
Vol:.(1234567890)

Transactions of Tianjin University (2019) 25:124–142
https://doi.org/10.1007/s12209-018-0155-5

1 3

RESEARCH ARTICLE

Investigation of the Vibration Behavior of Fluidelastic Instability 
in Closely Packed Square Tube Arrays

Wei Tan1,2 · Hao Wu1 · Guorui Zhu1

Received: 1 November 2017 / Revised: 20 January 2018 / Accepted: 19 March 2018 / Published online: 11 May 2018 
© The Author(s) 2018

Abstract
Flow-induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Fluidelastic 
instability is the most critical flow-induced vibration mechanism in heat exchangers. Both experimental and computational 
studies conducted to determine fluidelastic instability were presented in this paper. In the experiment, a water channel was 
built, and a closely packed normal square tube array with a pitch-to-diameter ratio of 1.28 was tested, and significant fluide-
lastic instability was observed. A numerical model adopting large-eddy simulation and moving mesh was established using 
ANSYS CFX, and results showed good agreement with the experimental findings. The vibration behaviors of fluidelastic 
instability were discussed, and results showed that the dominant vibration direction of the tubes changed from streamwise 
to transverse beyond a critical velocity. A 180° phase lag between adjacent tubes was observed in both the experiment and 
simulations. Normal and rotated square array cases with pitch-to-diameter ratios of 1.28 and 1.5 were also simulated. The 
results of this study provide better insights into the vibration characteristics of a square tube array and will help improve the 
fundamental research and safety design of heat exchangers.
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List of symbols
A	� Cross-sectional area
d	� Outer tube diameter
k	� Spring coefficient
ω	� Circular frequency of the tube
m	� Mass per length of the tube
fc	� Coupled frequency, i.e., natural frequency of tube 

array in fluid, which is corresponding to certain cou-
pled mode

fa	� Tube frequency in air
fv	� Tube vortex shedding frequency
fw	� Tube frequency in water
G	� Flow rate
ma	� Tube mass per length
P	� Array pitch
V	� Income velocity

Vp	� Gap velocity
Vc	� Critical velocity
δs	� Mass damping parameter, δs = mwδw/ρod2

δw	� Logarithmic decrement in water
ρo	� Fluid density
mw	� Total tube mass per length in water

Introduction

Fluidelastic instability is considered the most critical flow-
induced vibration mechanism in tube and shell heat exchang-
ers that can cause short-term failure of tubes. Such failures 
are often expensive and potentially dangerous. Fluidelas-
tic instability results from coupling between fluid-induced 
dynamic forces and the motion of structures. Instability 
occurs when the flow velocity is sufficiently high so that the 
energy absorbed from the fluid forces exceeds the energy 
dissipated by damping. Fluidelastic instability usually leads 
to excessive vibration amplitudes. The minimum velocity 
at which instability occurs is called the critical velocity. To 
ensure the safety of facilities, the operating flow velocity 
should be strictly controlled below the critical velocity.
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Fluidelastic instability in heat exchangers has been inten-
sively researched over the past 60 years. Several theoretical 
models have been developed [1], and a number of important 
reviews on this topic have been published [2–4]. Fluidelastic 
instability is mainly attributed to two fluid–structure interac-
tion mechanisms [5, 6]. The first mechanism, which is called 
the stiffness mechanism, is associated with the fluid cou-
pling of neighboring tube vibrations and related to relative 
tube displacement. Here, the fluid forces are proportional 
to the displacements of the cylinders, and with the increas-
ing velocity, the fluid-stiffness forces can reduce the modal 
damping. When the modal damping becomes negative, the 
cylinders become unstable. The second fluidelastic instabil-
ity mechanism is associated with fluid force components 
in phase with the tube velocity and is called the damping 
mechanism. Here, the dominant fluid force is proportional 
to the velocity of the cylinders and may reduce the system 
damping when it acts as an excitation mechanism. Once the 
modal damping of a mode becomes negative, the cylinders 
lose stability [7]. A fully flexible array can become fluide-
lastically unstable due to either one or a combination of both 
mechanisms.

