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Abstract
The photocatalytic reduction of CO2 is a promising strategy to generate chemical fuels. However, this reaction usually suf-
fers from low photoactivity because of insufficient light absorption and rapid charge recombination. Defect engineering has 
become an effective approach to improve the photocatalytic activity. Herein, ultra-thin (~ 4.1 nm) carbon-doped Bi2WO6 
nanosheets were prepared via hydrothermal treatment followed by calcination. The ultra-thin nanosheet structure of the cata-
lyst not only provides more active sites but also shortens the diffusion distance of charge carriers, thereby suppressing charge 
recombination. Moreover, carbon doping could successfully extend the light absorption range of the catalyst and remarkably 
promote charge separation, thus inhibiting recombination. As a result, the as-prepared Bi2WO6 photocatalyst with ultra-thin 
nanosheet structure and carbon doping exhibits enhanced photocatalytic CO2 reduction performance, which is twice that of 
pristine ultra-thin Bi2WO6 nanosheet. This study highlights the importance of defect engineering in photocatalytic energy 
conversion and provides new insights for fabricating efficient photocatalysts.
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Introduction

The massive consumption of fossil fuels over the last several 
decades has led to the energy crisis and global warming [1, 
2]. The photocatalytic conversion of CO2 into chemical fuels 
is widely believed to be a very promising approach to solve 
energy and environmental problems [3–8]. Although several 
photocatalysts, including CdS [9], TiO2 [10], ZnIn2S4 [11], 
and polymeric carbon nitride [12, 13], have been explored, 
the serious recombination of photogenerated charge carri-
ers in these materials limits their photocatalytic efficiency 
[14, 15].

Bismuth tungstate (Bi2WO6), the simplest among the 
Aurivillius oxides, has attracted great attention on account 
of its layered structure, non-toxicity, and chemical stabil-
ity [16, 17]. Despite these advantages, however, pristine 
Bi2WO6 exhibits only moderate photocatalytic CO2 activ-
ity because of extensive charge recombination. Therefore, 

various strategies, including morphology design [18], het-
eroatom doping [19, 20], heterojunction construction [21, 
22], and coupling with cocatalysts [23], have been devel-
oped to enhance the photocatalytic CO2 reduction activity. 
Studies have confirmed that heteroatom doping is an effec-
tive approach to enhance the photocatalytic performance of 
Bi2WO6.

Herein, we propose a facile hydrothermal and calcina-
tion method to prepare ultra-thin carbon-doped Bi2WO6 
nanosheets (Bi2WO6s) with improved photocatalytic CO2 
reduction activity. The thickness of the C-doped Bi2WO6 
nanosheets (C-Bi2WO6s) is within ~ 4.1 nm. Carbon doping 
not only successfully extended the light absorption range of 
the nanosheet but also greatly promoted charge separation, 
thereby inhibited recombination. The ultra-thin Bi2WO6 
nanosheet exhibited relatively high CO2 photoreduction per-
formance as a result of its increased active sites and excellent 
charge separation.
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Experimental

Preparation of C‑Bi2WO6s

C-Bi2WO6s were prepared by a facile hydrother-
mal and calcination method. In brief, 0.5  mmol of 
Na2WO4·2H2O and 0.025 g of hexadecyltrimethylammo-
nium bromide (CTAB) were added to 40 mL of deion-
ized water and mixed to obtain a solution. Then, 1 mmol 
of Bi(NO3)3·5H2O was added to the above solution, and 
the suspension was magnetically stirred for 60 min. The 
suspension was poured into a 50 mL Teflon-lined auto-
clave and hydrothermally treated at 120 °C for 24 h. The 
reactor was cooled to room temperature naturally, and the 
obtained sample was collected, washed three times with 
deionized water, and then dried at 60 °C in a vacuum oven 
for 12 h. The dry powder was placed in a tube furnace 
and calcined in a nitrogen gas atmosphere at 350 °C for 
1 h with a heating rate of 3 °C/min. Finally, the obtained 
powder was denoted as C-Bi2WO6s. Carbon doping was 

realized by the carbonization of long carbon links in the 
residual CTAB.

Results and Discussion

Structure and Morphology

The X-ray diffraction (XRD) patterns of bulk Bi2WO6, pris-
tine Bi2WO6s, and C-Bi2WO6s are shown in Fig. 1. The 
diffraction peaks of the samples could be indexed to those 
of orthorhombic Bi2WO6 (JCPDS Card No. 73–2020) [16]. 
No diffraction peaks assigned to carbon were observed in 
the XRD patterns, thus suggesting the high dispersibility 
of the element [24]. Compared with those of bulk Bi2WO6 
and Bi2WO6s, the diffraction angles of C-Bi2WO6s showed 
no changes, thereby indicating that carbon doping does not 
change the crystalline phase of Bi2WO6 [25]. The XRD 
peaks of Bi2WO6s and C-Bi2WO6s were weaker and broader 
compared with those of bulk Bi2WO6, which could be attrib-
uted to the thinner layered structure of sheet-like Bi2WO6 
[23]. According to the Scherrer equation, a smaller grain 
size results in broader XRD peaks.

