficiency photocatalytic activity because of the effec-
tive molecular oxygen activation along with rapid in-plane 
and vertical light-induced charge transfer. Moreover, pre-
cious metal deposition, metal ion doping, and constructing 
semiconductor mixtures have also been used to modify TiO2 
to improve its photocatalytic activity. Duan et al. [39] pre-
pared Ag NCs/TiO2 composites by depositing Ag nanoclus-
ters (NCs) onto TiO2 nanoparticles. The electrons generated 
from lowest unoccupied molecular orbital (LUMO) of Ag 
NCs migrated to the conduction band of TiO2 and induced 

the production of superoxide radicals that can efficiently oxi-
dize NO (Fig. 3a) under visible light irradiation. The pho-
tocatalytic activity toward NO oxidation is three and two 
times that of pure TiO2 and Ag NCS, respectively (Fig. 3b).

Furthermore, the work of Duan et al. effectively inhibited 
the formation of toxic byproduct, NO2, and exhibited excel-
lent stability [39]. Using the metal-ion doping method, Mar-
tinez-Oviedo et al. [40] synthesized Fe- or Cu-doped reduced 
blue TiO2 using Li in the ethylene-diamine (EDA) process. 
The photocatalyst with the incorporation of Fe showed the 
best photocatalytic performance among these doped pho-
tocatalysts because of the reduced band gap (Fig. 3c, d), 
increased visible-light absorption capability, the existence 
of oxygen vacancies/Ti3+ species, and efficient separation 
efficiency of photogenerated carriers. The structured SnO2/
TiO2 photocatalysts were fabricated by loading SnO2 nano-
particles onto TiO2 nanotubes (TNT) with the formation 
of SnO2/TNTs heterojunctions through a one-step hydro-
thermal method [26]. As shown in Fig. 3e, the electrons 
generated in each TNT migrated to the conduction band of 
SnO2, whereas the holes in SnO2 valence band migrated to 
the valence band of TNTs. In that case, the recombination 
rate of photogenerated electron–hole pairs was effectively 
reduced, allowing the photocatalytic oxidation efficiency of 
NO to reach up to 60%. Moreover, the production of NO2 
was inhibited in this photocatalysis. Apart from the above 
methods, Zhang et al. [41] developed a general microwave 
antenna strategy to synthesize the discontinuous distribution 
of nano-semiconductors through carbon nanotubes (CNTs) 

Table 1   Reported photocatalysts for the oxidation of NOx

No Photocatalysts Light types η(NO) (%) Active species Ref

1 Ag NCs/TiO2 Visible light 63 ·O2
−, h+ [39]

2 Blue Fe-TiO2 Simulated sunlight 69 ·O2
−, h+, ·OH [40]

3 SnO2/TNTs Visible light 59 ·O2
−, ·OH [26]

4 CNTs-TiO2 UV light 86 ·O2
−, h+ [41]

5 Ni-Bi2O3-5 Simulated sunlight 52 ·OH, ·O2
− [28]

6 12% BP/MBWO Visible light 67 ·O2
−, h+, ·OH [46]