Numerous experiments [8] have been conducted in 
research on fluidelastic instability in tube arrays, and find-
ings have helped develop a better understanding of the 
phenomenon. One of the earlier experiments conducted on 
square tube arrays was reported by Tanaka and Takahara 
[9], who tested a normal square array with a pitch ratio 
of 1.33 and concluded that unsteady fluid dynamic forces 
on a cylinder are mainly induced by the vibrations of the 
cylinder itself and its four neighboring cylinders. Tanaka 
et al. [10] measured tube arrays of P/d = 2.0 and P/d = 1.33, 
and clarified the characteristics of the critical velocity with 
respect to the pitch-to-diameter ratio. Weaver and Yeung 
[11] conducted experiments on a normal square array with 
a pitch ratio of 1.5 in water flow and showed that a single 
flexible tube in an array of rigid tubes becomes unstable at 
or near the same flow velocity as that found in a fully flex-
ible array. Price and Paidoussis [12] conducted experiments 
on five-row and six-column normal square tube arrays of 
P/d = 1.5 in both air and water flows and concluded that the 
position of the flexible cylinder in the array has little effect 
on its stability in water flow but does influence its stability 
in air flow. Chen et al. [13] used water channels to perform 
a series of experiments measuring motion-dependent fluid 
force coefficients for normal square arrays with a pitch ratio 
of 1.35. Fluid damping and stiffness coefficients based on 
the unsteady flow theory were obtained as a function of 
reduced flow velocity, excitation amplitude, and Reynolds 
number. Al-Kaabi et al. [14] used a test rig to test square 
array of P/d = 1.45. Measurements were conducted to iden-
tify the flow-induced dynamic coefficients, the developed 
scheme was utilized to predict the onset of flow-induced 

vibrations in two configurations of tube bundles, and results 
were examined in light of Tubular Exchange Manufactur-
ers Association (TEMA) predictions. Scott [15] conducted 
experiments on a normal square array with a pitch ratio of 
1.33. In the case of fully flexible array, fluidelastic instabil-
ity occurred at a point very close to the local peak in tube 
response, and the stability threshold was difficult to deter-
mine precisely. The response of a third-row tube, which was 
a single flexible tube in a rigid array, showed no fluidelas-
tic instability behavior. Austermann and Popp [16] did not 
observe fluidelastic instability in their wind tunnel study of 
square arrays with a pitch ratio of 1.25.

In summary, most of the present research on normal 
square tube arrays is devoted to tube arrays with a relatively 
large pitch ratio, and little work has been done on tube arrays 
with small tube ratios. Available results show that a single 
flexible tube in a rigid array does not become unstable in 
both air and water for pitch ratios less than 1.33; thus, the 
stiffness mechanism appears to be the dominant mechanism 
for the fluidelastic instability of tubes with small pitch ratios. 
The vibration characteristics of tubes with small pitch ratios 
are also slightly different from those of tubes with large pitch 
ratios.

The development of computer technology has enabled 
the use of computation fluid dynamics in the engineering 
industry. This branch of fluid mechanics provides a new way 
for solving problems of fluid dynamics in tube arrays. Due to 
the complexity of actual tube array problems, most presented 
numerical simulations of the flow around tube array were 
limited to two dimensions based on the solution of Reyn-
olds averaged Navier–stokes (RANS) equations. However, 
as RANS models cannot accurately predict the problems of 
fluid dynamics in tube arrays, they have not yet been widely 
employed in this regard. Pioneering direct numerical simula-
tions (DNS) in tube array flows were reported by Moulinec 
et al. [17, 18]; in this work, the disappearance of wakes was 
presented and compared with theoretical asymptotic limits 
for laminar and turbulent strained flows. Although DNS is 
considered the most accurate solution for fluid analysis, it 
is not feasible for practical engineering problems involv-
ing high Reynolds number flows. Few computers can afford 
the high computational expense required by even a simple 
model.