Field emission scanning electron microscopy (Fig. 2) and 
transmission electron microscopy (TEM; Fig. 3) were per-
formed to investigate the microstructures of the samples. 
Interestingly, compared with bulk Bi2WO6, both Bi2WO6s 
and C-Bi2WO6s showed ultra-thin nanosheet structures, but 
the latter has small deformation, which could be attributed to 
the calcination treatment. Furthermore, this nanosheet-like 
structure of the samples was further confirmed by TEM and 
atomic force microscopy (AFM). The TEM micrographs in 
Fig. 3a and b reveal nearly transparent features, which sug-
gests an ultra-thin nanosheet structure. The high-resolution 
TEM micrographs also demonstrated marked interplanar 
spacings of (200) and (020) planes, which correspond to 
the orientation of the Bi2WO6 nanosheet along the [001] 
projection [17]. The AFM image of C-Bi2WO6s shown in 
Fig. 3c reveals an average nanosheet thickness of ~ 4.1 nm, Fig. 1   XRD patterns of bulk Bi2WO6, Bi2WO6s, and C-Bi2WO6s

Fig. 2   Field emission scanning electron micrographs of a bulk Bi2WO6, b Bi2WO6s, and c C-Bi2WO6s
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Fig. 3   Transmission electron and high-resolution transmission electron micrographs of a Bi2WO6s and b C-Bi2WO6s. c Atomic force micro-
scopic image of C-Bi2WO6s
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which corresponds to approximately three layers of Bi2WO6. 
These results demonstrate the intercalation of CTAB during 
the formation of the ultra-thin Bi2WO6 nanosheets. As a long 
carbon chain surfactant, CTAB could intercalate into the 
interlayers of Bi2WO6, thereby inducing the formation of 
ultra-thin Bi2WO6 nanosheets. Such an ultra-thin nanosheet 
structure could increase the availability of active sites and 
shorten the migration distance of charge carriers, thereby 
achieving effective charge separation [16, 26].

Energy-dispersive spectrometry (EDS) and elemental 
mapping were conducted to clarify the elemental composi-
tion of the C-Bi2WO6s catalyst. The EDS spectrum provided 
in Fig. 4 demonstrates that the elements Bi, W, C, and O are 
uniformly distributed in the C-Bi2WO6s catalyst. To fur-
ther clarify the carbon content in the C-Bi2WO6s catalyst, C 

elemental analysis was carried out using an elemental ana-
lyzer. The elemental analysis result revealed that the atomic 
composition of C was about 0.36%.

X‑Ray Photoelectron Spectroscopic Analysis

X-ray photoelectron spectroscopy (XPS) was performed 
on Bi2WO6s and C-Bi2WO6s, as shown in Fig. 5, to con-
firm the successful doping of carbon into Bi2WO6s. The 
survey XPS spectra confirmed the existence of Bi, W, O, 
and C in Bi2WO6s and C-Bi2WO6s. The high-resolution 
spectrum of Bi could be fitted to two peaks at 164.26 
and 158.96 eV, which, respectively, correspond to Bi 4f5/2 
and Bi 4f7/2 in Bi3+ [27]. After carbon doping, the bind-
ing energy of Bi shifted toward higher energy, thereby 

Fig. 4   a Field emission scan-
ning electron micrograph and b 
corresponding EDS spectrum 
of C-Bi2WO6s. Elemental map-
pings of C-Bi2WO6s: c Bi, d W, 
e C, and f O
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indicating the presence of Bi–C interactions. The binding 
energies of W at 37.36 and 35.26 eV in the XPS spectrum 
of Bi2WO6s correspond to the W6+ oxidation state. The 
binding energy of W also shifted toward higher binding 
energy, thus suggesting the successful doping of C. The 
binding energy of O in Bi2WO6s could be fitted to two 
peaks at 529.9 and 531.51 eV, which correspond to Bi–O 
and W–O, respectively. The binding energy of O 1s in 
C-Bi2WO6s slightly shifted, and the peak at 533.06 eV 
could be attributed to physically adsorbed water. The 
binding energy shifts of Bi, W, and O reflect strong 
interactions between Bi2WO6 and C [27, 28]. The binding 
energies of C 1s centered at 284.8, 286.3, and 288.8 eV 
could be assigned to C–C sp2-hybridized carbon on sur-
face, C–O, and COO bonds, respectively, thus indicat-
ing that carbon was successfully doped into the Bi2WO6 
nanosheets.