7 BiOCl-OVs Simulated sunlight 38 ·O2
−, ·OH [52]

8 Bi-HBPO-102 Visible light 51 ·O2
−, h+, ·OH [59]

9 Bi/Bi2O2−xCO3 Visible light 51 h+, ·OH, H2O2 [61]
10 Sr-doped g-C3N4 Visible light (300 W Xe lamp) 55 ·O2

−, ·OH [69]
11 PdCl2/mgp-CN 30 W LED (λ ≥ 420 nm) 66 ·O2

−, ·h+ [70]
12 g-C3N4/MS A 150 W metal halide lamp (λ ≥ 420 nm) 79 ·O2

−, h+, ·OH [71]
13 N2c-deficient g-C3N4 300 W Xe lamp (λ ≥ 420 nm) 33 ·O2

− [72]
14 g-C3N4/Bi4O5I2 Tungsten halogen lamp (λ ≥ 420 nm) 51 ·O2

−, ·h+ [76]
15 Ag@NH2-MOP(Ti) Tungsten halogen lamps (λ ≥ 420 nm) 53 ·O2

−, ·OH [30]
16 GO/NH2-MIL-125 Tungsten halogen lamps (λ ≥ 420 nm) 65 ·OH,·O2

− [87]
17 Cu-NU7 150 W tungsten lamps (λ ≥ 420 nm) 88 ·O2

−, h+ [88]
18 TiO2-CNT/SSMs UV light 60 h+, ·OH [92]
19 TiO2 nanorod array/FTO UV light 81 h+, ·OH [100]
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via imitating chloroplasts (Fig. 4a, b). The cross-linked 
CNTs in this hybrid catalyst provided an efficient dual elec-
tron transfer pathway, i.e., the intimate “line-contact” among 

CNTs, TiO2 microspheres, and the 3D CNTs conductive net-
works. For such a catalyst, a close “linear-contact” between 
CNTs and TiO2 was built through the covalent bonds of 

Fig. 3   a Electron transfer pathway of Ag NCs modified TiO2; b NO 
oxidation reaction profiles of TiO2, Ag NCs, and Ag NCs/TiO2 ( 
Reproduced with permission from Ref. [39]. Copyright 2018 Else-
vier); c the calculated band edges of blue TiO2, blue Cu-TiO2, and 
blue Fe-TiO2; d the enhancement of NOx photo-oxidation by Fe- and 

Cu-doped blue TiO2 (Reproduced with permission from Ref. [40]. 
Copyright 2020 Springer-Verlag GmbH Germany); e the structure 
and photocatalytic mechanism of SnO2/TNT (Reproduced with per-
mission from Ref. [26]. Copyright 2018 Elsevier)
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Fig. 4   a Top view of the chloroplast structure; b discontinuous struc-
ture of the distributed semiconductors with carbon-nanotube threads; 
c FT-IR spectra of the sample CT, pure TiO2 and CNT; d the photo-
synthesis mechanism of the chloroplast (left) and the photocatalytic 
NO removal mechanism of the chloroplast structured CNTs–TiO2; e 

time-resolved transient photoluminescence decay profiles of samples 
CT (CNTs/TiO2), f-CT (the completely encapsulated core–shell struc-
ture of CNTs–TiO2), and CT-mx (the mechanical mixing of CNTs 
and TiO2 microspheres); f UV-light-driven photocatalytic NO oxida-
tion performances ( Copyright 2019 The Author(s))
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Ti–O–C = O or Ti–O–C (located at ~ 1120 cm−1) via the 
carboxyl/hydroxyl groups on the surface of CNTs and TiO2 
during the synthesis process (Fig. 4c). As shown in Fig. 4d, 
this catalyst was excited by UV light to produce photon-
generated carriers (e− and h+) in the TiO2 microspheres. 
The generated e− and h+ can be further effectively separated 
through this linear-contact by transferring the electrons from 
TiO2 to a CNT. In that case, several accumulated electrons 
on the CNTs could react with O2 to form a high concentra-
tion of oxidant radicals (·O2

−) that can react with NO. As 
shown in Fig. 4e, f, the CT sample was found to prolong the 
carrier life, with its NO conversion rate under UV irradiation 
being as high as 86% with good reaction stability.

