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Abstract
Cell cryopreservation has evolved as an important technology required for supporting various cell-based applications, such 
as stem cell therapy, tissue engineering, and assisted reproduction. Recent times have witnessed an increase in the clinical 
demand of these applications, requiring urgent improvements in cell cryopreservation. However, cryopreservation technol-
ogy suffers from the issues of low cryopreservation efficiency and cryoprotectant (CPA) toxicity. Application of advanced 
biotechnology tools can significantly improve post-thaw cell survival and reduce or even eliminate the use of organic solvent 
CPAs, thus promoting the development of cryopreservation. Herein, based on the different cryopreservation mechanisms 
available, we provide an overview of the applications and achievements of various biotechnology tools used in cell cryo-
preservation, including trehalose delivery, hydrogel-based cell encapsulation technique, droplet-based cell printing, and 
nanowarming, and also discuss the associated challenges and perspectives for future development.

Keywords  Cell cryopreservation · Biotechnology · Trehalose delivery · Hydrogel-based cell encapsulation · Droplet-based 
cell printing · Nanowarming

Introduction

Cell cryopreservation is a technology used to preserve living 
cells, while maintaining their cellular viability and func-
tions even at cryogenic temperatures (usually at − 80 °C 
or − 196 °C). At such ultra-low temperatures, the chemi-
cal, biological, and physical processes normally occurring 
at cellular level can remain suspended for a long time. In 
recent times, cell cryopreservation has become an important 
supporting technology for various cell-based applications 
such as stem cell therapy, tissue engineering, assisted human 
reproduction, and transfusion medicine [1]. The importance 

of cryopreservation technology is correctly reflected by the 
burgeoning demand of stem cell therapy, owing to which 
approximately 400,000 units of umbilical cord blood have 
been stored worldwide for public use and 900,000 units for 
private use [2]. As per the report of Stem Cell Banking Mar-
ket, the global stem cell banking market had a current value 
of ~ 18.2 billion dollars in 2017, and this will reach ~ 54.1 
billion dollars by 2024. Red blood cell cryopreservation has 
also gained importance in the past few years. Cryopreserva-
tion of red blood cells (RBCs) can extend the storage time 
from 42 d (hypothermic preservation) to 10 years, which will 
ease the burden of short blood supply, especially in remote 
areas [3].

However, during freezing–thawing cycles, cells inevitably 
suffer from cryoinjuries, including solution injury and ice 
injury. The freeze concentration-induced excessive dehydra-
tion can damage cells resulting in solution injury. Besides 
this, ice formation and growth during cryopreservation can 
mechanically damage the biological structure of cells result-
ing in ice injury [4] (Fig. 1a). Cryoprotectants (CPAs) play 
a pivotal role in protecting cells against these cryoinjuries 
and allow their successful storage at cryogenic temperatures. 
CPAs can be broadly classified into two main categories on 
the basis of the permeability or non-permeability of CPAs 
into the cellular membrane [5]. Permeating CPAs mainly 
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include organic solvents, such as glycerol and DMSO, which 
can permeate phosphate bilayers. This permeability is usu-
ally driven by a concentration gradient and confers intracel-
lular protection to cells [6]. However, most of the organic 
solvent CPAs exhibit toxicity or poor biocompatibility that 
can cause serious side effects in patients like hemolysis, 
neurotoxicity, cardiovascular failure, respiratory arrest, and 
fatal arrhythmias [7, 8]. In comparison with this, non-per-
meating CPAs provide extracellular protection only. These 
include natural non-toxic carbohydrates (such as trehalose 
and sucrose) and biomacromolecules (such as proteins and 
polymers) [6]. Generally, non-permeating CPAs are com-
bined with permeating CPAs to ensure both extracellular 
and intracellular protection, where the latter is required for 
the critical protection of cells from inside. This results in a 
compromise between high cryopreservation efficiency and 
CPA toxicity [9].

For most cell types, conventional cryopreservation pro-
tocol involves stepwise freezing of sample at slow cooling 
rates using 10–20% DMSO solution. In order to improve cell 
cryopreservation efficiency, previous studies have mainly 
focused on the optimization of CPA formulation, CPA intro-
duction, and freezing–thawing protocol suitable for different 
cell types [10, 11]. Pollock et al. [12] reported the use of a 