N2 Adsorption–Desorption Isotherms

The curves of all Bi2WO6 samples were classified as type 
IV isotherms according to the Brunauer–Deming–Dem-
ing–Teller classification (Fig. 6) [29]. Moreover, the curves 
of all Bi2WO6 samples showed a type H3 hysteresis loop, 
suggests that slit-like pores formed due to the stacking 
and aggregation of plate-like particles, which is in agree-
ment with the sheet-like morphology of Bi2WO6. The 
pore size distribution curves confirm the presence of 
mesopores and macropores in the Bi2WO6 samples. The 
Brunauer–Emmett–Teller (BET) surface areas of bulk 
Bi2WO6, Bi2WO6s, and C-Bi2WO6s were measured to be 
15.5, 43.8, and 42.7 m2/g, respectively. Compared with that 
of Bi2WO6s, the specific surface area of C-Bi2WO6s showed 
no obvious change, thus suggesting that the microstructure 
of Bi2WO6s is well preserved after carbon doping by thermal 

Fig. 5   a X-ray photoelec-
tron survey (XPS) spectra of 
Bi2WO6s and C-Bi2WO6s. 
High-resolution XPS spectra 
of b Bi 4f, c W 4f, d O 1 s, 
and e C1s of Bi2WO6s and 
C-Bi2WO6s
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treatment. These results collectively confirm the formation 
of ultra-thin nanosheet structures, which increase the BET 
surface area of the material and provide more active sites for 
greater photocatalytic activity.

CO2 Adsorption

The CO2 adsorption curves of the samples were measured 
and are shown in Fig. 7. Bi2WO6s and C-Bi2WO6s show 
similar CO2 adsorption performance, which is 4 times higher 
than that of the bulk Bi2WO6. This enhanced CO2 adsorp-
tion ability is mainly attributed to large specific surface area 
[16, 30]. The comparable CO2 adsorption capacity of the 
two nanosheet samples indicated that carbon doping does 

not significantly change the catalyst microstructure, which 
is consistent with the N2 adsorption–desorption results. 
Enhancements in CO2 adsorption capacity can reinforce 
the photocatalytic CO2 reduction activity of the prepared 
materials [31].

UV–Visible Diffuse Reflectance Spectra

Figure 8 shows the UV–Vis absorption spectra of bulk 
Bi2WO6, Bi2WO6s, and C-Bi2WO6s. The absorption edge of 
bulk Bi2WO6 was approximately 430 nm, which corresponds 
to a band gap of 2.88 eV. Moreover, the absorption edge 
of Bi2WO6s was blue-shifted compared with that of bulk 
Bi2WO6 because of the quantum size effect [32]. Compared 
with that of Bi2WO6s, the absorption edge of C-Bi2WO6s 
was red-shifted, thereby indicating uniform carbon dop-
ing. Extension of the absorption tail was also observed in 
C-Bi2WO6s, which suggests that doping-related mid-gap 
states are generated and that these states regulate the band 
structure of Bi2WO6s. C-Bi2WO6s showed enhanced light 
absorption in the full-range visible-light region, which 
implies that, besides the lattice, carbon is also doped on the 
surface of Bi2WO6. These results indicate that carbon dop-
ing could reduce the band gap of Bi2WO6 nanosheets and 
enhance their light absorption [33].

Mott–Schottky Curves and Band Structure

Mott–Schottky plots were constructed, as shown in 
Fig. 9a–c, to confirm the band structures of the samples. 
All of the samples are typical n-type semiconductors, as 
evidenced by their positive slopes [34]. The flat-band 
potentials of bulk Bi2WO6, Bi2WO6s, and C-Bi2WO6s 
were − 1.08, − 1.30, and − 1.11 V (vs. Ag/AgCl, pH = 7), 

Fig. 6   N2 adsorption–desorption isotherms of bulk Bi2WO6, 
Bi2WO6s, and C-Bi2WO6s and the corresponding pore-size distribu-
tion curves

Fig. 7   CO2 adsorption isotherms of bulk Bi2WO6, Bi2WO6s, and 
C-Bi2WO6s Fig. 8   UV–Vis absorption spectra of the prepared samples
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respectively. A more negative conduction band (CB) com-
pared with that of bulk Bi2WO6 implies that the reduction 
ability of electrons is enhanced [35]. The more positive CB 
potential of C-Bi2WO6s compared with that of Bi2WO6s may 
be attributed to carbon doping [36]. The corresponding band 
structures of bulk Bi2WO6, Bi2WO6s, and C-Bi2WO6s are 
shown in Fig. 9d. The CB of the Bi2WO6 photocatalyst was 
more negative than the potential of the CO2/reduced-product 
redox couple and, thus, could provide sufficient driving force 
for CO2 reduction [33, 37, 38].