Bi‑Based Inorganic Semiconductors

Bi-based photocatalysts mainly include unary metal Bi-
based compounds, binary metal Bi-based compounds, bis-
muth oxyhalide compounds, bismuth phosphate, bismuth 
vanadate compounds, and bismuth oxycarbonate [27, 42, 
43]. The monometallic Bi-based photocatalysts (Bi2O3 and 
Bi2S3) are the simplest Bi-based compounds, with the band 
gap ranging from 2.00 to 3.96 eV, which can be excited by 
visible light. Lei et al. [43] introduced oxygen vacancies into 
the β-Bi2O3 catalyst; after optimization, under visible light 
irradiation, the photocatalytic NO removal rate of defec-
tive β–Bi2O3 increased from 25.2% to 52.0%. Dong et al. 
[28] prepared two types of Ni-doped Bi2O3 microsphere 
(Ni–Bi2O3–5 and Ni–Bi2O3–2) photocatalysts through a 
one-pot solvothermal method (Fig. 5a–d); the two catalysts 
exhibited much higher photocatalytic activities, 52% and 
35% for Ni–Bi2O3–5 and Ni–Bi2O3–2, respectively, com-
pared to 31% for the pure Bi2O3 sample because the doped 
Ni changed the geometric and electronic structure. In addi-
tion, Ni–Bi2O3–5 showed no obvious activity drop after five 
cycles (Fig. 5e, f).

Besides Bi2O3, Bi2WO6-based semiconductors have also 
been proven as effective photocatalysts for oxidizing NOx 
owing to their special crystal structures [44, 45]. However, 
the photocatalytic activity of traditional 3D Bi2WO6 is not 
satisfactory because of the rapid recombination of elec-
tron–hole pairs, the narrow visible light response range, and 
the low specific surface area resulting in the low exposure 
of active sites. Hu et al. [46] prepared a Z-type heterojunc-
tion of 2D/2D black phosphorus/single layer Bi2WO6 as a 
2D nanosheet catalyst that exhibited high specific surface 
area (Fig. 6a, b), many active sites, and a unique electronic 
structure; this catalyst achieved 67% visible-light catalytic 
activity for removing NO and long-term stability (Fig. 6c, d).

Bismuth oxyhalide, as an important Bi-based semicon-
ductor, possesses excellent optical properties owing to 
its layered structure consisting of a double layer of inter-
laced halogen atoms [Bi2O2]2+. Recently, p-block bismuth 

oxyhalides (BiOX, X = Cl, Br, I) have attracted widespread 
attention because of its unique polar two-dimensional (2D) 
layered crystal structure [47–51]. He et al. [42] designed a 
novel Bi quantum dot (QDS)-injected C-doped BiOCl pho-
tocatalyst (C/BOC/B) that had a NOx removal efficiency 
that reached the maximum value of 53.0% within 8 min, 
with no significant attenuation observed after continuous 
irradiation, indicating the modification of Bi QDS can fur-
ther improve the photocatalytic performance of the C/BOC 
catalyst. Dong et al. [52] prepared BiOCl nanosheets with 
oxygen vacancies by reconstructing hydrophobic BiOCl. 
Because oxygen vacancies possess electron trapping ability 
and promote the separation of light-excited charges, BiOCl 
nanosheets showed enhanced visible light absorption. For 
example, under simulated sunlight, the defective BiOCl 
exhibited a NO removal rate of 38%, which is much higher 
than that of BiOCl (27%), attributed to the increased car-
rier density and charge separation performance. Under 
visible light (≥ 420 nm), the defective BiOCl exhibited 
11% NO removal activity, whereas BiOCl only possessed 
a negligible NO removal rate. This work also revealed the 
correlation between atomic defects and photocatalytic 
performance and provided the inspiration for the design 
and manufacture of photocatalysts. Bismuth phosphate 
(BiPO4) contains acid radical ions, with the oxygen located 
in the acid radical rather than the metal oxygen structure; 
this configuration can greatly promote the separation of 
photogenerated electrons and holes [53]. Thus, BiPO4 
has been widely used for driving photocatalytic reactions. 
Generally, BiPO4 has two crystal structures, hexagonal 
and monorhombic; these crystal structures have differ-
ent light absorption and charge transferability because of 
their distinguished surface atoms arrangements [54–57]. 
Furthermore, the plasmon resonance effect was combined 
with BiPO4 via loading metallic Bi, which can be used 
as an electron donor [58, 59]. Dong et al. [59] observed 
that the deposition of Bi metal on the (102) facet of the 
defective hexagonal BiPO4 (Fig. 7a) resulted in a 51% NO 
removal rate, much higher than that of the Bi metal deco-
rated on the (120) facet of the defective monoclinic BiPO4 
(36%) (Fig. 7b). In addition, with the synergistic effect 
of the surface plasmon resonance effect and phosphoric 
acid defect, a new mechanism for electron transmission 
from [Bi2O2]2+ → Bi metal → PO4