differential evolution algorithm to optimize cryopreserva-
tion protocols for Jurkat cells (300 mmol/L trehalose, 10% 
glycerol, and 0.01% ectoine at 10 °C/min) and mesenchymal 
stem cells (300 mmol/L ethylene glycol, 1 mmol/L taurine, 
and 1% ectoine at 1 °C/min), which resulted in post-thawing 
cell viabilities of 95% and 96%, respectively. However, the 
optimization of cryopreservation protocol still suffers from 
two major challenges: (1) unfavorable post-thaw cell viabil-
ity or functions and (2) safety concerns induced by CPA 
toxicity. For cryopreservation of hepatocytes, Mahler and 
co-workers [13] reported only 61–75% survival of isolated 
cells post-cryopreservation, and post-thawing cell attach-
ment efficiency of 30–39%. Besides this, there are reports 
where the critical functions in some of the therapeutic cells 
such as mesenchymal stem cells (MSCs), natural killer cells, 
and dendritic cells (DCs) were compromised after use of 
conventional cryopreservation protocol [14–17]. Organic 
solvents glycerol and DMSO are widely used in intracellu-
lar protection; however, both lack biocompatibility. Glycerol 
can induce severe hemolysis [18], while the use of DMSO 
is found to be associated with many side effects in patients, 
like neurotoxicity, cardiovascular failure, respiratory arrest, 
fatal arrhythmias, and others [19]. Fetal bovine serum (FBS) 
is frequently combined with organic solvents to supplement 

Fig. 1   a Schematic diagram for 
two types of cryoinjuries occur-
ring during cryopreservation 
of cells; b schematic diagram 
for various biotechnology tech-
niques used in cryopreservation 
and their method of protection
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extracellular cryopreservation. However, FBS is derived 
from animals and has risk of inducing viral infections and 
immunogenicity inpatients [20, 21].

In recent years, the developments of biotechnology pro-
vided an opportunity to improve the final outcome of cell 
cryopreservation. Generally, biotechnology refers to use 
of scientific techniques to study and address the problems 
associated with living organisms. In this review, we summa-
rize the applications and achievements of various advanced 
biotechnology tools used in cell cryopreservation. These 
include trehalose delivery, hydrogel-based cell encapsulation 
technique, droplet-based cell printing, and nanowarming. All 
these techniques broadly aim to enhance cell cryopreser-
vation and reduce or eliminate CPA toxicity. As shown in 
Fig. 1b, trehalose delivery is proposed to deliver non-per-
meable but biocompatible trehalose into cells as an alterna-
tive to organic solvents, with the aim to provide intracellular 
cryopreservation. The other three techniques mainly enhance 
extracellular protection during freezing or warming process 
and thus aim to increase cryopreservation efficiency and 
significantly reduce the concentration of organic solvents. 
In addition to this, we discuss the challenges and provide 
future perspectives for the development of biotechnology 
tools used in cell cryopreservation.

Trehalose Delivery

Trehalose is a non-permeating disaccharide, which is used 
as a bio-inspired CPA to protect cells or organisms against 
cryoinjuries [22]. It facilitates the formation of a stable 
glassy matrix and promotes preferential hydration in cellu-
lar biomolecules, stabilizing their functional conformations 
[23–25]. However, trehalose generally provides extracellular 
protection only owing to its lower permeability. For intracel-
lular cryopreservation, it is used in combination with organic 
solvent CPAs (glycerol or DMSO) [26–28]. In order to avoid 
the toxicity of organic solvents, several advanced biotechnol-
ogy tools have been used to deliver trehalose into cells to 
provide both intracellular and extracellular cryopreservation. 
These techniques help to achieve organic solvent-free cell 
cryopreservation and high post-thaw cell survival efficiency 
[29]. These biotechnology tools, including both physical and 
chemical methods, can increase cellular membrane perme-
ability and thus transport non-permeable trehalose into cells 
(Table 1).

Physical Delivery Method

The physical delivery methods, including freezing-induced 
membrane phase transition [30–32] and electroporation 

technology [33–35], have been used to promote the per-
meation of trehalose into cells. These methods help to 
achieve organic solvent-free cell cryopreservation. The 
loading of trehalose can be easily controlled by manipu-
lating the concentration gradient. However, the increased 
membrane permeability achieved by these methods suffers 
from the issues of non-specificity, which results in uncon-
trolled influx and outflux of other molecules.

The use of freezing-induced membrane phase transition 
method for intracellular delivery of trehalose into cells was 
reported for the first time by Beattie et al. [36] in 1997, for 
cryopreservation of pancreatic islet cells. During the cool-
ing process, changes occurring in the fluid-to-gel phase 
transition result in reorganization of membrane lipid com-
ponents which increases the membrane permeability. A 
concentration gradient then drives the intracellular move-
ment of trehalose to provide intracellular cryopreservation. 
Gläfke et al. [30] reported the use of high extracellular 
concentrations of trehalose for freezing platelets. This 
method resulted in 98% membrane intact platelets, 76% 
of which were in non-activated resting state. This platelet 
cryopreservation protocol avoided any use of DMSO.