Photocatalytic CO2 Reduction and In‑Situ FTIR 
Analysis

The photocatalytic CO2 reduction performance of all 
samples was measured under full-spectrum irradiation. 
As shown in Fig. 10, the generation rates of CH3OH and 
C2H5OH for Bi2WO6s were remarkably enhanced by approx-
imately 4.7 and 3.0 times, respectively, compared with those 
of bulk Bi2WO6. Compared with that of Bi2WO6s, the pho-
tocatalytic CO2 reduction activity of C-Bi2WO6s was further 
improved, and the corresponding generation rates of CH3OH 
and C2H5OH were 1.15 and 0.65 μmol/(g·h), respectively. 

Fig. 9   Mott–Schottky plots of a 
bulk Bi2WO6, b Bi2WO6s, and c 
C-Bi2WO6s. d Band structures 
of the samples

Fig. 10   Photocatalytic CO2 reduction performance of bulk Bi2WO6, 
Bi2WO6s, and C-Bi2WO6s

Fig. 11   In-situ FTIR spectra of C-Bi2WO6s
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This photocatalytic performance is comparable with those 
of other bismuth-based photocatalysts (Table S1).

The photocatalytic reduction of CO2 over C-Bi2WO6s 
was investigated by in-situ Fourier transform infrared 
(FTIR) spectroscopy. As shown in Fig. 11, the peak at 
1648 cm−1 can be attributed to H2O [39]. The peaks at 
1684, 1670, 1662, 1575, 1559, and 1256  cm−1 can be 
attributed to carboxylate (CO2

−) [39–42]. The peaks at 
1696, 1636, 1623, 1617, 1458, 1449, 1436, 1406, 1397, 
and 1227 cm−1 are ascribed to bicarbonate (HCO3

−) [39, 
40, 42–46]. The peaks at 1654, 1361, 1340, and 1318 cm−1 
refer to bidentate carbonate (b-CO3

2−) [40, 43, 46]. The 
peaks at 1569, 1541, 1532, 1522, 1508, 1498, 1488, 1474, 
1466, and 1388 cm−1 are attributed to monodentate car-
bonate (m-CO3

2−) [39–41, 43, 47–49]. After light irradia-
tion, a number of new peaks were observed. The peaks 
at 1375 and 1318 cm−1 are assigned to formate [50]. The 
peak at 1419 cm−1 is related to formaldehyde (HCHO) 
[35], and the peak at 1162 cm−1 is ascribed to methoxyl 
groups (CH3OH) [31, 51]. The presence of these peaks, 
which indicate intermediate products, reveals that CO2 
conversion over C-Bi2WO6s is a multi-electron reduction 
process.

Mechanism of Photocatalytic Performance 
Enhancement

The charge transfer and separation dynamics of bulk 
Bi2WO6, Bi2WO6s, and C-Bi2WO6s were studied by tran-
sient photocurrent response analysis and electrochemical 
impedance spectroscopy (EIS). The photocurrent intensity 
of C-Bi2WO6s was larger than those of bulk Bi2WO6 and 
Bi2WO6s (Fig. 12a), suggesting the best electron transfer 
efficiency and lowest charge carrier recombination rate of 
C-Bi2WO6s sample [52]. Anodic spikes were observed in all 
samples when the light was switched on because of the sepa-
ration of photogenerated electrons and holes at the interface 

of Bi2WO6/electrolyte. A decrease in photocurrent was sub-
sequently observed, because photogenerated holes tend to 
recombine with electrons instead of undergoing capture by 
reduced species in the electrolyte. The EIS Nyquist plots 
of all samples were also obtained, as shown in Fig. 12b. A 
smaller semicircular radius usually indicates lower charge-
transfer resistance. Among the samples studied, C-Bi2WO6s 
showed the smallest arc radius, which suggests that charge 
transfer occurs fastest in this sample.

Conclusions

In summary, ultra-thin (~ 4.1 nm) carbon-doped Bi2WO6 
nanosheets were prepared by a simple hydrothermal treat-
ment and calcination method. The prepared Bi2WO6 
nanosheets exhibited twofold enhanced photocatalytic activ-
ity for CO2 reduction compared with that of pristine ultra-
thin Bi2WO6 nanosheets. This enhancement was attributed 
to the ultra-thin nanosheet structure and carbon doping. An 
ultra-thin nanosheet structure provides more active sites and 
shortens the diffusion distance of charge carriers, thereby 
suppressing charge recombination. Carbon doping extends 
the light absorption ability of the catalyst and promotes 
charge separation. This work highlights the importance of 
defect engineering in photocatalytic energy conversion and 
provides new insights for fabricating efficient two-dimen-
sional photocatalysts.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s12209-​021-​00289-5.
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