3− was constructed on 
Bi-BiPO4 catalyst (Fig. 7c). B(BiO)2CO3 belongs to the 
Oliviers-related oxide family, with a layered structure of 
Bi2O2 and CO3

2− layers interlaced with each other [22]. 
The interface between the [Bi2O2]2+ and CO3

2− layer can 
promote the separation of light-induced electron–hole 
pairs, thereby improving its quantum efficiency; however, 
the production of NO2 was found to be typically present 
[60]. To address this problem, Huang et al. [61] synthe-
sized Bi/Bi2O2−xCO3 nanosheets with abundant oxygen 
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vacancies on the surface. The removal rate of NO for these 
nanosheets under visible light was found to be as high as 
51%, and the selectivity for NO3

− was found to reach up 
to 98% (Fig. 7d, e). With the Bi plasma resonance, hydro-
gen peroxide was generated through two electrons path on 

this catalyst; thus, the generation of NO2 was inhibited. 
Furthermore, the oxygen vacancies between the Bi–O lay-
ers acted as an electron transfer channel between Bi and 
Bi2O2−xCO3, improving the separation rate of photogen-
erated carriers and thus, the photocatalytic efficiency.

Fig. 5   SEM images of a undoped Bi2O3; b Ni-Bi2O3-2, and c Ni-
Bi2O3-5; d schematic illustration of the proposed formation mecha-
nism of Ni-Bi2O3 microspheres; e photocatalytic performances of 

Bi2O3, Ni-Bi2O3-2, and Ni-Bi2O3-5; f multiple photocatalytic reaction 
over Ni-Bi2O3-5 ( Reproduced with permission from Ref. [28]. Copy-
right 2017 American Chemical Society)
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Graphite‑Phase Carbon Nitride and Its Complex

Graphite-phase carbon nitride (g-C3N4) is a nonmetal-
lic, polymer semiconductor photocatalytic catalyst that 
has many advantages, including small band gap width of 
2.7 eV, visible light photocatalytic activity, low cost, good 
acid and alkali corrosion resistance, and excellent chemi-
cal and thermal stabilities [20, 29, 62–64]. However, the 
low separation efficiency of photogenerated electron–hole 
pairs and poor visible-light utilization efficiency of g-C3N4 
limit its applications in PC [65]. Studies have revealed 
that the photocatalytic activity of g-C3N4 toward removing 
low-concentration NOx can achieve very high efficiency 
through elemental doping [66], loading precious metals 
[67], or morphology tuning [68]. For example, Zhou et al. 
[69] modified g-C3N4 by Sr embedding, Sr replacing N 
atoms, and Sr filling holes; all these Sr-doped catalysts 
reduced the band gap of g-C3N4 and thus improved the 
NO removal efficiency under visible light, and effectively 
inhibited the production of NO2. More specifically, the 
multisite doping of Sr could improve the NO removal rate 
by 1.5 times while reducing the conversion rate of NO2 

from 63% to 16%. Zhang et al. [70] developed a simple and 
efficient molecular/solid hybrid photocatalyst composed of 
noble metal (such as AuIII, PtIV, and PdII) chlorides, and 
mesoporous graphite carbon nitride (mpg-CN). Adding 
PdCl2 improved the photocatalytic ability of mpg-CN and 
increased the efficiency from 32% to 65% for the photocat-
alytic removal of 1000 ppb of NO. Li et al. [64] reported 
a C3N4 supported Pd nanoparticles catalyst (PdCN) for 
photocatalytic oxidation of NOx; this PdCN was found to 
have a better purification effect on NO in the air, reaching 
a maximum of 51.5% in the first 5 min, followed by sta-
bilization at 44.9%. Yang et al. [71] successfully synthe-
sized a g-C3N4/melamine sponge (g-C3N4/MS) using the 
ultrasonic coating method with g-C3N4 uniform dispersion 
and immobilization on the melamine skeleton (Fig. 8a–d). 
The g-C3N4/MS composite still possessed the porous 
structure of MS, and its specific surface area was much 
larger than that of the photocatalyst in powder form. In 
that case, g-C3N4/MS exposed more active sites, enhanced 
visible light absorption, and enhanced separation of pho-
togenerated carriers; the NO removal rate reached 79% in 
the first 5 min under visible-light irradiation, which was 