For more than 40 years, electroporation technology 
has been widely used for intracellular delivery of xeno-
molecules such as saccharides, drugs, plasmids, DNA 
vaccine, siRNA, and proteins. It offers several advantages 
like controllability, reproducibility, and high efficiency. 
Application of an external electric pulse assists in the for-
mation of hydrophilic pores on the membrane resulting 
in an increase in membrane permeability. This pore for-
mation can be reversible or irreversible depending on the 
electric pulse conditions [37–41]. In two separate studies, 
Dovgan et al. [33] reported the use of electroporation for 
efficient loading of trehalose into human adipose-derived 
stem cells (hADSCs) and umbilical cord mesenchymal 
stem cells (UC-MSCs). For electroporation in hADSCs, 
the cells were incubated in 250 mmol/L trehalose and 
electroporated at the optimal conditions of 1.5 kV/cm2, 
at 8 pulses, 100 μs, and 1 Hz, prior to programmable 
slow freezing. After thawing the cells, 83.8 ± 1.8% cell 
recovery rate was observed, which was similar to that of 
hADSCs (91.5 ± 1.6%) obtained using standard freezing 
protocol (10% DMSO in 90% FBS). In comparison with 
this, the electroporation of UC-MSCs under the optimal 
electroporation conditions (430 V, 8 pulses, 100 μs, and 
1 Hz) resulted in 61% cell viability [34]. It has been pre-
viously shown that high voltage can result in great loss 
of cell viability, while insufficient voltage compromises 
the delivery of trehalose into cells. Therefore, to ensure 
efficient trehalose delivery and favorable post-thaw cell 
viability, it is important to optimize suitable voltage condi-
tions for different cell types.
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Chemical Delivery Method

Chemical delivery methods utilize cell membrane perforat-
ing agents like synthetic polymers [42, 43], α-hemolysin 
[44–46], and nanoparticles [47–49] to achieve intracellu-
lar delivery of trehalose. These chemical materials usually 
involve a complex preparation process. They can interact 
with cell membranes and increase membrane permeability 
temporarily. Trehalose has been used as sole CPA in combi-
nation with these chemical delivery methods to successfully 
cryopreserve RBCs, fibroblasts, keratinocytes, and human 
mesenchymal stem cells (hMSCs).

Mercado et al. [43] designed and synthesized a series of 
biomimetic derivatives of PLP polymer to facilitate intra-
cellular delivery of trehalose. Particularly, co-incubation 
of PP50 (composed of PLP grafted with l-phenylalanine) 
with erythrocytes and trehalose suspension increased the 
intracellular concentration of trehalose to 123 ± 16 mmol/L. 
After cryopreservation of erythrocytes loaded with treha-
lose, the erythrocyte survival rate was 82.6 ± 3.4%, which 
was 20.4 ± 5.6% higher as compared to the unloaded eryth-
rocytes. PP50-mediated trehalose delivery method has been 
also used in organic solvent-free cryopreservation of nucle-
ated human cell line SAOS-2. Although the post-thaw cell 
viability was only 60 ± 2%, the number of metabolically 
active cells at 24 h post-thaw was in the range of 103 ± 4 to 
91 ± 5%. This was comparable to the results observed for 
cells frozen using DMSO [42]. Mechanically, PP50 adsorp-
tion onto the membrane contributed by its amphipathic char-
acteristic induced the appearance of thinner phospholipid 
bilayer, which resulted in an increase in trehalose uptake 
[42]. However, longer incubation times in cryopreserva-
tion of erythrocytes might result in undesirable hemoly-
sis of cells. Thus, PP50 must be removed to overcome the 
safety issues, which generally involves a tedious washing 
procedure.

α-Hemolysin is a genetically engineered endotoxin 
derived from Staphylococcus aureus. It has been shown to 
work via generation of pores in the lipid bilayers for both 
fibroblasts and keratinocytes, allowing an influx of trehalose 
[46, 50]. Buchanan et al. [46] used α-hemolysin to achieve 
intracellular trehalose concentrations of up to 0.5 mol/L. 
Trehalose at concentration of only 0.2  mol/L provided 
cryopreservation in fibroblasts and keratinocytes, with tre-
halose as sole CPA. After long-term cryopreservation, the 
post-thaw survival rates were 80% and 70% for fibroblasts 
and keratinocytes, respectively. Despite being so promis-
ing, α-hemolysin being a bacteria-derived pore protein may 
induce undesirable immune responses in patients. Therefore, 
it must be removed from cells prior to their use in clinical 
therapy. The safety concerns and necessary removal steps 
associated with the use of α-hemolysin limit its clinical 
application.