In large-eddy simulations (LES), large eddies are resolved 
directly, while small eddies are modeled. Therefore, LES 
falls between DNS and RANS in terms of the fraction of 
the resolved scales. As momentum, mass, energy, and other 
passive scalars are mostly transported by large eddies in tube 
arrays, the LES technique is a promising approach for solv-
ing many complicated problems. Early simulations of LES 
were two-dimensional [19–22], but some important mecha-
nisms, such as vortex stretching, could not be reproduced by 
this technique. Rollet-Miet et al. [23] and Benhamadouche 
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and Laurence [24] pioneered the use of 3D LES calculations 
in staggered tube arrays. In their papers, period elemental 
cells of tube arrays in a flow were simulated in both the 
streamwise and transverse directions, and improved predic-
tions were compared with the RANS approach for mean and 
turbulence quantities. Liang and Papadakis [25] used LES 
to analyze a 3D staggered tube array at subcritical Reynolds 
number; in their computations, two distinct and independ-
ent shedding frequencies were detected behind the first two 
rows, but the high-frequency component vanished in down-
stream rows. The corresponding Strouhal numbers obtained 
agreed well with measurements available in the literature. 
Unsteady RANS calculations can provide consistent data 
for a tube undergoing forced displacement within a fixed 
bundle [26–28]. Attempts to fully capture the free motions 
of a single moving tube within a fixed array were proposed 
by Shinde et al. [29] using URANS and delayed detached 
eddy simulations (DDES). Similarly, a single tube in a fixed 
array at a moderate Reynolds number of 60000 using LES 
was achieved by Berland et al. [30]; here, good agreement 
with the experimental reference data was obtained.

Despite decades of intensive research, many important 
vibration characteristics of normal square tube arrays have 
not yet been fully understood, especially for tube arrays 
with a small pitch ratio. This paper intensively investi-
gates the vibration behaviors of normal square tube arrays 
with a pitch-to-diameter ratio of 1.28 at different veloci-
ties using both experimental and numerical methods. The 
basic characteristics of fluidelastic instability are discussed, 
and the change in dominant vibration direction, phase lag 
between adjacent tubes, and tube vibration patterns related 
to the instability of tube arrays are analyzed in detail. The 
influence of tube arrangement and pitch ratio on the critical 
velocity and resulting vibration patterns is also discussed 
using simulation data. The results afford a better understand-
ing of the vibration behavior of square tube arrays.

Experimental Setup

The experimental setup is shown schematically in Fig. 1. 
The setup is a closed water loop system comprising a water 
channel, a water tank, a pump, and the related pipelines. A 
tube bundle is placed in the middle of water channel, and a 
dynamic data acquisition and analysis system is connected 
to the test section.

Water Channel

The water channel (Fig. 2a) is 3 m long with a square cross-
section of 0.16 m × 0.17 m. Water is pumped from the water 
tank to the channel and flows through a series of screens to 
generate uniform water flow before reaching the test section. 
A weir is installed near the outlet of the water channel to 
maintain the water level, and the flow rate is controlled by 
two valves in the pipeline and measured by a flow meter. A 
maximum flow of 45 m3/h can be achieved by the system.

Test Section and Tube Array

The test section (Fig. 2b) is located in the middle of the 
water channel, and a test boss is designed to support and fix 
the tube array. Sight glasses are set on both sides of the test 
section for observation. Figure 3 shows the tube array used 
for the tests; this array is originally designed as a cluster of 
cantilever tubes with a pitch-to-diameter ratio of 1.28. The 
tube array is arranged as a normal square, and the diameter 
of the tubes is 25 mm. Each tube is supported by a flexible 
thin steel rod to effectively reduce the natural frequency, 
and the tube array is vertically mounted on the test box, as 
shown in Fig. 3a, to ensure that the active part of the tubes 
is submerged in the flow.