Fig. 6   SEM images of a MBWO (monolayer Bi2WO6) nanosheets; b 
12% BP/MBWO (black phosphorus and monolayer Bi2WO6) hetero-
junctions; c the relevant photocatalytic NO removal rates; d multiple 

cycles of photocatalytic reactions over 12% BP/MBWO ( Reproduced 
with permission from Ref. [46]. Copyright 1999–2021 John Wiley & 
Sons, Inc.)



304	 S. Li et al.

1 3

Fig. 7   a HRTEM image of Bi-HBPO-102; b HRTEM image of Bi-
MBPO-120 ( Reproduced with permission from Ref. [59]. Copy-
right 2018 Elsevier); c proposed photocatalytic  mechanism on 
Bi-HBPO-102 and Bi-MBPO-120; d photocatalytic NO removal effi-

ciencies (C/C0) of as-prepared samples; e NO, NOx  conversion and 
NO2 selectivity obtained for catalysts subjected to 30 min irradiation 
(Reproduced with permission from Ref. [61]. Copyright 2019 Else-
vier)

Fig. 8   TEM images of samples: a g-C3N4; b sonicated g-C3N4; SEM images of c MS and d g-C3N4/MS; e NO removal ratios of various samples 
( Reproduced with permission from Ref. [71]. Copyright 2018 The Author(s))
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approximately 4.5 times that of the powder g-C3N4 (18%), 
whereas the original MS did not work for the removal of 
NO (Fig. 8e).

In addition, the photocatalytic activity of g-C3N4 can be 
significantly improved by the introduction of defects [72]. 
Wang et al. [73] prepared g-C3N4 microtubes with adjust-
able N vacancy concentration using the in situ soft chemical 
method (Fig. 9a, b). They found the surface N-vacancies not 
only acted as the specific sites for the adsorption, activa-
tion of the reactants, and photoinduced electron capture but 
also enhanced the light absorption capacity of g-C3N4, both 
of which increased the photocatalytic removal efficiency of 
NO. Under visible-light irradiation, the NO removal rate 
of CNT-12 was found to reach 33%, which was maintained 
after five runs (Fig. 9c, d).

Liao et al. [74] also introduced nitrogen defects into the 
framework of g-C3N4 by heating the material in powder 
form in a hydrogen atmosphere; the NO removal rate on this 
catalyst was 2.6 times that of the original one because of its 

much narrower band gap, which can promote the separation 
of photoexcited charge carriers and generate active oxygen 
more efficiently under visible-light irradiation. In addition, 
Ma et al. [75] reported that the combination of metal oxides 
could improve the specific surface area of g-C3N4 and pro-
mote the separation of photogenerated electrons and holes, 
and thus, improve its photocatalytic activity. They prepared 
g-C3N4–TiO2 composites using commercial P25 and mela-
mine as precursors through a simple calcination route and 
found the interface interaction between g-C3N4 and TiO2 
increased the separation efficiency of photogenerated elec-
trons and holes and generated more active species. Tian 
et al. [76] also used a hybrid calcination method to build a 
g-C3N4/Bi4O5I2 2D–2D heterojunction nanosheet photocata-
lyst that showed an enhanced photocatalytic activity of NO 
removal (with the rate of 51% after 30 min of irradiation) 
compared with the original g-C3N4 and Bi4O5I2 under visible 
light (λ ≥ 420 nm) because of the promoted separation and 
transfer of photogenerated electron–hole pairs.