Nanomaterials are widely used in medical field espe-
cially as vehicles for the delivery of drugs, such as chemi-
cal molecules, DNA vaccine, and protein or peptide drugs, 
to therapeutic target [51–54]. In recent years, several stud-
ies have reported efficient delivery of trehalose into cells 
using nanomaterials. The nanoparticles generally utilize the 
natural process of endocytosis to specifically deliver treha-
lose into cells without any harmful effects [29]. The use 
of nanoparticles for trehalose delivery and cryopreserva-
tion of cells with trehalose as sole CPA has been reported 
to maintain cell viability and functions. Rao et al. [48] 
developed a pH-responsive genipin-cross-linked Pluronic 
F127–chitosan nanoparticle (GNP), which efficiently encap-
sulated trehalose for intracellular delivery (Fig. 2a). For 
cryopreservation of hADSCs, the cells were incubated with 
trehalose-loaded GNPs (nTre) for 24 h and cryopreserved 
in culture medium containing 200 mmol/L free trehalose. 
After rewarming, pre-incubation with nTre resulted in 90% 
cell viability which was comparable to the cell viability 
obtained post-cryopreservation with DMSO. Besides this, 
the differentiation potential and the expression of distinctive 
markers in hADSCs remained unchanged upon cryopreser-
vation. Another nano-vehicle used for delivery of trehalose 
is a type of biomimetic (bone-like) apatite nanoparticle. 
These apatite nanoparticles have been shown to efficiently 
deliver drugs and nucleic acids into various types of cells. 
Stefanic et al. [49] utilized colloidal bio-inspired apatite 
nanoparticles to mediate intracellular delivery of trehalose 
into RBCs. The local interactions between apatite NPs and 
the bilayer enhanced the translocation of trehalose into the 
cells (Fig. 2b). Cryopreservation of trehalose-laden RBCs 
demonstrated that the use of this glycerol-free cryopreser-
vation protocol tremendously increased survival of RBCs 
to 91%, which was 42% higher as compared to the control 
without NP treatment. These results were comparable to the 
FDA-approved cryopreservation protocol that utilized glyc-
erol as CPA. Nanoparticles-mediated intracellular delivery 
of trehalose has shown great potential to achieve clinical 
cryopreservation of therapeutic cells without any use of 
organic solvents. A possible limitation of this method could 
be requirement of long incubation time to achieve sufficient 
intracellular trehalose concentration. The incubation time 
required for trehalose delivery was 24 h and 7 h for GNPs 
and apatite nanoparticles, respectively.

Hydrogel‑Based Cell Encapsulation 
Technology

Hydrogel-based cell encapsulation technology refers to 
the encapsulation of living cells within semipermeable 
capsules prepared using hydrogel materials. This technol-
ogy has been found to be highly promising for various 
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cell-based studies and applications. This technology pro-
vides suitable 3D microenvironment similar to the extra-
cellular matrix, blocks the immunogenicity of encapsu-
lated cells, and directs the differentiation of stem cells 
[55–57]. In recent years, hydrogel-based cell encapsula-
tion technology has been widely used in cell cryopreser-
vation. The capsules not only protect the inner cells from 
mechanical and osmotic stress during the freezing and 
warming process, but also allow the bidirectional diffu-
sion of nutrients, oxygen, and waste products. Numerous 
studies have established its positive effects on post-thaw 
cell viability and functions [58–60].

The method used for cell encapsulation greatly influences 
the final outcome of cell cryopreservation. These methods 
can be broadly divided into three categories, namely emul-
sion/thermal gelation, extrusion (electrostatic spray, air flow 
nozzle, and vibrating nozzle), and microfluidic method [58]. 
Choice of method depends on two main factors: capability 
to maintain high cell viability/function and ability to control 

the capsule phenotypic characteristic such as size, shape, 
strength, and permeability [61].

Emulsion Method

Emulsion is a generic method used to encapsulate cells 
within bulk hydrogels. In this method, pre-gel solutions are 
first prepared by suspending cells and gel materials. When 
the dispersion reaches an equilibrium state, gel formation 
is triggered by adding an initiator or changing the physical 
conditions, such as UV light. Although emulsion method 
is simple and easy to scale up, the process of gelation may 
result in cell death and loss of functions owing to the toxicity 
of initiator, chemical cross-linking, and unfavorable reaction 
conditions [58, 62].

In recent years, numerous novel cross-linking approaches 
have been used in the preparation of cell-loaded hydrogels 
to avoid the negative effects of conventional methods. 
PVA-based hydrogel including PVA–gelatin cryogels and 

Fig. 2   Nanomaterials-mediated 
trehalose transportation into 
cells. a The encapsulation of 
trehalose in genipin-cross-
linked Pluronic F127–chitosan 
nanoparticles (GNPs) to pro-
duce nanoparticle-encapsulated 
trehalose (nTre). b Interactions 
of biomimetic (bone-like) apa-
tite nanoparticles with the lipid 
bilayer and enhanced delivery 
of trehalose into RBCs
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PVA–carrageenan (Car) scaffold was prepared via freeze-
gelation technique. The encapsulation process only involved 
a freezing step without requirement of any external cross-
linking agents. After cryopreservation, cell viability and 
functions were observed to be unaffected [63–66]. Zeng 
et al. [67] developed a supramolecular gel that also involved 
a cooling process to trigger the gel formation. For cryo-
preservation of encapsulated PC12 cells and RSC96 cells, a 
mixture of cell suspension, gelator, and DMSO was prepared 

and cooled in ice-water bath. Gelator self-assembled to form 
supramolecular gel at 8.2 °C and then programmed freez-
ing of the system was carried out at − 80 °C (Fig. 3a). The 
post-thaw viability of PC12 and RSC96 cells increased sig-
nificantly owing to the protection provided by the hydrogel 
during the freezing and thawing process. In addition to this, 
the thermo-reversible supramolecular gel could be removed 
easily by centrifugation. Jain et al. [68] reported a two-
component molecular recognition gelation method that was 