Strain gauges are mounted on the rod end of the test tubes 
(Fig. 3a), which is free from water. Two sets of strain gauges 
are used on each tube to enable measurement in two perpen-
dicular directions. The accuracy of the strain gauge is less 

Fig. 1   Schematic of the experi-
mental setup
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than 1%, and a dynamic data acquisition system (DH5922, 
Dong Hua Testing Technology Co., Ltd., China) is used to 
obtain the data. As the dominant frequency is smaller than 
20 Hz, the sample frequency is set to 200 Hz in the system. 
Tubes denoted by 1, 2, and 3 in Fig. 3b are measured in 
each test.

Velocity

The velocity in the water channel is controlled by the flow 
meter, and the incoming velocity can be calculated by the 
following equation.

where V is the incoming velocity, G is the flow rate, and A 
is effective cross-section of the water channel.

In analyses of tube array systems, the mean gap velocity 
(or pitch velocity), which reflects the velocity between the 
gaps of adjacent tubes, is usually used as a reference. The 

(1)V = G∕A

gap velocity of normal and rotated square tube arrays can be 
expressed by Eqs. (2) and (3), respectively.
Normal square tube array:

Rotated square tube array:

Note that Vp is the gap velocity, P is the pitch length, and 
d is the outer tube diameter.

Natural Frequency

The natural frequency of a tube is a basic parameter in vibra-
tion analysis. Experimental and numerical computations are 
used to obtain this parameter. Two types of natural frequen-
cies are observed in tubes.

(2)Vp =
P

P − d
V

(3)Vp =
P

√

2(P − d)
V

Fig. 2   Experimental facility: a water channel, b test section

Fig. 3   a Tube array (unit: mm) 
and b measuring configuration
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(a)	 Tube frequency in air

The free vibration method can be used to measure the 
natural frequency of a single tube. As the density of air is 
very small, the effect of the inertial forces of a fluid on the 
tube can be neglected. The frequency obtained is practically 
identical to the natural frequency in a vacuum. A frequency 
fa of 19.531 Hz and logarithmic decrement δa of 0.046 can 
be obtained from experiments. The test result is shown in 
Fig. 4.

(b)	 Tube frequency in water

The frequency of tubes is reduced if they are immerged 
in water due to the mass of water that weighs on them. Con-
sidering the coupling effect of tube arrays, testing the free 
vibration of a single tube directly in a fully flexible tube 
array enveloped by closed water channel may be difficult; 

thus, a numerical method is used to estimate the natural fre-
quency of a tube in a tube array in water. Calculations are 
carried out in ANSYS CFX 14.0, and the fa of the experi-
mental structure and δa in air are input as initial conditions. 
A natural frequency fw of 16.480 Hz and a logarithmic dec-
rement δw of 0.074 can be obtained from the computation. 
The result is shown in Fig. 5.

Vibration Behaviors at Different Velocities

According to the vibration characteristics of tube arrays at 
different velocities, the velocities can be divided into four 
regions:

(a)	 Vp = 0.65–0.89  m/s, irregular turbulent buffeting 
region (Fig. 6): Tube vibrations in this velocity range 
are mainly affected by random turbulent buffeting, in 
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which tubes vibrate slightly under a range of coupled 
frequencies fc of tube array.

(b)	 Vp = 0.89–1.02 m/s, vortex shedding resonance region 
(Fig. 7): The vortex shedding frequency fv corresponds 
to the fw of the tubes in this region, and this relationship 
causes tube resonance. Significant vibrations occur in 
the front two rows of the tube array, and the dominant 
frequency is close to fw.

(c)	 Vp= 1.02–1.17 m/s, turbulence buffeting phase before 
fluidelastic instability (Fig. 8): With the increasing 
velocity, fv deviates from fw. A significant decrease in 
vibration amplitude occurs, and the vibration frequen-
cies shift to a broader spectrum.

