Skip to main content
Log in

Comparison of spectral density models to simulate wind records

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Due to the lack of real wind records to perform dynamic analysis of structural systems, civil and structural engineers commonly use simplified and conservative approaches to consider the dynamic effects of wind. With the aim to provide wind records, several studies suggest that the use of spectral density models and configuration of basic wind speed and terrain roughness are adequate to simulate the velocity field of the turbulent wind; however, nowadays there is no enough information to conclude which is the best spectral density model to simulate wind records for various configurations of basic wind speed and terrain roughness. For this reason, in this paper different scenarios are simulated in order to study the behavior of six spectral density functions which are frequently used in wind engineering. It is observed that the models proposed by von Karman, von Karman-Harris and Solari are the best alternative to simulate wind records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Burton, T. (2011). Wind energy handbook, Wiley, United Kingdom, DOI: 10.1002/9781119992714.

    Book  Google Scholar 

  • Counihan, J. (1975). “Adiabatic atmospheric boundary layers: a review and analysis of data from the period from 1880-1972.” Atmospheric Environment, Vol. 9, No. 10, pp. 871–905, DOI: 10.1016/0004-6981(75)90088-8.

    Article  Google Scholar 

  • Davenport, A. G. (1961). “The spectrum of horizontal gustiness near the ground in high winds.” Quarterly Journal of the Royal Meteorological Society, Vol. 87, No. 372, pp. 194–211, DOI: 10.1002/qj.49708737208.

    Article  Google Scholar 

  • Davenport, A. G. (1968). “The dependence of wind load upon meteorological parameters.” Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures, University of Toronto Press, Toronto, pp. 19–82.

    Google Scholar 

  • Eurocode 1. (1991). Actions on structures: Part 1.4: Wind actions, European Committee for Standardization

  • Harris, R. I. (1968). On the spectrum and auto-correlation function of gustiness, Electrical Research Association, United Kingdom.

    Google Scholar 

  • Hiriart, D., Ochoa, J. L., and García, B. (2001). “Wind power spectrum measured at the San Pedro Mártir Sierra.” Revista Mexicana de Astronomía y Astrofísica, Vol. 37, No. 2, pp. 213–220, México, DOI: 2001RMxAA..37..213H.

    Google Scholar 

  • Holmes, J. D. (2001). Wind loading of structures, Spon Press, London.

    Book  Google Scholar 

  • Kaimal, J. C., Wyngaard, J.C., Izumi, Y., and Coté, O. R. (1972). “Spectral characteristics of surface-layer turbulence.” Quarterly Journal of the Royal Meteorological Society, Vol. 98, No. 417, pp. 563–589, DOI: 10.1002/qj.49709841707.

    Article  Google Scholar 

  • Karman, T. V. (1948). “Progress in the statistical theory of turbulence.” National Academy of Sciences of the United States of America, Vol. 34, No. 11, pp. 530–539.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, J., Li, C., and Chen S. (2011). “Spline-interpolation-based FFT Approach to fast simulation of multivariate stochastic processes.” Mathematical Problems in Engineering, Vol. 2011, Article ID 42183, DOI: 10.1155/2011/842183.

    MathSciNet  Google Scholar 

  • Li, J. Li, C. He, L., and Shen J. (2015.) “Extended modulating functions for simulation of wind velocities with weak and strong nonstationarity.” Renewable Energy, Vol. 83, November 2015, pp. 384–397, DOI: 10.1016/j.renene.2015.04.044.

  • Lopez, A., Muñoz, C. J., and Pérez, L. E. (2008). Manual de diseño de obras civiles: Diseño por viento, C.F.E., México.

    Google Scholar 

  • Mackey, S. (1970). “Gust factors.” Proc., of the seminar: Wind loads on structures, National Science Foundation, Japan Society for Promotion of Science, University of Hawaii, 19-24 October, pp. 191–202.

    Google Scholar 

  • Manwell, J. F. (2009). Wind energy explained: Theory, design and application, Wyle, New York, DOI: 10.1002/9781119994367.

    Book  Google Scholar 

  • Petersen, E. L., Mortensen, N.G., Landberg L., Højstrup, J., and Frank, H. P. (1998). “Wind power meteorology. Part I: Climate and turbulence.” Wind Energy, Vol. 1, No. 1, pp. 25–45, DOI: 10.1002/(SICI)1099-1824(199804)1:1+<25::AID-WE4>3.0.CO;2-D.

    Article  Google Scholar 

  • Shinozuka, M. (1987). “Stochastic fields and their digital simulation” Stochastic Methods in Structural Dynamics, Vol. 10, No 1, pp. 93–133, DOI: 10.1007/978-94-009-3681-2_3.

    Article  MathSciNet  Google Scholar 

  • Shinozuka, M., and Jan C.-M. (1972), “Digital simulation of random processes and its applications.” Journal of Sound and Vibrations, Vol. 25, No 1, pp. 111–128, DOI: 10.1016/0022-460X(72)90600-1.

    Article  Google Scholar 

  • Solari, G. (1993). “Gust buffeting, I: Peak wind velocity and equivalent pressure.” Journal of Structural Engineering, Vol. 119, No. 2, pp. 365–382, DOI: 10.1061/(ASCE)0733-9445(1993)119:2(365).

    Article  Google Scholar 

  • Ubertini, F., and Giuliano, F. (2010). “Computer simulation of stochastic wind velocity fields for structural response analysis: comparisons and applications.” Hindawi Publishing Corporation, Advances in Civil Engineering, Vol. 2010, Article ID749578, 20 pages, DOI: 10.1155/2010/749578.

    Google Scholar 

  • Veers, P. S. (1988). “Three-dimensional wind simulation.” Proc., Sandia Report, SAD88-0152, Sandia National Laboratories, California.

    Google Scholar 

  • Xu, Y.-L. (2013). Wind effects on cable-supported bridges, Wiley, Singapore, DOI: 10.1002/9781118188293.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edén Bojórquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bojórquez, E., Payán-Serrano, O., Reyes-Salazar, A. et al. Comparison of spectral density models to simulate wind records. KSCE J Civ Eng 21, 1299–1306 (2017). https://doi.org/10.1007/s12205-016-1460-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-1460-y

Keywords

Navigation