Fig. 3   Schematic diagram for cell encapsulation in hydrogel cap-
sules by different methods. Emulsion method: a cooling and thaw-
ing process for cells encapsulated in supramolecular gel, b in  situ 
hydrogelation via SPAAC click chemistry for cell encapsulation and 
cryopreservation, c preparation and cryopreservation process for 
hASCs–K-carrageenan hydrogel construct. Extrusion method: d a 
two-fluidic electrospraying method for encapsulation of cells in core–

shell capsules. Microfluidic method: e electrohydrodynamic atomi-
zation (EHDA) method for fabrication of cell-laden microcapsules 
with uniform size, f encapsulation of individual rat islets into alginate 
hydrogel using a droplet microfluidic device at room temperature, 
and g preparation, vitrification and warming process for cell-laden 
alginate-based core–shell hydrogel produced using a double emulsion 
flow-focusing tube-in-tube capillary microfluidic device
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adopted to develop a dextran-based polyampholyte hydrogel 
having cryoprotective properties. The gelation process was 
initiated by mixing of azide-Dex-PA and DBCO-Dex, and 
this gelation mainly depended on the reactant concentration 
(Fig. 3b). In the absence of any CPA, L929 cells encapsu-
lated within these hydrogels showed a recovery rate of > 90% 
(in optimum gelation condition) after thawing. As a natural 
thermo-sensitive polymer, K-carrageenan could form stable 
hydrogel via ionic gelation process. Potassium chloride was 
used for the cross-linking of K-carrageenan, allowing further 
stabilization of the hydrogels (Fig. 3c). HMSCs encapsulated 
with K-carrageenan hydrogel showed improved proliferation 
and chondrogenic potential post-cryopreservation [69].

Extrusion Method

Extrusion methods majorly include two methods: electro-
static spray and air-jet encapsulation technology. These are 
commonly used for cell encapsulation owing to their high 
throughput and production of evenly sized beads [61].

Wolters et al. [70] developed an air-jet droplet generator 
and used it to produce small, uniform, and smooth alginate 
beads while maintaining high throughput. In 2010, Mal-
pique et al. [71] investigated for the first time cryopreserva-
tion of brain cell neurospheres by encapsulating the cells 
within alginate hydrogel using the air-jet two-channel drop-
let generator. The results showed that the cell viability and 
metabolic activity were significantly higher in encapsulated 
neurospheres as compared to the non-encapsulated ones. It 
might be contributed by reduced fragmentation and better 
maintenance of spherical shape of aggregates upon encap-
sulation in alginate hydrogels. However, air-jet technology 
applied during microcapsule formation has several limita-
tions such as use of harsh shearing forces and formation of 
air bubbles and “tails.”

Cell encapsulation using electrostatic spray method 
involves generation of droplets containing cells and poly-
mers from the nozzle, followed by spraying into a container 
with gelling bath to form hydrogel beads. The hydrogel 
beads formation is assisted by the electrostatic force between 
the gelling bath and the nozzle [71]. Zhang et al. [72] encap-
sulated mouse MSCs into small (~ 100 μm) Ca-alginate 
microcapsules generated by electrostatic spray method. The 
vitrification of cell-loaded microcapsules with low concen-
tration of DMSO maintained high post-thaw cell viability 
in encapsulated cells. The Ca-alginate microcapsules pro-
vided great protection to the cells during cryopreservation. 
Two-fluidic electro-co-spraying technique was developed 
and adopted to continuously produce core–shell alginate 
capsules, which had better mass transfer and were used to 
encapsulate organoids (Fig. 3d). The core–shell structure 
of the capsules provided better cell recovery after cryo-
preservation of organoids, probably through prevention of 

intracellular ice formation [73–75]. Electrohydrodynamic 
atomization (EHDA) is an attractive approach that immobi-
lizes living cells into biomaterials permitting localized and 
minimally invasive delivery. It minimizes cell leakage and 
maintains viability during the delivery process. Naqvi et al. 
[76] combined alginate and EHDA technique to fabricate 
bone marrow stomatal cells (BMSCs)-encapsulated micro-
capsules (Fig. 3e). The results of cryopreservation showed 
that micro-encapsulation of BMSCs within alginate main-
tained their cell viability and potential to synthesize sGAG 
and collagen. Electrostatic spray method offers several 
advantages including cytocompatibility, ease of operation, 
and high efficiency. Besides this, the manufacturing process 
of capsules could be performed in a sterile environment. 
Therefore, the electrostatic spray method is promising and 
suitable to encapsulate cell resources or CPTs for long-term 
storage purpose.