(d)	 Vp = 1.17–1.41  m/s, fluidelastic instability region 
(Fig.  9): In this region, the vibration amplitude 
increases abruptly, and obvious tube instability occurs.

Numerical Model

Assumption

The computations are carried out using the commercial 
software ANSYS CFX 14.0. To simplify the fluid–structure 
model, several assumptions are made before establishment.

(a)	 Period boundary condition

A 3D model is needed to capture the vortex stretch along 
the tube length [17]. Large computational resources are 
needed to construct a full model of the tube array due to the 
large length-to-diameter ratio applied. A period boundary 
condition along the tube length can be used to reduce the 
calculation cost by considering periodic characteristics along 
the tube length statistically [23–25]. In previous research on 
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a numerical model [31], model size is reduced in the tube 
direction for both time savings and numerical accuracy.

(b)	 Rigid body movement

As a period boundary is adopted, tube deformation in a 
period can be neglected in comparison to tube displacement. 
Tubes can be considered rigid, and springs can be mounted 
on the rigid body to substitute elastic forces (Fig. 10). The 
spring coefficient can be calculated as:

where k is the spring coefficient used to set the elastic bound-
ary of the tube, � is the circular frequency of the tube, and 
m is the mass per length of the tube.

(4)k = �2m

Modeling

A 3D tube model, shown in Fig. 11, can be established based 
on the experimental parameters (Table 1) and assumptions 
above. A cubic fluid field with a uniform flow inlet and pres-
sure outlet is adopted to simulate the test section in a water 
channel. A total of 25 tubes are arranged 5 × 5 to achieve a 
normal square in the fluid domain. Moving mesh boundaries 
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and rigid body movements are established to ensure that the 
tubes can vibrate under the fluid forces. All tubes feature 
their own local coordinates and are free to oscillate in the 
streamwise and transverse directions.

In previous work [31], a numerical model for fluidelastic 
instability, including the choice of turbulence model, model 
size, and reliability of the coarse grid, was elaborated in 
detail. Here, only the results are utilized. LES WALE is used 
as the turbulence model, and transient analysis is carried 
out with a time step of 0.0002 s. The mesh of the model is 
shown in Fig. 12.

Computations are performed in an HP Z800 workstation 
(8 cores with 96 GB RAM) in the High-performance Com-
puting Center of Tianjin University (12 CPUs allocated).

Results and Discussion

Comparison Between the Experiment and Numerical 
Simulations

Comparisons between the experiment and numerical simu-
lation are shown in Fig. 13, which illustrates the ratio of 
RMS tube displacement to tube diameter versus velocity 
for tubes 2 and 3. Due to the linear correlation of strain and 
displacement in the range of measurement, the strain data 
obtained from experiment are converted to displacements 
by directly calibrating strains with displacement values to 
enable convenient comparison. The results show good agree-
ment between the experiment and simulations.

A comparison of the spectra of tube 2 obtained at differ-
ent velocities from the experiment and simulations is shown 
in Fig. 14. Simulations show good agreement in the spec-
tra. The dominant frequency determined by the simulation 
agrees well with that obtained from the experiment, which 

verifies the reliability of the proposed simulation method 
in investigating the characteristics of fluidelastic instability.

According to the changes in the tube vibration spec-
tra in Fig. 14, the tubes mainly respond in two regions of 
the spectra. The first region occurs around fw. Significant 
vibrations at this frequency occur when fv corresponds to 
fw (Fig. 14a–d). As fv varies with velocity, vibrations at this 
frequency decrease sharply when fv deviates from fw, and 
only a small influence of shedding frequency can be seen 
in the spectra (Fig. 14g–l). The second region involves a 
series of frequencies around 14 Hz. These frequencies are 
related to several values of fc in the whole tube system and 
mainly affect turbulent buffeting and fluidelastic instability. 
Turbulent buffeting is a random vibration phenomenon in 
which the spectrum disperses over a broad range of fc with 
relatively small amplitudes. Turbulent buffeting is affected 
by fluctuations in turbulent flow. The dominant frequency of 
fluidelastic instability also occurs within fc. In contrast to the 
behavior of turbulent buffeting, the vibration of fluidelastic 
instability occurs in a narrow band of the spectrum with 
very large vibration amplitudes, corresponding to a single 
peak frequency. Typical spectra of fluidelastic instability 
are shown in Fig. 14e–j. According to the analysis above, 
a critical velocity of 1.06 m/s can be estimated from the 
transformations of the spectra.