Fig. 9   Calculated electron density difference (EDD) diagrams of 
g-C3N4 a and N2c-deficient g-C3N4 b; visible-light photocatalytic 
activities of CN, CNT-8, CNT-12, and CNT-16 toward NO removal 

in air c; cycling of CNT-12 during NO removal d ( Reproduced with 
permission from Ref. [73]. Copyright 2019 American Chemical Soci-
ety)
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MOFs

Extensive strategies have been devoted to enhancing the 
activities of traditional photocatalysts toward the oxidation 
of NOx, especially for photoexcitation in the visible-light 
spectral region, including the introduction of heteroatoms, 
the creation of vacancies (such as O vacancies and N vacan-
cies) [77], metal plasmon resonance [78], and combination 
of dyes (PI-g-C3N4) [79]. However, these catalysts still face 
many shortcomings, such as the small surface area, limited 
gas adsorption capacity, low catalytic activity, and easy 
inactivation. Furthermore, NO2, a chemical more toxic than 
NO, can easily accumulate at the surface of these catalysts. 
The MOFs, formed by connecting inorganic metal oxygen 
clusters as nodes with organic ligands, usually have super 
large surface areas, and thus, possess high gas adsorption 
capacities. For example, Yang et al. [80, 81] found that the 
Manchester Framework Materials (MFM-520 and MFM-
300(Al)) exhibited a high adsorption capacity of 4.2 mmol/g 
(298 K, 0.01 bar) and 14.1 mmol/g, respectively, for NO2 
uptake under environmental conditions. Moreover, MFM-
300(Al) showed a highly selective removal of gas mixtures 
at low concentrations of NO2 (1–5000 ppm). Such superior-
ity offered MOFs with promise for use in the photocatalytic 
oxidation of NOx [82–86]. In 2015, Zhang et al. [30] syn-
thesized the MOF-like material Ag@NH2-MOP(Ti) using 
the microwave-assisted method; that photocatalyst showed 
excellent photocatalytic activity for oxidizing NO gas, with 
two times higher activity than that of N-doped TiO2. In 2018, 
Zhang et al. [87] further reported the use of the microwave 
method to produce a new photocatalyst, GO/NH2–MIL-
125, with high crystalline monodisperse NH2–MIL-125 
on the surface of graphene. The strong interaction between 

MOFs and graphene not only enhances its visible-light 
absorption but also improves the separation efficiency of 
photogenerated electrons/holes; thus, the NOx removal rate 
on this catalyst can reach 50% under visible-light irradia-
tion (λ ≥ 420 nm). In addition, Zhang et al. [88] found that 
the Cu species with mixed valence states in NH2–UIO-66 
constructed a new ligand-linker metal Cu charge transfer 
pathway (LMCT), allowing electrons to be transferred from 
the organic linker to the Cu center (Fig. 10a). This novel 
electron transfer pathway prolonged the life of photogen-
erated electrons under visible light, making the activity of 
this catalyst as high as 88% and inhibiting the production of 
NO2. In addition, these catalysts showed excellent stability 
(Fig. 10b).

Photoelectrocatalysis Routes for Removing 
NOx

Compared with the traditional NOx treatment process, the 
PC route has received extensive attention in the field of 
environmental purification because of its strong oxidation 
ability, low cost, and environmental friendliness [89–91]. 
However, the difficult separation and rapid recombination 
of photogenerated holes and electrons lead to the low NO 
conversion rate, poor stability, and the production of more 
toxic NO2 sometimes, all of which restrict its applications 
for NOx removal [92]. In 1972, Fujishima and Honda [93] 
coated N-type semiconductor TiO2 onto the electrode and 
achieved good water decomposition ability under the syn-
ergistic action of an external voltage. Subsequently, photo-
electrocatalysis attracted widespread attention [94] and has 
proved effective for the removal of organic pollutants [93], 