Microfluidic Method

Rapid development of micro- and nanotechnologies has 
allowed operation of cell encapsulation procedures on-chip 
[1]. Built on flow focusing, miniaturized devices are to 
encapsulate cells into capsules. Microfluidic methods permit 
a high degree of control over the morphological and dimen-
sional properties. The experimental platforms are physically 
smaller than the macro-encapsulation systems. In addition 
to these, microfluidic method offers several advantages over 
macro-encapsulation systems, such as low cost, ease to scale 
up, disposability, specific designs, and rapid implementation 
[57, 76].

Many groups investigated the cryopreservation of cells 
encapsulated within hydrogel beads produced by microflu-
idic methods. In a droplet microfluidic platform, individual 
rat pancreatic islets were encapsulated with FOSD function-
alized hydrogel microcapsules. This study aimed to establish 
single-islet-based quality control assay for assessing qual-
ity and functionality of individually cryopreserved islets 
(Fig. 3f). Hydrogel membrane surrounding the encapsulated 
islet effectively enhanced the insulin secretion after thawing. 
The unique microstructure of the hydrogel was character-
ized by the presence of a compact 3D porous network and 
considerable amount of non-freezable bound water, which 
may alleviate the cryoinjury to the cells, playing a role simi-
lar to the CPAs [77]. Large-volume low-CPA cell vitrifica-
tion was achieved by microfluidic-based alginate hydrogel 
micro-encapsulation system (Fig. 3g) [78, 79]. HASCs in 
low concentration of CPA medium (2 mol/L) were encap-
sulated into core–shell microcapsules using an elaborate 
microfluidic system and then loaded into 0.25 mL conven-
tional plastic straw (PS). These were directly plunged into 
liquid nitrogen to realize/induce vitrification. After thawing, 
hASCs liberated from the microcapsules showed no changes 
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in viability and differential capacity. In terms of mechanism, 
the microcapsule effectively inhibited the ice formation and 
further propagation during cooling and warming process. 
The IRI activity of microcapsules especially protected the 
cells against severe mechanical injuries.

Droplet‑Based Cell Printing

Droplet-based techniques find wide applications in various 
fields, such as inkjet printing, emulsion polymerization, and 
DNA arraying, owing to their high efficiency and low cost 
[80–84]. Introduction of this advanced technology into cell 

cryopreservation created a series of novel vitrification proto-
cols that are characterized by lower CPA concentration and 
higher cooling and warming rates. This is mainly applied 
to smaller volumes of cryo-system [85]. Droplet-based cell 
vitrification process not only solved the problem of high 
CPAs concentration required for conventional vitrification 
procedure, but also conferred significant protection to cells 
by reducing the time required for ice crystal formation and 
alleviating the osmotic shock. Besides this, the whole pro-
cess is easy and quick, allowing a possibility of large-scale 
automation [86–88]. Therefore, this innovative approach 
may contribute significantly in the development of cell 
cryopreservation.

Fig. 4   Schematic diagram for preparation of cell-laden droplets using 
different devices. a Cell-CPA solution was loaded into valve-based 
droplet injector, and the resulting droplets were directly injected into 
liquid nitrogen. The ejected cells were collected in a cell strainer and 
were rapidly transferred (in nitrogen vapor) to the thawing media, fol-
lowed by a step-by-step thawing process. b RBC-CPA droplets were 
printed onto a cryo-paper as nitrogen gas flowed through a droplet 
ejector, which transformed the bulk of the RBC-CPA mixture into 

nanoliter droplets. Vitrification was achieved by submerging the cryo-
paper into liquid nitrogen. Warming process was performed by thaw-
ing the cells on a cryo-paper in phosphate-buffered saline at 37  °C. 
c Cell-laden droplets were rapidly ejected onto a freezing film using 
a cell printer with high throughput and precise spatial controllabil-
ity. Vitrification/thawing process was achieved by pouring the liquid 
nitrogen/warm water onto the other side via boiling heat transfer that 
helped to maintain high cooling/warming rate
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Demirci et al. [84] reported successful vitrification of 
many cell types by means of optimal droplet-based proce-
dure. This technique involved generation of droplets contain-
ing cell and CPAs solution using a modified jet device, which 
were further received/transferred in a container filled with 
liquid nitrogen and warmed in 37 °C water bath (Fig. 4a). 
Before vitrification, droplet generation process did not affect 
the call viability and cell survival rate was maintained to 
approximately 90%. Propanediol and trehalose were used as 
CPAs instead of toxic DMSO for cell vitrification. Even after 
thawing, the viability of cells was maintained well.

Assal et al. [89] developed a novel cryo-printer that could 
transform a bulk volume of human blood into nanoliter cryo-
inks on a cryo-paper, which was immersed into liquid nitro-
gen for rapid vitrification (Fig. 4b). After rewarming, the 
recovered human RBCs showed normal characteristic fea-
tures. In addition to this, there was no effect on the essential 
functions of recovered RBCs, including phosphorylation of 
band 3 protein, expression of complement receptor 1, and 
maintenance of intracellular nitric oxide and reactive oxygen 
species levels. Besides these intrinsic advantages offered by 
droplet-based vitrification, the cryo-ink containing CPAs 
medium such as ectoine, trehalose, and PEG also reduced 
the injuries suffered by RBCs during the cooling and warm-
ing processes.