Changes in the Dominant Vibration Direction

Another interesting phenomenon that can be observed in the 
experiment is that the dominant vibration direction of each 
tube changes significantly as the velocity increases beyond 
the critical velocity. This observation is seldom reported in 
previous research. Responses in the streamwise and trans-
verse directions are added to each plot for comparison in 
Fig. 15. Vibrations in the streamwise direction are larger 
than those in the transverse direction for tubes 2 and 3 at 
1.17 m/s. As the velocity increases to 1.45 m/s, however, 
this trend changes. The vibration amplitudes of tube 2 in the 
streamwise and transverse direction becomes nearly identi-
cal, while the amplitude of the transverse vibration of tube 3 
becomes much larger than that of the streamwise vibration.

Fig. 11   Model of the tube array

Table 1   Parameters of the model

P/d (m/m) D (m) Ma (kg/m) ρo (kg/m3) fa (Hz)

1.28 0.025 1.71 998 19.5
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This same trend can be seen in Fig. 13. According to 
the response curves obtained, the increases in vibration 
amplitudes in the streamwise and transverse directions with 
respect to velocity do not occur at the same pace. The vibra-
tion amplitudes in the streamwise direction of tubes 2 and 3 
increase at about 1.06 m/s, which is estimated as the critical 
velocity of the tube array. The vibration amplitudes in the 
transverse direction increase later but faster than those in the 
streamwise direction at about 1.2 m/s. As such, following 
this trend, we can predict that the dominant vibration direc-
tion for most tubes will change to the transverse direction.

The change in dominant vibration direction is mainly 
related to the change in vibration patterns of the tube array. 
Figure 16 shows the orbits of tube movement at 1.2 and 
1.41 m/s plotted by simulation. While all the tubes vibrate 

streamwise at 1.2 m/s (Fig. 16a), most of the principle axes 
of the orbits of movement change significantly at 1.4 m/s 
(Fig. 16b). Transverse vibrations dramatically increase with 
the increasing velocity. The dominant vibration direction 
of the first row of tubes completely changes during trans-
verse vibration, but the tube motions of the 2nd and 4th rows 
are more likely to point toward the center after instability 
occurs. This pattern is slightly different from the vibration 
pattern of tube arrays with a large pitch ratio [9], where all of 
the tubes show mainly transverse vibrations. The observed 
change in dominant vibration direction may be related to 
some vibration patterns of the tube array that enable easier 
conveyance of energy from the fluid to the tube system, 
which reflects more “unstable” movement.

Fig. 12   Meshing: a plane mesh, 
b local mesh, c 3D structure
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Phase Lag Relationship Between Adjacent Tubes

As tube arrays in water flow always have a small mass damp-
ing parameter δs (the δs calculated in the experiment is about 
0.283), fluidelastic instability is generally controlled by the 
damping mechanism. However, no fluidelastic instability is 
observed [14] when only a flexible tube in a rigid tube array 
with a P/d = 1.33 is present. In this case, instability is only 
affected by the damping mechanism. Thus, a fully flexible 
tube array becomes unstable only when the pitch ratio is 
relatively small, which means that the stiffness mechanism 
may be used to explain unstable behaviors despite a small 
δs. Fluidelastic instability in a tube array with a small pitch 
may be significantly affected by the interaction of neigh-
boring tubes. As such, the relationship between vibrating 
tubes must be clarified to obtain a better understanding of 
the instability of tube arrays.