Fig. 10   a The proposed mechanism for photocatalytic NO oxidation 
in the gas phase of CuNU7 (Cu–NH2–UiO-66(Zr)); b the durability 
test of CuNU7 and Cu-NU0 (NH2–UIO-66) for the photocatalytic 

oxidation of NO ( Reproduced with permission from Ref. [88]. Copy-
right 2020 Elsevier)
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CO2 reduction [95, 96], and hydrogen or H2O2 production 
[97, 98]. The introduction of bias voltage into the working 
system can further improve the performance of the photo-
catalytic reaction because of the efficient transfer of pho-
togenerated carriers. However, the photocatalyst in powder 
form cannot be easily recovered and is easy to scatter and 
be inhaled by the human body, among other shortcomings. 
Coating photocatalysts onto the electrodes can overcome 
such shortcomings of powder catalysts [99]. Presently, most 
photoelectrocatalytic reactions have been conducted in the 
liquid phase; thus, introducing an appropriate conductive 
medium restricts its application to gas phase reaction. Zhang 
et al. [92, 100] established a reasonable photoelectrocatalytic 
system to serve as the gas–solid phase reactor for remov-
ing NO indoor gas. In 2019, Zhang et al. [92] reported an 
efficient PEC system for the treatment of NOx through coat-
ing TiO2-nanoribbon/carbon-nanotube composites onto a 

stainless-steel mesh as the photoelectrode. In this system, 
carbon nanotubes enhanced the interaction between TiO2 
and the stainless-steel skeleton, and thus, accelerated the 
transfer of photoelectrons to the auxiliary electrolytic cell for 
reduction reaction. Therefore, under ultraviolet irradiation, 
this PEC system can remove indoor NO gas (550 ppb) at a 
rate of more than 60%, with a high selectivity to nitrate. As 
shown in Fig. 11a, the photogenerated electrons quickly sep-
arated from the holes and transferred to the counter electrode 
(Pt), thereby allowing the photogenerated holes to oxidize 
NO molecules on the stainless-steel electrode under light 
irradiation at a small bias voltage. Such a PEC reactor was 
approved for use to effectively remove dry or wet NO; a trace 
amount of water can increase its efficiency [92]. However, 
the resistance at the interfaces between the catalysts and the 
substrate also affected the NOx removal efficiency because 
the high resistance often required a large bias voltage to 

Fig. 11   Schematic illustration of the possible PEC mechanism of 
CT-25 for the oxidation of NO a ( Reproduced with permission from 
Ref. [92]. Copyright 2019 American Chemical Society); and the PC 
principle of TiO2 nano-arrays b; c reaction profiles of the PEC NO 
oxidation on TF190 (TiO2 is synthesized at 190  °C) with different 

bias voltages under UV light (8 × 4 W LED, 365 nm) irradiation; d 
dependence of ln (C/C0) on irradiation time (Reproduced with per-
mission from Ref. [100]. Copyright 2020 American Chemical Soci-
ety)
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overcome [101]. To solve the resistance problems, Zhang 
et al. [100] used FTO glass to act as microwave antennae 
and generated local superhot spots under microwave condi-
tions (Fig. 11b). In that case, the titanium oxide nanoarray 
was grown in situ onto FTO glass, thus, solving the problem 
of insufficient interface contact and large resistance. At low 
bias voltage (0.3 V), the prepared photoanode had the opti-
mal kinetic constants and the oxidation removal rate of 80% 
for NO (550 ppb) under illumination (Fig. 11c, d); this rate 
is much higher than that of the traditional PC process. Con-
sidering the symbiosis between photogenerated electrons 
and holes, the decoupling mechanism of the photogenerated 
carrier effect should be studied to solve the above key sci-
entific problems. Therefore, our decoupling strategy is to 
introduce an external electric field to quickly transfer the 
photogenerated electrons to the counter electrode; this is the 
basis for the design of the gas-phase photoelectrocatalytic 
oxidation of NO. We found that the photoelectron transfer-
ability can be effectively regulated by adjusting the voltage 
of the external electric field. When the voltage was increased 
from 0 to 0.3 V, the nitric oxide removal efficiency signifi-
cantly increased from 58% to 83% (Fig. 11c). To identify the 
above promotion mechanism, our strategy was to eliminate 
the effect of OH by introducing a dry gas into the reaction 
chamber. Hydrogen peroxide was added to the electrolyte 
as an electron sacrifice agent to annihilate the electrons so 
that the photogenerated electrons can be transferred to the 
external circuit faster to increase the concentration of holes.