High-throughput non-contact vitrification of cell-laden 
droplets was reported by Shi et al. [90] in 2015. Cell printing 
generated droplets containing cell CPAs onto an ultra-thin 
freezing film. Vitrification/thawing process was operated by 
pouring liquid nitrogen/warm water onto the other side via 
boiling heat transfer. This ensured maintenance of high cool-
ing/warming rate and avoided direct contact between cells 
and liquid nitrogen/water, preventing chances of potential 
contamination (Fig. 4c). The use of this novel method pro-
vided successful vitrification in NIH 3T3 cells and hASCs. 
After thawing, both cell viability and differentiation poten-
tial remained unaffected.

Recently, a CPA-free cryopreservation method-based 
inkjet cell printing technology was developed by Akiyama 
et al. [91]. It was successfully used for the vitrification of 
several mammalian cell types such as 3T3 cells, C2C12 
cells, and rat MSCs at ultra-rapid cooling rates. The drop-
lets containing cells and culture medium were printed onto a 
glass substrate cooled with liquid nitrogen to realize/induce 
solid-surface vitrification. Immediately after thawing, the 
viability of 3T3 cells for 40-pL droplets on thick substrates 
(thickness: 150 μm) was comparable to the cell viability 
obtained using conventional freezing method. The ultra-
rapid cooling and warming rates significantly inhibited ice 
formation and ice recrystallization and also protected the 
cells against cryoinjuries during the freezing and warming 
processes.

Nanowarming

Conventional warming method (37 °C water bath) fails to 
provide sufficient warming rates and uniform warming effect 
with the increasing scale of bio-specimen. During rewarm-
ing process, once the warming rates go below the critical 
warming rates, ice recrystallization/devitrification occurs, 
which is one of the major causes of cell suffered injuries. 
However, advances in bio-specimen cooling for cryopreser-
vation have not been matched well by similar developments 
in rewarming procedure [92]. Nanomaterials-mediated 
nanowarming technology has a potential to be established as 
a new approach to allow ultra-rapid and uniform rewarming 
[93]. Nanowarming generally involves use of some nano-
materials such as Fe3O4 nanoparticles (Fe3O4 NPs) or gold 
nanorods (GNRs) that can rapidly convert electromagnetic 
or light energy into heat energy. Thus, rapid and uniform 
rewarming of bio-specimens can be realized/achieved by 
incorporating these nanomaterials into CPA solution and 
heating with external electromagnetic, radiofrequency (RF) 
or laser fields [94–96]. Numerous studies have affirmed that 
nanowarming technology is significantly effective and can 
be used for improving cryopreservation of cells, tissues, and 
organs.

RF Inductive Warming Process

Magnetic iron oxide nanoparticles are capable of transform-
ing external electromagnetic energy into heat energy rapidly. 
Modified iron oxide nanoparticles (msIONPs) character-
ized by compatibility, colloidal stability, and capability to 
remain in solution at higher concentration were synthesized 
by Manuchehrabadi et al. [93]. Human dermal fibroblasts 
(HDFs) were vitrified using VS55 cryo-solution loaded with 
msIONPs and warmed by different methods. In the 1 mL 
system, the viability of nanowarmed HDFs was statistically 
similar to the fresh control sample and higher than the via-
bility of slow-warmed sample.

Liu et al. [97] successfully achieved low-CPA vitrifica-
tion of stem cell-alginate hydrogel constructs by combining 
nanowarming and micro-encapsulation technology (Fig. 5a). 
Fe3O4 NPs were mixed with low-CPA solution for RF induc-
tive warming process. After nanowarming, porcine adipose-
derived stem cells (pADSCs) showed viability > 80%, while 
the attachment efficiency improved by three times as com-
pared to the pADSCs treated with slow warming process. 
Besides these, the expression of surface markers and multi-
lineage potentials of pADSCs after nanowarming remained 
unaffected. Mechanically, in addition to the cryopreservation 
provided by cryo-solution and alginate hydrogel, Fe3O4 NPs 
uniformly present outside of hydrogel further suppressed 
devitrification and recrystallization during nanowarming 
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process. Nanowarming was the primary reason for promoted 
attachment of thawed pADSCs [97]. This technology was 
also found to be efficient in human UC-MSCs and resulted 
in an improved vitrification outcome [98] (Fig. 5b).