A specific phase lag between adjacent tubes can be 
observed in both the experiment and simulations. Figure 17 
shows the phase relationship of adjacent tubes at different 
velocities. The time-history curves of tubes 2 and 3 are given 

in each plot. In Fig. 17a, b, the vibrations of tubes 2 and 3 
do not show a fixed phase lag relationship before 1.06 m/s, 
which is the critical velocity Vc of the tube array. When 
the velocity increases to Vc, a phase lag of 180° begins to 
emerge (Fig. 17c), and this phenomenon is maintained as 
long as the velocity is larger than Vc (Fig. 17d). This change 
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Fig. 13   Comparison of RMS tube response versus velocity diagrams obtained by numerical calculations and the experiment. a streamwise direc-
tion of tube 2, b transverse direction of tube 2, c streamwise direction of tube 3, d transverse direction of tube 3

Fig. 14   Comparison between the experimental and computational 
spectra at different velocities: a streamwise direction spectrum of 
the experiment at 0.94  m/s, b streamwise direction spectrum of 
the simulation at 0.94  m/s, c transverse direction spectrum of the 
experiment at 0.94 m/s, d transverse direction spectrum of the sim-
ulation at 0.94  m/s, e streamwise direction spectrum of the experi-
ment at 1.06  m/s, f streamwise direction spectrum of the simula-
tion at 1.06  m/s, g transverse direction spectrum of the experiment 
at 1.06  m/s, h transverse direction spectrum of the simulation at 
1.06  m/s, i streamwise direction spectrum of the experiment at 
1.2 m/s, j streamwise direction spectrum of simulation at 1.2 m/s, k 
transverse direction spectrum of the experiment at 1.2  m/s, l trans-
verse direction spectrum of the simulation at 1.2 m/s
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coincides with the occurrence of fluidelastic instability, so 
it may also be used as a method to predict the threshold of 
fluidelastic instability. We emphasize here that this phase 
relationship is not continuously sustained at 1.06 m/s. Over 
the whole response history of the tubes, sudden increases 
and decreases in amplitude are observed, and only in the 
period where a large-amplitude vibration exists is the 180° 
phase relationship assured. This finding further indicates 
that the tube array at this velocity is in a subcritical state of 
fluidelastic instability. The same relationship can be seen in 
the simulations (Fig. 18), but notable phenomena occur at 
about 1.2 m/s, which is slightly later compared with that in 
the experiment.

Influence of Pitch‑to‑Diameter Ratio and Array 
Pattern

Simulations for other pitch-to-diameter ratios and array 
patterns (Fig. 19) are presented here for further discussion. 
The normal and rotated square configurations are simu-
lated, and different behaviors under fluidelastic instability 
are observed.

In contrast to the simulation above, damping of the mate-
rial and structure is not counted. Figures 20a, b and 21a, 
b show the velocity field and tube movement orbits of a 
normal square array of P/d = 1.28 and P/d = 1.5 under fluide-
lastic instability, respectively. The most obvious difference 

Fig. 14   (continued)
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Fig. 15   Transformation of the dominant vibration direction: a response of tube 2 at 1.17 m/s, b response of tube 3 at 1.17 m/s, c response of tube 
2 at 1.45 m/s, d response of tube 3 at 1.45 m/s

Fig. 16   Orbits of tube movement (scale: 4): a Vp = 1.2 m/s, b Vp = 1.41 m/s
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between these two cases is that significant vortices are 
formed behind tubes of P/d = 1.5, whereas only several 
flow lanes can be seen between columns of P/d = 1.28. With 
increasing tube amplitude, the vortices become irregular 
because they are disturbed by the movement of the tubes. 
The movement orbits observed at P/d = 1.5 (Fig. 21b) are 
more regular than those at P/d = 1.28 (Fig. 21a) because the 
tubes mainly vibrate in the transverse direction. Figure 22a 
and b infers that the critical velocities of the two tube arrays 
are 0.81 and 0.88 m/s, respectively.