Higher hole concentration in the gas-phase photoelectric 
process is beneficial to the formation of NO3

− (Fig. 12a), 
indicating that the hole concentration is crucial for the 

removal of nitric oxide because, with the increase in hole 
concentration, the rate constant of nitric oxide removal sig-
nificantly increases (Fig. 12b). However, with the prolonga-
tion of reaction time, the production rate of NO2 gradually 
increased (Fig. 12c). To address this challenge, H2O was 
introduced into the gas–solid phase photoelectric NO oxi-
dation process to demonstrate the catalytic effect of H2O. 
The NO2 production rate was significantly reduced in H2O 
(Fig. 12c). This reduction occurred because the existence 
of H2O is conducive to the generation of OH so that the 
generation of O2− is inhibited, thereby promoting the main 
NO3

− reaction [77, 102]. Furthermore, the removal effi-
ciency of NO significantly improved in H2O compared with 
that in the absence of H2O, indicating that there is a signifi-
cant synergistic effect between the hydroxyl radical and hole 
concentration for inhibiting the generation of NO2 in the 
gas–solid phase photoelectric NO oxidation.

Conclusion and Future Outlook

With the continuous NOx emissions from the activities of 
human beings, the development of methods to efficiently 
eliminate low-concentration NOx is of growing importance. 
The photocatalytic oxidation of NOx has been proved to be 
an effective method in recent years, and extensive efforts 
have been devoted to developing highly efficient photocata-
lysts. In this review, we described the mechanism of photo-
catalytic oxidation of NOx and analyzed the key factors for 
developing highly active photocatalysts. The recent progress 
on the development of photocatalysts was summarized based 

Fig. 12   a PEC oxidation of NO for TF190 under UV light irradiation 
with a 0.3 V bias voltage (70% RH NO, dry NO, 70% RH NO-0.40 M 
H2O2, dry NO-0.40 M H2O2), b dependence of ln(C/C0) on irradia-

tion time, and c dependence of NO2 formation on irradiation time  
( R  eproduced with permission from Ref. [100]. Copyright 2020 
American Chemical Society)
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on the categories of oxide inorganic semiconductors, Bi-
based inorganic semiconductors, the g-C3N4 system, and 
MOFs. With the application of external voltage, the pho-
toelectrocatalytic oxidation of NOx, in general, possesses 
higher NOx removal efficiency than PC alone; recent pro-
gress in its development was also reviewed. The research 
progress of both photocatalytic and photoelectrocatalytic 
technology was reviewed, and the photocatalytic oxidation 
and photoelectrocatalytic oxidation mechanisms of NOx 
were elucidated in detail. The modification and processing 
of inorganic photocatalysts, the design of new MOF photo-
catalysts, and the development of photoanode materials and 
photoelectrocatalytic reaction devices will become impor-
tant research subjects in the future.

Currently, the photocatalytic oxidation of NOx can only 
be driven by UV or visible light; longer wavelength light 
(infrared light or far-infrared light) cannot be used for driv-
ing the NO oxidation process. In the future, designing highly 
active longer-wavelength light-driving photocatalysts or 
active layers of photoanodes for oxidizing NOx will be of 
great significance. In addition, achieving the synergistic 
degradation of NOx, O3, and VOCs in the case of complex 
atmospheric conditions is vital. This synergy will also play 
an important role in promoting the large-scale environmental 
application of indoor air pollution control and air purifica-
tion filters in the future.
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