Laser Radioactive Warming Process

Gold nanoparticle-based laser warming has the potential to 
provide a platform for both extra- and intracellular heating 
of vitrified biomaterials, ranging in size from nm to mm 
in µL-sized droplets. Khosla et al. [99] mixed GNRs with 
cryo-solution for rapid cooling and nanowarming of HDFs 
(Dcell = 10 µm) in droplet volume. The method of nanowarm-
ing used was laser warming technology irradiated with a 
1064 nm laser pulse for 1 ms (Fig. 5c). A cell viability of > 

90% was maintained in HDF cells post-laser warming. Simi-
lar warming method was used to rewarm vitrified zebrafish 
embryos. Before vitrification, biocompatible PEGylated 
GNRs were microinjected directly into zebrafish embryos 
with 2.3 mol/L PG, thereby helping to distribute the laser 
energy throughout the embryo during warming (Fig. 5d). As 
compared to the conventionally warmed control group, the 
GNRs-mediated laser warming of embryos resulted in 31% 
viable embryos with consistent structure at 1 h, 17% viable 
embryos continuing development at 3 h, and 10% viable 
embryos showing movement at 24 h post-warming [100].

Two-dimensional (2D) graphene oxide (GO) and molyb-
denum disulfide (MoS2) nanosheets (NSs) were used to 
improve warming process of bio-samples owing to their 
photothermal effects. Human umbilical vein endothelial cells 

Fig. 5   Schematic diagram for different cell vitrification techniques 
and nanoparticles-mediated nanowarming process. RF field-mediated 
warming process: a Nanowarming procedure for vitrified PS loaded 
with cell-alginate hydrogel constructs and NPs in CPA solution. b 
Vitrification and nanowarming of hUCM-MSC-laden PS with mag-
netic induction heating. Laser field-mediated warming process: c 
Sample droplet consisting of biomaterial(s), CPA, and gold nanorods 
(GNRs) with a maximum volume of 1.8 µL was loaded onto a cus-
tomized cryotop. For rapid cooling, cryotop was directly immersed 
into liquid nitrogen. Laser warming was achieved by pulsed laser irra-

diation yielding ultra-rapid rewarming at rates up to 2 × 107 °C/min. 
d Overview of zebrafish embryo cryopreservation and laser GNRs 
rewarming. Micro-injection consisting of 1064  nm resonant GNRs 
and PG was injected into the space of the embryo, between yolk and 
chorionic. Rapid cooling was achieved by immersing the modified 
cryotop into liquid nitrogen. Laser irradiation of the embryo taken 
from liquid nitrogen was used to achieve nanowarming. e Multistep 
addition of vitrification solution and loading in PS, followed by rapid 
cooling and photothermal rewarming with GO and MoS2/NSs at 
37 °C water bath
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(HUVECs) were chosen to study this novel NSs-mediated 
spatial heating approach. For rewarming, cryopreserved 
HUVECs were placed into warming solution (37 °C) under 
a near-infrared laser field and photothermal effect was 
achieved at 5000 mW/cm2 for 8–10 s (Fig. 5e). This warm-
ing technology significantly improved the cell viability as 
compared to the conventional rewarming method and also 
maintained normal cell function and subcellular ultrastruc-
ture. Further investigation showed that near-infrared laser 
irradiation effectively decreased ice formation and restricted 
recrystallization growth via micro- and macro-effects during 
rewarming [101].

Conclusions and Future Perspectives

With the advancement of cell-based applications, conven-
tional cell cryopreservation clearly failed to keep pace with 
current and emerging needs. This review summarized the 
recent advances in biotechnology tools, including trehalose 
delivery, hydrogel-based cell encapsulation, droplet-based 
cell printing, and nanowarming technology, used in cell 
cryopreservation. Trehalose delivery technology helped to 
overcome the major limitation of ultra-low permeability 
of trehalose, and its application resulted in favorable post-
thaw cell survival rates without need of any organic solvent. 
Trehalose delivery method provided both extracellular and 
intracellular cryopreservation with trehalose as sole CPA 
[29]. Hydrogel-based cell encapsulation technology created 
a new platform for efficient cell transportation and preserva-
tion. It has promoted long-term storage of cell resources and 
banking “off-the-shelf” cell-based therapy products at large 
scale. Since hydrogel capsules supplement excellent cryo-
preservation, satisfactory outcomes of cell cryopreservation 
can be also achieved at reduced DMSO concentrations [59, 
102, 103]. Droplet-based cell printing can improve cell vitri-
fication and can be helpful to achieve high efficiency at low-
CPA concentration and reduce CPA toxicity and osmotic 
stress during CPA loading and unloading process [86]. 
Nanowarming technique has revolutionized the progress in 
warming method. Its use can achieve ultra-fast and uniform 
rewarming, while avoiding the adverse effects of devitrifica-
tion on cells [93].

Remarkable progress has been made in the application of 
advanced biotechnology tools to improve cell cryopreser-
vation. However, a serious challenge associated with cell 
cryopreservation has been identified that needs to addressed. 
Cryopreservation-induced delayed onset cell death has 
been reported to result in significant loss (> 50%) in the 
total cell population and compromises cellular functional-
ity [104–106]. In order to further explore the true poten-
tial of biotechnology for cell cryopreservation, future work 
should focus not only on the advancement of the existing 

applications, but also discover new “binding domain” to 
introduce other innovative biotechnology techniques.
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