On account of the staggered arrangement of the tubes, the 
flow paths of the rotated square array are quite complicated, 
which makes the vibration of the tubes much more chaotic. 
Figures 20c–d and 21c–d show some cases of the rotated 
square array. In a tube array, tubes feature their own special 
orientations, and most tubes show an angle of approximately 
45° relative to the flow direction. Many small vortices are 
formed behind tubes even in a tube array with a pitch ratio 
of 1.28, but these vortices immediately collide with other 
tubes, causing large turbulences in the flow field. The critical 
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velocities of P/d = 1.28 and P/d = 1.5 are 0.71 and 0.77 m/s, 
respectively (Fig. 22c–d).

Connors’ formula with an empirical value of K is often 
used to determine the critical velocity in practice. The Con-
nors’ formula can be expressed as:

The K values obtained from the experiment and simu-
lations in this paper are compared with those in different 
references in Table 2.

(5)
Vc

fwD
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Fig. 18   Phase relationship between adjacent tubes (simulation): a Vp= 0.94 m/s, b Vp=1.02 m/s, c Vp=1.12 m/s, d Vp=1.2 m/s

Fig. 19   Square array configuration: a normal square array, b rotated 
square array



139Investigation of the Vibration Behavior of Fluidelastic Instability in Closely Packed Square…

1 3

Table 2 reveals that the K values obtained from formulas 
besides the Connors’ formula are smaller than the present 
results. The K in references is obtained by the mean value 
or low boundary of all published experimental data. Neither 
theory nor the data are sufficient to establish values of K for 
δs < 0.7, and a much more conservative value of K is usually 
chosen in this range to ensure design safety. This limitation 
explains why the results of this paper are generally larger 
than the reference values provided.

Conclusions

This paper investigated some characteristics of fluidelastic 
instability in square tube arrays using both experimental 
and numerical methods. A closely packed normal square 

array with a pitch ratio of 1.28 was tested under a range 
of flow velocities, and different ranges of tube responses 
were presented. A fluid–structure coupling model for flu-
idelastic instability was established, and calculation results 
were compared with experimental results. Predictions of 
the critical velocity and spectrum were in good agreement 
with the experimental findings, although poor predictions 
of the amplitude of tube vibrations were observed. Changes 
in dominant vibration direction under fluidelastic instabil-
ity were observed in both the experiment and simulations. 
This transformation was related to changes in the vibration 
patterns of the whole tube system. The vibration direction 
of tubes in rows 2–4 pointed toward the central tube in a 
fully unstable tube array, which was different from the vibra-
tion pattern observed in tube arrays with a large pitch ratio. 
A phase lag of 180° between adjacent tubes was observed, 

Fig. 20   Velocity fields of different tube arrays: a normal square array, P/d =1.28, b normal square array, P/d =1.5, c rotated square array, P/d 
=1.28, d rotated square array, P/d =1.5
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which was consistent with the instability of the tube array; 
this phase lag can be used to estimate the critical velocity 
and only appeared when large-amplitude vibrations occur 
in time history. The influence of tube configuration and 
pitch ratio was also discussed in this paper, and the basic 
vibration patterns of normal and rotated square array were 
compared. In a normal square array, movement orbits of P/d 
=1.5 were more regular than those of P/d =1.28 and tubes in 

row vibrate in the same orientation. Tubes in a rotated square 
array feature special orientations, most of which showed an 
angle of approximately 45° relative to the flow direction. 
The coefficient K obtained from the Connors’ formula pre-
sented in this paper was compared with those obtained from 
other formulas, and the results enrich the data at δs < 0.7, 
especially for tube arrays with a small pitch ratio.

Fig. 21   Orbits of tube movement of different tube arrays. a normal square array, P/d =1.28, Vp= 0.964 m/s, b normal square array, P/d =1.5, Vp 
= 1.15 m/s, c rotated square array, P/d = 1.28, Vp = 0.97 m/s, d rotated square array, P/d =1.5, Vp = 0.96 m/s
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